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Risk Aggregation and Diversification

e A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

e Using the standard deviation to measure the risk of
aggregating Xj and X with standard deviation std(X;),

std(X) + Xo) = \/std(X0)? + std(Xa)? + 2pstd(Xy)std(X2)
If p <1, there are “diversification benefits”:

std(X1 + X2) < std(X1) + std(Xz2)
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Risk Aggregation and Diversification

e A key issue in capital adequacy and solvency is to aggregate
risks (by summing capital requirements?) and potentially
account for diversification (to reduce the total capital?)

e Using the standard deviation to measure the risk of
aggregating Xj and X with standard deviation std(X;),

std(X) + Xo) = \/std(X0)? + std(Xa)? + 2pstd(Xy)std(X2)
If p <1, there are “diversification benefits”:
std(X1 + X2) < std(X1) + std(Xz2)

e This is not the case for instance for Value-at-Risk.
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Objectives and Findings

e Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

e A non-parametric method based on the data at hand.

e Analytical expressions for the maximum and minimum
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Objectives and Findings

Model uncertainty on the risk assessment of an aggregate
portfolio: the sum of d dependent risks.

» Given all information available in the market, what can we say
about the maximum and minimum possible values of a given
risk measure of a portfolio?

e A non-parametric method based on the data at hand.

Analytical expressions for the maximum and minimum

Implications:

» Current VaR based regulation is subject to high model risk,
even if one knows the multivariate distribution “almost
completely”.

» We can identify for which risk measures it is meaningful to
develop accurate multivariate models.
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Motivation on VaR aggregation

Full information on marginal distributions:
Xj ~ Fj and represent risks as Xj:Fj_l(UJ-)
where U; is U(0,1).

_l’_

Full Information on dependence:
(Ur, Ua, ..., Uy) ~ C (Cis called the copula)

=

VaRg (X1 + X2 + ... + X,) can be computed!
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Motivation on VaR aggregation

Full information on marginal distributions:
Xj ~ Fj and represent risks as Xj:Fj_l(Uj)
where U; is (0, 1).

_|_

Partial or no Information on dependence:
(U1, Ua, ..., Uy) ~777
=

VaRgq (X1 + X2 + ... + X,;) cannot be computed!
Only a range of possible values for VaRq (X1 + X2 + ... + X»).
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Model Risk

Goal: Assess the risk of a portfolio sum S = 27:1 X;.
Choose a risk measure p(-): variance, Value-at-Risk...

“Fit" a multivariate distribution for (X1, X2, ..., X4) and
compute p(S)

©00

@ How about model risk? How wrong can we be?
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Model Risk

@ Goal: Assess the risk of a portfolio sum S = 27:1 X;.
@ Choose a risk measure p(-): variance, Value-at-Risk...
o

“Fit" a multivariate distribution for (X1, X2, ..., X4) and
compute p(S)

@ How about model risk? How wrong can we be?

Assume p(S) = var(S),

d d
pj_- ‘= sup q var ZX,- ,  pr:=infqvar ZX,-
i=1 i=1

where the bounds are taken over all other (joint distributions of)

random vectors (X1, X, ..., Xy) that “agree” with the available
information F
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Assessing Model Risk on Dependence with d Risks

» Marginals known, Dependence fully unknown
» If d = 2, assessing model risk on variance is linked to the
Fréchet-Hoeffding bounds or “extreme dependence”.

var(F{ Y (U)+F5 Y (1-U)) < var(Xi+X2) < var(FH(U)+F; L (U))

» A challenging problem in d > 3 dimensions

e Wang and Wang (2011, JMVA)

e Puccetti and Riischendorf (2012): algorithm (RA) useful to
approximate the minimum variance.

e Embrechts, Puccetti, Riischendorf (2013): algorithm (RA) to
find bounds on VaR

e Bernard, Jiang, Wang (2014, IME): explicit form of a lower
bound for the sum of homogeneous risks.

> Issues
e bounds are generally very wide
e ignore all information on dependence.

