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Outline

I Part 1: Introduction
1 General concepts on dependence.
2 Extreme Dependence in 2 or N ≥ 3 dimensions.
3 Minimizing the expectation of a convex function of a sum.

I Part 2: Application of 2-dimensional results on extreme
dependence to portfolio choice and behavioral finance.

I Part 3: Application of N-dimensional results on extreme
dependence to risk management problems and model risk
assessment under dependence uncertainty.
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References for Part 1 (not exhaustive lists)
General references on the topic:

Quantitative Risk Management, McNeil, Frey, Embrechtsq.

Frees and Valdez, 1997, (role of copulas in insurance).

Nelsen, 1999, (standard reference on bivariate copulas).

Joe, 1997, (on dependence in general).

Aas, Czado, Frigessi, Bakken “Pair-copula constructions of multiple
dependence." IME, 2009.

Specific references
C. Bernard, X. Jiang and R. Wang (2014). “Risk Aggregation with
Dependence Uncertainty”, IME.

C. Bernard and D. McLeish (2015). “Algorithms for Finding Copulas
Minimizing Convex Functions of Sums.” ArXiv.

P. Embrechts, Puccetti, G. and L. Rüschendorf (2013). “Model
uncertainty and VaR aggregation”. JBF.

B Wang, R Wang (2011). Complete mixability and convex minimization
problems with monotone marginal densities, JMVA
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1 Modeling Dependence
Multivariate Models
Copulas

2 Extreme Dependence
Theory
Rearrangement Algorithm (practice)
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The overall risk of the company/ portfolio can be described
as

X = X1 + X2 + ...+ XN

(total risk can be decomposed into risk components)
In general there are dependencies between risks:
I Structural
I Empirical
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Structural Dependencies

• Loss variables are driven by common variables:
– Economic factors:  inflation drives costs in various 

lines of insurancelines of insurance
– Common shocks:  an automobile accident can trigger 

several related claims
– Uncertain risk variables:  long term mortality changes 

affect all mortality-related insurance/annuities
– Catastrophes: 9/11 ripple effect over many lines (lifeCatastrophes:  9/11 ripple effect over many lines (life, 

business interruption,  health, property, etc)
• Known relationships can be built into internal 

d lmodels 



Empirical Dependencies

• Observed relationships between lines (usually) 
without necessarily well-defined cause-effect 
relationships.
– Relationships may not be simple.

R l i hi b i f l– Relationships may not be over entire range of losses.

• In practice, observed relationships are at a macro 
levellevel
– Detailed data on relationships is often not available.
– Detailed data on marginal distributions is availableDetailed data on marginal distributions is available.
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Copulas

Two Approaches

I Financial and insurance risk models are multivariate
But variables are typically not independent

I Two common approaches to model multivariate (MV) risks
1 Factor models, Standard MV models, e.g. MV Normal or

MV Student
2 Model the dependence structure and marginals separately

(copula approach)
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Multivariate Distribution

Let X = (X1, . . . ,XN)′ be a N-dimensional random vector from
d.f.

FX (X ) = FX (x1, . . . , xN) = P(X1 ≤ x1, . . . ,XN ≤ xN)

Then
E(X ) := (E(X1), . . . ,E(XN))′ vector
Cov(X ) := E [(X − E(X ))(X − E(X ))′] matrix

Further notations
Cov(X ) = Σ with each element σij = Cov(Xi ,Xj)

ρ(X ): correl. matrix with ρij = σij/
√
σiiσjj

If Σ = Cov(X ) is positive definite,
Σ is invertible
A Cholesky decomposition Σ = AA′ exists: A Cholesky
factor A, is a lower triangular matrix with positive diagonals.
A is often denoted by Σ1/2
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Multivariate Normal (MVN): Introduction

Definition: X = (X1, . . . ,XN)′ follows MVN if

X D
= µ+ AZ

where
Z = (Z1, . . . ,Zk )′ is vector of iid univariate standard normal
N(0,1) (number of random factors)
A ∈ RN×k and µ ∈ Rd

Interested in non-singular case rank(A) = N ≤ k
⇒ Σ is invertible

ITo generate a sample X from MVN (µ,Σ)
1 Perform a Cholesky decoposition of Σ to get Σ1/2

2 Simulate Zi
iid∼ N(0,1), for i = 1,2, . . . ,N

3 X = µ+ Σ1/2Z
In Matlab simply use mvnrnd

15



Modeling Dependence
Extreme Dependence

Multivariate Models
Copulas

MVN: parameters

MVN is completely characterized by µ and Σ.

