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A b s t r a c t - - O n e  decade ago, the third order method without derivatives for the simultaneous in- 
clusion of simple zeros of a polynomial was proposed in [1]. Following Nourein's idea [2], some 
modifications of this method with the increased convergence are proposed. The acceleration of con- 
vergence is attained by using Weierstrass' corrections without additional calculations, which provides 
a high computational efficiency of the modified methods. It is proved that their R-orders of conver- 
gence are asymptotically greater than 3.5. The presented interval methods are realized in circular 
complex arithmetic. 

1. I N T R O D U C T I O N  

Let P be a monic complex polynomial of degree n >_ 3 with simple zeros (1 , . - . ,  (,, and let 
Zl , . . . ,  z ,  be distinct approximations of these zeros. Then an arbitrary zero can be expressed by 

(j - zj _ ,,WJ , ( j  - 1,. . . ,  n) (1) 
1 w - 

k=l,k~j 

(see [3,4]), where 
= . P(z ) (2)  

k= l ,k#j  

is the so-called Weierstrass' correction [5]. 
Suppose that we have found disjoint disks ZI , . . . ,  Z~ in the complex plane such that (j E Zj 

for any j E {1 , . . . ,  n}. Starting from the fixed-point relation (1) and using circular complex 
arithmetic Petkovi~ stated in [1] the third order method for the simultaneous inclusion of all 
zeros of P, 

Zj = zj - , Wj , (i = 1, . . . ,  n), (3) 
1 w - 

k=l ,kCj  

where Zj denotes the new circular approximation for (j. 
Considering the fixed-point relation (1), we observe that the exact zero ~j on the right-hand 

side can be substituted by the Weierstrass' approximation zj - Wj. In this way, we obtain the 
fourth order method in ordinary complex arithmetic, 

~j = zj _ , Wj , (j = 1, . . . ,  n) (4) 
1 -  w. 

k= 1,k:~j zk-zj+Wj 

Typeset by . ~ - T ~  

59 



60 M.S. PETKOVI6, C. CARSTENSEN 

as it was proposed by Nourein in [2]. The purpose of this paper is to improve the cubic interval 
method (3) following the mentioned Nourein's idea, that  is, applying Weierstrass' correction. The 
increased convergence rate (R-order greater than 3.5) is attained without additional calculations 
which provides a great computational efficiency. 

Let Z = ( z , r }  = {w : [w - z[ < r} be a disk with the center z = mid(Z) and the radius 
r = rad(Z). To construct new algorithms we will use three type of inversion of a disk Z which 
does not contain the origin, 

1 r 
( z , r }  - 1  : =  z(1 - . V l z l 2 )  ' I 12- 

: =  ' 

{+ {z , r}  ,[zl :r2 • 

+}, 

It is easy to prove that  Z -1 C Z z' C Z 12. The inversion Z I' has the centered form (see [6]), 
while Z 12 is introduced because Z 11 needs the calculation of Izl = Ix + iy[ = ~ + y2, which is 
very costly. In the sequel, I N V ( Z )  will denote one of the three inversions Z - I  , Z I1 , Z 12 . We will 
use the following estimates 

2 r  
rad(INV(Z)) < izl2 ,.2. (5) [ m i d ( I N V ( Z ) ) [  ~ izlU _ rU, _ _ 

2. T H E  I M P R O V E D  INTERVAL M E T H O D S  

Assume that  we have found n disjoint disks Z1 . . . .  , Z,, containing the zeros ~1 , . . . , ~ ,  of a 
given polynomial P. One step of the new interval methods with Weierstrass' correction reads 
(Z1 , . . . ,  Zn)  ~ (Z1 , . . . ,  Zn) with 

