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Summary. Classical Weierstrass’ formula [29] has been often the subject of investiga-
tion of many authors. In this paper we give some further applications of this formula
for finding the zeros of polynomials and analytic functions. We are concerned with
the problems of localization of polynomial zeros and the construction of iterative
methods for the simultaneous approximation and inclusion of these zeros. Conditions
for the safe convergence of Weierstrass’ method, depending only on initial approx-
imations, are given. In particular, we study polynomials with interval coefficients.
Using an interval version of Weierstrass’ method enclosures in the form of disks
for the complex-valued set containing all zeros of a polynomial with varying coef-
ficients are obtained. We also present Weierstrass-like algorithm for approximating,
simultaneously, all zeros of a class of analytic functions in a given closed region. To
demonstrate the proposed algorithms, three numerical examples are included.
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1. Introduction

Consider a monic polynomial of degree> 3
P()=2"+ap 12" 1+ tarz+ag = ﬁ(z —¢) (a; €0)
j=1
with simple complex zerog, ..., {,. Since
P() = (=~ G) f[(z — ),
=1
J#i
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we obtain the fixed point relations

_ P()
H(Z - )

J#i

(1.2) G==z (1=1,..,n).

Assume that distinct complex numbess ..., z,, are reasonably good approxima-
tions to the zerogy, ..., ¢, of P. Puttingz = z; and substituting the zera§ by their
approximationsz; (j #4) in (1.1), we obtain

(1.2) s=. - TE oy

n

H(Zi - 2)

J=1

J#i
Here Z; appears to be a new approximation to the zgrdn fact, this formula is a
classical result due to Weierstrass [29,p. 258] connected with a constructive proof of
the fundamental theorem of algebra. For this reason, the formula (1.2) is often called
Weierstrass’ formula although Weierstrass was not using it for a numerical calculation
of polynomial zeros. The quotient

Wi(z) =, P

[N ([EEED)
=1
i#i

will be calledWeierstrass’ correctionSometimes, we will writéV; instead ofiV(z;).
According to (1.2) the following iterative method can be formulated for approxi-
mating, simultaneously, all zeros of the polynomial

(m)
(1.3) L) 2 ) P(z")

TG - )

J=1
J#i

(i=1..,n m=01..).

Algorithm (1.3) has been rediscovered several times (see, e.g. Durand [9], Dochev [8],
Borsch-Supan [3], Kerner [14], S. F&ié [25]) and it has been derived in various ways.
Dochev [8] was the first who proved the quadratic convergence of this algorithm. A
more economical realization from a computational point of view was given by Werner
[30]. Finally, let us note that, starting from the fixed point relation (1.1) and disjoint
initial disks Zio), ..., ZO which contain the zerog,, ..., ¢, respectively, Alefeld and
Herzberger [1,Ch.8] constructed the interval version of Weierstrass’ formula in the
form

P
(1.4) Zim ) = pm (") (i=1..n m=0,1..),
(m) _ (m)
(Zz‘ -7 )

Ji
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wherez(" is the center of the disk™. The main advantage of the interval method
(1.4) is that(; € Z§m) foralli=1,..,nandm = 1,2, ..., which provides a control
of the accuracy in each iteration step.

In this paper we will give some further applications of Weierstrass’ formula con-
cerned with iterative methods for finding zeros and related topics. In Sect. 2 we give a
new result concerning localization of polynomial zeros. This result, based on Weier-
strass’ corrections, is used for the construction of inclusion disks which are necessary
for the application of inclusion methods.

In the literature, initial conditions for the safe convergence of simultaneous method
for polynomial zeros most frequently involve unattainable data (for instance, mini-
mal distance of zeros), which is not of sufficient practical importance. In Sect.3 we
adopt the result from [24] in order to state initial conditions for the convergence of
Weierstrass’ method, which depend only on the initial approximations and the degree
of a polynomial. According to these results two combined methods for the inclusion
of polynomial zeros are constructed.

Polynomials whose coefficients are uncertain numbers or lie in some intervals
appear in mathematical models of scientific or engineering disciplines. Their zeros
are contained in some closed complex-valued sets, cadiedsetsln Sect. 4 we give a
procedure for finding circular enclosures of zero-sets, based on the result from Sect. 2.
Furthermore, we give a version of Weierstrass’ interval method for the contraction of
these inclusion disks.

Section 5 is devoted to an iterative method of Weierstrass’ type for the simulta-
neous finding of the zeros of a class of analytic functions. A convergence theorem
and an analysis of numerical stability of this method are included.

For a practical demonstration, the presented algorithms of Weierstrass' type have
been illustrated on numerical examples within Sects.3, 4 and 5. These examples
were realized in FORTRAN 77 in quadruple-precision arithmetic (about 33 significant
decimal digits) on the Micro VAX Il computer.

2. Localization of zeros

Weierstrass’ correctiofil’(z;) has been often used for a posteriori error estimates for
a given set of approximate zeros. Braess and Hadeler [4] have proved that the disk
given by

(2.1) |z — zi| < n|W(z)]

contains at least one zero of the polynomial P. Smith [27] has improved slightly this
result; namely, he has shown that the disk

(2.2) |z = (zi = W(2))| < (n — D)W (z)]

also contains at least one zero Bf The purpose of this section is to present some
new inclusion disks based on Weierstrass’ corrections.
It is known (see [10] [6]) that the characteristic polynomial of the n-matrix

1
Bi=diages, ..., z0) — | | - (Wi, ..., Wy)
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is equal to £1)*P(z). Hence, via Gerschgorin’s inclusion theorem appliedBtave

can get locations for the zeros 6% Before doing this, we may transform the matrix

B into T~*BT having the same eigenvalues for any regular maftixThe question
“which T gives the best inclusion disks?” is solved (in some sensg)belongs to

the class of diagonal matrices. It turns out that the best “Gerschgorin’s disks” lead to
the following estimate, proved in [10] and [6].