The sample estimates X̄ = µ̂ and S = Σ̂ are the MLEs of µ
and Σ, respectively
MVN plays a central role in MV modeling

However, MVN itself is not the best model for financial and
insurance data fitting

Marginal distribution tails are symmetric and too short
dependence structure too restrictive (see Fig 3.1 next
slide)

IExtension to normal mixture models, normal variance model...
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Figure 3.1. (a) Perspective and contour plots for the density of a bivariate normal distri-
bution with standard normal margins and correlation −70%. (b) Corresponding plots for a
bivariate t density with four degrees of freedom (see Example 3.7 for details) and the same
mean vector and covariance matrix as the normal distribution. Contour lines are plotted at
the same heights for both densities.
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Introduction to copulas...

Copulas will help us to separate the problem of choosing the
dependence structure from the identification of the correct
marginal behavior.

Example: Suppose that you want to model (X1,X2) so that
X1,X2 ∼ N(0,1) but you don’t know how their dependence
should be modeled. That is, you know the marginal distribution
of each of X1 and X2 but don’t know what the joint CDF
F (x1, x2) = P(X1 ≤ x1,X2 ≤ x2) should be.
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Choice 1: X1 and X2 are independent.

In that case

F (x1, x2) = P(X1 ≤ x1)P(X2 ≤ x2) = φ(x1)φ(x2),

where φ(x) = P(N(0,1) ≤ x). We can instead write

F (x1, x2) = Cind (φ(x1), φ(x2)),

where Cind : [0,1]2 → [0,1] is defined by

C(u1,u2) = u1u2

and is called the independence copula.
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Choice 2: X1 and X2 are defined so that X2 = −X1.

In that case

F (x1, x2) = P(X1 ≤ x1,X1 ≥ −x2)

=

{
φ(x1)− φ(−x2) if x1 ≥ −x2
0 otherwise

=

{
φ(x1) + φ(x2)− 1 if φ(x1) ≥ 1− φ(x2)
0 otherwise

= Cneg(φ(x1), φ(x2))

where Cneg(u1,u2) = max(u1 + u2 − 1,0) is the negative
dependence copula (antimonotonic copula).
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E1. Modelling Dependence with Copulas

On Uniform Distributions

Lemma 1: probability transform

Let X be a random variable with continuous distribution function F .

Then F (X) ∼ U(0, 1) (standard uniform).

P (F (X) ≤ u) = P (X ≤ F−1(u)) = F (F−1(u)) = u, ∀u ∈ (0, 1).

Lemma 2: quantile transform

Let U be uniform and F the distribution function of any rv X.

Then F−1(U)
d
= X so that P (F−1(U) ≤ x) = F (x).

These facts are the key to all statistical simulation and essential in

dealing with copulas.

c©2004 (McNeil, Frey & Embrechts) 86
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Copula: definition

Let us give the general definition of a copula.
I A copula is a multivariate distribution on the unit

N-dimensional cube with uniform (0,1) marginal
distributions.

Definition
A copula C is a joint distribution function for a vector
(U1, . . . ,Um) of random variables that each has a marginal
U(0,1) distribution. I.e.,

C(u1, . . . ,um) = P(U1 ≤ u1, . . . ,Um ≤ um)

for a vector (U1, . . . ,Um) such that P(Ui ≤ ui) = ui , for
0 ≤ ui ≤ 1.
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Examples:

I Independence copula: Cind (u1,u2) = u1u2 is a copula for
the case where U1 and U2 are independent (Their joint
distribution is
P(U1 ≤ u1,U2 ≤ u2) = P(U1 ≤ u1)P(U2 ≤ u2) = u1u2).

