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Domain Decomposition for a Non-smooth Convex
Minimization Problem and its Application to Plasticity
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Lions’s work on the Schwarz alternating method for convex minimization problems is generalized to a
certain non-smooth situation where the non-differentiable part of the functionals is additive and independent
with respect to the decomposition. Such functionals arise naturally in plasticity where the material law is a
variational inequality formulated inL2(�). The application to plasticity with hardening is sketched and gives
contraction numbers which are independent of the discretization parameterh and of a possible regularization
of the non-smooth material law. © 1997 by John Wiley & Sons, Ltd.
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1. Introduction

Domain decomposition is proved to be an important tool for parallel computations in the
numerical analysis of partial differential equations. The Schwarz method does converge
for many different types of problems because of two reasons: the first is that it has a
variational interpretation and the second one is its interpretation in terms of the maximum
principle [11]. Motivated by the study of elastoplasticity (see section 4), we consider a
minimization problem forf = φ +ψ whereφ : X → R is smooth and uniformly convex,
butψ : X → (−∞,+∞] is just convex and may be some discontinuous indicator function
(of a convex closed subset). We stress that the minimization problem can also be recast as
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178 C. Carstensen

a variational inequality where we seeku ∈ X such thatψ(u) < ∞ and

Dφ(u; u− v) ≤ ψ(v)− ψ(u) (v ∈ X) (1.1)

Lions [11] proved geometric convergence of the Schwarz alternating method, a domain
decomposition method, in the caseψ = 0 by variational arguments and for a special case
forψ 6= 0 by using the maximum principle. Therefore, an extension of his proof to plasticity
problems seems not obvious.

In this paper, we make use of the observation that, typically in plasticity, the material law is
local, i.e., the non-smooth contributions are formulated pointwise in the domain�. Then, a
direct decomposition is possible leading to a non-overlapping partition of internal and stress
variables. Loosely speaking, the goal of this paper is to prove that the following philosophy
is actually true: if there is no overlapping in the decomposition of some components, then
the functional is allowed to be non-smooth in these components. A precise statement will
be given in section 2 where Theorem 2.1 guarantees linear convergence of the domain
decomposition method (with a contraction number which is independent of discretization
parameters). An outline of the rest of the paper is as follows: all hypotheses are introduced
in section 2 where the convergence result is stated in Theorem 2.1 and proved in section
3. After a brief introduction of elastoplasticity with hardening in section 4, examples of
application of domain decomposition methods in plasticity conclude the paper with section
5.

2. General result

LetX1, . . . , XJ beJ > 1 subspaces of the normed vector spaceX with dualX∗ satisfying

X =
J∑
j=1

Xj (2.1)

We assume that there are linear mappingsPj : X → Xj , j ∈ {1, . . . , J }, with

P1 + · · · + PJ = Id (2.2)

and that there exists a constantCX > 0 such that for all subsets3 ⊆ {1, . . . , J } and all
x ∈ X there holds

‖
∑
λ∈3

Pλx ‖X ≤ CX · ‖ x ‖X (2.3)

We consider the minimization of a functionalf : X → (−∞,+∞] which can be decom-
posed as

f = φ + ψ (2.4)

whereφ : X → R is Fŕechet-differentiable andDφ is uniformly elliptic and Lipschitz
continuous, i.e., there are two constantsα andL (0 < α,L < ∞) such that the Fŕechet-
derivative satisfies, for allu, v ∈ X,

α · ‖ u− v ‖2
X +Dφ(u; v − u) ≤ φ(v)− φ(u) (2.5)

‖Dφ(u; ·)−Dφ(v; ·) ‖X∗ ≤ L · ‖ u− v ‖X (2.6)
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Domain Decomposition in Plasticity 179

The functionalψ : X → (−∞,+∞] is convex, lower semi-continuous andψ is assumed
to be additive and independent with respect to the partition (2.1) in the sense that, for all
(x1, . . . , xJ ) ∈ X1 × · · · ×XJ ,

ψ(

J∑
j=1

xj ) =
J∑
j=1

ψ(xj ) (2.7)

and, for allj ∈ {1, . . . , J }, for all xj ∈ Xj and for allyj ∈ ∑J
k=1,k 6=j Xk, there holds

ψ(xj + Pjyj ) = ψ(xj ) (2.8)

Under the preceding assumptions, we consider the following domain decomposition method.