Theorem A. Forp € {1,2,...,n} and¢ € C let r be a positive number bounded by

(2.3) max (|zj — W; =& = [Wi) <r < min (Jz; — W; — &+ |[Wj])
J=L....p Jj=p+l,....n

such that

- W] & |W;|

1> h(r):= + >0
Z:7’*|Zj*W}'*€|+|W}'| lzj — Wi =&+ W] —r

J=1 J=p+l

Then there are exactly zeros in the open disk with centgland radiusr.

Remark 1In the casep = n the conditions on the upper bound+ofnd the last sum
must be neglected. A reordering leads to more flexibility in Theorem A.

Remark 2Adopting notations from Theorem A, it follows froi(r) < 1 by continuity
that at leasp zeros of P lies in the closed disk with centérand radiusr.

In the case = 1 Theorem A can be specified giving the following simpler estimate
proved in [5, Satz 3] (cf. also e.qg. [3, 4, 6] for similar results) and used in this paper
in Sect. 4.

Theorem B.Let{ :=z;, — W, € C\ {z1,...,2,} and set

W]

n
6 = Wil - max_ |z =&Y o= Y
o |2 — &I’

e J=Lj#i
ie{l,...,n}. If /146, > /6; +/0; then there is exactly one zero Bfin the disk
with center¢ and radius
2(1 — 20'7; — 67) )

2.4 Wil (1—
( ) | ‘ ( 1—0’1‘—251‘4‘\/(1—0}‘—251)24'46(1—20'2‘—(52‘)2)

If V1+6;, > /6 +/o; and§; + 20; < 1, then there is exactly one zero Bfin the
disk with centek and radius
61’ +0;

Wi .
Wily .

In the sequel we apply Theorem A to the sequen{:e%")},...,{zg”)} of
approximations of zeros,...,(, generated from Weierstrass method (1.3). Let

P = 20—l e = maxel™ and letd = ming, |¢; — ¢| > 0 (sinceP
has simplje ZEeros).

Theorem 2.1.If r® < r@ < J ‘then, foranyi = 1,...,n, the closed diskzY; 2D —
z§°)|} containsg;.
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Proof. We use Theorem A with; := 20, 2, := 2 W, := z; — 2, (Weierstrass’ cor-
rections),r; := rl(o), 7y 1= El) fori e {1, ...,n}. According to the triangle inequality
we have

(2.5) Wi <ri+7 <r@+r@ =1 n).

In order to prove Theorem 2.1 farlet, without loss of generality; = 1 =p, £ =
%, = 2z; — W;, andr := |W1] in Theorem A. Due to (2.5) and® < r©@ < 2

r<é—r®_ @

Hencer satisfies (2.3). Therefore we are allowed to take |1¥1] in Theorem A so
that it remains to prové(|11]) < 1 (h defined in Theorem A), which is equivalent
to

> (Wl <1
— |2 — A+ [Wi| = [Wa| — 2
Using (2.5),

n

\ A

En: [ Wil ket Tk
= |2 — 2+ [Wi| = [Wh| = = [ — Zf + 7 + 7% — (W]

m

3

2r© 2rO(n — 1)
S—ri—r— 6—=3r@ "~

IN

k=

N

which is < 1/2 if 4nr© < 6.

Remark 3In Theorem A the optimal bound, i.e. the smalles some interval (given
in (2.3)) with h(r) = 1, can be easily calculated, e.g. with Newton-Raphson method
or regula-falsi sincé: is convex.

3. Hybrid algorithms and initial conditions

Most of the initial conditions for the convergence of iterative methods treated in
literature are not of sufficient practical interest since they depend on unattainable
data (for instance, on the minimal distance between (unknown) zeros). In this section
we give practicable conditions for the convergence of Weierstrass’ iterative methods
(2.3) and (1.4) in complex and circular complex arithmetic which depend only on a
set of initial approxmatlong(o) ...,29. These conditions are stated by simplifying
the initial conditions for Weierstrass’ method (1.3) given by M.3&¢§24].

Let {z{™},..., {2} be the sequences generated by (1.3) anddfei =
min {|z{™ — z§m)|} (¢ # 7). Then we have

Theorem 3.1. Let 20, ..., 2@ (n > 3) be distinct approximations to the zeros
(1, -+ Gy OF the polynomialP and letd© = min {|(? — 2]} If
i
d©

O) <
(3.1) max W) <
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then for allm =0, 1, ... we have
, dm)

. (YVL) < .

() max W) <y

(”) d(m+1) > 57;_;—2d(m);

(III) |Zz(m+2) . Z§m+l)| < ;‘ngﬂ) o Zl(m)‘ - ;|W(zz(m))|

Theorem 3.1 can be proved in the similar way as in [24] and, for this reason, we
omit the proof.

Using the assertions of Theorem 3.1 we are in the possibility to state the following
assertions.