I If U1 ∼ U(0,1) and U2 = 1−U1, then U2 ∼ U(0,1) and the
joint CDF of (U1,U2) is

P(U1 ≤ u1,U2 ≤ u2) = P(U1 ≤ u1,1− U1 ≤ u2)

=

{
u1 + u2 − 1 if 1− u2 ≤ u1
0 otherwise.

Therefore Cneg(u1,u2) = max(0,u1 + u2 − 1) is a copula
(the negative dependence copula (antimonotonic copula)
we described before).
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Be careful!

At this point, you might think that any function C(u1,u2) from
[0,1]2 to [0,1] is a copula. Here is an example to show it’s not
the case.
Example: Is C(u1,u2) = u1 + u2 a copula?

No, first of all we must have 0 ≤ C(u1,u2) ≤ 1, which is not the
case here. Second, we must have that
C(u1,1) = P(U1 ≤ u1,U2 ≤ 1) = P(U1 ≤ u1) = u1, but this is
not case here since C(u1,1) = u1 + 1.
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EXAMPLES
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• Fréchet-Hoeffding inequality
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Simulation technique for these 3 dependencies...

How to get (X ,Y ) with the right marginal distribution FX and FY
and with copula C being the anti-monotonic copula? the
comonotonic copula and the independence copula?

res
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Properties of Copulas

Invariance: The copula C is invariant under increasing
transformations of the marginals: f1(X1), ..., fN(XN) has the
same copula as (X1, ...,XN) if for all i , fi are strictly
increasing.
Note that when C is a copula for (U,V ), then for any v in
[0,1], the partial derivative ∂C(u,v)

∂u exists for almost all u,
and for such v and u,

0 ≤ ∂C(u, v)

∂u
≤ 1.

This is theorem 2.2.7 from Nelsen (2006), page 13.
I Interpretation of this derivative as a conditional

distribution...
P(V ≤ v |U = u)
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General Simulation Techniques

To simulate (X ,Y ) with respective marginal cdf FX and FY and
joint copula C, one can proceed as follows.

1 Generate u and t , two independent uniform on (0,1).
2 Set v = C−1

u (t) where Cu(v) = ∂C(u,v)
∂u . This derivative can

be interpreted as Q(V ≤ v | U = u), the conditional
distribution for V given U = u. Then u and v are uniformly
distributed and linked with the copula C.

3 Set x = F−1
X (u) and y = F−1

Y (v). Then x and y are a
random draw of the couple (X ,Y ).

The inverse functions are “pseudo-inverses” :

F−1(t) = inf {x | F (x) ≥ t}

For more details see Nelsen (2006), page 41, section 2.9.
More material on copulas (appendix)
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Extreme Dependence
in 2 dimensions

and in N ≥ 3 dimensions
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Dependence Uncertainty

Consider a joint portfolio S = X1 + · · ·+ XN of risky assets
X1, · · · ,XN .

The distribution of each Xi is modelled with statistical or
financial tools.
The dependence structure among X1, · · · ,XN is unknown.
Marginal: easier to statistically estimate/model/test.
Dependence: difficult to estimate/model/test.
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Fréchet Class
Let X = (X1, · · · ,XN). Define the Fréchet class

FN(F1, · · · ,FN) = {X : Xi ∼ Fi , i = 1, · · · ,N}.

FN(F1, · · · ,FN) is the set of random vectors with a given
marginal distributions F1, · · · ,FN .
Extensively studied, sometimes using copulas.
We want to know something about S = X1 + · · ·+ XN when
X ∈ FN(F1, · · · ,FN).

For example, let Xi be the price of stock i at the end of a period,
then an European basket call option price is given by

EQ[(S − K )+].

What can we tell about this price without knowing the
dependence?
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Q. To be more general, find bounds on

E[g (S)], X ∈ FN(F1, · · · ,FN)

for g being a convex function.
E[g(S)] is called a convex expectation. Why convex/concave
functions?

