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INTRODUCTION 
Many engineering structures exhibit loss of stability under static and dynamic loading. Due to 
the significance of these phenomena in engineering design this topic has attracted considerable 
attention during the last decades. In recent years much effort has been made to devise algorithms 
within finite element analysis to investigate the static stability behaviour of structures. With 
these methods stable and unstable paths can be traced1-3, and limit or bifurcation points can 
be computed efficiently4,5. The associated arc-length or branch-switching procedures are today 
standard tools in existing finite element codes. 

Analogous procedures for non-linear dynamic stability problems have not been developed to 
this extent. This has different reasons. First, the underlying theory is not that well suited for 
numerical applications and the numerical computation of large scale problems is very time 
consuming. Thus many stability problems which exhibit dynamic effects like buckling or snap 
through of shells are treated as static cases. However, as has been pointed out by different 
authors this may restrict the space of solutions since isolated but stable post buckling states 
may exist which cannot be reached by static continuation procedures6,7. 

If, on the other hand, a dynamic analysis of a structure which may bifurcate is performed we 
need algorithms to detect instability. Contrary to the static case where the determinant of the 
tangent stiffness matrix indicates loss of stability we have to differentiate between several cases 
in dynamic problems. 

Within the autonomous case we can use the so-called Ljapunov's first approximation where 
still the tangent stiffness matrix determines the stability behaviour. In the early 1950s researchers 
started to investigate these load cases8. Several algorithms have been developed for this class 
of dynamic stability. One approach is associated with the work of Budiansky and Roth9 who 
observed that in the presence of loss of stability the system undergoes large deflection. Thus 
they formulated the criterion of finite change of deformations within the dynamic response which 
defines the critical load. Within finite element discretizations methods like accompanying 
eigenvalue analysis have been used3,10-12. In general, if the load magnitude is smaller than the 
critical load the system oscillates around static equilibrium. After the load magnitude is increased 
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beyond the critical load the structure can exhibit large oscillations or even a divergent type of 
motion. 

It is interesting that efficient algorithms are lacking for the autonomous case which are able 
to detect a singularity of the tangent operator. This is mainly due to the fact that in standard 
finite element analysis the integration of the equations of motions is performed via implicit 
schemes like Newmark or so-called α-methods13, which augment the tangent stiffness by the 
mass and damping matrices. Thus this effective stiffness matrix is factored and not the tangent 
matrix itself which means that for a computation of the determinant of the tangent matrix we 
need a refactorization in the solution process. This is extremely expensive and time consuming. 
To circumvent this disadvantage we suggest in this paper an accompanying eigenvalue 
investigation based on an iterative scheme. 

The paper is outlined as follows. First, we will recall the equations of the underlying non-linear 
finite element formulation. After this we will state a standard implicit time-stepping procedure 
for non-linear problems and develop an efficient algorithm for the accompanying eigenvalue 
investigation based on the coordinate overrelaxation method for computing the minimum of 
the Rayleigh quotient14. Finally, some examples conclude the paper and show the applicability 
of the theory and the efficiency of the derived algorithm. 

NON-LINEAR FINITE ELEMENT FORMULATION 
In this section we summarize standard notation in non-linear finite element analysis needed for 
our subsequent developments. 

Standard finite element procedures yield in case of dynamics a non-linear system of ordinary 
differential equations: 

with the initial conditions 

Here the body B under consideration is discretized by ne finite elements Ωe which leads to the 
approximation Bh = ne

e=1 Ωe, u denotes the deformed configuration, u the velocity and ü the 
acceleration of the body. The vectors R, P and the matrix M are given by: 

where N contains the shape functions and B their derivatives according to the theory used. R 
denotes the so-called stress divergence term which may in general include damping and P(t) is 
the load pattern which in general depends on the time t. ρ is the density, (t) are the body forces 
and (t) are the tractions. Due to geometrical or material non-linearities the system of equations 
(1) is non-linear in u. 

The degree of non-linearity in (1) depends on the theory used to describe the problem at 
hand. When for example a three-dimensional theory of non-linear elasticity is considered which 
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bases on the St. Venant material with Green strains then R is a cubic polynominal in u. This 
no longer holds for different constitutive models like Ogden's strain energy function for rubberlike 
materials which can also be described by (1). In shell theories for large rotations u depends on 
trigonometric functions. Finally the incorporation of elastoplastic materials leads, depending on 
the plasticity model, to different types of non-linearity. However, once the problem is formulated 
and discretized the approach advocated in this paper can be applied independently from the 
underlying non-linear model. 

