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Cost-Efficiency Characterization Examples Applications

I This talk is joint work with Phelim Boyle (Wilfrid Laurier
University, Waterloo, Canada), Jit Seng Chen (University of
Waterloo) and with Steven Vanduffel (Vrije Universiteit
Brussel (VUB), Belgium).

I Outline (paper in Finance with Boyle and Vanduffel):

1 Traditional portfolio selection

2 What is cost-efficiency? Illustration in the binomial model

3 Characterization of optimal investment strategies for an
investor with law-invariant preferences and a fixed
investment horizon

4 Illustration in the Black and Scholes model

5 How to use cost-efficiency to optimize your investment
strategies? Or your hedging strategies? To “choose” a utility?
To model state-dependent constraints?
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Traditional Approach to Portfolio Selection

Given an investment horizon T . Let XT denote the final wealth
at time T and x0 the initial wealth. We define by A the set of
admissible final wealths such that the cost of XT is x0 and they are
“feasible” strategies.

I Expected Utility Theory.

max
XT∈A

E [U(XT )]

where
� exponential utility U(x) = − exp(−γx) with γ > 0.

� CRRA utility, U(x) = x1−η

1−η with η > 0 and η 6= 1.

� Log utility, U(x) = log(x).
� increasing + concave (risk averse investor).
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Traditional Approach to Portfolio Selection

I Goal reaching
max
XT∈A

P(XT > K )

I Sharpe ratio optimization

max
XT∈A

E [XT ]− x0erT

std(XT )

where x0 is the initial budget.

I Minimize Value-at-Risk of XT .

I Yaari’s theory, Cumulative Prospect Theory, Rank Dependent
Utility...
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Traditional Approach to Portfolio Selection

I Common properties, the objective function is law invariant!

If XT ∼ YT (that is XT and YT have the same distribution)
then they must have the same objective function.

I and the objective function is increasing. If XT < YT almost
surely, the investor prefers YT to XT .

I Each problem needs different techniques since some of them
have convexity properties, some don’t...

I How to find the “utility function” of the investor? How to
find the “right” objective?
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Traditional Approach to Portfolio Selection

Consider an investor with increasing law-invariant preferences
and a fixed horizon. Denote by XT the investor’s final wealth.

� Optimize an increasing law-invariant objective function

� for a given cost (budget)

cost at 0 = EQ [e−rTXT ]

Find optimal strategy X ∗T ⇒ Optimal cdf F of X ∗T
Our idea is to start from F ...
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What is “cost-efficiency”?

Cost-efficiency is a criteria for evaluating payoffs
independent of the agents’ preferences.

Cost-Efficiency

A strategy (or a payoff) is cost-efficient if any other strategy that
generates the same distribution under P costs at least as much.

This concept was originally proposed by Dybvig.

I Dybvig, P., 1988a. “Distributional Analysis of Portfolio Choice,” Journal
of Business, 61(3), 369-393.

I Dybvig, P., 1988b. “Inefficient Dynamic Portfolio Strategies or How to
Throw Away a Million Dollars in the Stock Market,” Review of Financial
Studies, 1(1), 67-88.
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Important observation

Consider an investor with

� Law-invariant preferences

� Increasing preferences

� A fixed investment horizon

It is clear that the optimal strategy must be cost-efficient.

Therefore optimal portfolios in the traditional settings discussed
before are cost-efficient.

The rest of this section is about characterizing cost-efficient
strategies.
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Main Assumptions

• Consider an arbitrage-free and complete market.

• Given a strategy with final payoff XT at time T .

• There exists a unique probability measure Q, such that its
price at 0 is

c(XT ) = EQ [e−rTXT ]
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Cost-efficient strategies

• Given a cdf F under the physical measure P.

The distributional price is defined as

PD(F ) = min
{Y | Y∼F}

c(Y ) = min
{Y | Y∼F}

EQ [e−rTY ]

• The strategy with payoff XT is cost-efficient if

PD(F ) = c(XT )

• Given a strategy with payoff XT at time T . Its price at 0 is

PX = EQ [e−rTXT ]

• F : distribution of the cash-flow at T of the strategy

The “loss of efficiency” or “efficiency cost” is equal to

PX − PD(F )
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A Simple Illustration

Let’s illustrate what the “efficiency cost” is with a simple example.
Consider :

� A market with 2 assets: a bond and a stock S .

� A discrete 2-period binomial model for the stock S .

� A strategy with payoff XT at the end of the two periods.

Example of

� XT ∼ YT under P

� but with different prices

in a 2-period (arbitrage-free) binomial tree (T = 2).
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A simple illustration for X2, a payoff at T = 2

Real-world probabilities: p = 1
2

and risk neutral probabilities=q = 1
3 .
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Y2, a payoff at T = 2 distributed as X2

Real-world probabilities: p = 1
2

and risk neutral probabilities: q = 1
3 .
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X2, a payoff at T = 2
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Y2, a payoff at T = 2

Real-world probabilities: p = 1
2

and risk neutral probabilities: q = 1
3 .
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Characterization

of Cost-Efficient Strategies
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Assumptions: General setting

To characterize cost-efficiency, we need to introduce the
“state-price process”

• Consider an arbitrage-free and complete market.

• Given a strategy with payoff XT at time T . There exists a
unique risk-neutral probability Q, such that its price at 0 is

c(XT ) = EQ [e−rTXT ]

• P (“physical measure”) and Q (“risk-neutral measure”) are
two equivalent probability measures:

ξT = e−rT
(

dQ

dP

)
T

, c(XT) =EQ [e−rTXT ] = EP[ξTXT].