Theorem 3.2.If the condition (3.1) is satisfied, then for Weierstrass’ method (1.3) the
following is valid:

(i) the sequencesz{™}, ..., {0} converge to the zerag, ..., (,,, respectively;

(i) ¢; e DIV = LM wEmY (=10, m=1,2,..)

iy D" VD V=0@i#5) (m=12.).

Proof. We give an outline of the proof of Theorem 3.2. Let the condition (3.1) be
satisfied. Then, according to the assertion (iii) of Theorem 3.1 we can construct the

sequences of diskéD{™}, ..., {D{™} by D™ = {z : |z — 2™ < (W (™))}
such that

1
(W ()| < Z\W(zg’”*l’n and DO >DY>5pDP5... (i=1,..,n).

Hence|W(z§m_1))| — 0 whenm — oo. Since the metric subspadégo) is complete
(as a closed set ift), there exists a unique poiaf € D so that

o0
A™ — 27 andz; € (| D™ c DYV foreachk=0,1,....
m=0
In this limit case Weierstrass’ formula (1.3) yield¥z}) = 0 whence¢; = z (i =

1,...,n). Hence, the assertions (i) and (ii) follow.
Due to (i) and (ii) we find

(m) _ (m)| < om) < O =2
|2 zV > d™ > 5,

(m—1) > _ (_7774*1)
d > (5n - 2) A (W (z;""7)
> |”r(25m71))| + |”r(25m71))|
which proves (iii). O

Remark 4 Assuming that the condition (3.1) holds, by the assertion (i) of Theorem
3.1 it is easy to derive the estimates

5 < 1 .<n—1
=ep-1 T Ts-1

Hence, applying Theorem B far= 2™~ — w1 and i), (iii) of Theorem 3.2,

9

after simple calculations we obtain
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i € z<m);1W.(m*1) (i=1,..,n).
C K3 4 1

Let us note the above inclusion disks are disjoint (according to (iii) of Theorem 3.2).

The assertions of Theorems 3.1 and 3.2 can be applied to the construction of
inclusion methods which provide upper error bounds of the obtained approximations
to the zeros. We will consider two versions of these methods which, in fact, have
a “hybrid” structure. Speaking about hybrid methods we assume a combination of
algorithms in ordinary complex arithmetic and circular complex arithmetic. For more
details on hybrid (combined) methods see [20].

Hybrid method (1)

In order to decrease the computational costs of interval methods, it is preferable to
apply a combined procedure. In the case of Weierstrass-like algorithms this procedure
consists of the following:

1. Using Weierstrass’ method (1.3) in ordinary (complex) arithmetic, calculate the
complex approximationsl(M’ (1 =1,...,n) to any wanted accuracy (aftéf iteration
steps);

2. In the final steprovide the enclosuref zeros; for instance, usingither an
a posteriori error estimate procedure like (1.5), (1.6), or (ii) in Theorem &2,
Weierstrass’ interval method (1.4).

Assume that we have found the approximatiod¥”, ... (") to the desired
accuracy applying the step 1. under the condition (3.1) for Weierstrass’ method (1.3).
As mentioned above, the step@n be realized in several ways:

Procedure (1a):For i = 1,...,n calculate W (z{*"), ..., W (z*)) and find Braess-
Hadeler's disksk ™ := {z"); n|W (=*)|} (according to (1.5)). As it was proved

by Braess and Hadeler [4], each of these disks contains at least one zero and their
union contains all zeros of the considered polynomial. But using the assertion (i) of
Theorem 3.1 we have for arbitratyj € {1,...,n} (i #j)

20— 20D) > d > 5p max [W ()] > n|W (M) +n W (M),
1<i<n .

which proves that all diskK&M), ..., KM are mutually disjoint. This implies that
each disk contains one and only one zerd™fthat is,(; € KEM) (t=1,..,n).
Procedure (Ib):By virtue of the assertion (ii) of Theorem 3.2 and Remark 4, we can
choose the disk®" 1 = {0 1 (M =D)} (M > 1) to be the inclusion disks
for the zeros(;. According to (iii) of Theorem 3.2 these disks are nonoverlapping.
Procedure (Ic):Choosing initial disksD{*”, ..., DA as in Procedure (Ib), apply

Weierstrass’ interval method (1.4). The constructed combined method of Weierstrass’
type has the form

(M)
(3.2) ZMD = 00 . P(z;") .

J#i
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In this way the enclosure of the zeros is provided using only one interval iteration,
which enables a high computational efficiency of the stated combined method (for
more details about the efficiency of combined methods see [20]). The upper “index”

(M, 1) indicates that the inclusion disk’/*") is obtained byM “point” iterations
and one interval iteration.

The following lemma guarantees that (3.2) is feasible, i.e. that zero does not
belong to the numerator set in (3.2).

Lemma 3.1.1f (3.1) holds we have

0¢ H (ZZ(M) _ Dggw-l)) '
J#i

Proof. Because of Theorem 3.1 (i) we have

, , 1
M M—1 M M). M—1
|I(ZZ( ) Dg. )>C||{z§ ) z§ ), l\”(zﬁ- ))}
j#i it

H( (M) (M)) 1 d™ Z| (M) _ (m)|—1
z; Z; ' 4(5n — 2) 2 25
j#i J#i

N

N

o) (M) .on—1
g(zf” — ) '{1’4(5,1_2)}'

Since 0¢ {1;1/20} and because of Theorem 3.2 (iii) this concludes the praof.

