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Abstract 

The interval version of the complex third-order method of Maehly, Borsch-Supan, Ehrlich, and Aberth is the 
most efficient method for simultaneous inclusion of simple polynomial roots [14]. In this note, Gargantini’s 
generalization of this third-order interval method for multiple roots is accelerated using Schroder’s modification of 
Newton’s corrections and modifying the required interval inversions. The underlying idea is that the iteration of the 
midpoints of the interval method should be similar to Nourein’s acceleration of the above-mentioned complex 
third-order method improving the convergence of the midpoints. Since the convergence of the radii and the 
midpoints are coupled it can be proved that the R-orders of convergence of the radii of the newly presented 
Schroder-like interval methods are asymptotically greater than 3.5. Hence two of these methods are more efficient 
than the most efficient one known before. Numerical results and an analysis of computational efficiency are 
included. 
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1. Introduction 

During the last twenty years various authors developed the techniques for a posteriori error 
estimates for the approximation of polynomial zeros. These devices mostly use Gerschgorin’s 
theorem, Rouche’s theorem, the fixed point principle, and so on. One of the simplest methods 
for the estimate of upper error bounds of the produced approximations zr, . . . , z, to the zeros 
of a polynomial P consists of the combination of a suitable iterative method realized in 
ordinary complex arithmetic and the so-called inclusion disc of the form I zj - z I G r(z,, . . . , tn> 

which contains at least one zero of P (see [9] or [14, Chapter 61). A quite different approach to 
error estimates for a given set of approximate zeros uses circular arithmetic, as pointed out by 
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Gargantini and Henrici [8]. Simultaneous iterative methods, realized in circular arithmetic, 
yield resulting discs containing the complex zeros in each iterative step. In this manner the 
upper bounds for the zeros, given by the radii of discs, are obtained automatically. A further 
advantage of inclusion methods lies in the possibility of taking into account rounding errors by 
applying rounding interval arithmetic which is built in modern high-level programming lan- 
guages PASCAL-XSC [lo] and ACRITH-XSC [2]. It should be noted that nowadays the 
computational costs of this type of arithmetic is only slightly greater compared with standard 
floating-point arithmetic. Therefore, a reasonably high computational efficiency of inclusion 
methods, together with the very useful property of self-verifying results, makes these methods 
to be often implemented in many problems of applied mathematics and techniques. 

Let P be a manic polynomial of degree II > 3 with distinct zeros lr,. . . ,l, (m G n) of 
multiplicities pr, . . . , pm a 1 (pl + - * * +pm = n), that is 

P(z) = ,zn + ulzn-l + * * * +a n_1Z + a, = (2 - cgyz - 5*)“’ * *. (-2 - lm)““. 
Applying the logarithmic derivatives we find 

P'(z) m 
po = k;lPk(z - wl> 

wherefrom 

!Jjcz- 1 1 ml 

Nj 
c 

pi k=l, k#j 

j=l . . . ) m. (1) 

Here Nj := pjP(z>/P’(z) is Schriider’s modification of Newton’s correction for multiple roots. 
Assume that m 2 2 disjoint discs Z,, . . . , 2, in the complex plane are found such that lj E Zj 

for any j E (1,. . . , m}. Starting from (1) and using circular interval operations (see [3, Chapters 
5 and 61) Gargantini established in [7] the Schrbder-like algorithm for the simultaneous 
inclusion of all zeros of P, 

gj=zj- 1 1 m 
1 

pj k=~ki~~B(Zj~Z*)l ’ 

j=l 7 * * * , m. 
___ 

Nj 9 I 

(2) 

The inclusion method (2) has a cubic convergence. An algorithm of the form (2) in ordinary 
complex arithmetic for the case of simple zeros was considered before by Maehly [ll], 
Borsch-Supan [4], Ehrlich [6], and Aberth [l]. Using Newton’s correction Nourein [12] improved 
this algorithm and stated the iterative formula 