ξT is called “state-price process” and is also sometimes referred
to as “deflator” or “pricing kernel”.
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Sufficient Condition for Cost-efficiency

A random pair (X ,Y ) is anti-monotonic if

there exists a non-increasing relationship between them.

Theorem (Sufficient condition for cost-efficiency)

Any random payoff XT with the property that (XT , ξT ) is
anti-monotonic is cost-efficient.

Note the absence of additional assumptions on ξT (it holds in discrete

and continuous markets) and on XT (no assumption on non-negativity).
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Idea of the proof (1/2)

Minimizing the price c(XT ) = E [ξTXT ] when XT ∼ F amounts
to finding the dependence structure that minimizes the
correlation between the strategy and the state-price process

min
XT

E [ξTXT ]

subject to

{
XT ∼ F
ξT ∼ G

Recall that

corr(XT , ξT ) =
E[ξTXT ]− E[ξT ]E[XT ]

std(ξT ) std(XT )
.
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Idea of the proof (2/2)

We can prove that when the distributions for both XT and ξT are
fixed, we have

(XT , ξT ) is anti-monotonic⇒ corr[XT , ξT ] is minimal.

Minimizing the cost E [ξTXT ] = c(XT ) of a strategy therefore
amounts to minimizing the correlation between the strategy
and the state-price process
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Explicit Representation for Cost-efficiency

Assume ξT is continuously distributed (for example a
Black-Scholes market)

Theorem

The cheapest strategy that has cdf F is given explicitly by

X?T = F−1 (1− Fξ (ξT )) .

Note that X?T ∼ F and X?T is a.s. unique such that

PD(F ) = c(X?T ) = E[ξTX?T ]

where PD(F ) is the distributional price

PD(F ) = min
{XT | XT∼F}

e−rTEQ [XT ] = min
{XT | XT∼F}

E[ξTXT ]

and F−1 is defined as follows:

F−1(y) = min {x / F (x) > y} .
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Copulas and Sklar’s theorem

The joint cdf of a couple (ξT ,X ) can be decomposed into 3
elements

� The marginal cdf of ξT : G

� The marginal cdf of XT : F

� A copula C

such that
P(ξT < ξ,XT < x) = C (G (ξ),F (x))
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Idea of the proof (1/3)

Solving this problem amounts to finding bounds on copulas!

min
XT

E [ξTXT ]

subject to

{
XT ∼ F
ξT ∼ G

The distribution G is known and depends on the financial market.
Let C denote a copula for (ξT ,X ).

E[ξTX ] =

∫ ∫
(1− G (ξ)− F (x) + C (G (ξ),F (x)))dxdξ, (1)

Bounds for E[ξTX ] are derived from bounds on the copula C .
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Idea of the proof (2/3)

It is well-known that any copula verify

max(u + v − 1, 0) 6 C (u, v) 6 min(u, v)

(Fréchet-Hoeffding Bounds for copulas) where the lower bound is
the “anti-monotonic copula” and the upper bound is the
“monotonic copula”.

Let U be uniformly distributed on [0, 1].

I The cdf of (U, 1− U) is
P(U 6 u, 1− U 6 v) = max(u + v − 1, 0) (anti-monotonic
copula)

I the cdf of (U,U) is P(u, v) = min(u, v) (monotonic copula).
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Idea of the proof (3/3)

Consider a strategy with payoff XT distributed as F . Note that
U = Fξ(ξT ) is uniformly distributed over (0, 1).

Note that ξT and X ∗T := F−1(1− G (ξT )) are anti-monotonic and
that X ∗T ∼ F .

Note that ξT and Z ∗T := F−1(G (ξT )) are comonotonic and that
Z ∗T ∼ F .
The cost of the strategy with payoff XT is c(XT ) = E [ξTXT ].

E [ξTF−1(1− G (ξT ))] 6 c(XT ) 6 E [ξTF−1(G (ξT ))]

that is
E [ξTX ∗T ] 6 c(XT ) 6 E [ξTZ ∗T ].
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Path-dependent payoffs are inefficient

Corollary

To be cost-efficient, the payoff of the derivative has to be of the
following form:

X?T = F−1 (1− Fξ (ξT ))

It becomes a European derivative written on ST when the
state-price process ξT can be expressed as a function of ST . Thus
path-dependent derivatives are in general not cost-efficient.

Corollary

Consider a derivative with a payoff XT which could be written as

XT = h(ξT )

Then XT is cost efficient if and only if h is non-increasing.
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Examples

in the Black-Scholes setting

to improve strategies
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Black-Scholes Model

Under the physical measure P,

dSt

St
= µdt + σdW P

t

Then

ξT = e−rT
(

dQ

dP

)
= a

(
ST

S0

)−b
where a = e

θ
σ

(µ−σ
2

2
)t−(r+ θ2

2
)t and b = µ−r

σ2 .

