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SUMMARY 

In engineering applications often problems with symmetric system and symmetric loading occur. It is well 
known that these symmetry conditions can be used to reduce the computational effort. Thus, only 
a symmetric reduced system is treated with sufficient boundary and loading conditions. Especially for 
non-linear problems this procedure is very effective. Such a strategy allows the computation of solution 
paths with the constraint that the solution has to be symmetric. Consequently in a stability analysis, only 
limit points and bifurcation points with associated symmetrical eigenvectors can be found. Often the 
stability behaviour is dominated by symmetry-breaking bifurcation points which cannot be detected 
considering only the tangent stiffness matrix of the reduced system. Hence, in case of stability considerations 
a calculation of the complete system is necessary. This paper introduces a special form of stability analysis of 
the complete system using only certain matrices known from the symmetric reduced system, and some 
transformations concerning the topology of the total system. The proposed methods base on a substructure 
technique for symmetry under reflections and rotations, and are formulated for the finite element method. 
Numerical examples are given to show the efficiency of the proposed procedures and algorithms. 

1. INTRODUCTION 

In engineering applications, often symmetric systems with symmetric loading and symmetric 
boundary conditions appear. Within an efficient computation of such problems--e.g. with the 
finite element method this symmetry can be used to reduce the computational costs. Especially 
for non-linear problems, where the solutions are achieved by incremental/iterative procedures, 
this aspect can be very important. Such iterative solution procedures base, in general, on path- 
following procedures together with Newton-Raphson’s algorithm. Within these strategies the 
main computational effort in the solution process of the incremental linearized equations is 
dominated by the LDLT-reduction ofthe tangent stiffness matrix K T  which has to be calculated in 
all load steps and in each iteration step (for full Newton schemes). 

Besides the calculation of the non-linear response of the system using, e.g., path following 
methods, one has to discuss the stability behaviour of the total structure. Typical stability effects 
are the appearence of limit o r  bifurcation points which can be detected by the singularity of the 
tangent stiffness matrix KT. The condition det K, = 0 can easily be checked in each iteration step 
considering all signs of the pivot entries D,, in the LDLT-reduction of K T .  If the main interest is on 
the primary path, which can be proved mathematically to be symmetric,’.’ i t  is sufficient to use 
only a symmetric reduced system. 

Using such a symmetric reduced system only limit points or bifurcation points with symmetric 
zero eigenvectors can be detected. Within this discussion the type of bifurcation point can be 
symmetric or asymmetric3 (truss and cylindrical shell example). 
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On the other hand, bifurcation points with unsymmetric eigenvectors cannot be found using 
the symmetric reduced system. Consequently, a discussion of the stability behaviour of the total 
system requires the control of its tangent stiffness matrix KT. 

This paper considers the efficient calculation of the symmetric primary branch using the 
symmetric reduced system but enlarges the approach such that any singularity of the total system, 
e.g. a symmetry-breaking bifurcation point, is detected. The advantage of the proposed strategy 
will be explained considering the general algorithm as shown in Box 1. 

Box 1. Algorithm 1 

For any load level: 

( I )  Newton-Raphson’s method: 
(la) Compute residual G. 
( lb)  Compute K, and its LDLT-decomposition. 
(lc) Solve linear equation K,Av = -G. 
(Id) Update displacements v. 

(2) Stability considerations, for example discuss sign of all D i i .  

The main computational costs during a Newton-Raphson step are caused by the LDLT- 
decomposition which are denoted by c for the tangent stiffness matrix KFT of the symmetric 
reduced system (RS) and tic for the tangent stiffness matrix KFS of the complete structure (CS), 
respectively. 

The difference between both calculations can be discussed in the following example. Let the 
dimension of KTCS be twice of K$. Then, ti depends on the structure of KGS and KTRS and may be 
bounded by 

2 < ~ < 8  (1) 
To see this, assume first that KFS and K;’ have non-vanishing entries such that c = O ( n 3 )  and 
KC = O((2.t1)~) = 8 0 ( n 3 )  8c, a:= dim K;S; here O( ) denotes the Landau symbols which can- 
not be confused with the n-dimensional orthogonal group O(n).  This gives an upper bound for K. 
To determine the lower bound, assume that K p  and K:S are band-matrices with the same 
bandwidth, say, k .  Then c = O ( k 2 n )  and ICC = O ( k 2 2 n )  x 2c. This proves equation (1). 

As mentioned above, the computation of the total structure needs no additional stability 
considerations-the sign of the Dss  can be seen automatically during the elimination process. 
Therefore, the computational costs of Algorithm 1 at a certain load level are nearly 

5.Ic.c (2) 
Here, we have assumed that 5 iteration steps have to be done, for any load level which is typical 
for a full Newton scheme. 

