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Lions’s work on the Schwarz alternating method for convex minimization problems is generalized to a
certain non-smooth situation where the non-differentiable part of the functionals is additive and independent
with respect to the decomposition. Such functionals arise naturally in plasticity where the material law is a

variational inequality formulated in%(2). The application to plasticity with hardening is sketched and gives
contraction numbers which are independent of the discretization paran@tdrof a possible regularization
of the non-smooth material law. © 1997 by John Wiley & Sons, Ltd.
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1. Introduction

Domain decomposition is proved to be an important tool for parallel computations in the
numerical analysis of partial differential equations. The Schwarz method does converge
for many different types of problems because of two reasons: the first is that it has a
variational interpretation and the second one is its interpretation in terms of the maximum
principle [11]. Motivated by the study of elastoplasticity (see section 4), we consider a
minimization problem forf = ¢ + ¥ where¢ : X — R is smooth and uniformly convex,

buty : X — (—o0, +o0] is just convex and may be some discontinuous indicator function

(of a convex closed subset). We stress that the minimization problem can also be recast as
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178 C. Carstensen

a variational inequality where we seelke X such that) (1) < co and
Dp(u;u—v) <y() =Y  (veX) 1.1)

Lions [11] proved geometric convergence of the Schwarz alternating method, a domain
decomposition method, in the cage= 0 by variational arguments and for a special case
for ¢ # 0 by using the maximum principle. Therefore, an extension of his proof to plasticity
problems seems not obvious.

Inthis paper, we make use of the observation that, typically in plasticity, the material law is
local, i.e., the non-smooth contributions are formulated pointwise in the damdihen, a
direct decomposition is possible leading to a non-overlapping partition of internal and stress
variables. Loosely speaking, the goal of this paper is to prove that the following philosophy
is actually true: if there is no overlapping in the decomposition of some components, then
the functional is allowed to be non-smooth in these components. A precise statement will
be given in section 2 where Theorem 2.1 guarantees linear convergence of the domain
decomposition method (with a contraction number which is independent of discretization
parameters). An outline of the rest of the paper is as follows: all hypotheses are introduced
in section 2 where the convergence result is stated in Theorem 2.1 and proved in section
3. After a brief introduction of elastoplasticity with hardening in section 4, examples of
application of domain decomposition methods in plasticity conclude the paper with section
5.

2. General result

LetXy,..., Xy beJ > 1 subspaces of the normed vector spscgith dual X* satisfying
J
X=>"X; (2.1)
j=1
We assume that there are linear mappiRgs X — X;, j € {1,..., J}, with
and that there exists a constaf > 0 such that for all subsets C {1,...,J} and all
x € X there holds
1Y Pxllx < Cx - llxllx (2.3)
rEA

We consider the minimization of a functionél: X — (—o0, +o0] which can be decom-
posed as

f=o+v (2.4)

where¢ : X — R is Frechet-differentiable an®¢ is uniformly elliptic and Lipschitz
continuous, i.e., there are two constamtandL (0 < o, L < oo) such that the Fachet-
derivative satisfies, for all, v € X,

a-llu—vl%+ Do@u;v—u)
| Dpu; -) — D (v; ) |l x»

$() —Pu) (2.5)
L-flu—vlx (2.6)
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Domain Decomposition in Plasticity 179

The functional) : X — (—o0, +o¢] is convex, lower semi-continuous agdis assumed
to be additive and independent with respect to the partition (2.1) in the sense that, for all
(x1,...,x5) e X1 x---x Xy,

J J
v x) =D ix) (2.7)
j=1 j=1
and, forallj € {1,..., J}, forallx; € X; and for ally; € Z,{zl’k# Xk, there holds
v (xj + Piyj) =¥ (x)) (2.8)

Underthe preceding assumptions, we consider the following domain decomposition method.