Theorem (Cost-efficiency in Black-Scholes model)

To be cost-efficient, the contract has to be a European derivative
written on ST and non-decreasing w.r.t. ST (when µ > r). In this
case,

X?T = F−1 (FST
(ST))
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Implications

In a Black Scholes model (with 1 risky asset), optimal strategies
for an investor with a fixed horizon investment and
law-invariant preferences are always of the form

g(ST )

with g non-decreasing.
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Maximum price = Least efficient payoff

Theorem

Consider the following optimization problem:

max
{XT | XT∼F}

c(XT ) = max
{XT | XT∼F}

E[ξTXT ]

Assume ξT is continuously distributed. The unique strategy Z?T
that generates the same distribution as F with the highest cost can
be described as follows:

Z?T = F−1 (Fξ (ξT )) = F−1 (1− FST (ST ))
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Geometric Asian contract in Black-Scholes model

Assume a strike K . The payoff of the Geometric Asian call is given
by

XT =
(

e
1
T

∫ T
0 ln(St)dt − K

)+

which corresponds in the discrete case to

((∏n
k=1 S kT

n

) 1
n − K

)+

.

The efficient payoff that is distributed as the payoff XT is a power
call option

X?T = d

(
S

1/
√

3
T − K

d

)+

where d := S
1− 1√

3

0 e

(
1
2
−
√

1
3

)(
µ−σ

2

2

)
T

.
Similar result in the discrete case.
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Example: Discrete Geometric Option

40 60 80 100 120 140 160 180 200 220 240 260
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T
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Z
T
*

With σ = 20%, µ = 9%, r = 5%, S0 = 100, T = 1 year, K = 100.

C(X?T ) = 5.3 < Price(geometric Asian) = 5.5 < C(Z?T ) = 8.4.
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Put option in Black-Scholes model

Assume a strike K . The payoff of the put is given by

LT = (K − ST )+ .

The payout that has the lowest cost and that has the same
distribution as the put option payoff is given by

X?T = F−1
L (FST (ST )) =

K − S2
0 e

2
(
µ−σ

2

2

)
T

ST

+

.

This type of power option “dominates” the put option.
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Cost-efficient payoff of a put
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cost efficient payoff that gives same payoff distrib as the put option

Y* Best one

Put option

With σ = 20%, µ = 9%, r = 5%, S0 = 100, T = 1 year, K = 100.
Distributional price of the put = 3.14

Price of the put = 5.57
Efficiency loss for the put = 5.57-3.14= 2.43
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Up and Out Call option in Black and Scholes model

Assume a strike K and a barrier threshold H > K . Its payoff is
given by

LT = (ST − K )+
1max06t6T {St}6H

The payoff that has the lowest cost and is distributed such as the
barrier up and out call option is given by

X?T = F−1
L (1− Fξ (ξT ))

The payoff that has the highest cost and is distributed such as the
barrier up and out call option is given by

Z?T = F−1
L (Fξ (ξT ))
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Cost-efficient payoff of a Call up and out

With σ = 20%, µ = 9%,S0 = 100, T = 1 year, strike K = 100, H = 130
Distributional Price of the CUO = 9.7374

Price of CUO = Pcuo

Worse case = 13.8204
Efficiency loss for the CUO = Pcuo-9.7374
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Some Applications

of Cost-Efficiency
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Applications

1 Solving well-known problems in a simpler way (mean variance
or quantile hedging)

2 Equivalence between the Expected Utility Maximization
setting and the Cost-Efficient strategy (Part 2, application to
behavioral finance).

3 Extension to State Dependent preferences (Part 2, application
to state dependent constraints).
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Rationalizing Investors Choices

Carole Bernard (Grenoble Ecole de Management),

joint work with Jit Seng Chen (GGY)
and Steven Vanduffel (Vrije Universiteit Brussel)

Part 2, Application to Behavioral Finance, Berlin, May 2015.
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Terminology

V (·) denotes the objective function of the agent to maximize
(Expected utility, Value-at-Risk, Cumulative Prospect Theory...)

� Law-invariant preferences

XT =d YT ⇒ V (XT ) = V (YT )

� First-order stochastic dominance (FSD)

XT ∼ FX ,YT ∼ FY ,YT ≺fsd XT

∀x ,FX (x) 6 FY (x)⇒ V (XT ) > V (YT )

equivalently, for all non-decreasing U, E [U(XT )] > E [U(YT )].
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Contributions

1 In any behavioral setting respecting First-order Stochastic
Dominance, investors only care about the distribution of final
wealth (law-invariant preferences).

2 Then the optimal portfolio is also the optimum for an
expected utility maximizer (concave, non-decreasing utility).

3 Given a distribution F of terminal wealth, we construct a
utility function (concave, non-decreasing, no differentiability
conditions) such that the optimal solution to

max
XT | budget=ω0

E [U(XT )]

has the cdf F .

4 Use this utility to infer risk aversion.

5 Decreasing Absolute Risk Aversion (DARA) can be directly
related to properties of the distribution of final wealth and of
the financial market in which the agent invests.
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FSD implies Law-invariance

Consider an investor with fixed horizon and objective V (·).

Theorem

Preferences V (·) are non-decreasing and law-invariant if and only if
V (·) satisfies first-order stochastic dominance.

� Law-invariant preferences

XT =d YT ⇒ V (XT ) = V (YT )

� Non-decreasing preferences

XT > YTa.s.⇒ V (XT ) > V (YT )

� First-order stochastic dominance (FSD)

XT ∼ FX ,YT ∼ FY ,YT ≺fsd XT

∀x ,FX (x) 6 FY (x)⇒ V (XT ) > V (YT )
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Main Assumptions

• Given a portfolio with final payoff XT (consumption only at
time T ).

• The market is complete and the initial value of XT is given by

c(XT) =E[ξTXT].

where ξT is called the pricing kernel or stochastic discount
factor.

• ξT is continuously distributed.

• Preferences satisfy FSD.