The computations using the symmetric reduced system gives no information on the symmetry- 
breaking bifurcation behaviour. Thus, at each load level an additional calculation and decompo- 
sition of K$S with costs ICC is necessary for the stability analysis. In total we have in our model 
situation costs of ICC and 5.c for five Newton-Raphson steps. Thus, the computational costs of 
Algorithm 1 using the symmetric reduced system for one load level are nearly less than 

5 . C  f K C  (3) 
Consequently, using the symmetric reduced system the computational effort is reduced in relation 
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to the computations with the total structure by a factor 

We have omitted in this process the calculation of KT and G in comparison to the decomposi- 
tion procedure. 

Based on this preliminary considerations we introduce, in this paper, an algorithm for the 
required stability discussion of the total system in Algorithm 1 which is based on the particular 
structure of KT in the presence of symmetry. 

The paper is organized as follows. In Section 2 some basic equations for the description of the 
FEM are introduced. Then, Section 3 treats reflections where we derive that the stability test 
concerns only the singularity of two tangent stiffness matrices: one is the tangent stiffness matrix 
KF’ of the symmetric reduced system, while the second matrix is build by the antisymmetric 
boundary conditions. Furthermore, the case of a double-reflection symmetry is discussed in 
Section 4 where the regularity of four tangent stiffness matrices related to the symmetric reduced 
system must be checked for the stability of the total structure. 

The rest of the paper concerns the symmetry by rotation which is more complicated and 
requires some preliminaries. In Section 5 we consider symmetric substructures and derive the 
equations for the symmetric reduced system in the case of symmetry by rotation. Especially, 
we determine boundary conditions defining the symmetric substructure. This enables the 
Newton-Raphson algorithm for the symmetric reduced system. We present Algorithm 3 for the 
detection of singular points of the total system only using the tangent stiffness matrix of one 
symmetric reduced system and the informations of the coupling behaviour between all substruc- 
tures. Some informations about the relation of the zero eigenvectors of the total structure and the 
symmetric reduced system are also given. In Sections 4 and 5 some numerical examples are given 
illustrating the large reduction of the computational costs in comparison with a computation 
based on the total structure. Finally, some conclusions are drawn in Section 6. 

2. BASIC EQUATIONS 

This section describes the basic equations for the finite element formulation used in the sub- 
sequent sections. 

The weak form of equilibrium of an elastic body under given loading can be written by the 
principle of virtual work with respect to the reference configuration B 

with the displacement field u, the Green-Lagrangian strains E, the second Piola-Kirchhoff 
stresses S and the given body forces b and surface tractions T. 6u and 6E are the virtual 
displacements and strains. The surface tractions 1 acts on a part r?B, of the boundary 
c3B = i)B, u r?B, of the body B while the virtual displacements 6u vanish at the other part ?Eu. 

The finite element discretization consists in restricting the displacements to a finite-dimen- 
sional, say IZ, space. On element level, the displacement field u, is defined by 

U, = N,v, (6) 
with a matrix N, of shape functions and a nodal displacement vector v,. The associated virtual 
Green Lagrangian strains are 

dE, = Bp6vp with (B = B, + BN& (7) 
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whereas the second Piola-Kirchhoff stresses are defined for a linear elastic material behaviour by 

(8) S, = DE, = D(BL + 1/2B,,),~, 

Taking the discrete quantities in the principle of virtual work and summation on all elements 
leads to 

B%S,dQ - iae, NZhdf2 - 1 Nzdt(dQ) (9) 
ne 

e =  1 (8%) 

I f  we introduce an additional load parameter A we end up with the well-known non-linear set of 
equations for the residual 

G(v, A) = R(v) - AP = 0, v E R", 3. E R 
with 

Throughout this paper, we assume that the solution of G = R(v) - AP = 0 is computed by 
incremental path following methods. This requires a further constraint f ( v ,  2 )  = 0 to obtain 
a system of equations with locally unique solutions. Then the system can be solved by, e.g., 
Newton-Raphson's method where we compute the tangent stiffness matrix K T ,  i.e. the Jacobian 
matrix of R. We refer e.g. to References 3-8 for a more detailed description of arc-length methods. 

Using the implicit function theorem one concludes that the solution set of the equation 
G = R(v) - i P  = 0 is locally a path, if the tangent stiffness matrix K T  is regular. Consequently, 
any stability point (V, x) fulfils det KT = 0. 

Moreover, the stability of an equilibrium point (v, A), i.e. G(v, A) = 0, is said to be stable, 
singular or unstable, iff KT is positive-definite, singular, or of some other form, respectively. This 
criterion can be applied if, e.g., a LDLT-decomposition of the tangent stiffness matrix is known. If, 
correspondingly, all D,, are positive, one D,, vanishes, one D,, is negative, then the equilibrium 
point (v, A) is stable, singular, unstable. Thus, in view of Algorithm 1 the stability considerations 
can be done without additional effort if the complete system is treated. On the other hand, using 
a symmetric reduced system for the computation of symmetric solutions the tangential stiffness 
matrix of the full system is not known and further considerations are required. 