Remark 5The procedure (Ia) and (Ib) are of the same type. The error bound obtained
by Procedure (la) is considerably sharper in reference to that produced by Procedure
(Ib). Indeed, we have

rad DMV = 0(1z2M Y —¢;)), rad KM = nO(|z2M 7Y — ¢;)?).

Although this improvement requires additional computational effort (extra calcula-
tion of W(ng))), the produced (very precise) bounds justify this cost. On the other
hand, onceW(zZ(M)) is known, we may apply one step of (1.3) which is cheap
then and gives better bounds via (la). However, Procedure (Ic) yields the sharpest
bounds but, compared in Procedure (la), it requires the calculations of the intervals
H#i(zZ(M) — DY) instead of the complex numbef§ ., (4" — 2{*"). The pre-

sented comparisons are evident from the numerical example given below.

Hybrid method (II)

The construction of this combined method is similar to Procedure (Ic). Namely, we
first applyoneiteration in complex arithmetic using the iteration method (1.3) assum-

ing that the condition (3.1) is fulfilled and obtain the approximatioff§ ..., 2.

rn

After that we take the disk®”, ..., DO as initial inclusion disks and apply Weier-
strass’ interval method (1.4). In this case the question of the convergence of the
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interval method (1.4) arises. The answer can be given applying (3.1) and the follow-
ing convergence condition for the method (1.4) presented in [19, Theorem 3.2]:

Theorem 3.3.Let 2 ..., Z© be the initial disks containing the zerds, ..., ¢,

respectively, and let the interval sequen¢e€™}1, ..., {Z'™} be produced by (1.4).
Furthermore, let

) .= mi 0 _ O _ .0 0) = (0)
= r{:}nﬂzz il =it T 12}%); T
i#j

wherez(™ = mid '™, (™ =rad z'™ (m = 0,1, ...). Then, under the condition

(3.3) n® > 7(n2— 1)7(0),
foreachi=1, ...nandm =0,1,... we have
1. ¢ ez,
m+1 7(n—1 m)\2
2. ) < 4(77(5)_51»)(0)) ()2,

Taking ZZ(O) = D§°) (i=1,...,n) we will have

r©@ = max W), 7@ =min (]2 — 20 - ).
(3 K3¥) -
i#j

Using the above notations and the assertions (i) and (ii) of Theorem 3.2 we obtain

7O > q® _ 0 5”5; 240 10 > (5 — 2) max [W(®)| — r©
i#
= (n —3)yr@ > 7(n2— 1)7“(0).

Therefore, the condition (3.1) for the initial complex approximations implies the
inequality (3.3), which means that the assertionarid 2 of Theorem 3.3 are valid
for the mentioned choice of disks.

Example 1. For demonstration, we apply the hybrid methods (I) and (ll) for the
inclusion of the eigenvalues of Hessenberg's matfix [;;]. As a concrete example
we consider the matrix

8 + 12i 1 0 0
0 6 + 9i 1 0
0 0 4 + 6i 1
1 0 0 2+ 3i

H =

The characteristic polynomial of the above matrix is
(3.4) P(\) = A — (20 + 30i)\3 + (—175 + 420i\? + (2300— 450i)\ — 2857— 2880i

Gerschgorin’s disks containing all eigenvaluestbfare of the form{h;;; 1}, where
h;; are the diagonal elements of the matifik To start our methods we take the
centers of these disks to be initial approximations, that is,
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D=g+12i 2PV =6+9 P=4+6i 2V =2+3i.

We note that for such a choice of data the condition (3.1) is fulfilled.
Applying the hybrid method (I) with two iterations in the step 3/ (= 2) one
obtains
249 = 7.996505070225 + i 199932088107

2 = 6.010455791121 + i 02056973200
2{?) = 3.989544208879 + i 997943026799
2?) = 2.003494929774 +i B00679118928
With these approximations we calculate the valugg’ (z§2>)| (1 = 1,2,3,4) getting
the radii of the inclusion disk#® required in Procedure (la)
rad K? =410x 107, rad K{?) = 440 x 107%°,
rad K = 440 x 1071%, rad K =4.10x 107,
The inclusion diskngl), ...,Df) defined in Procedure (Ib) have the same cen-

ters as the diskéc!?, ..., K and the radii given by the already calculated values

LW EM), .., YW D)) Thus, this procedure possesses a low computational cost
but the produced error bounds are very rough; for example, one obtains

r{V'=161x107° r{P=392x 1075 1! =392x107°, »{V=161x 1075,

wherer® :=rad D).

Procedure (Ic) is realized using the interval formula (3.2) with the complex ap-
proximations%z), - 24(‘2) and the disksDﬁl) = {zl(z); rl(.l)} (given above). The following
inclusion disks are obtained:

Z&Y = (7.996505070219710254 + i 199932088106339498;83 x 1017},
7Y = {6.010455791182352056 + i@2056973291392465:93 x 1016},
7@ = {3.989544208817647944 + i897943026708607535;93 x 1016},
7@ = {2.003494929780289745 + iB)0679118936605022;83 x 1017}

From the above lists we observe that Procedure (Ic) gives the best estimates for
the zeros. To illustrate a very good performance of this procedure we note that three
“point” iterations (by (1.3)) and one interval iteration (by (3.2)) produce the inclusion
disks with the radii in the interval [83 x 10-33,9.96 x 10~%7].