Carole Bernard Optimal Portfolio Selection 43



Introduction Preferences Continuous cdf Any cdf Discrete Setting Applications Risk Aversion Conclusions

Optimal Portfolio and Cost-efficiency

Optimal portfolio problem for an investor with preferences V (·)
respecting FSD and final wealth XT :

max
XT | E[ξTXT ]=ω0

V (XT ). (2)

Theorem: Cost-efficient strategies

If an optimum X ∗T of (2) exists, let F be its cdf. Then, X ∗T is the
cheapest way (cost-efficient) to achieve F at T , i.e. X ∗T also solves

min
XT |XT∼F

E[ξTXT ]. (3)

Furthermore, for any cdf F , the solution X ?
T to (3) is unique (a.s.)

and writes as X ?
T = F−1(1− Fξ(ξT )) where Fξ is the cdf of ξT .
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Optimal Portfolio and Cost-efficiency

Theorem

A cost-efficient payoff XT with a continuous increasing
distribution F corresponds to the optimum of an expected utility
investor for

U(x) =

∫ x

c
F−1
ξ (1− F (y))dy

where Fξ is the cdf of ξT , F (c) > 0, ω0 = E[ξTF−1(1− Fξ(ξT ))].
The utility function U is C 1, strictly concave and increasing.

I U is unique up to a linear transformation in a certain class.

I When the optimal portfolio in a behavioral setting respecting
FSD is continuously distributed, then it can be obtained by
maximum expected (concave) utility.

I All distributions can be approximated by continuous
distributions. ⇒ all investors are approximately risk averse...
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Rationalizable consumption by EUT

Definition (Rationalization by Expected Utility Theory)

The optimal portfolio choice XT with a finite budget ω0 is
rationalizable by the expected utility theory if there exists a utility
function U such that XT is also the optimal solution to

max
X | E [ξX ]=ω0

E [U(X )]. (4)
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Theorem (Rationalizable consumption by Standard EUT)

Consider a terminal consumption XT at time T purchased with an
initial budget ω0 and distributed with a continuous cdf F :
The 8 following conditions are equivalent.

(i) XT is rationalizable by the standard Expected Utility Theory
(concave, increasing, and differentiable utility).

(ii) XT is cost-efficient with cdf F .

(iii) ω0 = E [ξTF−1(1− FξT (ξT ))].

(iv) XT = F−1(1− FξT (ξT )) a.s.

(v) XT is non-increasing in ξT a.s.

(vi) XT is the solution to a maximum portfolio problem for some
objective V (·) that satisfies FSD.

(vii) XT is the solution to a maximum portfolio problem for some
law-invariant and non-decreasing objective function V (·).

(viii) XT is the solution to a maximum portfolio problem for some
objective V (·) that satisfies SSD.
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Generalization

We can show that all distributions can be the optimum of an
expected utility optimization with a “generalized concave utility”.

Definition: Generalized concave utility function

A generalized concave utility function Ũ : R→ R is defined as

Ũ(x) :=


U(x) for x ∈ (a, b),
−∞ for x < a,
U(a+) for x = a,
U(b−) for x > b,

where U(x) is concave and strictly increasing and (a, b) ⊂ R.
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General Distribution

Let F be any distribution (with possibly atoms...).

Theorem

A cost-efficient payoff XT with a cdf F is also an optimal solution
to

max
XT | E [ξTXT ]=ω0

E
[
Ũ(XT )

]
where Ũ : R→ R is a generalized utility function given explicitly
by the same formula as before:

Ũ(x) =

∫ x

c
F−1
ξ (1− F (y))dy .

where Fξ is the cdf of ξT , F (c) > 0, ω0 = E[ξTF−1(1− Fξ(ξT ))].

I Ũ is unique up to a linear transformation in a certain class.
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Theorem (Rationalizable consumption by Generalized EUT)

Consider a terminal consumption XT at time T purchased with an
initial budget w0 and distributed with F .
The 8 following conditions are equivalent.

(i) XT is rationalizable by Generalized Expected Utility Theory.

(ii) XT is cost-efficient.

(iii) w0 = E [ξTF−1(1− FξT (ξT ))].

(iv) XT = F−1(1− FξT (ξT )) a.s.

(v) XT is non-increasing in ξT a.s.

(vi) XT is the solution to a maximum portfolio problem for some
objective V (·) that satisfies FSD.

(vii) XT is the solution to a maximum portfolio problem for some
law-invariant and non-decreasing objective function V (·).

(viii) XT is the solution to a maximum portfolio problem for some
objective V (·) that satisfies SSD.
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A comment: This theorem does not hold in a discrete setting

� One-period model with horizon T

� Finite space Ω = {ω1, ω2, ..., ωN} with equiprobable states

�

ξ(ωi )
N : initial cost of the Arrow-Debreu security that pays 1 in

state ωi at time T and 0 otherwise.

� ξ := (ξ1, ξ2, ..., ξN) the pricing kernel where ξi := ξ(ωi ).

� Terminal consumption X := (x1, x2, ..., xN) (with xi := X (ωi ))

� Initial budget E [ξX ] = 1
N

∑N
i=1 ξixi

The optimal consumption X ∗ of the agent with budget ω0

and preferences V (·) (FSD) solves

max
X | E [ξX ]=ω0

V (X ), (5)
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Optimal Consumption with Equiprobable States

� X ∗ and ξ must be antimonotonic (Peleg and Yaari (1975))

x∗1 6 x∗2 6 ... 6 x∗N and ξ1 > ξ2 > ... > ξN .