E[g(S)] includes important quantities such as
the variance, European option prices,
the stop-loss premium, the excess of loss,
a class of convex risk measures, and it is closely related to
the risk measure TVaR,
Risk-avoiding/risk-seeking expected utility.

Convex ordering/optimization.
Nice mathematical properties.
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definition: Convex order
X is smaller in convex order, X ≺cx Y , if for all convex functions
f

E [f (X )] ≤ E [f (Y )]

Assume first that we trust the marginals Xi ∼ Fi but that we
have no trust about the dependence structure between the Xi
(copula).

Extreme Dependence with N = 2 Risks

In two dimensions, we have the following Fréchet-Hoeffding
bounds or “extreme dependence”.

F−1
1 (U) + F−1

2 (1− U) ≺cx X1 + X2 ≺cx F−1
1 (U) + F−1

2 (U)

Useful to build optimal portfolios (Part 2) and to assess
dependence uncertainty (Part 3).
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Dependence Uncertainty with N = 2 Risks

I For risk measures preserving convex order
(ρ(S) = var(S), ρ(S) = E [g(S)] with convex g,
ρ(S) = TVaR(S)), for U ∼ U(0,1)

ρ
(

F−1
1 (U) + F−1

2 (1− U)
)
≤ ρ(S) ≤ ρ

(
F−1

1 (U) + F−1
2 (U)

)

This does not apply to Value-at-Risk.

Example: X1 ∼ N (0,1) and X2 ∼ N (0,1) with distribution Φ

std
(

Φ−1(U) + Φ−1(1− U)
)

= 0

≤ std(S) ≤ std(Φ−1(U) + Φ−1(U)) = 2

Issue: Wide bounds! Huge model risk...
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Fréchet Hoeffding Bounds

In terms of copulas, the two extreme dependencies correspond
to piecewise minimum and maximum over all possible copulas
C:

max(u + v− 1,0) ≤ C(u, v) ≤ min(u, v)

(Fréchet-Hoeffding Bounds for copulas) (anti-monotonic
copula as a lower bound)

Constrained Fréchet Hoeffding bounds in 2 dims
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Applications in Part 2

Interesting to find bounds that are copulas as they are
“best-possible” bounds... and they are attained.

I Portfolio selection problems
I Inferring the utility function of investors
I Designing strategies that are independent of the market

when the market crashes...
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Extensions in higher dimensions

Some extensions are possible:

I In general, it is difficult to find the “extreme copulas”: They
may not even exist...

I Also, the optimization of a real-world problem such as
minimizing a risk measure or the budget needed in a
portfolio when it involves some constraints, may lead to a
dependence structure that depends on the margins...

I It may thus be reasonable to consider not to disentangle
dependence and margins but to work directly with the joint
distribution.
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Assessing Model Risk on Dependence with N ≥ 3 Risks

I Fréchet upper bound : comonotonic scenario:
X1 + X2 + ...+ XN ≺cx F−1

1 (U) + F−1
2 (U) + ...+ F−1

N (U)

I In N ≥ 3 dims, the Fréchet lower bound does not exist: It
depends on F1, F2,..., FN (Wang-Wang (2011, 2014))

(More details on CM in appendix)

I In N dimensions
Puccetti and Rüschendorf (2012, JCAM): algorithm (RA) to
approximate bounds on functionals.
Embrechts, Puccetti, Rüschendorf (2013, JBF): application
of the RA to find bounds on VaR
Bernard, Jiang, Wang (2014, IME): explicit form of the lower
bound for convex risk measures of an homogeneous sum.

I Issues
bounds are generally very wide
ignore all information on dependence.
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Incorporating Partial Information on Dependence

I With N = 2:
subset of bivariate distribution with given measure of
association Nelsen et al. (2001, 2004)
bounds for bivariate dfs when there are constraints on the
values of its quartiles (Nelsen et al. (2004)).
2-dim copula known on a subset of [0,1]2 ⇒ find “improved
Fréchet bounds”, Tankov (2011), Bernard et al. (2012) and
Sadooghi-Alvandi et al. (2013).