Algorithm 2.1.  Givenug, compute a sequence,),e; € X!, I :={0,1/J,2/J,3/J,
...y Foralln=0,1,2,3,...andallj =1,..., J determinas, 1 j/; € uny(j-1,7 +X;
that minimizes the functiong on the affine subspacg, ;1,7 + X;.

Remark 1.The assumptions guarantee tlfails coercive and strictly convex. Hence there
exists a uniqgue minimizex of f in X and each minimization problem in Algorithm 2.1
has a unique solution [4,5,16]; in other words, Algorithm 2.1 is feasible.

Theorem 2.1. Letu be the minimizer of in X and let the sequence, ),; be generated
by Algorithm 2.1 with initial data:o. Defineq := y/(1+y), y := J - C2 - L? - a72/2
andCo:=2(1+7y)-a~ 1. (f(uo) — f(u)). Then, for anyw > 1 there holds

lu —uy 1% < Co- g (2.9)
Remark 2.In casey = 0, Theorem 2.1 was proved by Lions in [11, Theorem 1.3].
Remark 3.The philosophy mentioned in the introduction is hidden in the assumptions (2.7)
and (2.8): no smoothness gnis required because the minimizatiompfglobally (i.e., on
X) can be performed locally (i.e., on eakh separately).

3. Proof of the theorem

Letv =n+j/J > 1. Sincef (- +u,)|x; has a minimum at 0, we have frome0d f (u,)|x;
and the sum ruléf (- +uy)|x; = 0¢ (- + uv)lx; + Y (- +uy)lx; [4,16], forally € X;,

Do (uy;n) < ¥(uy —n) — () (3.1)
Combining (2.5) and (3.1) fay = u,, — u,_1/; we conclude
- lluy — w1y 1% < fltv170) = f ) (3.2)
According to (2.5),

@ flu—uy %+ ¢uy) — ) < Dp(uy; uy — u) (3.3)
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180 C. Carstensen

Utilizing (2.2) and understanding all lower indices m and X, modulo J (i.e., e.g.,
Py =P, iff L=m (modJ)), we write
J
Uy —u = Z Pr(u, —u) (3.4)

k=j—J+1

Asin (3.1) we obtainforalk € {j — J + 1, ..., j}andn = Px(u, — u)

k k—1
D(untiss Y, Pulwy—1) < Dd(unsrss; Y, Puluy—u))
m=j—J+1 m=j—J+1

+V (Untkyg — PreCuy —u)) — ¥ (untiys)
By using these identities successivelyfoe j, j —1,..., j — J + 1, we infer from (3.4)

J

DGuysuy —1) < D (Y (unirsg — Pely — 1)) = ¥ (i)

k=j—J+1
J k-1

+ Y (Doniksi) = Dplns-nys:))( Y. Puluy —u))
k=j—J+1 m=j—J+1

According to (2.3) and (2.6), this leads to

J
DGuy;uy —u) < Cx-L-llu—uylx- Y ltntks — tnp—1ys Ix (3.5)
k=j—J+1
J
+ Z (W unskyg — Py — w)) — Y (unsrys))

k=j—J+1

The last sum on the right-hand side of (3.5) will be expressed by utilizing (2.7) and (2.8).
By construction of Algorithm 2.1, we have

J
Wy —tpik/g € Y Xm o (ke{j—J+1....j) (3.6)
m=k+1
which, according to (2.8), yields
U (Pr(Untkys — uy) + Pru) = ¥ (Peu) and  § (Peitptky 1) = Y (Pruy) (3.7)