» Our answer: incorporating dependence information.

Carole Bernard Assessing Model Risk in High Dimensions 7



Model Risk  Bounds on variance  Dependence Info VaR bounds  Dependence Info. Details Moments  Conclusions

Rearrangement Algorithm

N = 4 observations of d = 3 variables: X1, X5, X3

O O =
w o o=
- O W I

Each column: marginal distribution
Interaction among columns: dependence among the risks
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Same marginals, different dependence = Effect on the sum!

X1+ Xo + X3

1 1 2 4
0O 6 3 9
4 0 O SN_4
6 3 4 13

X1+ Xo + X3

6 6 4 16
4 3 3 10
1 1 2 Sy = 3
0 0 O 0

Aggregate Risk with Maximum Variance

comonotonic scenario
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Aggregate risk with minimum variance

Each column is antimonotonic with the sum of the others:

} Xy + X3 } Xi+4X X+
03 4 7 03 4 4 03 4 3
160 6 , 160 1 160 7
41 2 3 41 2 6 41 2 5
6 01 1 6 01 7 6 01 6
X1+ Xo + X3

0O 3 4 7

1 6 O 7

4 1 2 S = | 7

6 0 1 7

The minimum variance of the sum is equal to 0! (ideal case of a
constant sum (complete mixability, see Wang and Wang (2011))
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Bounds on variance

Analytical Bounds on Standard Deviation

Consider d risks X; with standard deviation o;

Ogstd(X1+X2~|—...+Xd)<01+02~|—...—|—ad

Example with 20 standard normal N(0,1)
0< Std(Xl + X0+ ...+ X20) <20

and in this case, both bounds are sharp but too wide for practical
use!
Our idea: Incorporate information on dependence.
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lllustration with 2 risks with marginals N(0,1)
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lllustration with 2 risks with marginals N(0,1)
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Assumption: Independence on F = m {98 < Xk < q1-3}
k=1
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lllustration with marginals N(0,1)
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Bounds on variance  Dependence Info.

Dependence Info.

Details

lllustration with marginals N(0,1)
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lllustration with marginals N(0,1)

2 2

Fir={{as < Xk < q1_5} F = U {X > qp}U]:l
k=1
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lllustration with marginals N(0,1)

2

F1 =contour of MVN at 3 F = U {Xk > qp} U]:l
k=1
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Our assumptions on the cdf of (X1, X2, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, X2, ..., Xg) € F}.
(iii) P ((Xl,Xg, ...,Xd) S ]'-)

» When only marginals are known: &/ = RY and F = (.

» Our Goal: Find bounds on var(S) := var(X; + ... + Xy)
when (X1, ..., Xy) satisfy (i), (ii) and (iii).
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Example:

N = 8 observations, d = 3 dimensions
and 3 observations trusted (¢/f = 3, pr = 3/8)

SN =

=W OO -~ W
N = OB DN WK
W NN ==
O B~ 00 W UL W o
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Example: N =8, d = 3 with 3 observations trusted (/; = 3)
Maximum variance

(3 4 1]

2 4 2 10
02 1

4 3 3 . 7
M= L oSl=181, Sy=| 4
32 2 ; ]
11 2 |
111

00 1

The maximum variance is
L3 (s — 32+ 32, (5 - 5)2) ~ 8.75 with 5 = 5.5.
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Example: N =8, d =3 with 3 observations trusted (¢ = 3)
Minimum variance

Minimum variance obtained when Sy has smallest variance (ideally
constant, “mixability”)

3 4 1
2 4 2
0 2 1 o
1 1 3 I S o
1 2 2 5
3 1 1
40 1

The minimum variance is
: (Z?:l(s" — 52+ (5 - 5)2) ~ 2.5 with § = 5.5.
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on
F = [qﬁ, qlf/g]d C Rd pr = P((Xl, ...,XQO) S .F)

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» = 0%: no uncertainty (20 independent N(0,1))
» 3 =50%: full uncertainty