Rationalizing Investment in a Discrete Setting

The optimal solution X ∗ of (5) solves also

max
X | E [ξX ]=ω0

E [U(X )].

for any concave utility U(·) such that the left derivative denoted by
U ′ exists in x∗i for all i and satisfies

∀i ∈ {1, 2, ...,N}, U ′(x∗i ) = ξi . (6)

� utility inferred only at a discrete number of consumption.
� no uniqueness
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Optimal Consumption with Non-Equiprobable States

� take Ω = {ω1, ω2} with P(ω1) = 1
3 and P(ω2) = 2

3 ,

� ξ1 = 3
4 and ξ2 = 9

8 . Budget ω0 = 1

� Consider X with X (ω1) = a1 and X (ω2) = a2 satisfying the
budget condition a1

4 + 3a2
4 = 1.

� Objective V (X ) := VaR+
1/3(X )1P(X<0)=0 (where VaR+

α (X ) is

defined as VaR+
α (X ) := sup{x ∈ R,FX (x) 6 α}). Note that

V (·) is clearly law-invariant and non-decreasing (FSD).

� V (·) is maximised for X ∗(ω1) = 0 and X ∗(ω2) = 4
3 .

� X ∗ is never optimal for an EU maximizer with increasing
concave utility U on [0, 4

3 ] (range of consumptions).

� Proof: wlog U(0) = 0 and U( 4
3 ) = 1. Consider Y such that

Y (ω1) = 4
3 and Y (ω2) = 8

9 . Observe that
E [ξY ] = E [ξX ∗] = 1 and E [U(Y )] > E [U(X ∗)] = 2

3 .
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Utility & Distribution in the Black-Scholes Model

dSt

St
= µdt+σdW P

t ,
dBt

Bt
= rdt, θ =

µ− r

σ
, ξT ∼ LN (M, θ2T )

� Power utility (CRRA) & LogNormal distribution:
LN (A,B2) corresponds to a CRRA utility function with

relative risk aversion ν := θ
√
T

B 6= 1 (where θ = µ−r
σ ):

U(x) = a
x1−ν

1− ν
.

� Exponential utility & Normal Distribution:
N(A,B2) corresponds to the exponential utility
U(x) = − exp(−γx), with constant absolute risk aversion γ.
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Explaining the Demand for Capital Guarantee Products

YT = max(G ,ST )

where ST is the stock price, ST ∼ LN (µT − σ2

2 T , σ2T ) and G
the guarantee. The utility function is then given by

Ũ(x) =

{ −∞ x < G ,

a x1− θσ−G1− θσ

1− θ
σ

x > G , θ
σ 6= 1.

(7)

� The mass point is explained by a utility which is infinitely
negative for any level of wealth below the guaranteed level.

� The CRRA utility above this guaranteed level ensures the
optimality of a Lognormal distribution above the guarantee.
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Yaari’s Dual Theory of Choice Model

Final wealth XT . Objective function to maximize

Hw [XT ] =

∫ ∞
0

w (1− F (x))dx ,

where the (distortion) function w : [0, 1]→ [0, 1] is non-decreasing
with w(0) = 0 and w(1) = 1. Then, the optimal payoff is solution
to an expected utility maximization with

U(x) =


−∞ x < 0
α(x − c) 0 6 x 6 b
α(b − c) x > b

where α > 0 is constant.
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Inferring preferences and utility

I more natural for an investor to describe her target distribution
than her utility (Goldstein, Johnson and Sharpe (2008) discuss
how to estimate the distribution at retirement using a
questionnaire).

I From the investment choice, get the distribution and find the
corresponding utility U. ⇒ Inferring preferences from the
target final distribution

I ⇒ Inferring risk-aversion. The Arrow-Pratt measure for
absolute risk aversion can be computed from a twice

differentiable utility function U as A(x) = −U′′(x)
U′(x) .

I Always possible to approximate by a twice differentiable utility
function...

Carole Bernard Optimal Portfolio Selection 57



Introduction Preferences Continuous cdf Any cdf Discrete Setting Applications Risk Aversion Conclusions

Theorem (Arrow-Pratt Coefficient)

Consider an investor who wants a cdf F (with density f ). The
Arrow-Pratt coefficient for absolute risk aversion is for x = F−1(p),

A(x) =
f (F−1(p))

g(G−1(p))
,

where g and G are resp. the density and cdf of − log(ξT ).

Theorem (Distributional characterization of DARA)

DARA iff x 7→ F−1(G (x)) is strictly convex.
In the special case of Black-Scholes: x 7→ F−1(Φ(x)) is strictly
convex, where Φ(·) is the cdf of N(0,1).

I In BS, DARA iff target distribution F is fatter than normal.
I DARA iff target distribution F is fatter than cdf of − log(ξT ).
I Many cdf are DARA. ex: Gamma, LogNormal, Gumbel...
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Conclusions, Current & Future Work (1/2)

I Limitation of FSD preferences: FSD or law-invariant
behavioral settings cannot explain all decisions. Need
state-dependent preferences to explain investment decisions
such as buying protection, path-dependent options...

I “State-dependent” regulation (systemic risk) with the idea
of assessing risk and performance of a portfolio not only by
looking at its final distribution but also by looking at its
interaction with the economic conditions. Acharya (2009)
explains that regulators should “be regulating each bank as a
function of both its joint (correlated) risk with other banks as
well as its individual (bank-specific) risk”.