Algorithm 2.1. Givenu0, compute a sequence(uν)ν∈I ∈ XI , I := {0, 1/J , 2/J , 3/J ,
. . . }: For all n = 0, 1, 2, 3, . . . and allj = 1, . . . , J determineun+j/J ∈ un+(j−1)/J +Xj
that minimizes the functionalf on the affine subspaceun+(j−1)/J +Xj .

Remark 1.The assumptions guarantee thatf is coercive and strictly convex. Hence there
exists a unique minimizeru of f in X and each minimization problem in Algorithm 2.1
has a unique solution [4,5,16]; in other words, Algorithm 2.1 is feasible.

Theorem 2.1. Letu be the minimizer off inX and let the sequence(uν)ν∈I be generated
by Algorithm 2.1 with initial datau0. Defineq := γ /(1 + γ ), γ := J · C2

X · L2 · α−2/2
andC0 := 2(1 + γ ) · α−1 · (f (u0)− f (u)). Then, for anyν ≥ 1 there holds

‖ u− uν ‖2
X ≤ C0 · q [ν] (2.9)

Remark 2.In caseψ = 0, Theorem 2.1 was proved by Lions in [11, Theorem I.3].

Remark 3.The philosophy mentioned in the introduction is hidden in the assumptions (2.7)
and (2.8): no smoothness onψ is required because the minimization ofψ globally (i.e., on
X) can be performed locally (i.e., on eachXj separately).

3. Proof of the theorem

Let ν = n+j/J ≥ 1. Sincef (·+uν)|Xj has a minimum at 0, we have from 0∈ ∂f (uν)|Xj
and the sum rule∂f (· + uν)|Xj = ∂φ(· + uν)|Xj + ∂ψ(· + uν)|Xj [4,16], for allη ∈ Xj ,

Dφ(uν; η) ≤ ψ(uν − η)− ψ(uν) (3.1)

Combining (2.5) and (3.1) forη = uν − uν−1/J we conclude

α · ‖ uν − uν−1/J ‖2
X ≤ f (uν−1/J )− f (uν) (3.2)

According to (2.5),

α · ‖ u− uν ‖2
X + φ(uν)− φ(u) ≤ Dφ(uν; uν − u) (3.3)
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180 C. Carstensen

Utilizing (2.2) and understanding all lower indices inP` andX` modulo J (i.e., e.g.,
P` = Pm iff ` ≡ m (mod J )), we write

uν − u =
j∑

k=j−J+1

Pk(uν − u) (3.4)

As in (3.1) we obtain for allk ∈ {j − J + 1, . . . , j} andη = Pk(uν − u)

Dφ
(
un+k/J ;

k∑
m=j−J+1

Pm(uν − u)
) ≤ Dφ

(
un+k/J ;

k−1∑
m=j−J+1

Pm(uν − u)
)

+ψ(un+k/J − Pk(uν − u))− ψ(un+k/J )

By using these identities successively fork = j, j − 1, . . . , j − J + 1, we infer from (3.4)

Dφ(uν; uν − u) ≤
j∑

k=j−J+1

(
ψ(un+k/J − Pk(uν − u))− ψ(un+k/J )

)

+
j∑

k=j−J+1

(
Dφ(un+k/J ; ·)−Dφ(un+(k−1)/J ; ·))( k−1∑

m=j−J+1

Pm(uν − u)
)

According to (2.3) and (2.6), this leads to

Dφ(uν; uν − u) ≤ CX · L · ‖ u− uν ‖X ·
j∑

k=j−J+1

‖ un+k/J − un+(k−1)/J ‖X (3.5)

+
j∑

k=j−J+1

(
ψ(un+k/J − Pk(uν − u))− ψ(un+k/J )

)

The last sum on the right-hand side of (3.5) will be expressed by utilizing (2.7) and (2.8).
By construction of Algorithm 2.1, we have

uν − un+k/J ∈
j∑

m=k+1

Xm (k ∈ {j − J + 1, . . . , j}) (3.6)

which, according to (2.8), yields

ψ(Pk(un+k/J − uν)+ Pku) = ψ(Pku) and ψ(Pkun+k/J ) = ψ(Pkuν) (3.7)