U=90 U=R?
F=las, 151" | B=0% B =50%
p=0 447 (0, 20)
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Example d = 20 risks N(0,1)

» (Xi,...,X20) independent N(0,1) on
F = [qﬁ, qlf/g]d C Rd pr = P((Xl, ...,XQO) S .F)

(for some 3 < 50%) where g,: y-quantile of N(0,1)
» [ =0%: no uncertainty (20 independent N(0,1))
» 3 =50%: full uncertainty

U=0 | pr~98% pr ~ 82% U="R4
F=lgqp] | B=0%| B=005% | B=05% | B=50%
p=0 447 | (44 ,565) | (3.89,10.6) | (0, 20)

Model risk on the volatility of a portfolio is reduced a lot by
incorporating information on dependence!
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Bounds on Variance

Bounds on the variance of 27:1 Xi

Let (X1, X, ..., Xy) that satisfies properties (i), (i) and (iii) and let

=T x %, Xq)eF>
Zi ~ Fx(x1,%,....Xq)eu are comonotonic and independent of I for

i=1,2,..,d. Then, with S =7 X;,

d d
var ]I5+(1—]I)ZEZ,- <var(S) < var ]IS+(1—]I)ZZ,-

i=1 i=1
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Other Risk Measures

» Assess model risk for variance of a portfolio of risks with given
marginals but partially known dependence. Same method
applies to TVaR (expected Shortfall) or any risk measure that
satisfies convex order (but not for Value-at-Risk).

definition: Convex order

X is smaller in convex order, X <., Y, if for all convex functions f

E[f(X)] < E[f(Y)]

» Next, let us study model risk on Value-at-Risk.
e Maximum Value-at-Risk is not caused by the comonotonic
scenario.
e Maximum Value-at-Risk is achieved when the variance is
minimum in the tail. The RA is then used in the tails only.
e Bounds on Value-at-Risk at high confidence level stay wide
even when the trusted area covers 98% of the space!
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Setting

e Model uncertainty on the VaR of an aggregate portfolio: the
sum of d individual dependent risks.
» Value-at-Risk at level g of S = X; + X5 + ... + Xy
» “Fit" a multivariate distribution for (X1, Xz, ..., X4) and

compute VaRy(S)
» How about model risk? How wrong can we be?

d d
VaR} > =sup{ VaRy [ Y X | b, VaR » =infq VaRy [ D X;
=1 i=1

where bounds are taken over all other random vectors
(X1, X, ..., Xg) that “agree” with the available information
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Definitions

¢ Value-at-Risk of X at level g € (0,1)
VaRgq (X) =inf{x € R | Fx(x) > q}

¢ Tail Value-at-Risk or Expected Shortfall of X

TVaR,( / VaR,( g€ (0,1)

e Left Tail Value-at-Risk of X

1 /9
LTVaRy(X) = q/ VaR,(X)du
0

Carole Bernard

Moments

Conclusions
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Bounds on Value-at-Risk

First part works for all risk measures that satisfy convex order...
But not for Value-at-Risk.

e Explicit sharp bounds

- n =2 Makarov (1981), Riischendorf (1982)

- homogeneous portfolios: Riischendorf & Uckelmann (1991),
Denuit, Genest & Marceau (1999), Embrechts & Puccetti (2006),
Wang & Wang (2011), Bernard, Jiang and Wang (2014)

- heterogeneous portfolios: Wang & Wang (2015)

e Approximate sharp bounds

- The Rearrangement Algorithm (Puccetti & Riischendorf (2012),
Embrechts, Puccetti & Riischendorf (2013))

» VaR, is not maximized for the comonotonic scenario:
SC=X{+ X5+ ..+ X5
where all X are comonotonic.

Let us illustrate the problem with two risks:
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“Riskiest” Dependence Structure
maximum VaR at level g in 2 dimensions

If L1 and L are U(0,1) comonotonic, then

VaR,(5¢) = VaR,(X1) + VaR,(X2) = 2q.