I State-dependent preferences can be modelled using a
law-invariant objective and an additional constraint on the
dependence of the portfolio with the market. Example: a
portfolio that maximizes utility and is independent of “ST”
when the market crashes (QF, 2014).
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Conclusions, Current & Future Work (2/2)

I Inferring preferences and risk-aversion from investment
choice.

I Understanding the interaction between changes in the
financial market, wealth level and utility on optimal terminal
consumption for an agent with given preferences.

I Implications in some specific non-expected utility settings:
Cumulative Prospect Theory is a setting which respects FSD.

I Remove the assumption on the continuity of FξT by using
“randomized payoffs” (JAP 2015 with Rüschendorf and
Vanduffel).

I What happens in an incomplete market? We can solve the
problem under the assumption that ξT = f (ST )

I Implications on equilibrium problems, pricing kernel puzzle...

Do not hesitate to contact me to get updated working papers!
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Optimal Investment
under State-dependent Preferences
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and Steven Vanduffel (Vrije Universiteit Brussel)
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Investment with State-Dependent Constraints

Problem considered so far

min
{XT | XT∼F}

E [ξTXT ] .

A payoff that solves this problem is cost-efficient.

New Problem
min

{YT | YT∼F , S}
E [ξTYT ] .

where S denotes a set of constraints. A payoff that solves this
problem is called a S−constrained cost-efficient payoff.

Carole Bernard Optimal Portfolio Selection 63



Law-invariance State-dependent Preferences Optimal Payoffs Security Design Portfolio local Conclusions

“State-dependent preferences”: Examples

I Investors also care about the states of the world in which
wealth is received: Money can have “more value” in a crisis
(insurance, puts).

I Often, we are looking at an isolated contract: the theory for
law-invariant preferences only applies to the full portfolio.

I States can be described using the value of a benchmark AT .
(e.g. AT = ST and states where stock market is low/high)

Definition: State-dependent preferences

Investors choose the distribution of a payoff XT and additionally
aim at obtaining a desired dependence with a benchmark asset AT .

I Examples
� Partial hedging min ρ(AT − HT ) where hedge is HT and target

is AT and ρ is a law invariant risk measure.
� Outperform a given benchmark: solve maxXT

P(XT > AT )
� Portfolio choice subject to some background risk, e.g. find XT

to E [u(XT + AT )]
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Summary

I Part 1: Optimal payoffs for law-invariant preferences
• Are always simple
• Are increasing in the “market asset”

I Part 2: Limitations of law-invariance
• Strategies perform badly during crises
• Equivalence between first-order stochastic dominance

and law-invariance (equivalence)

I Part 3: Optimal payoffs with additional state-dependent
constraints are:
• Conditionally increasing in the “market asset”
• Able to cope with crises, background risk and

benchmarking

I Part 4: Applications to Security Design and Portfolio
Management
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Main Assumptions on Market Model

• Given a portfolio with final payoff XT (consumption only at
time T ).
• P (“physical measure”). The initial value of XT is given by

c0(XT) =EP[ξTXT].

where ξT is called the pricing kernel, state-price process,
deflator, stochastic discount factor...
• All market participants agree on ξT , ξT is continuously

distributed and
ξt = f (St), t > 0,

for some suitable decreasing f and market asset S .
• Another approach: ξT is a Radon-Nikodym derivative. Let Q

be a “risk-neutral measure” such that

ξT = e−rT
(

dQ

dP

)
T

, c0(XT ) = EQ [e−rTXT ].
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Law-invariance - Sufficiency of Path-independent Payoffs

Theorem

Let XT be a payoff with price c and having a cdf F . Then, there
exists at least one path-independent payoff f (ST ) with price c and
cdf F .

• This characterization allows us to restrict the set of payoffs
that are candidate solutions to optimal portfolio problems
with an optimization of a law-invariant objective V (·).

max
XT |c0(XT )=c

V (XT )

• No other assumptions are needed (no risk-aversion, no
non-decreasing preferences).
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Law-invariance & Non-decreasing Preferences:
Strict Optimality of Path-independent Products

Definition: Non-decreasing preferences

XT > YT a.s.⇒ V (XT ) > V (YT )

Theorem

For any payoff XT with cdf F and price c for an investor with
non-decreasing and law-invariant preferences, there exists an
improved payoff X ∗T (almost surely non-decreasing in ST ) at same
price c of the form

X ∗T = F−1(FST (ST )) + a,

where a > 0.

Precisely, let c∗0 be the price of F−1(FST (ST )) and F the cdf of XT .

V
(

F−1(FST (ST )) + (c − c∗0 )erT
)
> V (XT ).
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Summary

Optimal payoffs for an investor with non-decreasing law-invariant
preferences and a fixed investment horizon

� Optimal payoffs are “cost-efficient”.

� Cost-efficiency ⇔ Minimum correlation with the state-price
process ⇔ Anti-monotonicity with ξT ⇔ Comonotonicity with
ST

I Optimality of path-independent payoffs non-decreasing in ST .
I Suboptimality of path-dependent contracts.
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State-Dependent preferences
Sufficiency of Bivariate Derivatives

Theorem: Bivariate payoff with given cdf with AT and price c

Let XT be a payoff with price c having joint distribution G with
some benchmark AT , where (ST ,AT ) has joint density. Then,
there exists at least one bivariate derivative f (ST ,AT ) with price c
having the same joint distribution G with AT .