3. REFLECTION SYMMETRY 

In this section we discuss a finite-dimensional system of non-linear equations 

G(v, A) = 0 (12) 
where G :  R" x R --t R" is smooth. In addition we assume the presence of a reflection symmetry 
which is described by a linear orthogonal mapping S e O ( n ) ,  O ( n )  is the orthogonal group in R", 
such that S # I but SS = I, I is the unity in R" and identified with the n-dimensional unit matrix. 

The key is a decomposition of the displacement vector in R" in symmetric, denoted by Vs,  and 
antisymmetric displacements, denoted by V,, i.e. 

v,:= {VER")SV = v},  v,:= (VER"ISV = - v )  (13) 
Any displacement field can be defined as a sum of a symmetric and an antisymmetric displace- 
ment field which can be written for the related vectors as 

K@Va = R" (14) 
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Example. Assume that G represents equilibrium of a (discrete) mechanical structure R in 
global co-ordinates which is symmetric under reflection with respect to the y-axis, say, such that 

(1 5 )  

Then, the symmetry of R can be written as follows. There exists a substructure R1 which is 
mapped by S’ onto Q2 = S’R,  such that R = Rl u Q 2 .  Moreover, the symmetry yields the 
displacements v: R + R3 being symmetric, i.e. v E V,, if and only if the restriction of v to R,  , 
denoted by v 1  := vln, ,  represents v according to 

v(x) = vl(x) if XER, and V ( X )  = Svl(x) if X E R ,  (16) 

Therefore, as it is well-known for engineers we-can restrict the computation of symmetric 
displacements to the half R1 of the system, if we add suitable symmetric boundary conditions 
to R1. These symmetric boundary conditions can be computed by the condition v(x) 
= vI(xj = v2(xj for all x e Q l  nR,. This yields S’u(x) = u(x) for the allowed displacements 
U(X)E R3 at a point x €0, n R2 of the symmetric boundary. In the present example S‘u(x) = u(x) 
means that ul(x), u3(x) are arbitrary while u 2 ( x )  = 0. This confirms the engineering approach. 

Remarks. (i) The symmetry S’ of the above example depends on the degrees of freedom which 
are three in the example (e.g. a 3-D solid problem). If we add three rotations to describe 3-D beam 
problems for instance than S’ becomes a diagonal matrix of dimension six with the diagonal 
entries 1, - 1,  1, - 1, 1,  -1 .  

(ii) We refer the mechanical system R ,  with the symmetric boundary conditions to the 
symmetric reduced sysfem. Analogously, the mechanical system R, with the antisymmetric 
boundary conditions (these are the symmetric conditions of - S’) is called the antisymmetric 
reduced system. 

(iii) We emphasize that the symmetry S’, like equation (1 5j, describes the system in some sense 
in local co-ordinates u while S represents the symmetry for the displacement vectors v and, hence 
in some sense in global co-ordinates. Obviously S’ # S (the dimensions do not coincide). On the 
other hand, both S and S’ represent the same symmetry. Therefore, in mathematical litera- 
ture,l.2.8.9 S is called the action of S’. For our engineering approach this is not important, 
because for the case of symmetry under reflection the situation is clear. 

The fact that the system is symmetric often gives the following symmetry condition for all v E R“ 
and all AER 

G(SV, i )  = SG(V, A) (17) 
To give an example we consider an energy approach.2 Let G(v, A) be of the form of the previous 

section, namely, 

In this situation the symmetry condition (17) is satisfied if the load is symmetric, i.e. 
G(v, A) = R(v) - ;IP with R(v) = D,: II,(v) (1 8) 

SP = P ( 1 9  

n,(Sv) = n,(v) for all Y E  R” (20) 

and the internal energy is symmetric, i.e. 

Lemma 1. For G,from equation (18) a symmetric energy (20) and loading (19) imply the sjvnrnetry 
condition (17). 
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Proof Differentiation of equation (20) gives 

R(v)  = D t , r I , ( ~ )  = D,II,(Sv) = STR(Sv) (21) 

by the chain rule. Multiplication with S proves equation (17). H 
The symmetry condition (17) is usually required in the mathematical literature to which we 

refer for a mathematical treatment of the rest of this ~ e c t i o n . ~  
Using equation (17) the following lemma7 is known, the proof is given for completeness. 
Let K, be the tangent stiffness matrix, 1.e. K,:= D,,G(v, 2). 

Lemmu 2. On the symmetric primary path, KT always has a symmetric or un unlisymmetric zero 

Proof. Since KT is singular there exists a zero eigenvector cp # 0. In case <PE K, the lemma is 

eigenvector whenever it is singular. 

already proved. Otherwise $:= cp - Scp is non-zero. Note that $E V, since 

s4 = scp - sscp = scp - cp = - 4 (22) 

It remains to prove that + is also a zero eigenvector. Differentiation of equation (17) gives 

D ,  G(SV, A)S = SD,.G(V, A) 
Since we are on the symmetric primary path there holds v = Sv, and hence KT denotes D,G(v, A), 

KTS = SKI 
which implies 

KTSq = SKTg = 0 (25)  

Thus, %p is a zero eigenvector as well as 4. rn 
Lemma 2 states that any singularity of the total structure gives a symmetric or antisymmetric 

zero eigenvector of the total system. Any symmetric o r  antisymmetric z a o  eigenvector of KT gives 
an  eigenvector of the tangent stiffness matrix of the symmetric reduced system a t  the symmetric 
primary path including the symmetric or  antisymmetric boundary conditions. 