I With N ≥ 3: Bounds on the VaR of the sum
- with known bivariate distributions: Embrechts, Puccetti and

Rüschendorf (2013)
- with the variance of the sum (WP with

Rüschendorf,Vanduffel)
- with higher moments (WP with Denuit, Vanduffel)
- with the joint distribution known on a subset (JBF with

Vanduffel)
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Rearrangement Algorithm

N = 4 observations of N = 3 variables: X1, X2, X3

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

New set...

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1

Each column: marginal distribution
Interaction among columns: dependence among the risks
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Same marginals, different dependence

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 16, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13




X1 + X2 + X3


6 6 4
4 3 3
1 1 2
0 0 0


 SN =




16
10
3
0




(2)

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.

1

Aggregate Risk with Maximum Variance
comonotonic scenario
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Rearrangement Algorithm: Sum with Minimum Variance

minimum variance with N = 2 risks X1 and X2

Antimonotonicity: var(Xa
1 + X2) ≤ var(X1 + X2)

How about in N ≥ 3 dimensions?

Use of the rearrangement algorithm on the original matrix M.

Aggregate Risk with Minimum Variance
I Columns of M are rearranged such that they become

anti-monotonic with the sum of all other columns.

∀k ∈ {1,2, ...,N},Xa
k antimonotonic with

∑

j 6=k

Xj

I After each step, var
(

Xa
k +

∑
j 6=k Xj

)
≤ var

(
Xk +

∑
j 6=k Xj

)

where Xa
k is antimonotonic with

∑
j 6=k Xj
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Aggregate risk with minimum variance
Step 1: First column

A New Approach to Assessing Model Risk
in High Dimensions

Carole Bernard∗ and Steven Vanduffel†‡

July 14, 2014

M =




1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13


 (1)

Maximum variance sum

X1 + X2 + X3


1 1 2
0 6 3
4 0 0
6 3 4


 SN =




4
9
4
13




X1 + X2 + X3


6 6 4
4 3 3
1 1 2
0 0 0


 SN =




16
9
3
0




(2)

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

New set...

∗Carole Bernard, Department of Statistics and Actuarial Science at the University of Waterloo (email:
c3bernar@uwaterloo.ca).
†Corresponding author : Steven Vanduffel, Department of Economics and Political Sciences at Vrije

Universiteit Brussel (VUB). (e-mail: steven.vanduffel@vub.ac.be).
‡C. Bernard gratefully acknowledges support from the Natural Sciences and Engineering Research

Council of Canada, the Humboldt Research Foundation and the hospitality of the chair of mathematical
statistics of Technische Universität München where the paper was completed. S. Vanduffel acknowledges
the financial support of the BNP Paribas Fortis Chair in Banking.
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Aggregate risk with minimum variance

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0

becomes




0 6 4
1 3 2
4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
3
5
6

becomes




0 3 4
1 6 2
4 1 1
6 0 0




(4)

↓ X1 + X2


0 3 4
1 6 2
4 1 1
6 0 0




3
7
5
6

becomes




0 3 4
1 6 0
4 1 2
6 0 1




(5)

All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2
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Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

↓ X2 + X3


6 6 4
4 3 2
1 1 1
0 0 0




10
5
2
0
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0 6 4
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4 1 1
6 0 0




(3)

↓ X1 + X3


0 6 4
1 3 2
4 1 1
6 0 0




4
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3
7
5
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4 1 2
6 0 1
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All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2
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5
2
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All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7

,

↓ X1 + X2


0 3 4
1 6 0
4 1 2
6 0 1




3
7
5
6

Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2

The minimum variance of the sum is equal to 0! (ideal case of a
constant sum (complete mixability, Wang - Wang (2011))
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Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

↓ X2 + X3
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All columns are antimonotonic with the sum of the others:

↓ X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1




7
6
3
1

,

↓ X1 + X3


0 3 4
1 6 0
4 1 2
6 0 1




4
1
6
7
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↓ X1 + X2
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7
5
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Minimum variance sum

X1 + X2 + X3


0 3 4
1 6 0
4 1 2
6 0 1


 SN =




7
7
7
7




(6)

2

The minimum variance of the sum is equal to 0! (ideal case of a
constant sum (complete mixability, Wang - Wang (2011))
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Improvement of the algorithm (with D. McLeish)

Necessary condition for a minimum in convex order

If
∑N

i=1 Xi has minimum variance then corr
(∑

i∈Π Xi ,
∑

i∈Π̄ Xi
)

is minimized for every partition into two sets Π and Π̄. However,
the converse does not hold in general.