[ 1 2j := zj  - W j  . 1 - Wk . I N V ( z ~  - Z j  + W j )  , ( j  = 1 . . . .  , n ) ,  (6) 
k=l,k~j 

where zj = mid(Zj) and Wj is Weierstrass' correction given by (4). I N V  in (6) denotes in- 
versions of a disk defined in Section 1, that  is, I N V  E {( ) -1 , (  ) / , , (  )t~}. We note that the 
inversions ( )11 and ( )/2 can be also applied to the disk in bracket (instead of ( ) - 1 ) ,  but 
such approach does not improve the convergence rate of (6). Besides, although ( )-1 defines 
the exact operation, that  is, Z -1 = {z -1 : z E Z}, only using ( )11 or ( )I2 in (6) will provide 
the fourth order of convergence for the centers of 2 1 , . . . ,  ,~n; namely, these centers behave like 
complex approximations defined by Nourein's formula (4). 

3. C O N V E R G E N C E  RESULTS 

In the following, we will show that  the interval methods (6) have the R-order of convergence 
equal to 3÷qT~ ,~ 3.562 or 4 (in an asymptotical sense), depending on the choice of I N V  E 2 
{( )-1, ( )ll, ( )12 }. Before establishing the convergence results, we will prove several auxiliary 
assertions. 
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For any j, k E { 1 , . . . ,  n} we introduce the following abbreviations 

zj := mid(Zj);  

rj := rad(Zj);  

q := z~ - ~ ;  

e : =  max letl; 
j = l  ..... n 

r := max rad(Zj);  
j=l , . . . ,n  

d := min Inad(Z,) - mid(Zj)l;  
i , j=l , . . . ,n  

i¢j 

vk~ := zk -- z~ + Wj; 

k = l , k C j  

In this paper, we will consider circular complex arithmetic. For definitions and properties of this 
kind of interval arithmetic see, e.g., [7, Chapters 5 and 6]. 

LEMMA 1. Under the condition 

the inequality 

holds, where tr = e 114 ~ 1.284. 

d > 4(n - 1) r (7) 

I%1 < ~lql-< on (S) 

1 k PROOF. The sequence (a(k)), defined by a(k) = (1 + ~ )  , is bounded and monotonically in- 
creasing so that  

a(k) < lim a(k) = e 114 : or, 
k -* oo 

for each k E IN.  According to this, for any j E {1 , . . .  ,n}, we have 

LEMMA 2. 

IP(zj)l - Izj - CjI" IX zi - Ck IWjl - YI ~ ='~kl z~ - zk 
k¢j t # j  

< _ l z y - < ~ l . I I  I z y - z d + r '  (1 r~ . - x  k¢~ I ~ - z - ~  <1~1 + 3 /  

= Iql 1 + 4(n--- 1) < alql  < ~ r .  

I f  (7) holds, then the implication 

is valid for any j E { 1 , . . . , n } .  

PROOF. Since z E {c, r} ¢* Iz - e I < r, it is sufficient to prove the implication 

Let 

and let 

C ~ : ~ E  

b O) . -  ek 
z~ - z~ 

(k = 1 , . . . , n ; k  ~ j )  

S~ : -  ~ b (D b O) b (D So - 1 kx k~ " ' '  k~ '  
ks <ka<...c~k~ 

(9) 
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be the symmetric function relative to bt ~). It is obvious 

IS~l < 

Then we have 

Izj - % - Cyl = e j  - e i  . 1 + ek  ,,~ z ~ -  z~ = I~yl 1 - . ° o S "  _< levi p=l ~ IS,, I  

r ~ r~ "-I - I] < , e j [ ~  ( n -  1) ( , )  = [e,[ [ ( 1 +  
J 

_<levi 1 +  -1  <[ey[(ex/4-1) 
1 

< ~l~il  < "~, 

which proves (9). m 

LEMMA 3. I f (7)  holds and ~j E Zj for a/l j E {1,. . . ,  n}, then the inversions in (6) exist, that 
is, O ¢ zk - Zi + ~ and O ¢ Z i .  