In the case of the hybrid method (1) we first apply one “point” iteration by (1.3)
and obtain the inclusion disks

DO = {7.99651 +i 11999317; 000356,
DY) = {6.010469 + i 9002048; 001067,
DY) = {3.989531 +i 5997951; 001067,
D) = {2.003489 + i 3000683; 000356}

Then we take these disks as the initial inclusion disks for the zeros of the characteristic
polynomial (3.4) (that is, the eigenvalues of the matfii, ZZ(O) = D§°> (i=1,234).
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With these disks one iterates according to (1.4) getting the following inclusion inter-
vals:

Z?) = {7.996505070219710254 + i 199932088106339497;@2 x 10718},
7 = {6.010455791182352056 + i@02056973291392465;06 x 10~ 17},
7 = {3.989544208817647944 + i¥07943026708607535;07 x 10~ 17},
7@ = {2.003494929780289745 + iB00679118936605023; 8 x 1018}

These results are comparable with those produced by the hybrid method (1) — Proce-
dure (Ic), but the hybrid method (IlI) requires somewhat more numerical operations
since it needs more interval iterations.

4. The case of polynomials with interval coefficients

In applications the coefficients of polynomials are often not given as real or com-
plex numbers since they must be computed (cf. Weidner’s transformations [28]) or are
based on perturbed measurements. As it was mentioned in the book [16], the presence
of uncertaintyin initial data appears in case studies of the behaviour of mathematical
models; for instance, “parameter studies, sensitivity analysis, design analysis, effects
of inaccurate measurements or observational errors... ”. Since algebraic polynomial
are often involved in mathematical models in various scientific and engineering dis-
ciplines, the problem of finding the zeros (or, more precisely, ranges of zeros) of
polynomials with interval coefficients is of evident interest. In these cases we are lead
to consider an interval polynomial, i.e. a polynomial

(4.2) P(z) = Ag+ Az + ... + Ap_12" L+ 2

with interval coefficientsAo, ..., An—1, A; = {a;;¢;}, ¢ = 0,...,n — 1. For a given
interval polynomial (4.1) we will writeP € P if

(42) P()=bg+biz+---+b,_12" 1 +2" with bjed; (i=0,..,n—1).

Since we are concerned with a set of polynomials we have to deal with the set of
zeros

A:={zeC|3P P P(z)=0}

whose structure, in general, is involved. Assuming tRatgiven in (4.2) byb; =
mid(4;) = a;, has simple zeros and the coefficientsTofire sufficiently small.A
can be partitioned im disjoint subsets. We say thdt, ..., A,, arezero sets of? if
Ay, ..., A, are disjoint and coverl,

A=AU, ..., UA,,

and anyP € P has zero<y,...,&, with & € A; (i = 1,...,n). In this case we
may ask for disjoint inclusions of the zero setslifi.e. we are lead to the problem
of first to compute some pairwise disjoint intervadls, ..., Z,, with the property that
any P € P has exactly one zero i¥; for j = 1,...,n. In this way we provide
that Z, ..., Z,, include all the zero-sets &f. Secondly, we are going to make these
inclusion disks as small as possible.
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Let us note that, if the interval coefficients are too large or the zeroB afe
reasonable close, then the inclusion disks will be intersecting. We will not consider this
case here since Weierstrass’ interval method is defined only for disjoint disks. Thus,
in this section, we always assume that the interval coefficient® afe sufficiently
small. Then, in a preliminary step we compute good approximations of one complex
polynomial P € P, e.g. P given in (4.2) byb; = mid(4;) = a;. Let z1,..., 2,
be approximations of the simple zeros of this polynonfalThen P(z;) is a disk
computed by Horner's scheme using circular complex interval arithmetic,

Plzi) = (¢ (((zi + A1) - 2i ¥ Ap2) - 2 + .+ Ao) - 2 + Ag) - 2 + Ao
In that case Weierstrass’ correction in the form of a disk is given by

1P(z;)

H (zi — 2)

k=1,k#i

(4.4) W; = (i=1,...,n)

Throughout this section the absolute value (modulus) of a dlisk} is defined

by [{¢;r}| = |c| + r. If the interval coefficients off are small enough and the
approximations are sufficiently good then the following result leads to disk including
all the zero-sets of.

Theorem 4.1.Letzy, ..., 2z, € C\ {z1,..., 2, } be pairwise distinct and s&t and o;
as in Theorem B, wher@V | is now the modulus of disk (4.4).

If V1+6; > /6, +,/0; foranyi = 1, ..., n then the disks with centef — mid(W,)
and radius
2(1— 20',‘ - 62)

4.5) [W;|-(1-
( )| | ( 1_Ui_26i+\/(1_0i_26i)2+46i(1_20i_5i)2)

)+rad0/vi).

includes all the zero-setd; of .

Proof. Let P € P be given by (4.2). LeWW[, ..., WP denote the Weierstrass correc-
tions,
WP = P(z)

G-

k#i

Because of the inclusion property (using circular complex arithmetic for the compu-
tation of (4.4)), we haveP(z;) € P(z;), whence

e C.

(4.6) wlew,, |[WF|<|W; (=1..n).

We apply Theorem B for the polynomiét with ¢ = z; — W7, Let 6, o denote
numbers defined in Theorem B whilg, o; are defined in Theorem 4.1. Then, by
(4.6),

5ZP <5i7 O'Z-P<O'i (zZL,n)

Thus, Theorem B gives that there lies exactly one zer® dh the disk with center
z; — WF and radius
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2(1— 207 — 6P)

WPl —
1— 0P =267 +\/(1—oF — 26F)2+45F(1 — 20F — 6F)?)