The RA can be implemented per “block” to design a Block RA
so that
I at each step,

∑
j∈Π Xj and

∑
j∈Π̄ Xj are made

countermonotonic
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An index of convex order

Definition (Mutivariate dependence measure)

Let φ (X1,X2) be a measure of dependence between two
columns of data X1 and X2 such as Spearman’s rho, Kendall’s
tau, or Pearson correlation coefficient. For a matrix of data
X = [X1,X2, ...,Xn−1,XN ] with N columns, we define the
multivariate measure of dependence

%(X ) :=
1

2N−1 − 1

∑

Π∈P
φ


∑

i∈Π

Xi ,
∑

i∈Π̄

Xi


 (1)

where the sum is over the set P consisting of 2N−1 − 1 distinct
partitions of {1,2, ...,N} into non-empty subsets Π and its
complement Π̄.

interpretation as a measure of convex order in N dimensions.
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Complexity and comments on the algorithm

Easy to estimate it by computing the average over a subset
of partitions.
Use of this multivariate measure as a stopping rule for the
Block RA
Finding a copula achieving the minimum of the variance for
instance is a NP complete problem.
There exists no efficient algorithm in polynomial time.
Our preliminary results with D. McLeish show that an
algorithm that perform well in probability can be designed:
probability to get to the global minimum may be small but
error is typically very small...
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Numerous applications in Part 3

Bounds on Value-at-Risk (Embrechts et al. 2013, Journal
of Banking and Finance)
Bounds on convex risk measures (with X. Jiang and R.
Wang IME 2014)
Quantifying model risk (with M. Denuit, L. Rüschendorf, S.
Vanduffel)
Infer the dependence structure among N variables that
is consistent with marginal distributions and the distribution
of the sum (with S. Vanduffel)
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Application: Toy example in B. and McLeish (2015)

−2
−1

0
1

2

−2−1
01

2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

joint density of the first two columns

−1

0

1

−1
0

1

0

0.5

1

1.5

2

2.5

joint density of the first two columns

Figure: Left: Joint density of two U [−2.056,2.056] random variables
whose sum is N (0,1). Right: Joint density of the two marginally
normal random variables N (0,0.33632) whose sum is U [−1,1].
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Appendix

More on copulas here

More on complete mixability here

Constrained Fréchet Bounds here
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Copulas (additional comments)
( Back to presentation )
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Normal (Gaussian) copula
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Example: Gauss copula

C(u, v , ρ) = N2(N−1(u),N−1(v), ρ)

where N2 is the bivariate cdf and N is the cdf of N(0,1).

∂C
∂u

(u, v , ρ) = N

[
N−1 [v ]− ρN−1 [u]√

1− ρ2

]

∂C
∂v

(u, v , ρ) = N

[
N−1 [u]− ρN−1 [v ]√

1− ρ2

]
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Simulation of the Gaussian copula

(you can use the simulation of a multivariate Gaussian
distribution)
How to get (X ,Y ) with the right marginal distribution FX and FY
and with copula C being the Gaussian copula with correlation
coefficient ρ?

res It is also easy to get the multivariate student copula, and
more generally elliptical copulas.
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Archimedean Copulas d = 2

These have simple closed forms and are useful for calculations.

However, higher dimensional extensions are not rich in parameters.

• Gumbel Copula

CGu
β (u1, u2) = exp

(
−
(
(− log u1)

β
+ (− log u2)

β
)1/β)

.

β ≥ 1: β = 1 gives independence; β → ∞ gives comonotonicity.

• Clayton Copula

CCl
β (u1, u2) =

(
u−β1 + u−β2 − 1

)−1/β
.