Carole Bernard Assessing Model Risk in High Dimensions
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“Riskiest” Dependence Structure
maximum VaR at level g in 2 dimensions

If L1 and L are U(0,1) and antimonotonic in the tail, then
VaRy(5*) =1+q.

0 q 1

VaRq(5") =14 q > VaRy(5°) =2q

= to maximize VaRg, the idea is to change the comonotonic
dependence such that the sum is constant in the tail

Carole Bernard Assessing Model Risk in High Dimensions
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VaR at level g of the comonotonic sum w.r.t. g

A

VaR,(S9)

>
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VaR at level g of the comonotonic sum w.r.t. g

A

L L O /
/

VaR,(S¢)

> 5
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Riskiest Dependence Structure VaR at level g

A

§* =>VaR(S*) =TVaR(S°)?

VaR (se) |y

> p
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Analytical Unconstrained Bounds with Xj ~ F;

A = LTVaR,(5°) < VaRg [X1 4+ Xz + ... + Xs] < B = TVaR,(5°)
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lllustration (1/3)

8 0 3 Sum=11
10 1 4 Sum=15
1-q -
11 7 7 Sums= 25
12 8 9 Sum= 29
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lllustration (2/3)

1-q -

Carole Bernard

Sum=11

10

Sum=15

11

Sum= 25

12

0 N | = |O

O N | PW

Sum= 29

Rearrange within
columns..to make the
sums as constant as
possible...
B=(11+15+25+29)/4=20

Assessing Model Risk in High Dimensions
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lllustration (3/3)

1-q -

Carole Bernard

Sum= 20

10

Sum= 20 B

Sum= 20

12

O | N |®
O |IN W b
I

Sum= 20

11

Assessing Model Risk in High Dimensions
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Numerical Results, 20 risks N(0,1)

When marginal distributions are given,

>
>

What is the maximum Value-at-Risk?
What is the minimum Value-at-Risk?

A portfolio of 20 risks normally distributed N(0,1). Bounds on
VaR, (by the rearrangement algorithm applied on each tail)
g=95% | (-2.17,413) |
9=99.95% | (-0.035,71.1) |

More examples in Embrechts, Puccetti, and Riischendorf
(2013): “Model uncertainty and VaR aggregation,” Journal of
Banking and Finance

Very wide bounds

All dependence information ignored

Our idea: add information on dependence from a fitted model

where data is available...
Carole Bernard Assessing Model Risk in High Dimensions 38
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lllustration with 2 risks with marginals N(0,1)
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lllustration with 2 risks with marginals N(0,1)
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Assumption: Independence on F = m {98 < Xk < q1-3}
k=1

Carole Bernard Assessing Model Risk in High Dimensions 40



Model Risk  Bounds on variance  Dependence Info VaR bounds  Dependence Info. Details Moments  Conclusions

Our assumptions on the cdf of (Xi, Xz, ..., Xy)

F C RY (“trusted” or “fixed” area)
U =RI\F (“untrusted”).
We assume that we know:

(i) the marginal distribution F; of X; on R for i =1,2,...,d,
(i) the distribution of (X1, X2, ..., Xg) | {(X1, Xz, ..., X4) € F}.
(iii) P ((Xl,Xg, ...,Xd) S .F)

v

» Our Goal: Find bounds on VaR,(S) := VaR, (X1 +... 4+ Xq)
when (Xi, ..., Xy) satisfy (i), (ii) and (iii).
In the paper entitled "A New Approach to Assessing Model Risk in
High Dimensions” with S. Vanduffel,
e we adapt the rearrangement algorithm to solve for sharp
bounds on VaR in the above case.
e we provide theoretical expressions as the VaR of a mixture for
the lower and the upper bounds.
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Numerical Results, 20 independent N(0,1) on F = [gs, q1_5]¢

Uu=>0 U=R?
B=0% B =05
9=95% 125 (-217,413)
q=99.95% [ 251 | \ | (-0.035,71.1) |

e U = () : 20 independent standard normal variables.