Altogether, any singular point of the total system can be detected by the following algorithm 
which defines the part ‘stability considerations’ in Algorithm 1. 

Box 2. Algorithm 2 

(a) Compute the tangent stiffness matrix of the reduced system without any  
boundary condition. 

(b) Add all global boundary conditions of the structure which are also 
relevant for the symmetric structure. Denote the resulting tangent stiff- 
ness matrix by K. 

(c) Take K and add the symmetric boundary conditions along the symmetry 
plane giving the tangent matrix K; of the symmetric reduced system 
(which is computed in any step of Newton-Raphson’s algorithm). Com- 
pute a decomposition of K;.. 

(d) Take K and add the antisymmetric boundary conditions along the 
symmetry plane giving the tangent matrix K; of the antisymmetric 
reduced system. Compute a decomposition of K;.. 

(e) Output: If all pivots in (c) and (d) are positive, then KT is positive-definite: 
the total system is stable. I f  some pivot elements in (c) or (d) becomes zero 
or negative, K,.  is singular or the totai system is unstable. 
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Remark. Algorithm 2 solves the problem for symmetry by reflection and can easily be 
implemented in existing computer programs. Note that the positive-definiteness of K; is checked 
during the Newton-Raphson steps so that only one additional test has to be introduced with the 
same computational effort as one Newton-Raphson iteration. Consequently, as in the example 
discussed in Section 1, using Algorithms 1 and 2 for the symmetric reduced system, the 
computational costs are reduced in relation to the total structure by a factor 

Remark. The computational costs using Algorithms 1 and 2 can further be reduced by the 
following procedure. Change the coefficients in KT of dimension n such that the nodes of the 
symmetry axis correspond to  the last r components, n = I + r. Then, computing a IJDLT- 
decomposition of K T  for the Newton-Raphson iteration break after the elimination of the first 
1 columns and store the submatrix, denoted by K; E iw' ', in the positions of the last r rows and 
columns. Then, take the boundary condition in (c) or (d) in Algorithm 2, delete the corresponding 
rows and columns in K; to obtain KY and compute a LDLT-decomposition of K y .  Consider the 
diagonal entries in this decomposition. If they are all positive [in all cases of (c) and (d)], then the 
total system is stable. 

4. DOUBLE REFLECTION SYMMETRY 

We continue the consideration of the previous section assuming that, in addition, there exist two 
reflection symmetries which are described by two linear orthogonal mappings S I ,  Sz E O(n),  
Si # I but SiSi = I and Sj satisfies the symmetry condition (17) ( i  = 1, 2). 

Exumple. We refer to Reference 3 for a stability analysis of cylindrical shell segment under 
axial loading. Due to the double reflection symmetry, only one quarter of the segment has been 
discretized. 

As in the previous section, we decompose the displacements R" in symmetric and antisymmet- 
ric displacements with respect to S, and S 2  as follows: 

I&:= ( v E R " I S ~ Y  = v and S2v = v )  (27) 

KB:= {vER"IS,V = v and S2v = - v }  (28) 

V,?:= { v E R " / S , V  = - v  and S,v = v >  (29) 

(30) Vaa:= { v ~ R " l S , v  = - v  and S2v = - v J  1 

(31) 
Again, it can be seen that 

Ks @ K a  @ K, @ 5, = Fin. 

We apply Lemma 2 to Si, for i = 1 and i = 2 and obtain the following lemma. 

Lemma 3. On the symmetric primary path, KT alwuys has a non-zero eiyenwcror in one qfthejour 
spaces V,,, Vqa, V,,, V,, whenever K1, is singular. 

By Lemma 3, any singular point of the total system can be detected by the algorithm which 
defines the part 'Stability considerations' by Algorithm 2 except that in step (c) and (d) we have to 
consider four boundary conditions which are given by (c) and (d) in Algorithm 2 applied with 
respect to S, and S,, respectively. 

At the end of this section we discuss a shell problem with reflection symmetries in detail. 
Finally, we discuss the Computational effort. 
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Remarks. The computational effort for the proposed procedure can be improved as mentioned 
in the last remark where we have to check four cases. One of them is done during the 
Newton-Raphson iteration. Then, the computational costs are reduced in relation to the 
computations with the total structure by a factor 

, 5c + 3c 
q :=- = 1 . 6 / ~  

5 tic 

Here, the dimension of the total system is four times greater than the reduced system yielding 
4 < K < 64 and 

0025 < q" < 0.4 (33) 

Example. As an example to the above-formulated reflection symmetry, we consider the 
calculation of a symmetry breaking bifurcation point of a non-linear shell problem. For this 
purpose, we discuss the non-linear structural behaviour of cylindrical shell segment under 
a uniform transverse load. All edges of the segment are clamped. The geometrical and material 
data are given in Figure 1. 