β > 0: β → 0 gives independence ; β → ∞ gives comonotonicity.

c©2004 (McNeil, Frey & Embrechts) 94



Archimedean Copulas in Higher Dimensions

All our Archimedean copulas have the form

C(u1, u2) = ψ−1(ψ(u1) + ψ(u2)),

where ψ : [0, 1] → [0,∞] is strictly decreasing and convex with

ψ(1) = 0 and limt→0ψ(t) = ∞.

The simplest higher dimensional extension is

C(u1, . . . , ud) = ψ−1(ψ(u1) + · · ·+ ψ(ud)).

Example: Gumbel copula: ψ(t) = −(log(t))β

CGu
β (u1, . . . , ud) = exp

(
−
(
(− log u1)

β
+ · · ·+ (− log ud)

β
)1/β)

.

These copulas are exchangeable (invariant under permutations).

c©2004 (McNeil, Frey & Embrechts) 95



Clayton copula 



Clayton copula



Gumbel copula
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Frank copula



Frank copula
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Copulas with R

Use of the package copula.
Representation of the copula on a bivariate normal
distribution rather than on a uniform distribution.
It could be more visual.
See next slide for the bivariate normal case.

66



Bivariate Standard Normals
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In left plots ρ = 0.9; in right plotsρ = −0.7.
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Examples

of Dependence

Clayton

xsi = 2.000
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Student t

rho = 0.200 , df= 1.0
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Back to presentation

Back to appendix outline
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Theory
- Complete Mixability

( Back to presentation )

70



Modeling Dependence
Extreme Dependence

Theory
Rearrangement Algorithm (practice)

Homogeneous Case

Convex expectation for positive risks
Now we consider the homogeneous case when
F1 = · · · = FN = F is a distribution on R+ with a finite mean.

Q’. Find
inf

X∈FN (F ,··· ,F )
E[g (S)]

for g being a convex function and F on R+.
Generally speaking, with the optimal structure the density
of S should be concentrated as much as possible due to
the convexity of g.
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Observations.

A decreasing density is CM (i.e. S could be a constant, proved
by Wang and Wang, 2011) constrained in the middle part (body).

To enhance concentration, when one of {Xi} is very large (right
tail), the others should be small (left tail).

body

right
tail

left
tail
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Possible lower bound
Consider a dependence scenario that

divides the probability space into two parts:
(tails) when one of {Xi} is large, all the other {Xi} are small;

(body) when one of {Xi} is of medium size, treat S as a constant
equal to its conditional expectation;

make sure that the value of S is larger at the tails than at
the body.
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Define H(x) and D(a) for x ,a ∈ [0, 1
n ]:

H(x) = (n − 1)F−1((n − 1)x) + F−1(1− x),

D(a) =
n

1− na

∫ 1
n

a
H(x)x. =

n
∫ 1−a

(n−1)a F−1(y)dy

1− na
.

H(x) gives the values of S at the tails and D(a) is the value of
S at the body.
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Theorem (Lower bound for homogeneous risks)

For a ∈ [0, 1
N ], suppose H(x) is non-increasing on the interval

[0,a] and limx→a+ H(x) ≥ D(a), then

inf
X∈FN (F ,··· ,F )

E[g(S)] ≥ N
∫ a

0
g(H(x))x. + (1− Na)g(D(a)). (2)

Moreover, g(k) := N
∫ k

0 f (H(x))x. + (1− Nk)f (D(k)) is a
non-decreasing function of k on [0,a] so that the most accurate
lower bound of E[f (S)] is obtained with the largest possible a.
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Possible optimal structure
If possible, choose a dependence structure (copula QF

N ) that
divides the probability space into two parts: tails (with
probability Na) and body (with probability (1− Na)).
makes a as large as possible. Define
cN = min

{
c ∈ [0, 1

n ] : H(c) ≤ D(c)
}
.

cN is the largest possible a satisfying limx→a+ H(x) ≥ D(a).
When F is a continuous distribution, H(cN) = D(cN).
cN is exactly the smallest possible a such that F on
I = [F−1((N − 1)a),F−1(1− a)] satisfies the mean
condition for CM (hence, a constant S is possible).