PROOF. First, according to Lemma 1, we have 

ivky[ = iz~-  z~ + wy[ > i z~-  zyl- iwy[ > d -  ar  > d -  2r. (10) 

Therefore, Ivikl > d -  2r > r >_ rj, whence 0 ~ { v t j , r j }  = z t  - Z j  + Wj. 
The second assertion of Lemma 3 will be proved using the estimates for the center uj and the 

radius pj of the disk Hi. In view of (5), (10) and Lemma 1 we find 

p, = ~ IW~l rad(INV(zk - Zj + Wj)) 

2rj 2ae E rj _<Y']iWkllvk.~-- 2 j, .j < 
t#j k#y 
2(n - 1)a e rj 2(n -- 1)~r 2 2 

<- (~ :  ; ) (7:-~)  -< (d-~)(d-3~)  < 1--~ 

(by (7) and for n _> 3), and 

[uj[ _~ 1 - E [Wk[" [ mid(INV(z t  - Zj + Wj))[ 
k#$ 

> 1 - ~ IWkllvk~l ~(n - 1) (d -  2r)r 
_ l.=TF~:Fy >_ I -  T ~ :  2r), : k~j 

Therefore, 

2 
> ~ -  

I " j l  2 -  Pi > - > ~, 

which means that 0 ~ {uj, pj } = Hi. 1 
The convergence of the interval methods (6) is considered in the following. 

THEOREM I. Let (ZI , . . . ,  Z , )  := (Z~°), . . . ,  Z~, °)) be init i~ disks such 'hat Ci ~ Z~ ( / =  1 , . . . ,  . )  
and let (Z (rn)) ( j  = 1 , . . . ,  n) denote the sequence of disks produced by (6), where m = O, 1, 2,... 
is the iteration index. I f  the condition 

d (°) > 4(n - 1)r  (°) (11) 



Polynomial roots with Weierstrass'  corrections 63 

/s sat/Mied, where 

: =  . -  ~ n  Imid(~))-mid(~))[ r(m) ~=l,...,nmax rad(Z~ m)) and d (m) . -  i,~=l ..... , i ;~ 

then for any j  E {1, . . .  ,n} and m = 0, 1 ,2 , . . .  there holds 

~j E Z} m) 

and the sequences of radii (rad(Z~ "~)) ( j  = 1 , . . . ,  n)) tend monotonically towards zero. 

PROOF. Theorem 1 will be proved by induction on m and we regard the typical step for 
m = 0 omitting the iteration index m. For example, we will write Zj, Zj, rj ,  ÷j, zj, ~j instead 
of Z(m), 7(m+l),j "-J-(m)' rim+l), ~J-(m)'~J-(m+l)" Thus Z~ , . . . ,  Zn are the improved disks given by (6) 
having the centers Z l , . . . ,  in and the radii ÷~, . . . ,  Fn. We define 

:= max h and d := min li~ - ~il. 
j= l , . . . ,n  i,j =l, . . . ,n 

i#j 

The iterative formula (6) may be written in the form 

zi = :i - v6H: x = :i - v6{"i, p~} -x, 

wherefrom 

h - rad(,~j) - IW~llu ~ p~ I ~ -  p~ 
and 

~j = mid(Zj)  = zj - lull ~ - d "  

By virtue of Lemma 1 and the estimates of pj and u s from the proof of Lemma 3, we get 

2 ( n -  1)~2 ~l~lr j  2 ( . -  1)c~ 2 e I~1 ri (12) 
h < ( I- i  12 - p ] ) ( d  - r ) ( d  - 3r) < 21/50 ( d  - r ) ( d  - 3r)" 

Hence, 

n -  1 100.a2 .  ( n -  1) 100 a2 .  rj 
h < - ~  - " d ( ; - 1 )  r j -  (;- - 3) d -- 21. (4n -- 7)(4n -- 5) 

_< a~r~ < T6"ri (13) 

(since d _> 4(n--  1), n _> 3). On the other hand, according to Lemma 2 and the inclusion property, 
from (1), we obtain 

9 
(j E Zj, that  is [~j - (j[ < 6 < ~ . r .  