M is the consistent mass matrix which may also be approximated by lumping techniques to 
arrive at a computationally more efficient diagonal form. For a discussion of different 
approaches, see Ref 13. Throughout this paper we will assume that damping is given by the 
so-called Rayleigh damping which yields the following structure of the damping matrix C 

where dx are constants, the mass matrix M is defined in (2)3 and K denotes the tangent stiffness 
linearized at the state u0: K = DR(u)|u=u0. 

DYNAMIC STABILITY UNDER STEP LOAD 
In this section we formulate the well known stability results for the autonomous loading case 
which will be the basis for the subsequent chapters. 

The initial value problem: 

with M, CєRnxn, M positive definite, and the C2 maps R: Rn-→ Rn and P: Rn → Rn, can be 
transformed via 

into the initial value problem x = f(t, x(t)) 

Problems (4) and (5) are equivalent. 
Let x: ( - a , +a) → R2n be the solution of (5), a > 0, and let f: R x Rn → Rn be defined by the 

right hand side of (5). Then for all t є( — a, +a) there holds 

where K(t) = D2R(x(t)) is the Jacobian of R at x(t), i.e. the tangent stiffness matrix. Note that 
the eigenvalues of D2f are just the eigenvalues of the λ-matrix: 

If we assume that the damping matrix is given by C = d1M for a fixed positive number d1 Then 
any eigenvalue X of (7) can be computed from: 

with an eigenvalue μ of [ΜM + K]. Little calculation shows that X is an eigenvalue of (5) with 
a related eigenvector {φ, η}1 є R2n if λ is an eigenvalue of (7) with a related eigenvector φ, η = λtφ. 
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The well known theorem of Ljapunov stability for autonomous systems can now be formulated 
as: 
Let the solution u of (5) exists on [0, a] and let f0 є(0, a). In addition let K = DR(u) be symmetric 
and C = d1M with M positive definite and d1 > 0. If K(t0) = DR(u(t0)) is positive definite then 
the solution u is stable in t0. If K (t0) has a negative eigenvalue then u is unstable in t0. 
This theorem can be used to investigate the dynamic stability behaviour of (4) just by looking 
at the determinant of the eigenvalues of K(t). 
REMARK: By defining the notion of current stability15, we can also use the static criterion in 
non-autonomous cases as a measure for the sensitivity of a dynamical system against 
imperfections. One can then show that if K(t0) = DR(u(t0)) is positive definite then the solution 
u is c-stable in t0. If K(t0) has some negative eigenvalue then u is c-unstable in t0 and thus 
sensitive against imperfections. Whereas classical asymptotic stability is important (if it can be 
proved) we stress insensitivity as an indication of a safe engineering construction. Conversely, 
sensitivity characterizes the possibility that small perturbations of the current situation can 
increase and thus can lead to a change in the asymptotic behaviour. Consequently, sensitive 
situations should be considered with great attention in both the engineering design and numerical 
simulations. 

In the next section we develop an algorithm which detects the needed zero or negative 
eigenvalues of K(r). 

ALGORITHMS FOR NON-LINEAR DYNAMIC STABILITY 
In this section the iterative procedure for the solution of non-linear problems in dynamics and 
the algorithm for the computation of the eigenvalue of the tangent stiffness matrix KT are described. 

Implicit integration of the equations of motion 
As has been pointed out, (1) denotes a system of non-linear ordinary differential in time t. 

The methods for the solution of (1) are standard. For many applications implicit integration 
schemes like the ones known as the Newmark family are advantageous. The application of these 
schemes to (1) leads to: 

where the subscript n means a known quantity at time tn and the subscript n + 1 denotes an 
unknown quantity at tn+1. In (9) we have defined the acceleration by a = ü and the velocity by 
v = u. β and γ are parameters which determine the accuracy and stability characteristics of the 
algorithm. It can be seen from (9)2 and (9)3 that a choice of β = 0.25 and γ = 0.5 yields the 
trapezoidal rule. 