When N = 2, this is automatically the Fréchet lower copula.
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Theorem (Sharp lower bound for homogeneous risks)

Suppose
(A) H(x) is non-increasing on the interval [0, cN ],
then

inf
X∈FN (F ,··· ,F )

E[g(S)] ≥ N
∫ cN

0
g(H(x))x. +(1−NcN)g(D(cN)). (3)

Moreover, the equality in (3) holds if
(B) F is N-CM on the interval
I = [F−1((N − 1)cN),F−1(1− cN)].
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I am sure you are wondering how conditions (A) and (B) are
satisfied.

For F with a decreasing density, we can show that (A) and
(B) hold (Wang and Wang, 2011).
Condition (A) is very easy to check. If H(x) is convex, then
(A) is satisfied.
Knowledge of condition (B) for general distributions is very
limited, need to use numerical techniques.

Back to appendix outline , Back to presentation
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Constrained Fréchet Bounds
in 2 dimensions

Back to presentation Back to appendix outline
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Constrained Fréchet Hoeffding Bounds

Let S be a set of constraints. The question is whether there
exists a minimum copula B (or a maximum copula) satisfying S
such that B ≤ C (pointwise) for all other copulas C satisfying S.
Recall that Q : [0,1]2 → [0,1] is a quasi-copula if it satisfies the
following three properties.

1 For all u ∈ [0,1], Q(0,u) = Q(u,0) = 0, and
Q(1,u) = Q(u,1) = u (boundary conditions).

2 Q is non-decreasing in each argument.
3 For all u1, v1,u2, v2 ∈ [0,1],
|Q(u2, v2)−Q(u1, v1)| ≤ |u2 − u1|+ |v2 − v1| (Lipschitz
property).

If, in addition, Q is 2−increasing (i.e.
VQ(R) = Q(u2, v2) + Q(u1, v1)−Q(u1, v2)−Q(u2, v1) ≥ 0 for
every rectangle R = [u1,u2]× [v1, v2] ⊆ [0,1]2) then it is a
copula.
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Constrained Fréchet Hoeffding Bounds

Let S denote a compact subset of the unit square [0,1]2.
Tankov (2011) shows that AS,Q and BS,Q defined by

AS,Q(u, v) = min
{

u, v ,min(a,b)∈S{Q(a,b) + (u − a)+ + (v − b)+}
}
,

BS,Q(u, v) = max
{

0,u + v − 1,max(a,b)∈S{Q(a,b)− (a− u)+ − (b − v)+}
}
,

where (u, v) ∈ [0,1]2, are the best possible upper (resp. lower)
bounds for the set of all quasi-copulas Q′ such that
Q′(a,b) = Q(a,b) for all (a,b) ∈ S (see Tankov (2011),
Theorem 1). When S is the empty set,
BS,Q(u, v) := max(0,u + v − 1) and AS,Q(u, v) := min(u, v) are
the Fréchet-Hoeffding bounds.
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Sufficient condition of Tankov (2011) for AS,Q (resp. BS,Q) to be
a copula : S is non-increasing (resp. non-decreasing).
Weaker condition of Bernard, Jiang, Vanduffel (2012) : when Q
is a copula, AS,Q (resp. BS,Q) is a copula when S is a compact
set with some “monotonicity” and “connectivity” conditions.

Theorem (Sufficient condition of BLMZ (DM2013))
If S is a compact set satisfying the following property:

∀(a0,b0) ∈ S,∀(a1,b1) ∈ S, (a0,b1) ∈ S, (a1,b0) ∈ S. (4)

Furthermore, suppose Q is a quasi-copula such that
∀(a0,b0), (a1,b1) ∈ S with a0 < a1,b0 < b1, we have

Q(a1,b1) + Q(a0,b0)−Q(a0,b1)−Q(a1,b0) ≥ 0, (5)

then AS,Q and BS,Q are copulas. Note that condition (5) is
automatically satisfied when Q is a copula.
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Example 2: Illustration

Minimum copula with one constraint that C(a,b) = θ.

Back to appendix outline

Back to presentation
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