1 
ij = zj - 

1 1 j= l,...,m, 
--- 
Nj pj k=l, k#j 

/+(~~-qfN~)-~ 
(3) 

where the order of convergence equals four. 
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The aim of this paper is to improve the third-order interval method (2) following Nom-em’s 
idea, that is, using Newton’s correction. The convergence of the midpoints and the convergence 
of the radii are coupled (cf. Section 4 below) such that a further improvement of the midpoints 
via (3) actually improves the convergence of the radii. To ensure that the midpoints are 
determined through (3) we have to enlarge the interval inversions. A careful analysis shows that 
the enlarged radii do not disturb the mentioned improvement. We will use three types of 
inversion of a disc 2 to construct various inclusion algorithms. The new algorithms have the 
R-order of convergence of the radii greater than 3.5 depending on the applied inversion (for 
the definition of the R-order see [13,14]). They do not require additional calculations because 
already found values of Nj are used. Consequently, these algorithms possess a great computa- 
tional efficiency (Section 6): two of them are even more efficient than the interval method (2) 
which used to be the most efficient known method for the simultaneous inclusion of polynomial 
zeros [14, Chapter 61. 

Using the notation Z = {z, r}, where z = mid(Z) and r = rad(Z) are the center and radius 
of Z, we consider the discs (assuming that 0 G Z, that is, 1 z 1 > r): 

z-1 := {t, r}-’ := I 1 Y 

Y2 
2’ l-- 

i 1 

‘M2-r2 ’ 

Id2 I 

i 

1 
Z’I := {z, r}” := - 

r 

1 z’lzl~(lzl-r) ’ 

2’2 := (z, r}” := 
i 

1 2r 
_ 

1 2’ Iz)2-r2 ’ 

Sometimes, we will write {z, r}’ instead of {z, r}-l (Sections 5 and 6). It is not hard to see that 
Z-l c Z’1 c 2’2. Among the above inversions only {z, r}-’ is the exact operation, that is, 
{z, r}-l = {z-l: z E Z}, but in general mid(Z-‘1 # mid(Z)-‘. If 0 @Z = {z, rj and INV;,(Z) 
denotes one of the three inversions Z-‘, Z1l, Z’z, then there holds the inclusion Z-’ G INVJZ) 
and the estimates 

lmid(INV,(Z)) l G I z 1:: r27 rad(IW(Z)) G l z ,“2’g * 

We emphasize that the three cases INV. = O-‘, INV, = 0’1, and 
handled simultaneously and only the properties (4) of INV, will 
explicitly otherwise. 

INV, = 0’2, respectively, are 
be used below if not stated 

2. The methods 

To compute circular approximations for the distinct zeros ll,. . . , I& of a polynomial P 
simultaneously, we assume that m 2 2 disjoint discs Z,, . . . , Z, containing the zeros cl,. . . , cm 

are known. 
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Writing mid(Zj) =: zj and rad(Zj) =: rj for the center and the radius of the disc Zj, one 
step of Lhe new Schroder-like algorithms with Nourein’s approach reads (Z,, . . . , Z,) * 
(Z i, . . . , Z,> with 

_fj := zj - INV, /_qINV2(zj-Zk+Nk) , j=l,..., IZ, 

where the complex number Nj := ~jP(zj>/P’(zj) is Schriider’s modification of Newton’s correc- 
tion for multiple roots for the center of Zj. 

In (5) INV, and INV, denote inversions of a disc defined in Section 1, that is, INV, E {O-i, 
()II, 012) and INV, E {O-r, 0’1, ()lz); thus (5) describes six different methods simultaneously. 

The convergence analysis of the new algorithms is presented in Sections 3 and 4, while 
practical aspects (numerical results and computational efficiency) are the subject of Sections 5 
and 6. 

3. Convergence results 

The following theorems state that method (5) is a locally convergent interval method having 
the R-order of convergence i(3 + m) = 3.562 or 4, depending on the choice of INV, E {O-r, 
0’2, (>‘2}. The proofs are given in the next section. 

Theorem 3.1. Let (Z,, . . . , Z,> =: <Zj”‘, . . ., ZA”) be initial &SCS SUCI’Z that sj E Zj (j = 1, - a. 3 n) 
and 

r 1 
;Gz’ (6) 

where 

Y := j=max rad( Zj), 
, ..,m 

d := min 
i,j=l,..., m, i#j 

I mid( Zi) - mid( Zj) I. 