Furthermore, (2.2), (2.7), and (2.8) lead to

ψ(un+k/J − Pk(uν − u))− ψ(un+k/J )

=
j∑

m=j−J+1

ψ(Pmun+k/J − PmPk(uν − u))−
j∑

m=j−J+1

ψ(Pmun+k/J )

= ψ(Pkun+k/J − PkPk(uν − u))− ψ(Pkun+k/J )
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and verify

ψ(Pk(un+k/J − uν + u)) = ψ(Pkun+k/J − Pk(uν − u))

= ψ(Pkun+k/J −
j∑

`=j−J+1

P`Pk(uν − u))

= ψ
(
Pk(un+k/J − Pk(uν − u))−

k+J−1∑
`=k+1

P`Pk(uν − u)
)

= ψ
(
Pkun+k/J − PkPk(uν − u)

)

Hence, we obtain

ψ(un+k/J − Pk(uν − u))− ψ(un+k/J ) = ψ(Pk(un+k/J − uν + u))− ψ(Pkun+k/J )

and by (3.7)

ψ(un+k/J − Pk(uν − u))− ψ(un+k/J ) = ψ(Pku)− ψ(Pkuν)

Combining this with (3.2) and (3.5), we conclude

Dφ(uν; uν − u) ≤ ψ(u)− ψ(uν)+ CX · α−1/2 · L · ‖ u− uν ‖X

·
j∑

k=j−J+1

(
f (un+(k−1)/J )− f (un+k/J )

)1/2

In the following we writeδµ := f (uµ)− f (u) andεµ := ‖ u− uµ ‖X so that (3.3) yields

α · ε2
ν + δν ≤ CX · L · α−1/2 · εν ·

j∑
µ=ν−1+1/J

(
δµ−1/J − δµ

)1/2

≤ γ · (δν−1 − δν)+ 2−1 · α · ε2
ν

which implies
α

2(1 + γ )
· ε2
ν + δν ≤ q · δν−1 (3.8)

First, (3.8) verifiesδν ≤ δ0 · q [ν] and, secondly, the assertion (2.9). The proof is finished.

Remark 1.At first glance, it seems that it was not used thatu is a minimizer. Indeed, in the
proof, we merely use thatu ∈ X satisfiesf (u) ≤ f (uν) for all ν ∈ I . From (3.2) and from
the convergence off (uν) (because the sequence is bounded and monotone decreasing) we
infer thatuν is a Cauchy sequence and hence convergent towards someu∗. Isu∗ a minimizer
of f ? At this stage, the standard technique [11] requires some continuity off to guarantee
thatu∗ is a minimizer off ; but here, this continuity is missing. As a modification, we fixu
arbitrarily such thatδµ remains non-negative: everyu with f (u) ≤ lim inf ν→∞ f (uν) will
be sufficient. At the end, the above estimates show limν→∞ uν = u which, then, proves
thatu = u∗ is indeed the unique minimizer off .
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182 C. Carstensen

4. Elastoplasticity

For convenient reading, we outline in this section the strong formulation of small strain
elastoplasticity with kinematic or isotropic hardening as used in engineering literature and
recast the problem to a dual form which fits into the frame of our main result in section 2.

The body under consideration occupies a bounded Lipschitz domain� in Rn. Local
equilibrium for the stress fieldσ ∈ L2(�; Rn×n), requires

σ = σT in � (4.1)

div σ + b = 0 in � (4.2)

whereb is the vector field of given body forces and we understand (4.2) in the sense of
distributions.

With the displacement fieldu ∈ H 1
0 (�)

n (H 1
0 (�) being the Sobolev space of functions

in L2(�) with a weak derivative inL2(�)n and vanishing traces on the boundary, i.e.,
u|∂� = 0) we associate the linear Green strain tensor

ε(u) := (∇u+ (∇u)T)
/2 a.e. in � (4.3)

that is, the symmetric part of the gradient ofu. In the context of small strain elastoplasticity,
the strainε(u) is split additively into two contributions

ε(u) = Aσ + p a.e. in � (4.4)

where the linear mappingA : Rn×n → Rn×n describes linear elasticity and is symmetric
and positive definite. The elasticity operator isC := A−1 : Rn×n → Rn×n andAσ is
the elastic andp is the plastic part of the total strainε(u). Note that the elastic material
behaviour is characterized byp = 0 and, here, we need another material law to determinep.
Moreover, there are restrictions on the stress variables prescribed by a dissipation-functional
ϕ which is convex and non-negative but may be+∞. The first restriction is that

ϕ(σ, α) < ∞ a.e. in � (4.5)

In this way, the hardening parameterα steers the set of admissible stresses; sometimes, the
couple(σ, α) is called generalized stresses and they are called admissible ifϕ(σ, α) < ∞.