Since (j E Zj, that  is, Izj - (jl  < r, we have 

29 
I~ -zjl < ~6 "" 

Now we have for some j , k  E {1, . . .  , n } , j  ~ k, 

29 
= I~ - ~kl _> Izi - zkl- Iz~ - ~il- Izk - ~kl > d- T6 "" 
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Using the last inequality, (7) and (13) there follows 

~r r 9 r 3 
d d - 2 . 9 . r  d 2 0 - 5 8 . ~  ~ d  4" 

Hence, we conclude by induction that the initial condition (11) implies the inequality d(m) > 
4(n - 1)r(m) for each m = 0, 1, . . . .  For this reason, the assertions of Lemma 1, 2 and 3 are valid 
for each m = 0,1, . . . .  In regard to Lemma 2, we have ~k E Z~ m ) -  W (m) for any k E {1, . . .  ,n}. 

Then, by the inclusion property from (1), we obtain Cj E Z~ '~+1). Since Cj E Z~ °) according to 

induction it follows Cj E Z~ m) for any j E { 1 , . . . , n }  and m = 0 ,1 , . . .  
From Lemma 3, we see that  the inversions in (6) axe defined in each iterative step so that  the 

methods (6) are feasible. Besides, since d (m) > 2r(m) it follows that the disks Z~m),. . . ,  Z (m) are 

pairwise disjoint. Finally, the inequality (13) shows that the sequences of radii (r~m))(j = 1 , . . . ,  n) 
converge monotonically towards zero. 1 

In order to determine the R-order of convergence of the interval methods defined by (6), 
we may assume, without loss of generality, that the condition (11) is satisfied, which yields 
d (m) > 4(n- 1)r(m) for all m = 1,2,... Taking into account that the zeros ~1,-.. ,~n are fixed 

and included in the disks Z~m),...,Z (m), various quantities appearing in Lemmas i, 2 and 3 
are bounded. Accordingly, we can use the Landau symbol O( ) to suppress the bounds and 
stress the asymptotical behaviour. Moreover, such estimate procedure avoids tedius calculations 
with constants but it is sufficient to control the behaviour of the sequences (mid(ZJ m)) - ffj) 

and (rad(Z~")))(j = I,..., n). For two expressions, terml(j, m) and term2(j, m) (which depend 
on j, m, P and the initial zero distribution), we define 

terml( j ,  m) = O(term2(j, m)) iff max sup 
j=l , . . . ,n  re=O,1,... 

terml( j ,  m) I 
term2(j, ~)) < -l-co. 

This approach will be used for a qualitative analysis of the behaviour of the centers and radii of the 

circular approximations Z~m),..., Z (ra) in order to find the R-order of convergence. Therefore, 
define for any m = 0, 1,... 

,~m) : = z ~ m ) _ ~ j ,  e,n := max le m)l, rm :-- max 
jml , . . . ,n  j = l  ..... n 

If we omit the iteration index m and write ¢ instead of ¢(m), then ~ denotes ~(rn+l). 

LEMMA 4. Let 1~ be equal 1 i f l N V  = ( )--1 and 0 otherwise. Then for all j, k E {1 , . . . ,  n}, j ~ k 

( i )  r m + l  = O ( r m ' L ) ;  
(ii) e,,+l = O(e 4 )  + O(ear 2) + ~O(e2r~). 

For simplicity, we will omit the iteration index and use the notations introduced previ- PROOF. 

ously. 

PROOF. Item (i). From (12), we obtain 

100(n -- 1) a2~ 2 r 
21d 2 ( 1 -  ~) ( 1 -  ~ )  

lO0(n - 1) ~2~2 r 

-< (1_ 0- 
< 100(n-  1)~2e2r 1 5 ( n -  1)e 2r 
- 21d 2 ( 1 - ~ ) ( 1 - 3 )  < d 2 

Since d is bounded (actually, d tends to .mjnl~ - ~1), we obtain 
s~3 

: O(r(2), 

which proves (i). 



Polynomial roots with Weierstrem' corrections 65 

PROOF. I tem (ii). Let us define 

t#j vtj ( 1 - - ~  ) = l -us '  

p] 
t s := lusl 2. 