The elimination of an+1 and vn+1 from (9)1 by (9)2 and (9)3 yields a non-linear equation in un+1 

with 
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and 

Here At = tn+1 — tn is the time increment used in the algorithm. 
If we now assume Rayleigh damping, see (3), with d2 = 0 the damping matrix reduces to: 

Thus we obtain 

with 

To solve the non-linear equation (14) we will apply Newton's method. For this purpose we have 
to linearize (14) with respect to the unknown configuration un+1 which yields the following 
algorithm within a time step At 

where i is the iteration index and KT = DR(ui). 
As can be seen from (16)1 the effective tangent matrix Keff = (c1 + d1c2)M + KT has to be 

factorized during each Newton iteration. In case of theorem III the standard approach is to 
monitor the determinant of the tangent matrix KT. This requires a factorization not only of Keff 
but also of KT which is double the effort of solving (16) within one iteration step. To avoid this, 
we develop an algorithm based of a coordinate overrelaxation method which is described in the 
next section. 

Current eigenvalue analysis by coordinate overrelaxation (COR) 
In this section we consider the general eigenvalue problem (A — λB)φ = 0 for A, BєRn x n 

symmetric and B positive definite where A = K is the current tangential stiffness matrix and 
B = M is the mass matrix. Since we want to detect a possible singularity of K we are led to the 
computation of the smallest eigenvalue λ1. Clearly this can be tackled by several algorithms like 
factorization or inverse iteration for instance. But this increases the computational effort for the 
current eigenvalue analysis by the same amount which is needed for the implicit integration of 
the equations of motions itself. 

Our basic observation in the applications section is that the eigenvector φ depends only little 
on time. Therefore we suggest in this paper the application of the coordinate overrelaxation 
(COR). 

The COR has been pointed out by Schwarz14. It is based on searching the smallest stationary 
value of the Rayleigh quotient: 
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Given an approximation φ of an eigenvector related to λ1 we chose a direction η ≠ 0 and 
minimize R over the two-dimensional space generated by φ and η. Let φ' = (Φφ + γη be the 
minimizer, λ' = R(φ'), then the stationary conditions ∂R(φ')/∂Φ = 0 = ∂R(φ')/∂γ lead to the 
two-dimensional eigenvalue problem for ).' 

which is easily solved in each step such that λ' ≤ R(η). Therefore φ' is regarded as a better 
approximation of the eigenvector related to λ1 than φ. In one iteration cycle we chose φ as the 
unit vectors e l , . . . , e n immediately after each other. 

Hence we obtain the following algorithm: 

Algorithm COR 

Input: (φ ≠ 0, ωє(1,2), є > 0. 
Start: Compute ζ = Aφ, ξ = Bφ, α. = φtζ,β = φtξ, R = α/β 
Repeat: 

For j = l , . . . ,n calculate R' and γj from 

and let 

BOX 1 Coordinate-overrelaxation algorithm 

Here ω is the overrelaxation parameter which is introduced to accelerate the convergence. The 
choice of ω is discussed numerically in Schwarz14. In a later section we have used ω = 1.4 and 
ε= 10 - 3 . 

REMARKS 

(i) During the implicit time stepping procedure we apply as a starting vector φ in COR at 
time tn + 1 the converged eigenvector from time step tn. At t0, i.e. the beginning of the implicit 
integration for the initial values, we suggest a single computation of the eigenvector φ by inverse 
iteration or a subspace algorithm with higher accuracy because in our experiences COR seems 
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an efficient algorithm for lower accuracy and becomes too laborious for higher accuracy, cf. 
Schwarz14. 

(ii) Since the eigenvector φ undergoes minor changes by passing the problem from tn to tn+1 
we need only a few (less than 5) iteration cycles (i.e. the fore-loop in COR). The essential 
computational effort of such an iteration cycle is one vector multiplication with A and B. 
Therefore, besides the calculation of the starting vector at t0, the computational effort is reduced 
from 0(n3) (for factorization) to 0(n2) (for COR) in each time step. 

(iii) If the second eigenvalue λ2 is equal or close to λ1 the convergence of COR may fail. This 
can be avoided by a successive application of COR for higher stationary values, cf. Schwarz14. 