Then, the method (5) is feasible, i.e. it defines a sequence of discs (Zj”) 1 j = 1, . . . , rr~)~=~,~,~, ,, , 
for any j E 11,. . . , m) and v = 0, 1, 2,. . . , there holds 

lj E Zi’“‘, 

and the sequence of radii (rad(Zi(“))>Y=0,1,2, _ tends towards zero. 

Theorem 3.2. Let O((5)) denote the R-order of convergence of the radii for method (5), where 
INV,, INV, E {(J-l, ()‘I, (>‘z}. Then, 
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Theorem 3.2 shows the improvement of the R-order of convergence from 3 of (2) to 3.562 or 
4 of method (5) whereas the computer effort is comparable (cf. Section 6). It seems to be 
surprising that an enlargement of the inversions in (5) gives better convergence. It is caused by 
the better convergence of the midpoints yielding smaller corrections Nj for instance and hence 
smaller radii, cf. the proof of Theorem 3.2 below dealing with the coupling of the convergence 
of the midpoints and the radii. 

4. Proofs of the convergence theorems 

The proofs of Theorem 3.1 and 3.2 are divided in several lemmas. 
The proof of Theorem 3.1 is by induction on v and we consider the typical step for v = 0 first 

(neglecting the iteration index v). In addition to the notation of the theorems, introduce some 
abbreviations. For any j,k E { 1, . . . , m}, let 

zj := mid( Zj), 

rj := rad( Zj) G Y, 

N, := pcLi’(‘j) P’(z) m 
I P,(~,) = (l/&j +aj)-l 

I i since fY-4 
- kp4z - w’ 7 I 

‘jk :=zj-zk+Nk. 

If 2 i, . . . ,z, are given by (5) having the centers ii,. . . , 2, and the radii ii,. . . , F,, let 

i := max Fj, d^:= min 
j=l 

I ii 4, I. 
,...,m j,k=l,..., m, j#k 

Finally, for j E 11, . . . , m), let 

Lemma 4.1. If d/ r 2 4n and lj E Zj for all j E 11,. . . , m}, then the inversions in (5) exist (i.e. 
0 +S FT$, 0 +TC zj - Z, + Nk, for j,k E { 1, . . . , m), j # k) and, for any j E (1,. . . , ml, there holds 

2(n - l)r 

Pi ’ (d - 3r)(d - r) ’ (74 

(n - l)(d - 2r) 

(d - 3r)(d -r) ’ 
P) 
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2 1, . . . , f, are painvise disjoint, 

Proof. Note that cj E Zj yields I &j 1 G rj G r. Thus, 

(74 

(74 

m 
(7g) 

k=l, kzj 

n-1 n-1 
<d_r= 

r(d/r - 1) 

n-l 1 

’ r(4n - 1) -%’ 

which implies 

Iaj&jI < +. 

Therefore, using Njb’ = l/~~ + aj, 

I Zj - ~ - ~j I = I &j - ~ I = Ej - 1 ,“: ,a, 
J J 

< IEjI* 
I aj I 

1 - I Ejaj I 
<;IEjl*’ lajl <+IEjl <r, 

whence cj E Zj - Nj. Note also that 

INjI G Iz~-N~-{~I+Iz~-~~I <~IE~I <:r. 

Hence, for all j,k E (1,. . . , ml, j Z k, 

lujkl 2 Izj-z,I-lNN,I >d-!r>d-2r. 

Since d > 4nr, we still conclude I ujk I > d - 2r > r > rk, whence o@{Ujk, r,)=Zj-Zk+Nk. 
Therefore, y exists and we can estimate uj := mid(Wj) and Pj := rad(yI in the sequel. 