Furthermore, (2.2), (2.7), and (2.8) lead to
Y (Wntkys — Py —u)) — ¥ (untkyr)
J J
= > Y(Puttayiys — PuPiCuy =) = Y Y (Puttnir/s)

m=j—J+1 m=j—J+1
= Y (Pxutnirsg — Pr Py —u)) — Y (Prltyyisy)
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Domain Decomposition in Plasticity 181

and verify

Y (PrUntkyg — v +u)) = Y (Pritnyikys — Pr(uy — u))
J
= Y(Putpsryg — Y, PoePuluy — )

t=j—J+1
kd—1

= Y (Pelitnriys — Peluy —w) — D PPy, —u))
e=k+1

= Y (Pettngkss — PePe(uy —u))
Hence, we obtain
Y (Wntkys — Py —u)) — Y nrikys) = Y (Px@ntkyg — v +u)) — ¥ (Prltyi/r)
and by (3.7)
Y Untiyg — Pe(uy —u)) — Y (untrys) = ¥ (Pru) — ¥ (Pruy)
Combining this with (3.2) and (3.5), we conclude

Do(uy;uy —u) < Y@) — Y@y +Cx-a Y2 L |lu—u,lx
J

Z (f nsk-1)70) — f(btn+k/1))l/2
k=j—J+1
In the following we writes,, := f(u,) — f(u) ande, = ||l u —u, ||x so that (3.3) yields

A

c 12 S (s s |12
x Lo €y Z (8p-1/0 — 8u)
u=v—=1+1/J

= )/~(5U,1—5U)+2_1-o¢-62

v

a~e§+8v

which implies
o 2
. 8, <q-8,_ 3.8
201 7) €+ <q-bv-1 (3.8)

First, (3.8) verifiess, < &o - ¢[*! and, secondly, the assertion (2.9). The proof is finismed.

Remark 1.At first glance, it seems that it was not used thé a minimizer. Indeed, in the
proof, we merely use that € X satisfiesf (1) < f(u,) forallv € I. From (3.2) and from

the convergence of (u,) (because the sequence is bounded and monotone decreasing) we
infer thatu,, is a Cauchy sequence and hence convergent towardssofsa* a minimizer

of f? At this stage, the standard technique [11] requires some continuftyofjuarantee
thatu* is a minimizer off; but here, this continuity is missing. As a modification, weufix
arbitrarily such thaé,, remains non-negative: evesywith f(x) < liminf,_ o f(u,) will

be sufficient. At the end, the above estimates show lim u, = u which, then, proves

thatu = u* is indeed the unique minimizer gf.
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182 C. Carstensen

4. Elastoplasticity

For convenient reading, we outline in this section the strong formulation of small strain
elastoplasticity with kinematic or isotropic hardening as used in engineering literature and
recast the problem to a dual form which fits into the frame of our main result in section 2.

The body under consideration occupies a bounded Lipschitz dofaamR". Local
equilibrium for the stress field e L2(Q; R"*"), requires

oc=o" in (4.1)
dve +b=0 in Q 4.2)

whereb is the vector field of given body forces and we understand (4.2) in the sense of
distributions.

With the displacement field € H}(Q)" (H}(2) being the Sobolev space of functions
in L2(Q) with a weak derivative inL2(2)" and vanishing traces on the boundary, i.e.,
ul|yq = 0) we associate the linear Green strain tensor

ew):=(Vu+(Va))/2 ae.in Q (4.3)

that is, the symmetric part of the gradientoin the context of small strain elastoplasticity,
the straire (1) is split additively into two contributions

€ew)=~Aoc +p a.e.in Q 4.4)

where the linear mapping : R"*" — R"*" describes linear elasticity and is symmetric
and positive definite. The elasticity operatorGs:= A1 : R™" — R"™" andAo is

the elastic ang is the plastic part of the total strai(u). Note that the elastic material
behaviour is characterized py= 0 and, here, we need another material law to determine
Moreover, there are restrictions on the stress variables prescribed by a dissipation-functional
¢ which is convex and non-negative but may-beo. The first restriction is that

p(o, ) <00 a.e.in Q (4.5)

In this way, the hardening parametesteers the set of admissible stresses; sometimes, the
couple(o, @) is called generalized stresses and they are called admissiile i) < oo.