All in this paper discussed algorithms and finite element formulations are introduced in the 
finite element program FEAP described in Zienkiewicz and Taylor. l o  The employed element is 
presented in References 11, 12. All known results base on the introduction of a double sym- 
metry.' 3, l4 Thus, only one-quarter of the system is used within the finite element analysis. The 
associated load-deflection curve for the centre deflection w, is stated in Figure 2 for a 4 x 4  
(reduced) mesh. 

show that using the complete system a symmetry breaking bifurcation 
point occur at a load level of p = 1.802 kN/mZ. (remark: this result can be achieved with one-half 
of the system too!) In Figure 3 the relevant part of the load -deflection path is shown. Between the 
symmetry breaking bifurcation point ( p  = 1.802 kN/cm2, w, = 5.490 mm) and the bifurcation 
point ( p  = 3.052 kN/cm2, w, = 11.033 mm) we have an symmetric and an antisymmetric solution 
branch, which can be seen in Figure 3 in detail. 

The associated deformation behaviour is characterized by the first two eigenvectors--cal- 
culated in the symmetry-breaking bifurcation point (see Figure 4). The null eigenvector cp,  defines 
the antisymmetric deforma?ion behaviour whereas the second eigenvector <p2 belongs to the 
symmetric path. 

The different behaviour on both paths can be seen clearly if wc look at the load-deflection 
paths for the points L and R (see Figure 4). Thus, we have in Figure 5 one symmetric solution 
(wL = wR) and two antisymmetric solutions (wL # wR). 

Own calculations' 

E = 3102.75 Nlrnm.2 
v = 0.3 
0 = O.lrad 

t = 3.175mm 
Ap = 1 k N / m 2  

Figure 1. Cylindrical shell segment under uniform load 
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0 2 5 5 /.5 10 12 5 
displccernerir w/c ir rnm 

Figure 2. Symmetrical loaddeflection path p -  w ,  

5 7 5  10 12 5 
displacement w / c  in m m  

F igurc 3.  Symmetnc and antisymmetric load-deflection paths pi w, 

To discuss the efficiency of the proposed algorithms we need computation times. For this 
purpose we run the program FEAP on a 386 PC (33 MHz). In Figure 6 we show the computation 
time for calculation and decomposition of the tangent stiffness matrix K, depending on the 
number of elements for one side of the complete segment. Thus, for example, a reduced system 
with a 4 x 4 mesh belongs to a complete system with an 8 x 8 mesh. 

From Figure 6 we check our estimates of the computational costs in equation (33). Indeed, 
IC can be computed using the numerical data in Figure 6 as the quotient of the times for the 
complete and reduced system. We have IC = 6,6.33,7.94 which can be compared with our bounds 
4 < IC < 64 and shows experimentally that the considered matrices of this example behaves more 
than band-matrices. From equation (32) we see that the computational costs are reduced in 
relation to the computations with the total structure by a factor y’’ := 0.266,0.253,0-202. 
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Figure 4. First and Second eigcnvector cpl and cp, at  the symmetry breaking bifurcation point 
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0 '  
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disp lacemei t  w in rrrr 

Figure 5 .  Symmetric and antisynimetric load-deflection paths p-ws, p-ivL, p - w R  

5. SYMMETRIC SUBSTRUCTURES 

This section gives a description of a structure and its substructures, specifies this to symmetric 
structures and defines the symmetric reduced system for rotation symmetry. Finally, we discuss in 
which way the singularity of the total system can be observed considering only the tangent 
stiffness matrix of the reduced system. 
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0 4 8 12 16 20 74 78 57 
Number of elements per side (CS] 

Figure 6. Time for computing K Y  and K Y  vs. elements per side 

To describe substructures we come back to Section 2 and write the finite element discretization 
of the body B with ne elements R , ,  . . . , fine as 

ne 

B h =  Qe 
e =  1 

(34) 

The substructures of Bh are given by the assembling process of some of the elements in groups or 
macroelements as follows. Write Q:, . . . , n,!,,, a:, . . . , Rf,., . . . ,fly, . . . , O;em for the ele- 
ments R , ,  . . . , Q,,, nel  + .  . . + nem = ne, and define 

neJ 

Q j : =  u fiJ, ( j  = I , .  . . , m )  
e -  1 

such that 

(35 )  

Since the order of the assembling process, written by the operator u, can be changed arbitrary 
the consideration of substructures R', . . . , Qrn gives the same discretization 13". The substruc- 
tures can be handled as finite elements itself so that transformations, assembling procedures and 
connections of global and local co-ordinates can be written and implemented as for usual finite 
elements. 