Proof of (7a). By (41, 

’ 5 pk. rad(INv2((LJjk Pj = - 
pj k=l, k#j 

7 ‘k})) 

1 F 

2r 
<- 

pj k=l, k#j lJk. I vjk I * - r2 

2r 

’ (n - ‘) (d _ zr)* _ r2 = 

2r(n - 1) 

(d - r)(d - 3r) * 
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Proof of (7b). Again, by (4), 

- - I.- 
1 

IUi” 141 pj k=l,k+j 
E /ok* (mid(INV,(zj-Z,+N,)) I 

l vjk 1 

k=l, k#j 

2 & - cn - l) (d -1,;_ r2 
J 

3 (n - l)(d - 2r) 

41Ejl (d-r)(d-3r) * 

We continue proving that Zj exists. By (7a) and (7b), for j E (1,. . . , m), 

3 (n-l)(d-2r) 2 
lUi12-P?2 4y- (d_r)(d_3r) - 

i 1 i 

2+2-l) 2 

(d - Y)(d - 3r) 1 

((3/4r)(d - r)(d - 3r) - (Tz - l)(d - 2r))2 - (2r(n - 1))2 
= 

(d - r)“( d - 3r)’ 

~ (+(d - r)(4n - 3) - (n - l)(d - 2r))2 - (2r(n - 1))2 

(d - r )“( d - 3r)2 

2 (n - 1) 
2 (3(d -r) - (d - 2r))2 - 4r2 

(d - r)‘( d - 3r)2 

a (n - l) 

2 (2d - 4r)2 - 4r2 

(d - r)2(d - 3r)2 

4(” - 1)’ 
= 

(d - r)(d - 3r) * 

Consequently, since d/r >/ 4n 2 12, 1 uj 1 2 - pi’ > 0, whence 0 P I#$. Altogether, the discs which 
must be inverted in (5) do not contain zero; thus method (5) is feasible. 

Proof of (zc). Since lk E Zk - Nk for any k E 11,. . . ) n} by the inclusion property from (1) we 
obtain cj E Zj, i.e. (7~). 

Proof of (7d). By (4), (7a), and the above estimate of I uj I 2 -pf there holds for any 
j E 11,. . .) m} 

Fj < 
2Pj 

I”j12-Pj2 
<2 

2r(n-1) r 
=- 

4(n - 1)2 n-1’ 
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Proof of (7e). By (7a) and (7b), for any j E (1,. . . , m}, 

Pi 2r(n - 1) 

l”jl ~ (3/4r)(d_r)(d_3r)-(n_l)(d_2r) 

2r r 

G 3(d - r) - (d - 2r) 
=p 

d - ;r 

1 

G 4(” - 1) . 

Therefore, and by (4) and (7b) 

1 ij_Zj I = Imid(INV,((uj, Pj})) I G 
1 

IUjl(1-P~/Iuj12) 

=G 
3 (n-l)(d-2r;r 
-- 
4 (d-r)(d-3r) 

r 2r 128 

1 
-c-y 

‘1-k 63 ’ 

16(n - 1)2 

Thus, for some particular j,k E (1,. . . , m}, j # k 

i= I;j-ikI 

2 Izj-z,I-Iij-zjI-Ii,-zkI ad-5r 

Proof of (7f). By (7d) and (7e) 

i r/b - 1) r 
--,G d_5r < 
d d(n - l)(l - 5/4n) 

r n 6r r 1 
=- 

d (n_l)(n_;) ‘(7’;<d<G forn’3. 

Proof of (7g). We mention that d/r 2 4n implies that Z,, . . . , Z, are pair-wise disjoint which 
immediately follows from d - 2r > 0. q 

Proof of Theorem 3.1. From Lemma 4.1 we conclude by induction on v = 0, 1, 2,. . . that 
method (5) ,defines discs Zj”) including Jj for any v = 0, 1, 2,. . . , j E (1,. . . , m), such that 

max rad( Zj(‘)) 
j=l,...,m 1 

min I mid( Zj’)) - mid( Zf)) I ’ z * 
j,k=l,..., m, j#k 
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Therefore the conclusions of Lemma 4.1 hold in any iteration step. In particular, (7d) shows 
that method (5) converges. 0 

Let (Z!“) I j = 1 *., ml,= denote the sequence of discs generated by method (5). 
Assume that the radii conve$e2towards zero such that for large v there holds (6). Without loss 
of generality, let us assume that (6) holds for v = 0 (and hence for all v). Moreover, it will be 
used several times that, going to determine the R-order of convergence, we may assume that all 
the discs under consideration are sufficiently small (otherwise consider the sequence related to 
the indices v = vO, v0 + 1, V” + 2, . . . having the same R-order of convergence where v0 is 
sufficiently large). 