Theorem: Bivariate payoff with given cdf with ST and price c

Let XT be a payoff with price c having joint distribution G with
the benchmark ST . Then, for any 0 < t < T there exists at least
one payoff f (St ,ST ) with price c having joint distribution G with
ST . For example, for some t ∈ (0,T ),

f (St ,ST ) := F−1
XT |ST (FSt |ST (St)).
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State-Dependent preferences & Non-decreasing Preferences
Strict Optimality of Bivariate Derivatives

Theorem:

Assume that (ST ,AT ) has joint density. Let G be a bivariate
cumulative distribution function. The following optimization
problem

min
(XT ,AT )∼G

c0 (XT )

has an almost surely unique solution X ∗T which is a bivariate
derivative almost surely increasing in ST , conditionally on AT and
given by

X ∗T := F−1
XT |AT

(FST |AT
(ST )).
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Improving Security Design

1 For law-invariant preferences: if the contract is not
increasing in ST , then there exists a strictly cheaper derivative
(cost-efficient contract) that is strictly better.

2 If the investor buys the contract because of the interaction
with the market asset ST , and the contract depends on a
more complex asset, then we simplify its design while keeping
it “at least as good”. For example, the contract can depend
only on ST and St for some t ∈ (0,T ).

3 If the investor buys the contract because of its interaction
with a benchmark AT , which has a joint density with ST ,
and if the contract does not only depend on AT and ST , then
there is a simpler contract which is “at least as good”and
which writes as a function of ST and AT . Finally, if the
obtained contract is not increasing in ST conditionally on AT ,
then it is also possible to construct a strictly cheaper
alternative.
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Geometric Asian option in Black-Scholes model

Geometric average GT such that ln(GT ) := 1
T

∫ T
0 ln (Ss) ds.

YT := (GT − K )+ .

Cheapest payoff with same distribution: Y ∗T . For some explicit
constant d > 0

Y ∗T = d

(
S

1/
√

3
T − K

d

)+

Payoff X ∗T such that (ST ,X
∗
T ) ∼ (ST , (GT − K )+) .

For t freely chosen in (0,T ), X ∗T = (f (St , ST )− K )+ with

f (St ,ST ) = S
1
2
− 1

2
√

3

√
T−t
t

0 S
T
t

1
2
√

3

√
t

T−t

t S
1
2
− 1

2
√

3

√
t

T−t

T

Maximal correlation ρmax (for t∗ = T/2) between ln(f (St ,ST ))
and ln(GT ) is

ρmax =
3

4
+

√
3
√

(T − t∗) t∗

4T
=

3

4
+

√
3

8
≈ 0.9665.

Carole Bernard Optimal Portfolio Selection 73



Law-invariance State-dependent Preferences Optimal Payoffs Security Design Portfolio local Conclusions

Portfolio Management

1 Extension of the standard Merton optimal portfolio choice
problem

2 Extension of Browne, Spivak and Cvitaǹıc Target Probability
Maximization Problem

3 Applications to partial hedging

Carole Bernard Optimal Portfolio Selection 74



Law-invariance State-dependent Preferences Optimal Payoffs Security Design Portfolio local Conclusions

Merton Problem

Theorem

Consider a utility function u(·) with Inada conditions. The optimal
solution to

max
E[ξTXT ]=W0

E[u(XT )]

is given by
X ∗T =

[
u′
]−1

(λξT ) (8)

where λ verifies E
[
ξT [u′]−1(λX ∗T )

]
= W0.

We then solve the solution to the same problem with a constraint
on the dependence between XT and a benchmark is
X ?
T = f (ST ,AT ).

max
c0(XT )=W0
C(XT ,AT )=C

E (u(XT )) . (9)
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Standard Target Probability Maximization Problem

Theorem: Browne’s original problem

Let W0 be the initial wealth and b > W0erT be the desired target.
The solution to the target probability maximization problem

max
XT>0,c0(XT )=W0

P[XT > b]

is X ∗T = b 1{ST>λ} where λ is given by E (ξTX ∗T ) = W0.

We propose two stochastic extensions for which bivariate
derivatives are solutions.

max
XT>0,c0(XT )=W0

P[XT > AT ]

max
XT>0,c0(XT )=W0,
C(XT ,AT )=C

P[XT > b]
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More Applications...

The best “partial” hedge XT consists in minimizing the distance
between XT and a payoff BT in some appropriate sense (assuming
c0(BT ) > W0). Consider the following optimal hedging problems.

1 in the expected utility setting

max{
XT |

XT > 0,
c0(XT ) = W0,

}E[U(XT − BT )]

where U(·) is concave and increasing
2 to minimize the risk as

min{
XT |

XT > 0
c0(XT ) = W0,

}ρ(XT − BT )

where ρ(·) is a convex law-invariant risk measure.
3 in the quantile hedging problem setting

max
{XT |XT>0,c0(XT )=W0}

P[XT > BT ]
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Another Application: Refining fraud detection tools

I Detect fraud based on mean and variance using the maximum
possible Sharpe Ratio (SR) of a payoff XT (terminal wealth at
T when investing W0 at t = 0) over all possible admissible
strategies

SR(XT ) =
E[XT ]−W0erT

std(XT )
,

I But this ignores additional information available in the
market: dependence between the investment strategy and the
financial market?

I Include correlations of the fund with market indices
(benchmarks) to refine fraud detection.

Ex: the so-called “market-neutral” strategy is typically designed to
have very low correlation with market indices ⇒ it reduces the
maximum possible Sharpe ratio! (EJOR, 2014)
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More Applications...