)

By using the triangle inequality and the upper bounds&drand o7 we conclude
the proof. O

Remark 61f € := maxX{ey, ..., ¢, } tends towards zero, then the right hand side of (4.5)
tends towards the right hand side of (2.4). Hence, if we know good approximations of
the zeros of one” from P, then|W4|, ..., |W,,| are small so that Theorem 4.1 gives
disks including all the zero-sets @&f providede is sufficiently small.

Remark 7.Theorems A, B and 2.1 can also be applied giving inclusion disks for all
the polynomials off. The proofs are analogous to the proof of Theorem 4.1 and they
are also based on the inclusion property so that we omit details.

In view of Theorem 4.1 we assume in the following that we know some pairwise
disjoint disks 7, ..., Z,, including all the zeros of?. Then, we are interested in new
disks Z1, ..., Z,, having also this property but smaller radii.

We consider the following method, a natural generalization of the Weierstrass
inclusion method:

4.7) Zi= 2 — ) (zi=midZ;; i=1,..,n).

H(Zi — Zy)

k=1
ki
Letr; :=radZ;, 7 :=radZ;, r:= max{ry, ..., }, andsr":= max{ry, ..., 75, }.

Theorem 4.2.Assume that disk&y, ..., Z,, contain all the zero-sets @. Then for the
method (4.7) there holds the following:

() Zi,..., Z, include all the zero-sets df;

(i) 7=0(e+7r?).
Proof. In order to prove (i) letP € P have the zerosy, ..., (,. By assumption we
have(; € Z; for all i = 1,...,n. Due to the inclusion property anB(z;) € P(z;),

from (4.7) we have

P(z)

Gezi— , C Z,.

[1Gi— 20
k=1
ki

Note that(; € Z; and P(¢;) = 0 imply |P(z;)| = O(r;). Since rad?(z;) = O(e) and
rad (l_[Z=1,k¢i(Zi — Zx)) = O(r), using circular arithmetic operations we obtain

4.8 dZAZ = +r; s
(4.8) ra O(e+r k_lmax ¢_rk)

which concludes the proof.

Remark 8 Theorem 4.2 states that, for sufficiently smalindr, the interval method

(4.7) behaves like quadratic convergent method (i.e. the radii of the inclusion disks
decrease quadratically in any iteration step) at least in the first iteration steps where
we haver? > e. Sincee is fixed andr decreases we arrive within a finite number of
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iteration steps at?> < ¢ when we conclude from Theorem 4.2 that the radii will not
be decreased quadratically furthermore.

Remark 9.The iteration should be terminatedsifiS not smaller than, for instance,
r/2, i.e. if the radii are not improved considerably.

After termination one may use Theorem 4.1 to estimate the inclusions more
closely.

Remark 10Note that, by > 0, one cannot expect that the inclusion disks can become
arbitrarily small, their radii are at leaé(¢). This shows that the Weierstrass'’ interval
method (4.7) is optimal (up to constant factors) in the sense that the radii of the disks
are decreased to the smallest possible bal(d.

Remark 11From (4.8) we see that a greater R-order of convergence can be obtained
by the single step version of method (4.7),

s P Zi

Zi =z — i—1 ( 73 ’
[1Gi =20 [] Gi— )
k=1 k=i+1

at least in the first steps whert >> . If we apply only one iteration step (or a
few) we observe only the improvement of a few disks compared with the total step
method (4.7).

According to Remark 4 and the previous consideration it follows that, under the

condition (3.1), exactly one zero 6t lies in the disk{z; — W/"; 2|W/|}, and hence,

3

in the disk{z; 3|W/|}. In practice, instead ofiV’| we can take the modulus of
the diskW; given by (4.4) (see (4.6)). Applying the mentioned facts we are able
to construct the following practical algorithms for the inclusion of zeros of interval
polynomials:

1. For some reasonably good initial approximatioﬁ?%, ..., 29 apply M iterations
(usually two or three) of Weierstrass’ method (1.3) in ordinary complex arithmetic to

the polynomial (4.2) in order to obtain complex approximati@ﬁ‘é), ey 2 10 the
desired accuracy.

2. Construct the inclusion disks
. 5
(4.9) Z; = {200 M with M) = 4|W(Z§M>)| (i=1,..,n).
3. Apply only one iterative step of the interval method

(M)
(4.10) ZMD = 0 _ P (=1,...n)

o TIER -z
k#i

(formula (4.7)) to obtain the inclusion disks for the zeros-sets of a given interval
polynomial IP.

Example 2Let us consider the polynomial
P(2) = 2°+ {—4 - 5i;6}2* + {6 + 20i;6} 23
+{—4—30i;6}2% + {—15 + 20i;6} 2 + {75i;6}
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which coefficients are disks with the radids For demonstration, we have chosen
8 =10"% with £ = 3,6,9, 12, 15. First, we have applied three iterations by (1.3) with
the initial complex approximations

=12+22i PN =08-22i 0=-12-01i,
20 =28+01i, 20 =02+409i

to the polynomial whose coefficients are equal to the centers of disk-coefficients.
Clearly, for all five values o6 we have obtained the same complex approximations
given below.

2{¥ = 1000000006292 + i 00000011752
28 = 0.999999990316- i 2.000000013267
2 = ~1.000000004366 + iP4 x 10~8,

2{¥ = 3.000000005817- i 1.25 x 1078,

2 = 1.94 x 107° +i 500000000158

According to (4.9) we have constructed the inclusion digk&) = {=; r;(6)}
with the radiir;(6) given in Table 1.