Since the zeros {r, . . . , (,,, are fixed and included in the discs Zj”), . . . , Z(“) various denomina- 
tors in Lemma 4.1 are bounded. Hence we may use the Landau symbol? 00 to suppress the 
bounds and stress the asymptotical behavior. 

For expressions terml( j, V) and term2( j, V) (depending on j, V, P, and the initial discs) we 
define 

terml(j, V) = O(term2(j, v)) 

iff 

For example, using the notation from Lemma 4.1 but adding the iteration index Y, (7a) and 
(7b) read 

pj”‘= O(r’“‘), I Eyu~” I = O( 1)) 

respectively. 
In the above analysis we used the rough estimate I si I G ri <r but we controlled the 

constants to prove that (6) guarantees convergence. Conversely, we will neglect the constants 
but discuss in detail the dependence on &j and r;. Therefore, define for any v = 0, 1, 2,. . . 

E := max I dY) I v 
j=l 

J ’ 
R, := max 1 r!“) 1 = y(“). 

,...,m j=l,...,m ’ 

If we neglect the iteration index and write E instead of E,, then i denotes E,+l. 

Lemma 4.2. R,, 1 = OCR, Ez). 

Proof. Neglecting the iteration index Y we see from (7a) and (7b) that 

P = O(r), I”jl =O(l/lFjl)e 

According to this and the proof of (7d) we have 

i)i < 
2Pj 

I uj I 2 - Pf 
= O(r$), 

which implies the lemma. IJ 
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In the sequel we will derive a qualitative estimate of k. Here, only using ()I1 or ()‘2 in (5) will 
give Nourein’s method for the centers which is of fourth order. Hence we will obtain 
,!? = O(E4> in this case. To include applications of 0-l in (5) we firstly estimate the distance of 
the midpoints. 

Lemma 4.3. Using the notations from Lemma 4.1 and neglecting the iteration index v there holds: 
(i) Let (Y be equal to 1 if INV, = 0-l and 0 otherwtie (i.e. INV, = ()I1 or ()12). Then, for all 

j E (1,. . . ,d, 

Imid(INV,(~)) - l/uj ) = (Y. O(E3R2). 

(ii) Let p be equal to 1 if INV, = 0-l and 0 otherwise. Then, for all j,k E {l,. . . , m), j # k. 

Imid(INV2(zj - 2, + N,)) - l/ujk I = /3 * 0(R2>. 

Proof. For INV, = 0’1 or INV, = 0’2 the assertions are trivial (a = 0 or /3 = 0). Let us assume 
INV, = 0-l. Then, cf. Section 1, 

P?/l”j12 
midiv-; =&_pi/lu.12* 

J J J J 

Using I uj.sj I = O(1) and pj = O(R) assertion (i) follows. 
Similarly, 

1 
mid(INV,( zj - Z, + Nk)) - $ < - 

R2/luj,12 

I ujk I 1 - R2/ l ujk l 2 
= 0(R2), 

which proves (ii). q 

Together with Lemma 4.2, the following lemma will be the tool for proving Theorem 3.2. 

Lemma 4.4. Using the notations from Lemma 4.1 and Lemma 4.3 and neglecting the iteration 
index v there holds 

_@ = 0(E4) +aO(E3R2) +pO(E2R2). 

Proof. Using the above formula for Nj and Lemma 4.3(u) there holds, for any j E 11,. . . , m}, 

mid(y) = k + ?- 
J 

5 PI, & -mid(INV2(zj-ZkfNk)) 
pj k=l, k#j ( J 

1 1 -zk+Nk+f;: 
=-+- ? PI, 

'j pj k=l, k#j i ('j - lk>‘jk 

Considering the estimate of the error of Newton-Raphson’s method in the proof of Lemma 
4.1, we see its quadratic convergence 

I zj -4. - lj I = O(P). 
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Thus, 

uj=mid(W,)=f+O(E2)+pO(R2). 
I 

Therefore and by Lemma 4.3(i), 

Ej = cj - mid(INV,( y )) 

1 

=&j+ l/Ej + O(E2) +po(R2) 
+ (rO(E3R2) 

=&j * (1 - (1 + O(P) + po(ERz))-l) + aO(E3R2) 

= O(P) +pO(R2E2) +(rO(E3R2), 

which proves the lemma. 0 

To determine the R-order of convergence of the interval method (5) in the case when 
INV, = (J-i, we need the following result where K, is called a convergence factor if the 
sequence (K,) is bounded. The result is known in the theory of iterative processes (and covered 
e.g. by [5]), so we may omit its elementary proof. 