I Constraining the distribution in certain areas instead of the
entire joint distribution.

I (QF 2014) “Optimal Portfolios under Worst-case Scenarios”
for designing optimal strategies that offer protection in a crisis.

“an increasing number of investors now want protection for
financial end times”...
“As the stock markets fell, a tail risk or black swan fund
would profit...”
(See “New Investment Strategy: Preparing for End Times”)
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Basic example

YT and ST have given distributions.

I The investor wants to ensure a minimum when the market
falls

P(YT > 100 | ST < 95) = 0.8.

This provides some additional information on the joint
distribution between YT and ST ⇒ information on the joint
distribution of (ξT ,YT ) in the Black-Scholes framework.

I YT is decreasing in ST when the stock ST falls below some
level (to justify the demand of a put option).

I YT is independent of ST when ST falls below some level.

All these constraints impose the strategy YT to pay out in given
states of the world.
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Formally

Goal: Find the cheapest possible payoff YT with the distribution
F and which satisfies additional constraints of the form

P(ξT 6 x ,YT 6 y) = Q(FξT (x),F (y)),

with x > 0, y ∈ R and Q a given feasible function (for example a
copula).

Each constraint gives information on the dependence between the
state-price ξT and YT and is, for a given function Q, determined
by the pair (FξT (x),F (y)).

Denote the finite or infinite set of all such constraints by S.
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Theorem (Case of one constraint)

Assume that there is only one constraint (a, b) in S and let
ϑ := Q(a, b). The S−constrained cost-efficient payoff Y ?

T exists
and is unique. It can be expressed as

Y ?
T = F−1 (G (FξT (ξT ))) , (10)

where G : [0, 1]→ [0, 1] is defined as G (u) = `−1
u (1) and can be

written as

G (u) =


1− u if 0 6 u 6 a− ϑ,
a + b − ϑ− u if a− ϑ < u 6 a,
1 + ϑ− u if a < u 6 1 + ϑ− b,
1− u if 1 + ϑ− b < u 6 1.

(11)

Carole Bernard Optimal Portfolio Selection 82



Law-invariance State-dependent Preferences Optimal Payoffs Security Design Portfolio local Conclusions

Example 1: S contains 1 constraint

Assume a Black-Scholes market. We suppose that the investor is
looking for the payoff YT such that YT ∼ F (where F is the cdf of
ST ) and satisfies the following constraint

P(ST < 95, YT > 100) = 0.2.

The optimal strategy, where a = 1− FST (95), b = FST (100) and
ϑ = 0.2− FST (95) + FST (100) is given by the previous theorem.

Its price is 100.2
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Example: Illustration
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Example 2: S is infinite

A cost-efficient strategy with the same distribution F as ST but
such that it is decreasing in ST when ST 6 ` is unique a.s. Its
payoff is equal to

Y ?
T = F−1 [G (F (ST ))] ,

where G : [0, 1]→ [0, 1] is given by

G (u) =

{
1− u if 0 6 u 6 F (`),
u − F (`) if F (`) < u 6 1.

The constrained cost-efficient payoff can be written as

Y ?
T := F−1 [(1− F (ST ))1ST<` + (F (ST )− F (`))1ST>`] .
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Y ?
T as a function of ST . Parameters: ` = 100, S0 = 100, µ = 0.05,

σ = 0.2, T = 1 and r = 0.03. The price is 103.4.
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“Tail Diversification”

of Cost-Efficient Strategies
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Theorem (Constraints on the tail)

In a one-dimensional Black-Scholes market, the cheapest
path-dependent strategy with a cumulative distribution F but such
that it is independent of S1(T ) when S1(T ) 6 qα can be
constructed as

F−1
(
FS1(T )(S1(T ))−FS1(T )(qα)

1−FS1(T )(qα)

)
when S1(T ) > qα

F−1

Φ

 ln

(
S1(t)

(S1(T ))t/T

)
−(1− t

T
) ln(S1(0))

σ1

√
t− t2

T

 when S1(T ) 6 qα

where t ∈ (0,T ) can be chosen freely.

(No uniqueness and path-dependent optimum).
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10,000 realizations of Y ?
T as a function of ST where ` = 100, S0 = 100,

µ = 0.05, σ = 0.2, T = 1, r = 0.03 and t = T/2. Its price is 101.1
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Relaxing the assumptions on ξT

1 Use the Growth Optimal Portfolio (GOP) ξT = 1
S∗T

. (Details

in Platen & Heath (2006)) to replace the assumption
ξT = g(ST ). The GOP

� maximizes expected logarithmic utility from terminal wealth.
� is a diversified portfolio with the property that it almost surely

accumulates more wealth than any other strictly positive
portfolios after a sufficiently long time.

2 Model a multidimensional market: the state-price process (ξt)
of the risk-neutral measure chosen for pricing is of the form

ξT = f (g(S
(1)
T , ...,S

(n)
T )) with some real function g . All

results in the paper apply by replacing (St)t by the
one-dimensional market process (g(St)).

3 Remove the assumption on the continuity of FξT by using
“randomized payoffs” (JAP 2014).
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Conclusions & Future Work

I FSD or law-invariant behavioral settings cannot explain all
decisions. One needs to look at state-dependent preferences
to explain investment decisions such as

� Buying protection...
� Investing in highly path-dependent derivatives...

I Our framework allows to take optimal decisions when there is
a source of background risk and explains mildly
path-dependent options.

I Applications for hedging, semi-static hedging...
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