If v denotes the global displacement vector, we can arrange its components in the form 

v = (v1 ,  . . . , v,, W)'E R" (37) 
where w describes the components of such degrees of freedom that acts on two or more 
substructures while vj describes the components of such degrees of freedom that acts on only one 
substructure Qj. Therefore, the principle of virtual work, introduced in Section 2, can be written 
as 

rn 

C ( h j ,  6 ~ j ) ~ { R j ( v j ,  wj) - IPj} = 0 (38) 
j -  1 
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Since vj acts only in R j  we may assume that vj  is given in the local co-ordinate system of Rj. This, 
in general, is false for wj which must be computed from w by a linear transformation Ti, i t .  

w j = T j w  and 6 w i = T j 6 w  (39) 
In addition, we assume symmetric substructures under symmetric loads, i.e. the residuals Rj 

equals in local co-ordinates as well as the loading vectors Pj, 

R 1  = R2 = .  . . = R,, =:(R,, R,)T and 

Here we split Rj and Pj in the components which are multiplied with 6vj and 6wj denoted by 
R,, R, and P,, P, respectively. 

P1 = P2 = . . . = P, =:(P,, Pw)T. (40) 

Then, the principle of virtual work for symmetric substructures on symmetric loading is 
m 

6vT[R,(vj, Tjw) - AP,] + 6wTTT[R,(~j, Tjw) - AP,] = 0 (41) 
j =  1 

which yields (since 6vj and 6w are arbitrary) the system of non-linear equations 

R,(vj, Tjw) - AP, = 0 ( j  = 1 , .  . . , m )  
and 

m m 1 TTR,(vj,Tjw) - 1 ATTP, = 0 
j =  1 j =  1 

(42) 

(43) 

As in the previous sections we are interested in the symmetric primary path. A vector v is called 

(44) 

(45) 

symmetric iff the local displacements (vj, wj) equal, i.e. iff 

v, = v2 = . . . = v, = : v *  and wl = w2 = .  . . = wm = : w *  
Thus, v is symmetric iff there exist v* and w* with 

v = (v*, . . . , v*, w ) ~  and w* = Tjw ( j  = 1 , .  . . , m )  
For symmetric displacements the following lemma is easily verified. Let 

in 

T * : =  1 Tj 
j =  1 

Lemma 4. A symmetric vector v solves equations (42) and (43) ifs 

R,(v*, w*) - LP, = 0 and T * T R w ( ~ * ,  w*) - AT*TP, = 0 (47) 
H 

Lemma 4 and the definition of symmetric displacements describe the symmetric reduced system. 
Obviously, to compute symmetric solutions of the primary path it requires to compute the related 
vector (v*, w*) as a solution of equation (47). Since, e.g., R 1  = (R,, R,)T, we can state the 
following mechanical interpretation of equation (47). 
Dejinition. In the above notations of symmetric substructures under symmetric loading the 
symmetric reduced system is given as one substructure, e.g., R1 with the boundary conditions for 
the local displacements ( v l ,  w l )  given by 

w l E ( w J 3 W V j = 1 1 ,  . . . ,  m w = T j W }  (48) 
and the load A(P,, T*TP,). 

The computation of the symmetric reduced system leads to all symmetric paths of the total 
system and reduces mostly the computational costs, since the dimension of the total system is 
approximately m times bigger than the dimension of the symmetric reduced system. 

It remains to implement the reduced system, i.e. to compute the boundary conditions, which is 
illustrated in the following example. 
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Example. We consider the discrete structure of Figure 7 and let Q c R3, j = 1, 2, 3 correspond 

The boundary conditions are given such that the three displacements of the nodes 1,8, 14 
to the three equal beam members defined by the elements ( j  - 1).6 + 1 , .  . . , j . 6 .  

vanish. Based on the displacement field 

(49) 6 
4 x 1  = (4, u y ,  4, (Pox, ( P y ,  (PJE 

the dimension of the global displacement vector v is n = (19 x 6) - (3 x 3 )  = 105. In the example 
we have 

v = ( v l ,  v2 ,  v 3 ,  w )  where v , E [ W ~ ~ ,  w € R 6  (50) 

v l ,  v 2 ,  v j  and w represents the degrees of freedom of the node 1, . . . ,6 ,8 ,  . . . , 13,14, . . . , 19 
and 7, respectively. The local co-ordinate system of a,  is shown in Figure 7 and given for Q, by 
rotations of i 120-, j = 2, 3. Therefore, we have, letting c:= cos(l20'), s:=  sin(l20") 

E A  = 10000 
EIy  = 20000 

\ 

1 

1 
1 

c s  

- -s  c 

1 

1 
1 

1 

c s 

-s c 

1 

1: 17 

EI, = 20000 
GA, = 500 
GIT = 100000 

2 l P  

-&-- 86.6& 8 6 . 6 4 -  

Figure 7. Three-dimensional heam problem with three member\ 
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c 

T, = [ --s 

c 

1 

c 

S 

- S  

C 

1 i ( 5 3 )  

Then the boundary conditions of the symmetric reduced system, given in equation (48), are 
equivalent to 

( 5 5 )  w = (0, 0, w 3 , 0 , 0 ,  W6)T 

where w 3  and w6 are arbitrary real components. [For a proof note that if w satisfies equation (48) 
then T*w = 3 . w  implying the claimed form of w in equation (55).  Conversely, if equation ( 5 5 )  
holds it is easily verified that equation (48) holds.] 