Lemma 4.5. Let (s,) be a sequence of positive numbers tending towards zero such that 
S vf2 ~K&,~,9~ where K, is the convergence factor and p and q being natural numbers. Then the 
R-order of (s,,) is at least i(p + /m). 

After these preliminaries we are now in the position to determine the R-order of conver- 
gence of method (5). 

Proof of Theorem 3.2. Using the notations of Lemma 4.3 we have to prove that the sequence 
(R,) has R-order i(3 + J1?> = 3.562 if p = 1 and 4 if p = 0. We may assume that CR,) 
converges towards zero and the conclusions of Lemmas 4.2 and 4.4 hold. In addition, we 
assume without loss of generality that E, <R, < 1 is sufficiently small (otherwise we choose v0 
sufficiently large and consider the sequence CR,), ~ J. 

Firstly, assume p = 0. Then, according to Lemmas 4.2 and 4.4 there exist constants A,, B,, 
and D, depending on v such that for any v = 0, 1, 2,. . . 

E ,,+l <A,,E; +B,,E;R:, R,+l <D,R,E;. 

Assume that D, >A,,B, > 4. We note that the constants A,, B,, and D, have the role of 
convergence factors. Let e, := E,, rO := R,, and define for any v = 0, 1, 2,. . . 

e v+l :=A e4+B e3r2 Y Y ” Y Y) (9 

r lJ+1 := DVrVe_f, CW 

where A,, B,, and D,, are positive constants depending on Y such that D, >A,,,B, 2 4. 
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By induction, E, G e, and R, G rv. Since R, may be sufficiently small, we may assume that 
the sequences (e,) and (Y,) converge towards zero. It suffices to prove that the Q-order of (r,) 
is at least four. Therefore, let 

r v+1 
7, := 

J- D,,rJ ’ 
v=o, 1,2 ,... . 

Now it remains to prove that (7,) is bounded. By definition of T~+~, 

(9) 

ev 
r = r3/2 I.e. Y e,=r,ry312, u=O, 1,2 ,... . 

Y 

Using e, = r,, ?-:I2 and e, + 1 = r, + 1 r:!t on both sides of equation (Sa) we obtain 

TT,+lrv+l 3/2 = Avr:r,6 + Bvr~r~3/2. 
(10) 

From (91, we get r,+l = D,r,“r,” which will be substituted on the left-hand side of (10) to obtain 
after some calculations 

A,,r, + B,,ri12 r, + r,‘12 
7 v+l 

= 
~312 

G 

Y 2 * 

Since (r,) tends towards zero it is bounded by K’, say. Letting K” := max{\lK’, ro} we find for 
all v = 0, 1, 2,. . . 

7 u+l < +(r, +K”). 

By induction we check that r, G K” which proves Theorem 3.2 for p = 0. 
Consider now the case p = 1. As in the first part of the proof, according to Lemmas 4.2 and 

4.4 there exist constants A,, B,, C,, and D, such that for any v = 0, 1, 2,. . . 

E ,,+l <A,E,4 + B,E,3R,2 + C,E;R;, 

R v+1 ~wm* 

Assume that D, >A,,B,,C, 2 4. Again, let e, := E, G r. := R, and define for any v = 0, 1, 2,. . . 

e u+l := A,ez + B,ezrz + C,e~r~, W) 

r v+l := D,r,ez. W) 

By induction we prove that E, G e, and R, G r, so it remains to estimate the R-order of (r,). 
Again, we may assume that R, is sufficiently small and (e,> and (r,) converge towards zero. 
Moreover, we may assume that e, < i and rv < 4. Using the above definitions we obtain 

e v+1 A,ez + B,,ezr,f + C,,ezr,f e,2 +e,r,2 +r,2 4 e 1 
- = 
r Vtl DVV, 

< 
rv “9 rv 

.PfT. 