The evolution ofp andα is given by the so-called Prandtl–Reuß normality law which
states that for all other generalized stresses(τ, β) there holds

ṗ : (τ − σ)− α̇ : (β − α) ≤ ϕ(τ, β)− ϕ(σ, α) a.e. in� (4.6)

Here, the dot denotes time derivatives, e.g.,ṗ := ∂p
∂t

, and : is a scalar product of matrices
such thatA : B = ∑n

i,j=1Aij · Bij if A,B ∈ Rn×n. In the same way, we define the

Euclidean length| · | by |A| := √
A : A if A is a matrix.

Remark 1.The minus sign in front oḟα : (β − α) is not a misprint. It corresponds to the
plus sign in front ofṗ : (τ − σ) = ε̇(u) : (τ − σ)− A−1σ̇ : (τ − σ) because, here,̇σ has
a minus sign as well.

According to the Prandtl–Reuß normality law (4.6) the problem is time dependent and so
we are seeking variables in a time interval [0, T ]. Given a Hilbert spaceH , letW1,p(0, T ;H)

Numer. Linear Algebra Appl., Vol. 4, 177–190 (1997) © 1997 by John Wiley & Sons, Ltd



Domain Decomposition in Plasticity 183

be the space of functionsf : [0, T ] → H that are absolutely continuous such thatḟ exists
and satisfies‖ḟ ‖ ∈ Lp(0, T ; R). Given an exterior loadb ∈ W2,2(0, T ;L2(�)n) (i.e., b
andḃ belong toW1,2(0, T ;L2(�)n) with b(0) = 0, the time-dependent problem reads as
follows.

Definition 4.1. (Problem (P )). Find(u, p, σ, α) ≡ (u, (p, σ, α)) ∈ W1,2
(
0, T ;H 1

0 (�)
n×

L2(�; Rn×nsym × Rn×nsym × Rm)
)

with (u, p, σ, α)(0) = 0 and satisfying, almost everywhere

in time, (4.1)–(4.6).

In the examples for a dissipation functionalϕ there is a given yield function8 such that
the admissible generalized stresses are characterized by

8(σ, α) ≤ 0 in � (4.7)

(To guarantee that the set of admissible generalized stresses is convex, we require that8 is
convex.) Then,ϕ is the characteristic functional of the set of admissible generalized stresses,
i.e.,

ϕ(σ, α) :=
{

0 if 8(σ, α) ≤ 0
∞ if 8(σ, α) > 0

(4.8)

In this case, (4.5) reads8(σ, α) ≤ 0 and for all(τ, β) with 8(τ, β) ≤ 0 there holds

ṗ : (τ − σ)− α̇ : (β − α) ≤ 0 a.e. in � (4.9)

Example 1. (Isotropic hardening). Letm = 1, i.e.,α is a scalar, and define

8(σ, α) := |devσ | − σy · (1 +H · α) (4.10)

in the caseα ≥ 0 (and8(σ, α) = ∞ if α < 0 which, thereby, is not allowed). Here,

devA := A− 1

n
· (trA) · In (A ∈ Rn×n)

where trA := ∑n
i=1Aii andIn is then × n-unit matrix. The material constantσy > 0 is

the yield stress and the constantH > 0 is the modulus of hardening. Then, there exists a
unique solution of Problem (P ) provided the exterior loadb is slightly more regular (and
then there holds Johnson’s so-called safe-load assumption) [2,6,7,9].

Example 2. (Kinematic hardening. Let m = n(n + 1)/2 and identifyRm ≡ Rn×nsym

:= {A ∈ Rn×n : A = AT }. As the stressσ we considerα (pointwise) inRn×nsym and
define

8(σ, α) := |devσ − devα| − σy (4.11)

Then, there exists a unique solution of Problem (P ) provided the exterior loadb is slightly
more regular (and then there holds Johnson’s so-called safe-load assumption) [2,6,7,9].