General algorithm 
In this section we state the general algorithm which we apply to detect singular points of the 

tangent operator within a non-linear dynamic simulation. In general we observe the response 
shown in Figure 1 where at a certain singular point the solution branches in the unperturbed 
and the perturbed one. However, this must not be the case. The dynamical response of the 
non-linear system can also be insensitive with respect to perturbations. Then the solution curve 
will return to the unperturbed one. Thus to test the sensitivity at a singularity at time rn we 
perturb the solution un by the eigenvector φn as follows: ue = un + εφn-

The application of the Newmark method and the COR technique leads to the following global 
procedure: 

General algorithm 
• Set starting vectors: u0, v0, a0 
• Compute starting eigenvector: φ0 from (μM + K0)φ0 = 0 
• Loop over all time steps n = l,...,nend. 

— Solve non-linear system (14) by Newton's method 
— Compute with COR eigenvalue and —vector φn of [μM + Kn] 
— In case of a negative eigenvalue perturb solution via uε = un + εφn 
— Update vectors: un, vn, an, φn 

• Loop end 

BOX 2 General algorithm for non-linear structures 
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NUMERICAL EXAMPLES 
In this section we present a selected sample of numerical simulations of non-linear stability 
processes and apply the COR method. All algorithms and elements have been implemented in 
FEAP, see Zienkiewicz and Taylor16. 

Dynamic stability of a non-linear truss structure 
Our first example was also considered in Kleiber et al.10. The truss structure depicted in 

Figure 2 is subjected to a vertical load which leads to buckling of the structure in the static case. 
All data are shown in Figure 2. 

When instead of a static load a step load of the magnitude shown in Figure 2 is applied we 
observe a negative eigenvalue of KT during the motion of the structure at time t = 0.0031 sec. 
The location of the negative eigenvalue is marked by a dot in the curve in Figure 3 showing the 
displacement versus time. This is, as disucssed in the previous sections, an indicator for loss of 
stability and leads in this example in the large to an unstable behaviour (Figure 3) when the 
displacement is perturbed by the eigenvector at the singular point of KT. The phase portraits 
of the perturbed and unperturbed solution in Figure 4 indicate furthermore the totally different 
behaviour of both responses. 

Dynamic stability of a frame structure 
The frame structure considered in Figure 5 is subjected to a constant load of infinite duration 

at its top. The relevant data of the mesh consisting of 247 elements and 140 nodes are given in 
Figure 5. 

When a dynamic analysis is performed with a time step of At = 0.001 the COR method 
indicates a loss of stability at time t = 0.072. However, the solution does not change. It is basically 
a motion in vertical direction. If we now perturb the displacement field at the time associated 
with the loss of stability we are led to a different time history plot of the displacement u, see 
Figure 6, which depicts a totally different behaviour. The COR method used on the average 1 
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to 2 cycles for the determination of the current eigenvalue in each time step. Hence the time for 
the computation of the current eigenvalue was one twentieth of the total solution time. 

The phase diagram in Figure 7 shows clearly the instability of the perturbed solution. 

Clamped spherical shell 
This example shows the stability behaviour of a clamped spherical shell under constant pressure 

load of infinite duration. It has been considered by many authors, see e.g. Simitses8, Ch. 8, and 
references therein. System and data are shown in Figure 8. 

For a pressure load of p = 20 we observe snap-through behaviour. At time t = 2.7 a negative 
diagonal of the tangent matrix KT occurred. This point is marked in the time-history plot of 
the displacement w at the apex, see Figure 9. This Figure clearly depicts the oscillations of the 
spherical cap around the new equilibrium state after the snap appeared. 
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To detect the singularity of the tangent matrix the algorithm needed in each time step in the 
average 2 iterations when ω = 1.4 and ε = 10 -3 where used. A tighter tolerance was not needed 
since only the change of sign of the eigenvalue had to be investigated for the detection of the 
singularity. 

CONCLUSIONS 
The algorithm developed in this paper is able to detect singular points of the tangent matrix 
within an implicit time stepping scheme in an efficient manner. Since the loss of stability of 
autonomous systems is denoted by the singularity of the tangent operator this method can be 
used as an indicator for this type of stability behaviour. Due to the structure of the algorithm 
one has to initialize it with an eigenvector which can be computed efficiently by an inverse 
iteration. Then it turned out that the use of an relaxation parameter ω = 1.4 and a solution 
tolerance of Ε = 10 - 3 were sufficient to detect the singularities with 2 to 3 iteration cycles per 
time step. 
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