From this, we conclude by induction that e, < rv for any v = 0, 1, 2,. . . , which implies (by 
definition of rv+l (lib)) that 

r u+l ~D,C v = 0, 1, 2 )... . (12) 
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Taking (lib) to obtain 

and substituting this (and the related expression for e,,,,) in the defining relation for e,,, (llal 
we get 

(,“;;+,j’;;- $g +B,( g2r:+c”y. 
Hence, using (12) and the inequalities D, >A,,B,,C, > 4, we find 

r vt2 G Dv+d+d 

Then, Lemma 4.5 (for p = 3 and 4 = 2) proves that (r,) has R-order i(3 + \/17). 0 

Remark. Using the conclusions of Lemmas 4.2 and 4.4 the theorem can also be proved using 
[51. 

5. Numerical results 

From the convergence analysis of the new algorithms presented in Sections 3 and 4, we see 
that these algorithms have a very fast convergence. The values of their convergence order 3.562 
and 4 should be regarded as asymptotical ones meaning that the notified speed of convergence 
can be realized after several iterative steps. Numerical examples have shown that such situation 
most frequently begins with the third or, at best, the second iterative step. Thus, the presented 
methods with Schriider’s correction are the most powerful when at least three iterations are 
applied. This fact is, as in the case of all iterative methods with very fast convergence, a slight 
disadvantage in a certain degree because floating-point arithmetic of very high accuracy should 
be employed (usually, quadruple precision arithmetic). 

The iterative formula (5) enables the construction of several methods depending on the 
choice of the type of inversion. We have considered three methods choosing INV, in (5) to be 
the exact inversion (i.e. INV,(W) = W-‘) and taking INV, E {(>-‘, ()II, 0’2). These methods are 
referred to as M,, MI,, and MI, and displayed below by the following formulas: 

gjqj_ 1-L I 
m 

-1 

Nj 
C P!f(Zj-Zk+Nk)-l ) 

pj k=l, k#j 

gj=zj- k-L 

i 

E 

-1 

I PLi k=l, k#j 

pk(Zj-Zk +Nk)” 7 

i 

-1 

pk(Zj-‘k+Nk)12 > 
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for-j= l,..., m. From the definition of the inverse 0’1 we observe that the evaluation of I z I is 
required. But this is very costly because the evaluation of I z I = I x + iy I = /m needs too 
much extra time. Consequently, the method MI, has a poor computational efficiency (see 
Section 6). For this reason we are forced to introduce the inversion ()Iz. Namely, since I z 1 > r 

we have 

I&~) = 
r(l+r/Izl) < 2i- 

lz12-r2 Iz12-9’ 

Thus, rad{z, r}‘~ = 2 rad{z, T}-’ which is negligibly increased (compared to the exact inversion) 
if Y is very small (for example, after the first or the second iteration). However, the tested 
numerical examples have shown that this increase of the radius of the inverse disc causes 
certain difficulties if the initial discs are not sufficiently small. This problem can be solved 
partly using the approximation x < i<l +x2> (0 <X = Y/ ) z I < 1) to obtain 

lzl(l:l-r) < 

r(l+$(1+r2/lz12)) = r-(~+$-2/1212) < 2r 

lz12-r2 lz12-r2 )z12-r2’ 

The new type of inversion will be denoted by 

[z, y)i’= ;,+;z;‘;“1:12J 1. 

i 
Since r2 and I z I 2 are known, new calculations are not necessary. We will denote the 
corresponding method with Mi*. 

Although the above decrease of the radius of the inverse disc is small, it ispften sufficient to 
provide very good results. Moreover, it is sufficient to apply the inverse 0’2 only in the first 
iterative step. Such a combined method will be referred to as M~z,~,. 

The proposed three methods, as well as the third-order interval method (2) for the 
comparison purpose, have been tested in solving many polynomial equations. The programs 
have been written in FORTRAN language and implemented on the computer VAX 3400 in 
quadruple precision arithmetic (about 33 significant decimal digits). For demonstration, we 
present the following example. 