Example 3. (Perfect plasticity). The casem = 0 of no hardening, i.e., the internal variables
are absent, the von-Mises yield condition is given by

8(σ) := |devσ | − σy (4.12)
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184 C. Carstensen

Although the resulting problem is covered in this section, the missing hardening results
in a different functional analytical frame. There exist solutions of Problem (P ) in a much
weaker sense (spaces of bounded deformation) if the load is limited (here, the safe-load
assumption is a very restrictive assumption) [2,12,13]. This excludes the so-called perfect
plasticity from our study of domain decomposition.

Example 4. (Viscoplasticity). In Examples 1, 2 and 3 the dissipation functional (4.7) is
non-smooth and can be approximated by a smoother functional. The Yosida-regularization
leads to viscoplastic material description in the sense of Perzyna where, given a viscosity
µ > 0, for all preceding examples of8 we define

ϕ(σ, α) := 1

µ
inf

{|(σ − τ, α − β)| : (τ, β) ∈ Rn×nsym × Rm with 8(τ, β) ≤ 0
}

(4.13)

Forµ > 0 there exists a unique solution of Problem (P ) [7,12]. The dissipation functional
(4.11) is, in some sense, converging towards (4.7) asµ → 0 [12].

The time-dependent problem is solved with an implicit time discretization such as gen-
eralized mid-point rules like Crank–Nicolson or backward Euler schemes. The schemes
converge under some regularity assumptions on the solutions [3,6,9] so we focus on the
numerical analysis of one typical time step written in the standard weak form.

Definition 4.2. (Problem (P ∗
1t )). Let H ⊆ H 1

0 (�)
n, Ln×nsym ⊆ L2(�; Rn×nsym), L

m ⊆
L2(�; Rm) be closed subspaces. Givenu0 ∈ H , p0, σ0 ∈ Ln×nsym, and, α0 ∈ Lm at
some timet0 one step of a backward Euler scheme consists of seeking(u, p, σ, α) ∈
H × Ln×nsym × Ln×nsym × Lm, which approximates the variables at timet1 = t0 + 1t , and
satisfies ∫

�

σ : ε(v) dx =
∫
�

v · b dx (4.14)

for all v ∈ H , whereb := b(t1) ∈ L2(�)n, and, for all(τ, β) ∈ Ln×nsym × Lm there holds

∫
�

{
(p−p0) : (τ − σ)− (α− α0) : (β − α)} dx ≤ 1t

∫
�

ϕ(τ, β)dx −1t
∫
�

ϕ(σ, α)dx

(4.15)
where it is understood that

∫
�
ϕ(σ, α)dx < ∞ and we set

p = ε(u)− C−1σ (4.16)

Remark 2. For the backward Euler scheme, the derivatives(ṗ, α̇) are approximated by
differences(p − p0, α − α0)/1t and the conditions are satisfied att1. The generalized
mid-point rule leads to a problem with a different update which is essentially the same. It
is known that there exists a unique solution to Problem (P ∗

1t ) [3,6,7,8,9,10].

Remark 3.Definition 4.2 includes the continuous case (i.e., no space discretization) forH :=
H 1

0 (�)
n, Ln×nsym := L2(�; Rn×nsym), L

m := L2(�; Rm). Furthermore, a space discretization
is included in Definition 4.2 as well. For example, if7 is a regular triangulation in the sense
of Ciarlet [1], letS1(7) be the set of continuous functions with vanishing boundary values
which are affine on each elementT ∈ 7, andS0(7) the space of functions that are constant
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on each elementT ∈ 7. Then, letH := S1(7)n, Lm := (S0(7))m etc. Further details are
given in the next section in the context of domain decomposition.

In [6], the problem in Definition 4.2 is called the dual formulation. The primary problem
is obtained utilizing notions in convex analysis as follows. The condition (4.15) reads

1

1t
(p − p0,−α + α0) ∈ ∂ϕ(σ, α) (4.17)

when we use the notion of a subdifferential

a ∈ ∂ϕ(b) if and only if for all c a : (c − b) ≤ ϕ(c)− ϕ(b) (4.18)

Sinceϕ is convex, (4.17) is equivalent to

(σ, α) ∈ ∂ϕ∗(
1

1t
(p − p0, α0 − α)) (4.19)

whereϕ∗ is the dual functional (also called Fenchel-transformed) toϕ, given by

ϕ∗(b) := sup
c

{b : c − ϕ(c)} (4.20)

We refer to standard references on convex analysis [4,16].
Let us postpone the computation ofϕ∗ to the end of this section and recast (P ∗

1t ) to the
primal problem (4.14), (4.16), (4.19). If we use (4.16) to eliminateσ , we finally obtain the
following equivalent problem (recallA−1 = C).