(/3 - 0 or 1), 

Using relation 

• Z k  - - ~ j  ' 

which follows from (1), we find from (6) 

(14) 

k~J } 
= ~s - ¢s = z~ - ¢s - w ~  

uj(1 - p~/lusl 2) = ~s - ( 1  - s s ( / ~ ) ) ( 1  - t s )  

e s ss(/3)t s-t~+ .~-¢j 

(I - s#(/3))(1 - t#) 

Further, we arrange the difference 

i ! ) 

According to the proof of Lemma 3, there follows 

u s - O(1), vkj --O(1) ,  pj = O(er), 

whence 
t i = O(e2r2), s~(/3) = O(e), (I -8#(/355(1 -tj)= O(I), 

where we used (145 for Wj = O(e 5. In regard to the quadratic convergence of Weierstrass' 
method, we have 

zs - w s  - ~i  = o ( ~ 2 ) ,  

(which is easily seen using (14)). 
Taking into consideration the above estimates, we obtain 

wk. ss(/3) = o(~') +/3o(~) 
t#S zt -- ~j 

so that 
i s = ~ [O(e3r 2) + O(e2r ~) + O(~ ~) +/30(r2e)], 

and finally, 
~ = O(c 4) + O(~3r 2) +/30(r2~), 

which completes the proof of (ii). 
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In order to determine the R-order of convergence of the interval method (6) when I N V  = ( )-1, 
we will use the following result from the theory of iterative processes. 

LEMMA 5. Let (Kin) be a positive bounded sequence and let (era) be a sequence of positive 
numbers tending towards zero such that em+~ < Kme~ 1eCru, where p and q being natural - + 

numbers. Then the R-order of(er~) is  at least ( p+  ~V~--~)  /2. 

The convergence rate of the interval methods (6) is considered in the following theorem. 

THEOREM 2. Let OR(6) denotes the R-order of convergence of the iterative interval methods (6), 
wbere l N V E  ( ( ) - 1 , (  )I1,(  )1,}. Then 

{ 3 + v ~  i f I N V  = ( )-1, 
OR(6) > 2 

- 4 otherwise. 

PROOF. It is necessary to prove that  the sequence (rm) has the R-order s + ~  ,~ 2 = 3.562 i f I N V  = 
( )-1(/3 = 1) and 4 if I N V  E {( )I , , (  )12}(~ = 0). Since the assertions of Lemma 4 are the 
same with those presented in [8], the technique of the proof of Theorem 2 is the same as in the 
corresponding convergence theorem given in [8]. For this reason, we give only the sketch of the 
proof. 

First, in the case ~ = 0, using Lemma 4, we may prove that  the sequence (rm), defined by 

. rrn + 1 

:= VD r 
(m = 0 , 1 , 2 , . . . )  

is bounded. Here (Din) is a bounded sequence of positive real numbers. This means that  the 
sequence (rm) has the Q-order at least four. Then, according to [9, p. 296], we have OR(6) > 4. 

Applying Lemma 4 in the case/3 = I ( I N V  = ( ) - 1 ) ,  we are in the position to derive the 
following relation 

3 2 (m 0, 1 ,2 , . . . ) ,  rm+2 _~ g m r r n + l r m ,  

where Km is a positive constant which depends on m. Then, applying Lemma 5 for p : 3 and 
q = 2, we prove that  the sequence (rm) has the R-order 3+g2T ~ • | 

4. N U M E R I C A L  A S P E C T S  

Practical aspects of interval methods with corrections have been presented in [8]. For this 
reason, we give only some particular properties of the new methods. 

The values of the R-order of convergence, presented in Theorem 2, should be regarded as the 
asymptotical ones. Practically, in the beginning of iterative procedure, these values are somewhat 
smaller, which can be drawn from Lemma 4 (i). In fact, the new algorithms are the most powerfull 
if at least three iterations are applied. 