Table 1.
6 r1(6) 2(0) 73(0) r4(8) 75(0)
10-15 1.67x 1078 205x10°8 1.65x 108 1.72x 1078 3.13x 1079
10712 1.67x 1078 205x10°8 165x 1078 172x 108 3.13x 10°°
10°8 291x 108 261x108 1.69x 108 4.16x 108 7.66x 108
106 1.26x 1078 575x 1077 6.24x 108 246x10°°% 7.35x 106
103 124x 1073 554x 104 459x10°° 244x 1073 7.34x 103

Finally, applying only one step of the interval formula (4.10) we have obtained
the disksZgg’l)((S) = {zl@l); R;(6)} which contain the zeros of the polynomi&lwith
the interval coefficients of the radids The upper index “(3,1)” indicates that these
disks are obtained after 3 point iterations and 1 interval iteration. For a fixed

centers,zgs’l) of all disks were the same for variodsand given by
21 = 1.0000000000000000 + i2000000000000000
281 = 0.9999999999999998 i 2.0000000000000000
28 = ~1.000000000000000 +i1 x 107,
231 = 3.0000000000000008 1.3 x 10~Y,
231 = 52 x 1078 +i5.0000000000000000

The radiusR;(6) of the diskstS’l)(é) are given in Table 2.

Table 2.
6 Ry(6) Ra(6) R3(6) R(6) Ry(5)
1071 1.23x 10715 715%x 10718 275x 1016 220x 10715 591x 1015
10712 9.92x 10713 444%x 1013 370x 1014 1.95x 1012 587x 1012
10°8 9.91x 10°° 443 x 10% 3.68x 1010 195 x 108 587 x 108
1076 9.91x 1077 443 x 1077 3.68 x 1078 195 x 10°® 587 x 1076
103 9.94 x 107% 444 x 107% 369 x 1075 1.95 x 1073 588 x 103
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5. The zeros of analytic functions

Let D be a given closed region in the complex plane with the simple smooth contour
I" and the interior inf". Let z — f(z) be an analytic function which has exactly
simple zerogy, . . ., ¢, inside D. Then following Smirnov [26]f can be represented

as

(5.1) f@=expE)[[-¢) (zeintD),

J=1

where z — y(z) is an analytic function in inf’ such thatz(z) = exp @(z)) #
0 forallz €intI.
In this section we will consider Weierstrass’ method in ordinary complex arith-
metic for the determination of all zeros inside a given redibof an analytic function
of the form (5.1). We note that the number of zerosf f that belong to inf” can be
determined by th@rgument principle Furthermore, the analytic functigninvolved
in (5.1) is given by
(5.2) so)= 1 / logl(w — )" fw)]
r

2mi w—z

wherec is an arbitrary point insidé” such thatf(c) # 0 (see [2]). Methods for finding
zeros of analytic functions belonging to this class have been considered in the papers
[13], [21], [22] and [23]. As it was advised in [13], the contour integral (5.2) should
be computed with satisfactory effect using trapezoidal quadrature rule. Computational
aspect of the calculation of the valuéz;) at = = z; and the determination of the
number of zeros: were studied in details in the papers [13], [22], [23] so that we
will not discuss these points here.

Starting from (5.1) we find

£(2)
2 [[¢ - &)

J=1
i#i

(5.3) Gi=z2—

Substituting the exact zerdas, ..., ¢, on the right-hand side of (5.3) by their approx-
imations zy, ..., z, and takingz = z;, we will obtain an approximation of;, say
2i1

(5.4) 5=z — {i(zi) (i=1,..n),
z(2;) H(Zi - Zj)
T
with
55) (o) = eXp(Zj-ri /F |og[(w;f):f(w)] dw).

Formula (5.4) evidently resembles Weierstrass’ formula (1.2). In practice, the
contour integral involved in (5.5) should be computed by numerical integration, for
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example, by the trapezoidal quadrature rule. Assuming that we have found initial ap-

proximationsz{?, ..., 2 to the zerogs, ..., ¢, of f (for the zero searching procedure
see, e.g. [7] [15]), from (5.4) we can establish

Algorithm (W): For eachm =0,1,... letfori=1,...,n

(_m,)
wgm) = ‘}:‘1(21 ) (Z =1.., n)a (56)
o™ T 4m)
=1
J#i
A = ) ), (5.7)

supposing that all approximation§™, ..., 2™ belong toint I".

Theorem 5.1.If the initial approximationsz\”), ..., 2 are reasonably close to the
zeros(y, ..., ¢, of f, then the iterative method (W) has a quadratic convergence.

The proof of Theorem 5.1 will be given in the following as a consequence of the
analysis of numerical stability of the iterative methdd)( concerning the error of
numerical integration in calculation ofz;).