Definition 4.3. (Problem (P1t )). Under the same conditions as in Definition 4.2 we seek
(u, p, α) ∈ H × Ln×nsym × Lm satisfying, for all(v, q, β) ∈ H × Ln×nsym × Lm,

∫
�

C[ε(u)− p] : ε(v) dx = ∫
�
v · b dx (4.21)∫

�

{
C[ε(u)− p] : (1tq − p + p0)+ α : (1tβ − α0 + α)

}
dx (4.22)

≤ 1t

∫
�

ϕ∗(q, β)dx −1t

∫
�

ϕ∗((p − p0)/1t, (α0 − α)/1t) dx

With standard arguments one proves that Problem (P1t ) is the stationary condition of a
minimizer in the minimization problem (M), i.e., a minimizer off is a solution of (P1t )
and vice versa.

Definition 4.4. (Problem (M)). Under the same conditions as in Definition 4.3 we seek a
minimizer(u, p, α) of

f (u, p, α) := 1

2

∫
�

C[ε(u)− p] : (ε(u)− p) dx + 1

2

∫
�

|α|2 dx (4.23)

+1t
∫
�

ϕ∗((p − p0)/1t, (α0 − α)/1t) dx −
∫
�

b · u dx (4.24)

in H × Ln×nsym × Lm.

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 177–190 (1997)



186 C. Carstensen

Altogether, we indicated in this section that a time-discretization of the elastoplastic
evolution leads typically to the Problem (M) which is of the form considered in section 2.
Further details on possible subspaces are discussed in the next section.

A computation of the duals of the dissipation functionals, as described above concludes
this section.

Example 5. (Isotropic hardening). Let ϕ be defined by (4.8) with8 given in (4.10), we
have, for allA ∈ Rn×nsym andB ∈ R,

ϕ∗(A,B) = sup
|devσ |≤σy(1+Hα)

(σ : A+ αB)

where|devσ | ≤ σy(1+Hα) indicates that in the supremum(σ, α) is an arbitrary element
satisfyingσ ∈ Rn×nsym, α ≥ 0 and|devσ | ≤ σy(1 + Hα). Assumeϕ∗(A,B) < ∞. Since
(σ, α) = s · (In×n, 0) satisfies those conditions for anys ∈ R, ϕ∗(A,B) < ∞ implies
trA = 0. Furthermore, for allα ≥ 0,8(λA, α) ≤ 0 if λ := σy(1 +Hα)/|A|. Hence,

λ|A|2 + αB = |A|σy + α(B +Hσy |A|) ≤ ϕ∗(A,B) < ∞

for all q ≥ 0. Thus, we obtainB +Hσy |A| ≤ 0. According to Cauchy’s inequality, recall
A = devA by trA = 0,

devσ : devA+ qB ≤ σy(1 +Hα)|devA| + αB = σy |A| + α(σyH |A| + B)

for all admissible(σ, α). The above calculations prove

ϕ∗(A,B) =
{
σy |A| if tr A = 0 ∧ B +Hσy |A| ≤ 0
∞ if tr A 6= 0 ∨ B +Hσy |A| > 0

(4.25)

Given (u, p) in Problem (M), the minimization with respect toα concerns only the term
1
2

∫
�

|α|2 dx and the side restrictionB + Hσy |A| ≤ 0 whereA = (p − p0)/1t and
B = (α0−α)/1t . The side restriction readsα ≥ α0+Hσy |p−p0| ≥ 0 (becauseα0, α ≥ 0)
and so the minimization with respect toα has the unique solutionα = α0 +Hσy |p− p0|.
Putting this into the functionalf , we get a simpler minimization problem where we seek a
minimizer(u, p) of

f (u, p) := 1

2

∫
�

C[ε(u)−p] : (ε(u)−p) dx+ 1

2

∫
�

(α0 +Hσy |p−p0|)2 dx (4.26)

+
∫
�

σy |p−p0| dx−
∫
�

b · u dx

in H × Ln×nsym under the side restriction tr(p − p0) = 0.