From Theorem 2, we see that  the new methods possess the high order of convergence. The 
increase of the convergence speed is attained without additional calculations because we use al- 
ready found values of Weierstrass' corrections. Consequently, we can expect a high computational 
efficiency of the proposed methods. 

Let MI, MI~ and M12 denote the considered methods which use the corresponding inversions 
( ) -x , (  )11 and ( )z~, respectively. The basic interval method (3) will be denoted by Mp. 
As it was mentioned in Section 1, the interval method MII requires too much extra operations 
because the inversion ( )11 (which appears n ( n -  1) times per iteration) needs the calculation of 
square root. This lack makes the method Mz~ to be less efficient than M,r and Mz2. The interval 
methods MI and MI2 claim almost the same number of the basic arithmetic operations in an 
implementation on digital computers. Since MI2 has the higher order of convergence than MI, 
its computational efficiency is the greatest from a theoretical point of view. But, its order of 
convergence, almost four, can be achieved not earlier than after three or four iterative steps. 
In the starting iterations, the convergence speeds of M/ and M12 are very close so that these 
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two methods are of the same efficiency. On the other side, numerical examples show that the 
use of the increased radius 2r/([z] 2 - r2)(= 2rad{z, r) -1) applying MI2 often produces larger 
inclusion disks compared to MI. Therefore, we may say that, from a practical point of view, the 
method M! is the best among three proposed methods with Weierstrass' corrections. Circular 
approximations generated by MI2 can be somewhat improved if we use in the first iterative step 
a new type of inversion introduced in [8]. 

To demonstrate the proposed methods (and the basic method Mp for comparison purpose), 
we present the following example. 

EXAMPLE. We considered the polynomial 

P(z) : z 9 + 3z s - 3z ~ - 9z 6 + 3z 5 + 9z 4 + 99z s + 297z 2 - 100z - 300 

with simple zeros ¢1 : - -3 ,~2  ---- - -1 ,Ca --  2i ,¢4,S = --2-I" i ,¢6,7  = 2-I" i ,~S  = 1 and  ¢9 - - 2 i .  The 
following circular regions were taken to be the initial inclusion disks for these zeros 

Z ~ ° ) =  ( -3 .2  + 0.2i;0.35}, Z~°)= {-1.1 - 0.2i;0.35}, Z ( ° ) -  {0.1 + 1.7i;0.35), 

Z (°) = { - 1 . 9 +  1.3i;0.35), Z~°)= { - 1 . 8 -  0.8i;0.35), Z~ °) = (2 .3+  1.1i;0.35), 

Z(°)= {1.9 - 0.7i;0.35}, Z(°)= {1.2 + 0.2i;0.35), Z(°)= {0.2-2.2i;0.35}. 

The programs were implemented on the computer VAX 3400 in quadruple precision arithmetic. 
The radii r~ 3) of the inclusion disks Z~~)(j = 1,. . .  ,9), obtained by four methods Mp, M / , M  h 
and Mz2, are displayed in Table 1. The underlined value denote the maximal radius for each of 
the applied methods. 

Table 1. The :'adii of inclusion disks obtained in the third iteration. A(-h )  means A x lOb. 

Mp MI Mix MI3 

r~ z) 1.57(-17) 4.24(-20) 5.21(-21) 8.33(-17) 

r~ s) 6.76(-17) 7.84(-20) 145(-19) 2.12(-15) 

r(33) 1.35(-15) 2.62(-21) 3.54(-22) 4.06(-18) 

r~ s) 4.29(-17) 1.47(-19) 1.59(-20) 4.47(-16) 

r(53) 4.78(-16) 3.55(-21) 6.23(-20) 9.01(-16) 

r(e 3) 4.28(-15) 1.02(-19) 2.41(-21) 9.63(-18) 

r~ 3) 1.55(--14) 7.50(--21) 6.79(-23) 4.01(-18) 

r(s 3) 2.54(--14) 2.17(,19) 2.70(-20) 3.11(-16) 

r(93) 3.66(--17) 6.06(--22) 2.15(--22) 3.54(--18) 
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