Note that the static boundary conditions are related with the loads P, and P,. From Figure 7 
we conclude that P, = 0 while we must define P ,  = (0, 0, - P/3,0,0,0) such that the sum of the 
loads of ali substructures is (0, 0, - P ,  0, 0,O). 

This defines the symmetric reduced substructure which is shown in Figure 8. 

Figure 8. Three-dimensional beam problem. E. w3. primary branch 
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The static system can be analysed with a standard non-linear finite element program giving the 
A-wj diagram of Figure 8 which concludes the example. 

Note that the geometric boundary conditions in equation (55) corresponds to the static 
conditions, i.e. any degree of freedom in the node 7 which must be zero because of equation (55) 
gets no static condition while the static conditions concerns only the third or the last component 
of R,. 

According to the symmetric reduced system the symmetric primary path can be computed, but 
no further information about the stability of the total system is given. Therefore, some additional 
considerations and computations are needed which are described in the sequel. We first deter- 
mine the tangent stiffness matrix K ,  of the total system under the present notations of the 
symmetric substructures and then we reduce the quesrion whether KT is positive-definite or not 
using the above introduced terms of only one substructure and the transformation matrices. 

Any solution vector v of the total system (symmetric or not) satisfies the equations (42) and (43). 
Differentiation of the residuals in equation (42) and (43) with respect to v ,  , . . . , v,, w gives the 
tangent stiffness matrix KT := D,R(v*, . . . , v*, w * )  of the total system 

K., = 

where we assumed that KT is computed on the symmetric primary path, i.e. for a symmetric global 
displacement vector (v*, . . . , v*, w*), and we used the abbreviations 

A = D,,R,,(v*, w * )  (57) 

B = D,R,(v*, w * )  (58) 

C = D,R,(v*, w * )  

D = D,R,(v*, w * )  
Note that 

K;:= ( c  A B  D) 

is the tangent stiffness matrix of the symmetric reduced system after the assembling process such 
that the global boundary conditions are treated but the conditions (48) are ignored. Conse- 
quently, most of the entries in KT are known from the symmetric reduced system. 

Let K!' denote the tangential stiffness matrix of the symmetric reduced system. Note that KFS is 
a submatrix of K:. 

The following lemma gives a sufficient condition for the 'Theorem 1 below which will solve the 
question whether KT is positive-definite or not. 

Lemmu 5 .  If the symmetric reduced system is  stable then D is positiue-definite. 

Pro($ As mentioned above, KYs is a submatrix of K: and obtained by treating the boundary 
conditions (48). Since this boundary conditions do  not concern the submatrix A (consisting of 
inner nodes) A is also a submatrix of KFS. Then, by assumption, A is a (symmetric) submatrix of 

W a positive-definite matrix KF' and, therefore, itself positive-definite. 
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Theorem 1. I f  A is positive-definite, then the number rfnegutiue eigenvalues .fK1 is  equal to the 
number of negative eigenvalues of 

m 

K * : =  TT(D-CA-' .B)T,  
j =  1 

Proof Let the blocks in K T  corresponding to (vl ,  . . . , v,) and w be defined as follows 

D is block diagonal with m diagonal blocks A and hence A is positive-definite. Then, simple 
calculations prove 

where I denotes unit matrices of sufficient and. hence, different dimensions. Since KT is symmetric. 
the last identity is a unitary transformation such that (due to a well-known theorem of Sylvester) 
the number of negative eigenvalues of K r  and that of the last matrix are equal. By assumption .& is 
positive-definite so that the number of negative eigenvalues of K T  is equal to the number of 

Based on Theorem 1 we can formulate the following algorithm which computes K *  and 
a LDLT decomposition of K*. Note that the submatrix A of K p  is known from the 
Newton-Raphson iteration and decomposed there. As mentioned in the previous sections by re- 
arranging we obtain without additional computational costs a decomposition of A. 

negative eigenvalues of K*.  

Box 3.  Algorithm 3 
~ ~ ~ ~~~~~~~~~ 

(a) Build the tangent stiffness matrix of the reduced system, d o  not follow any 
boundary condition. 

(b) Add all global boundary conditions of the structure which are also 
relevant for the divided structure. Denote the resulting tangent stiffness 
matrix by K s  as in equation (61). 

(c) Use a decomposition of A (known from the Newton-Raphson iteration) 
to check that A is positive-definite and compute S:= D - CA 'B. 

(d) Compute B*:= xy=l TTST, and decomposition of K*. 

(e) Output. If the all pivots in  (c) and (d) are positive, then K ,  is positive- 
definite; the total system is stable. If some pivot i n  (c) or (d) becomes zero 
or negative, K, is singular or the total system is unstable. 