Remark 4.Note that the side restriction reduces then(n + 1)/2 unknown variables ofp
(pointwise in the continuous case or on each element in the space-discrete situation) to
n(n+ 1)/2 − 1 and is easily implemented in numerical calculations.

Example 6. (Kinematic hardening). Letϕ be defined by (4.8) with8 given in (4.11), we
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have, for allA,B ∈ Rn×nsym

ϕ∗(A,B) = sup
|devσ−devα|≤σy

(σ : A+ α : B)

whereσ, α ∈ Rn×nsym are arbitrary under the given restriction. Arguing as in Example 5
assumeϕ∗(A,B) < ∞ and infer trA = 0 = trB. Since(σ, σ ) is admissible for any
σ ∈ Rn×nsym, we further concludeB = −A. Then, again withA = devA,

ϕ∗(A,B) = sup
|devσ−devα|≤σy

dev(σ − α) : A = sup
|devσ |≤σy

devσ : A = σy |A|

which finally shows

ϕ∗(A,B) =
{
σy |A| if tr A = 0 ∧ B = −A
∞ if tr A 6= 0 ∨ B 6= −A (4.27)

The restrictionB = −A for ϕ∗(A,B) < ∞ allows us to reduce the set of variables because
α = p − p0 + α0. Indeed, in Problem (M) we seek a minimizer(u, p) of

f (u, p) := 1

2

∫
�

C[ε(u)− p] : (ε(u)− p) dx + 1

2

∫
�

|p − p0 + α0|2 dx (4.28)

+
∫
�

σy |p − p0| dx −
∫
�

b · u dx

in H × Ln×nsym under the side restriction tr(p − p0) = 0.

Example 7. (Perfect plasticity). If ϕ is defined by (4.8) with8 given in (4.12), then a
simple calculation shows, for anyA ∈ Rn×nsym,

ϕ∗(A) =
{
σy |devA| if tr A = 0

∞ if tr A 6= 0
(4.29)

5. Domain decomposition in plasticity

In this section, we consider Algorithm 2.1 in the minimization problem (M) of elastoplas-
ticity described in section 4. In the case of isotropic and kinematic hardening, we seek the
minimizer(u, p) of f inH ×LwhereH ⊆ H1

0 (�) andL ⊆ {r ∈ L2(�; Rn×nsym) : tr r = 0}
are closed subspaces (we shiftedp := p − p0 so thatL is a vector space). The functionf
has the form (2.4), i.e.,f = φ + ψ , with

φ(u, p) := 1

2

∫
�

C[ε(u)− p] : (ε(u)− p) dx + 1

2

∫
�

k2|p|2 dx + `(u, p) (5.1)

ψ(u, p) :=
∫
�

κ · σy |p| dx (5.2)
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where` is a linear functional (resulting fromf as from shifting the variablep) andk and
κ are positive constants (k = 1 ork = Hσy andκ = 1 orκ = 1 + 2Hα0).

It is known that the continuous quadratic functionalφ(u, p)− `(u, p) isH ×L-elliptic
and so the conditions (2.5) and (2.6) are satisfied.

Since the non-differentiable partψ only affects internal variables inL, Theorem 2.1
guarantees that Algorithm 2.1 yields a linear convergent procedure in each of the examples
below.

In our model situation, we consider a regular triangulation7 in the sense of Ciarlet (see,
e.g., [1] for a definition) and consider

9 := {u ∈ H : ∀T ∈ 7 u|T ∈ 31(T ; Rn)} (5.3)

0 := {r ∈ L : ∀T ∈ 7 r|T ∈ 30(T ; Rn×nsym)} (5.4)

where3k(T ; Rm) is the space of polynomial with total degree≤ k, k = 0, 1, onT in each
of them components. This definesX = 9 × 0.

5.1. Alternating u–p-minimization

Let J = 2,X1 = 9 × {0} andX2 = {0} × 0. Then, in any step of Algorithm 2.1 we solve
one linear equation and one non-linear minimization problem,

uν+1 := argminφ(·, pν) (5.5)

pν+1 := argminφ(uν+1, ·)+ ψ (5.6)

where argming is the minimizer of a minimization problem with the functiong. The
problem (5.6) is local, i.e., it can be solved for each pointx in � or for any elementT ∈ 7
separately. Moreover, this minimization problem may be solved analytically and hence we
assume that it is solved exactly.