VaRg5% =125 V3R99.95% =251

Carole Bernard Assessing Model Risk in High Dimensions 42



Model Risk  Bounds on variance  Dependence Info VaR bounds  Dependence Info. Details Moments  Conclusions

Numerical Results, 20 independent N(0,1) on F = [g3, q1_5]¢

U=0 | pr=~98% pr ~ 82% U =Rq
B=0%| B=0.05% B=05% B =05
9=95% 125 | (122,133) | (107,27.7) | (-217,413)

q=99.95% | 25.1 [ (242,711)](215,71.1)[(-0.035,6711) |

e U = () : 20 independent standard normal variables.

VaR95% =125 VaR99.95% =251

» The risk for an underestimation of VaR is increasing in
the probability level used to assess the VaR.

» For VaR at high probability levels (g = 99.95%), despite
all the added information on dependence, the bounds
are still wide!
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Bounds on VaR

Theorem (Constrained VaR Bounds for Zfl:l Xi)

Assume (X1, Xa, ..., Xy) satisfies properties (i), (ii) and (iii), and let
(Z1,22,...,Z4), U and 1 as defined before. Define the variables L;
and H; as

L,' = LTVaRU (Z,) and H,' = TVaRU (Z,)
and let

mp = VaRp (]1 27:1 Xi aF (1 — ]I) Z?:l L’)
S = e

Bounds on the Value-at-Risk are m, < VaR, (Z;j:l X,-) < M,
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Value-at-Risk of a Mixture

Lemma

Consider a sum S =1X+ (1 —1)Y, where 1 is a Bernoulli
distributed random variable with parameter ps and where the
components X and Y are independent of I. Define «, € [0,1] by

s {acy 3e0n { S0 om=e )

and let B, = ETP2= € [0,1]. Then, for p € (0,1),

VaR,(S) = max{VaR,,(X), VaRs, (Y)}

Applying this lemma, one can prove a more convenient expression
to compute the VaR bounds.
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Let us define T := FZ,—X,-|(X1,X2,...,Xd)ef(U)'

Theorem (Alternative formulation of the upper bound for VaR)

Assume (X1, Xa, ..., X4) satisfies properties (i), (ii) and (iii), and let
(Z1, 2>, ..., Zq) and 1 as defined before.

With oy = max{O, p+57:—1} and ci; = min {1, %},

a, = infSa € (ar,a2) | VaRy(T) = TVaRp—pa <Zd 1 Zi)}

1=
1—pf
—1
When PPl P
pr < < pr’

d
Mp = TVaRp—prax (Z Z,-)

e \iot

The lower bound m,, is obtained by replacing “TVaR" by “LTVaR".
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With Pareto risks

Consider d = 20 risks distributed as Pareto with parameter 6 = 3.
e Assume we trust the independence conditional on being in F;

d
Fi1= ﬂ {as < Xk < q1-p}
k=1
where gz = (1 -7 —1/6 1
U=10 U=R7I
b2 B=0% | B=005% 5 =05% 8=05
a=95% 166 | (16,184) | (13.8,374) | (7.29,61.4)
a=99.95% | 435 | (265,359) | (205,359) | (9.83,359)
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Incorporating Expert’s Judgements
Consider d = 20 risks distributed as Pareto 6 = 3.
e Assume comonotonicity conditional on being in F»
d
Fo=J X > a0}
k=1
Comonotonic estimates of Value-at-Risk
V3R95%(5C) = 34297 V3R99.95%(SC) = 231.98
U=10
F (Model) | p=99.5% | p=99.9% | p=099.95%
a=95% 166 | (835,50) | (7.47,56.7) | (7.38,583)
a=99.95% | 435 | (232,232) | (232,232) | (180,232)
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Independence within a rectangle 71 = ﬂgzl {98 < Xk < q1_3}

U=10 U=Rq

Fi B=0% | B=0.05% B =05% B=05
a=95% 166 | (16,184) | (138,37.4) | (7.29,614)
0=99.95% | 435 | (265,359) | (205,359) | (9.83,359)

Comonotonicity when one of the risks is large F» = |J?_; {Xk > g, }

U=10
o (Model) | p=99.5% p = 99.9% p = 99.95%
a=95% | 166 | (835,50) | (7.47,56.7) | (7.38,583)
a=99.05% | 435 | (232,232) | (232,232) | (180,232)
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Adding Moment information

In addition to information about the distribution, we can add
information about moments of the sum.