Example. We have used the presented algorithms for finding the zeros of a polynomial 

P(z) =z9 + (-2 + 3i)z’ + (48 - 6i)z7 + (-94 + 152i)z6 + (522 - 298i)z’ 

+ (- 950 + 1974i)z4 + (- 1400 - 3650i)z3 + (3750 + 1200i)z2 

+ ( - 1875 + 1250i)z - 6251. 

The exact zeros of P are <r = 1, l2 = -i, l3 = -5i, and fb = 5i with the multiplicities p1 = 2, 

ru2=3, p3 = 2, and p4 = 2. As the initial inclusion discs we have taken the circular regions 

Z$O) = Il.1 + 0.2i, 0.9}, Z!j’) = IO.2 - 0.8i, 0.9}, 

Z$‘) = { -0.6 - 4.4i, 0.9}, Z$‘) = (-0.6 + 4.4i, 0.9). 

The maximal radii r(‘) = max j = r, , m rj @) (v = 1, 2, 3) for all the methods are shown in Table 1. 
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Table 1 
Maximal radii of inclusion discs 

@) 
,(2) 
r(4) 

Method (2) 

1.X-l) 
9.55( - 4) 
4.35( - 13) 

MI MI, MI, Mr, Mi& 

1.25( - 1) 2.44( - 1) 3.33( - 1) 2.35( - 1) 2.35( - 1) 
3.78( - 5) 5.19(-4) 3.54( - 3) 7.47( - 4) 9.96( - 4) 
3.61( - 17) 5.18( - 16) 1.24( - 12) 1.5( - 15) 3.51( - 15) 

From the last two columns we observe that the application of the new inversion 04 produces 
considerably improved discs compared to M,,. The interval method M,, shows a fast conver- 
gence after the second iteration but the discs Z,? are not sufficiently contracted. Finally, the 
interval method MI which uses only the exact inversions generates good results. The above 
conclusions are also valid for most of the tested polynomials. 

Remarks. 
(i) In order to realize self-verifying methods additional calculations are required which 

enlarge the discs as well. This could be a disadvantage compared with rectangular 
complex interval arithmetic. 

(ii) As seen in the proof of Theorem 3.2, the increased convergence of our methods is caused 
by using “better midpoints”. Hence, the perturbation of the midpoints (e.g. due to 
roundoff errors> results in a less increased convergence speed. 

6. Computational efficiency 

An estimate of the computational efficiency of the proposed interval methods can be sensibly 
carried out using the coefficient of efficiency E,(M) given by 

E,(M) = r(n)c’o(n) 

(see [14, Chapter 61). Here r(n) is the R-order of convergence of the method (Ml, O(n) is the 
computational cost per iteration, and c is a normalization constant. d(n) is proportional to the 
total number of the basic arithmetic operations taken with certain operation weight depending 
on CPU time. 

We have calculated the coefficient of efficiency for four computing machines and for IZ = 3, 
475, . . . ,15 considering the case of simple zeros. For comparison purpose we have included 
Gargantini’s method (2) referred to as Mo which used to be the most efficient method for the 
simultaneous inclusion of polynomial zeros (see [14, Chapter 61). 

First, we have used that the order of convergence of interval methods M,,, Mr2, A4fz and 

Mi2.I, is 4, and equal to 3.562 for the interval method MI. The rating of the considered methods 
was the same for all four computers and all it = 3(1)15. We have obtained the following rank: 
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We emphasize that the above ordering is of a theoretical importance because we used the 
asymptotical values of the order of convergence. As discussed in the previous section, the 
convergence speed is somewhat smaller than the theoretical one. Calculating with average 
values of convergence orders determined by considering the first three iterations and taking 
r(n) = 3 for the method Mo, we have obtained the following rating: 

l.-2. 3. 4. 5. 6. 

MI2 M&J, MIi M& MI, 

MI 

The values of the coefficient of efficiency of the interval methods MI, and MI are very close so 
that both methods are ranged equally. 

According to the above lists we can conclude that the interval methods Mr2, MI and I’H~~,~~ 
are more efficient than Mo. Consequently, these methods become the most efficient methods 
for the simultaneous inclusion of polynomial zeros. 
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