For simplicity we omit the iteration index and write and 7; instead of-{™ and
2m*D) Let o = Op(B) mean thata| = O(|3|) (the same order of moduliyy and 3
being real or complex numbers, wheateis Landau’s symbol. Furthermore, let

€ =2 —G, €=z—¢, ‘€|:miax|fi‘» P:miaXPi,

wherep; is the upper error bound obtained in calculationyff) given by (5.2) at the
point z = z;. As recommended by Henrici [12], to control the error of calculation (in
our case, the error of humerical integration) it is desirable to deal with a small disk
Z ={c;r} instead of a (approximate, uncertain) complex valudsing the centered
form of the exponential complex interval function (see [18]) we introduce the disk

X, = elviri} = {evi;]evi|(e” — 1)}.

wherey; = y(z;) is exactly the value for whiclf(z;) = exp(y;) H;Ll(zi — ;). This is
possibly to achieve by the fitting, increasing slightly the ragigsAssuming that the
error of numerical integration is reasonably small, we have

P2
e —1=(1+p; + 2’ +-)=1%p;,
so that
X; = {e’; 1€ pi} = €{1;pi}.
Following the technique for the analysis of numerical stability by circular arith-
metic, presented in [17], we start from (5.7) and obtain
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f(z)

€ =2 — G =2 —CG—

2(z) [ [z -

J#i

e [ [ - ¢)
=€ — o8 :€i(
(L []Gi -2
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f(z)

c Ez — €; —
Zj) X7 H(Z, — Zj)

J#i

g (5D DI S )
i gt

J#i
Hence, using the properties of circular arithmetic,

i €; €
radB, = [alO(), midE: = " (—pf -3 - oM(e2)).

i PTR
It is possible to find some positive constants;, oz ;, oz; and fBy; so that
radE; < o ;lelp;, |midE;| < |61‘|(042,¢P12 +aae]),

whence

|€z‘ < ‘mld El| +radE; < |ei|(a27ipf + 043,1‘6) +ay;

€ilpi = |€i|(aw,ipi + Bilel).

Let €™ = 2™ _ ¢, and || = max |"™)|. From the last relation we can
conclude the following:

(i) Theoretically, ifpgm) =0, then we have
e D] < [0 D) = 0P,

which means that AlgorithmW/) has aquadratic convergencdn this way we have
proved Theorem 5.1.

(i) If in each iteration stepn = 0,1, ... the errors of numerical integratiqaiim)
are at least of the same order [a&”|, then Weierstrass-like method (5.@eserves
a quadratic convergence. This fact points to good numerical stability of this method
in the presence of the error of numerical integration involved in the iterative formula
(5.7). Numerical results of Example 3 shown in Table 3 confirm this assertion.

(iii) In the cases when the errop§™ are larger in size compared t6™|, that is

P = O(|éf™|¥) (0 < k < 1), then the convergence of AlgorithriM) is superlinear
or even onlylinear.

From (ii) we see that the requirement for preserving quadratic convergence of
Algorithm (W) needs the increase of the accuracy of numerical integration as the
number of iteration steps grows. Practical examples show that, if the error of numerical
integration is not reasonable large, then its influence is small, especially in later
iterations. Moreover, due to a simple structure of Algorithvdd){( this influence is
smaller compared to some other algorithms of higher order (see [22], [23]).

In connection with the above comments we present the following example for the
sake of demonstration.

Example 3Let us consider the analytic function

f(z) =expz) — 2cos(Z) — 2
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inside the diskD = {z : |z| < 1.5}. The number of zeros of was found by the com-
putable argument principle (see [11]) calculating the variation of the argument step-
wise along the polygon with verticég, ..., Vas, Vas+1 = V1 belonging to the contour
I'={z:|z| = 15}. The real numbers{® = —1.5 > = —05 >{¥) = 0.8 were taken

as starting approximations. For the simulation, we have calculgtéd= (=) (i =
1,2,3; m=0,1,...) to very high accuracy (more than 33 significant digits) and then
we have incorporated artificially “parasite” errors of the fornT i@k = 2,8, 16). In
other words, we have takeyf™ + 10~* instead of (almost) exact valug§™. The
maximal errorge(™)| of approximations to the zeros faz = 3(1)7 and for the simu-
lated errors of numerical integratign = 102, p, = 1078, p3 = 10" andp, = 1033

are given in Table 3. Actuallyy, is the assumed maximal accuracy of the employed
arithmetic used for the model “the absence of error of numerical integration”.

Table 3.

\6(3)| |E(4)\ |E(5)| |E(6)\ |E(7)\
p1=10"2 956x 1074 425x10°% 913x10°° 1.95x10°1 417x10°
p2=10"8 885x10% 190x10°% 889x10712 195%x10°20 412x10"2°
p3=10"16 885x104 190x10° 6 889x 1012 1.94x10%2 1.00x 103
ps=10"33 885x10% 190x10° 889x10°12 194x10°22 1.00x 1033

It is evident from Table 3 that the iterative method (5.7) produces better results
when the error of numerical integration is smaller, especially in latter iterations. We
see that a crude error 18 does not permit quadratic convergence of the iterative
method (5.7). If this type of error is smaller then the convergence is of the second
order (although it is not the case in the first iterations because of crude initial approx-
imations). In the presence of the errors smaller than*d.¢he accuracy of the gener-
ated approximations is limited due to the finite precision of the applied floating-point
arithmetic. We can also observe that the accuracy of the produced approximations,
expressed by the valugg™)|, for p, = 1078, p3 = 10716 and p, = 10-%3 is almost
the same (except in the seventh iteration) which points that the influence of the er-
ror of numerical integration is relatively small. Such conclusion can be also drawn
according to the results of the first four iterations; the obtained approximations are
almost of the same accuracy for all cases.

The presented example coincides very well with the results of the analysis of
numerical stability presented previously. The same results have been also obtained in

a real case when we performed the numerical integration to calcyl&te
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