Example 1: variance constraint - Bernard, Riichendorf and
Vanduffel (2015)

M :=supVaRgq [L1 + Lo + ... + L],
subject to L;j ~ Fj,var(Ly + Ly + ... + L) < s?
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Description

It appears that adding dependence information can sharpen the
bounds considerably. Here,

» VaR bounds with higher order moments on the portfolio sum
e Portfolio loss

L= L;where L ~ F;
i=1
e We are interested in the problem:
M:=sup VaR,[L]
subject to L;~F; and E[Lk] < ¢, (k=2,3,..,K).
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VaR bounds with moment constraints

» Without moment constraints, VaR bounds are attained if
there exists a dependence among risks L; such that

[ — A probability g
~ | B probability 1 — g

o If the “distance” between A and B is too wide then improved
bounds are obtained with

L A with probability g
| b with probability 1 — g
such that
akq+ b (1 — q) < ¢
aqg+ b(1—q) = E[L]
in which a and b are “as distant as possible while satisfying
the constraint”

Carole Bernard Assessing Model Risk in High Dimensions 52



Model Risk  Bounds on variance  Dependence Info VaR bounds  Dependence Info. Details  Moments  Conclusions

Dealing with moment constraints

To find a and b, solve for each k = 2,3, .., K the system of
equations (A < B)

Aq+ B(1—q) = E(L)
{ Akq+ B*(1—q) =

and obtain K — 1 pairs {Aj, Bj}. Then, take

b min{B;|j =2,3,..., K}
. El-b1-g)
q
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Approximating Sharp Bounds

e The bounds a and b are sharp if one can construct
dependence among the risks L; such that quantile function of
their sum L becomes flat on [0, ] and on [g,1] . This holds
true under certain conditions (see eg Wang and Wang, 2014).

e To approximate sharp VaR bounds: Extended Rearrangement
Algorithm (RA).
Standard RA (Puccetti and Riischendorf, 2012):
» Put the margins in a matrix

» Rearrange each column (adapt the dependence) such that L
(row-sums) approximates a constant (E[L])
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Rearrange now

within all
columns such

that all sums

becomes close
to zero

eoee eee eee -a
eee eee eee -a
q -
eee eee eee -a
- e e ee _a
B 8 8 a -b
10 7 3 -b
1-q B
12 1 7 -b
11 o 9 -b

Carole Bernard
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Extended RA

e ERA: Apply RA on the new matrix and check:
— If all constraints are satisfied, then L* readily generates the
approximate solutions to the problem
— If not, decrease b by ¢, and compute a such as the
expectation of L is satisfied. Apply the extended RA again.
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Conclusions (1/2)

We have shown that

e Maximum Value-at-Risk is not caused by the comonotonic
scenario.

e Maximum Value-at-Risk is achieved when the variance is
minimum in the tail. The RA is then used in the tails only.

e Bounds on Value-at-Risk at high confidence level stay wide
even if the multivariate dependence is known in 98% of the
space!
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Conclusions (2/2)

» Assess model risk with partial information and given marginals
(Monte Carlo from fitted model or non-parametrically)

» Design algorithms for bounds on variance, TVaR and VaR and
many more risk measures.

» Challenges:

e How to choose the trusted area F optimally?

e Re-discretizing using the fitted marginal f: to increase N

e Amplify the tails of the marginals by re-discretizing with a
probability distortion

» Additional information on dependence can be incorporated
- expert opinions on the dependence under some scenarios
(amounts to fix the dependence in some areas).

- variance of the sum (work with Riischendorf and Vanduffel).
- higher moments (work with Denuit and Vanduffel)
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