The conditions onX1, X2 are obviously satisfied withCX = 1,J = 2, and (2.5) and (2.6)
are trivially true. According to Theorem 2.1 the alternating scheme (5.5)-(5.6) is linearly
convergent with a convergence rateq independent of7.

5.2. Multiplicative additive Schwarz method for the displacements

As a typical example in domain decomposition [11,14], we assume that the finite element
space9 is decomposed into subspaces

9i := {v ∈ 9 : v = 0 on� \�i} (i = 1, . . . , I ) (5.7)

as follows. We assume that we are given a partition�0
1, . . . , �

0
I of � which are quasi-

uniform of sizeh0. Then, the subdomain�i is defined to be a mesh subdomain containing
�0
i with a distance from∂�i ∩� to�0

i greater than or equal toηh0 with some prescribed
fixed constantη > 0. Finally, let90 ⊂ 9 be a coarse finite element space with respect to
quasi-uniform triangulation of sizeh0.

Then, there exist bounded linear mappingsQi : 9 → 9i , i = 0, 1, . . . , I , such that

I∑
i=0

‖Qiv‖2
H1

0 (�)
n ≤ CX‖v‖2

H1
0 (�)

n (5.8)
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(See, e.g., [14, Lemma 7.1] for a proof and the explicit construction ofQi .) Then,Xi :=
9i−1×{0} for i = 1, . . . , I+1,XI+2 := {0}×0,J := I+2 satisfy (2.1)–(2.3) while (2.5)
and (2.6) are trivial. According to Theorem 2.1 the Algorithm 2.1 is linearly convergent
with a convergence rateq independent of7.

5.3. General situation

We consider a set of overlapping subdomains�1, . . . , �I and a partitionω1, . . . , ωI of�,

� = �1 ∪ · · · ∪�I = ω1 ∪ · · · ∪ ωI (5.9)

whose boundaries align the mesh7 which describes9 and0. Define9i as in (5.7) and
consider90 empty (i.e., no coarse grid correction) or as in Subsection 5.2 (with coarse grid
correction). Assume (5.8) (e.g., as in the situation of Subsection 5.2) and define

0i := {w ∈ 0 : w = 0 on� \ ωi} (i = 1, . . . , I ) (5.10)

To be more flexible, we allow�i = ∅ (respectivelyωi = ∅) corresponding to9i = {0}
(respectively0i = {0}) for somei ∈ {0, . . . , I }.

Then, defineX1 := 90 × {0}, χ0 := 0,Xi+1 = 9i × 0i andχi(x) = 1 for x ∈ ωi and
χi(x) = 0 otherwise fori = 1, . . . , I , J := I + 1, and

Pj : X → Xj , (
u
p) 7→ (

Qj−1u
χj−1·p) (j ∈ {1, . . . , J }) (5.11)

It is important to notice that, necessarily,�1, . . . , �I is overlapping andω1, . . . , ωI is a
non-overlapping decomposition of�. Then, (2.1)–(2.3) are satisfied according to (5.8) as
(2.7), (2.8).

According to Theorem 2.1 the Algorithm 2.1 is linearly convergent with a convergence
rateq independent of7.

The natural choiceωi = �0
i (�0

i as in Subsection 5.2) has the disadvantage that a coupled
non-linear minimization problem has to be solved numerically and the only advantage of
reducing the dimension of the original problem.

5.4. Remarks

The linear convergent procedures in Subsections 5.1 and 5.2 avoid a minimization of a (high-
dimensional) non-smooth non-linear problem. Alternatively, regularization techniques with
a posteriori error control were suggested, cf., e.g., [6].

The analysis of this paper suggests that the appearance of the non-smooth non-linear
contributionψ does not affect the quality of the convergence behaviour (compared with the
linear elastic situationψ = 0). For example, Theorem 2.1 guarantees linear convergence of
Algorithm 2.1 also for regularized problems proposed in the literature which approximate
ψ by some smooth functional [6] with the same convergence properties.

The above notation is linked to the finite element discretization because of its practical
importance. However, we stress that the continuous case is included as well.
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