The following corollary gives the relation between the zero-eigenvectors of the full system and 

Corollury 1. If the reduced system is stable but there exists a zero-eigencectors Q, of K *  then 

the zero-eigenvectors of K*, 

( C P ~ ?  . . . ?  p m ,  Q,)T (65) 
is a zero-eigentector of K,, where 

ql:= -A-'BT,Q, ( j  = 1,. . . , m) (66) 
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3 5 ’0 15 20 ‘ 2 5  30 35 40 
Ce-iter d sulocernei t  w 

Figure 9. Three-dimensional beam problem: A-w3, primary and secondary branch 

Proof: With the definition of cpj there holds 

The following two examples conclude this section and illustrate the theoretical results as well as 
the improvement of computational efficiency. 

Example. Based on the above-introduced analysis in the previous example we can find 
a symmetry breaking bifurcation point at (A = 11.04, w 3  = 1.07) (see Figure 9). 

Due to the special material parameters we have a bifurcation point with three zero eigenvalues. 
The first and second zero-eigenvectors are governed by vertical displacements of the three 
members, see Figure 10. The third zero-eigenvector of Figure 10 is constructed by a rotation 
around the vertical axis. The bifurcation points coincides by reason of E l ,  = EXZ. The symmetric 
fourth eigenvector which describes the deformation behaviour at the limit point is not a zero- 
eigenvector. 

Remark. The estimation of the computational effort of a combined solution procedure of 
Algorithm 1 including Algorithm 3 for the part ‘stability considerations’ is very difficult because it 
depends highly on the topology of the structure. Therefore, only an approximation of the 
computational costs can be achieved as follows. Assume that dimK, = dimK:S such that the 
decomposition of K!’ and K T  require the costs c and uc, respectively, where (as in Section 1) 

m < u < m 3  (68) 

As explained above, the computational costs are reduced by the proposed procedure by a factor 

where c’ are the costs for Algorithm 3 which are calculated in the sequel. The additional tasks are 
in step (c) and (d). Let k := dim K*, r := dim S = dim D, 1 := dim A. Assume that r,  k are very small 
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Figure 10. Three-dimensional beam problem: 1-4 eigenveclor at the bifurcation point 

in comparison with 1 zz nim. In the above example we have 1 = 33, r = k.= 6. As mentioned 
above, the decomposition of A is obtained without further computational costs such that the 
computation of S needs r backward substitutions of vectors with dimension 1 and r2.1 operations 
for the multiplication and r 2  subtractions. Since r 4 1 we can neglect the computational costs of 
step (d) and obtain 

c' = r 2 - I  < c (70) 

Note that this is a rough estimate. Therefore, from equation (69) the estimate 

6 
-~ = 0-4 
5m 

is concluded for m = 3. 
Extlmple. Another example to investigate symmetries defined by substructures is a hexagonal 

star-shaped dome which has been studied in different forms extensively in the literature.2, 1 6 ,  '' 
Here we consider the problem with the geometrical data from References 2 and 17. In difference 
to Reference 16 all free nodes are loaded by vertical loads. Figure 11 shows the complete and the 
reduced system. Due to the description in the mathematical literature, an unrealistic membrane 
stiffness of E A  = 1 is chosen. 

Here we want to demonstrate the ability to find symmetry-breaking bifurcation points by 
monitoring the reduced system. For this purpose we show in Figure 12 the first part of the 
primary load-deflection path with one limit point and three symmetry-breaking bifurcation 
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i 4.5 -L .5 i 4.5 i 4. 1- 4. i 4.5 4 
Figure 1 1 .  Hexagonal star-shaped dome 

0 0.1 -0 .2  -0 .3 -0.4 - 0.5 -0.6 
displnl-ernent w 

Figure 12. First part of the primary path I-w 
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L(103 

Figurc 13. Null-eigenvcctors at singular points of a hexagonal star 

points. The complete load-deflection curve can he found, e.g., in Reference 17. We emphasize that 
all the stability points shown in Figure 12 as well as the related multiplicities of eigenvalues can be 
computed only using the very simple reduced system in Figure 11 and the analysis from 
Algorithm 3. 

The special antisymmetric behaviour of the eigenvectors at the bifurcation points and the 
symmetric eigenvector at the limit point can be seen in Figure 13. 

6. CONCLUSIONS 

In this paper the effective numerical treatment of symmetry breaking is discussed using the 
symmetry of the complete system to save computational effort. The engineering notion of 
a symmetric reduced system is formulated more formally and some relations between the 
complete symmetric and reduced system are described based on a substructure technique. An 
efficient algorithm is derived for the important detection of any stability point. in particular, for 
symmetry-breaking bifurcation points, of the symmetric primary path. 
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In the presence of reflection symmetries, the additional calculations can easily be implemented 
in existing computer programs. The case of rotational symmetries is developed in detail and 
tested in numerical examples. 

In all cases the reduction of computational costs is large and nearly equal to the reduction of 
the degrees of freedom comparing the complete and the reduced system, although some minor 
additional calculations are required. 
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