The evolution ofp andu is given by the so-called Prandtl-Reuf3 normality law which
states that for all other generalized streqseg) there holds

p.(t—0o)—a:(B—a)<e,B)—¢l0,a) ae.inQ (4.6)

Here, the dot denotes time derivatives, eg:= ‘3—’; and : is a scalar product of matrices
suchthatd : B = Y/, 1 A;j - Bij if A, B € R"". In the same way, we define the

Euclidean length - | by |A| := /A : Aif A is a matrix.

Remark 1.The minus sign in front of : (8 — «) is not a misprint. It corresponds to the
plus signin frontofp : (t — o) = é(u) : (t — o) — A~ %6 : (r — o) because, here, has
a minus sign as well.

According to the Prandtl-Reul3 normality law (4.6) the problem is time dependent and so
we are seeking variables in atime interval]Q. Given a Hilbert spacél, letw-P(0, T; H)
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Domain Decomposition in Plasticity 183

be the space of functions: [0, 7] — H that are absolutely continuous such thiaxists
and satisfieg || € L?(0, T; R). Given an exterior loa# € W22(0, T; L3(Q)") (i.e.,b
andb belong tow1-2(0, T; L2(2)") with b(0) = 0, the time-dependent problem reads as
follows.

Definition 4.1. (Problem (P)).Find(u, p, o, ) = (u, (p, 0, «)) € Wl»z(o, T; H}(Q)" x

L2(Q; R x R&n x R’”)) with (u, p, o, ®)(0) = 0 and satisfying, almost everywhere
in time, (4.1)—(4.6).

In the examples for a dissipation functiogathere is a given yield functiof® such that
the admissible generalized stresses are characterized by

®P(o,a) <0 in Q 4.7)

(To guarantee that the set of admissible generalized stresses is convex, we reqdiris that
convex.) Theny is the characteristic functional of the set of admissible generalized stresses,
ie.,

] 0 if®,a)=<0
¢(0, @) = { oo if®(o,a) >0 (4.8)
In this case, (4.5) readB(o, o) < 0 and for all(z, 8) with ®(z, 8) < 0 there holds
p:(t—o)—a:(—a)<0 a.e.in Q (4.9
Example 1. (Isotropic hardening) Letm = 1, i.e.,« is a scalar, and define
®(o,a) '=|devo| —o, - (1+ H -«) (4.10)

in the casex > 0 (and® (o, @) = oo if @ < 0 which, thereby, is not allowed). Here,

1
devA :=A——.(trd) - I, (A e R™™
n
where trA := Y} ; A;; andl, is then x n-unit matrix. The material constant, > 0 is
the yield stress and the constdiit> 0 is the modulus of hardening. Then, there exists a
unique solution of ProblemR) provided the exterior load is slightly more regular (and
then there holds Johnson’s so-called safe-load assumption) [2,6,7,9].

Example 2. (Kinematic hardening Letm = n(n + 1)/2 and identifyR" = RZx"

sym

= {A e R"™" : A = AT}. As the stress we considerx (pointwise) in Regym and
define
& (0, a) ;= |devo — deva| — oy (4.11)

Then, there exists a unique solution of ProbleM provided the exterior load is slightly
more regular (and then there holds Johnson’s so-called safe-load assumption) [2,6,7,9].

Example 3. (Perfect plasticity) The casen = 0 of no hardening, i.e., the internal variables
are absent, the von-Mises yield condition is given by

®(0) ;= |devo| — oy (4.12)

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 177-190 (1997)



184 C. Carstensen

Although the resulting problem is covered in this section, the missing hardening results
in a different functional analytical frame. There exist solutions of Probl&jnrf a much
weaker sense (spaces of bounded deformation) if the load is limited (here, the safe-load
assumption is a very restrictive assumption) [2,12,13]. This excludes the so-called perfect
plasticity from our study of domain decomposition.

Example 4. (Viscoplasticity) In Examples 1, 2 and 3 the dissipation functional (4.7) is
non-smooth and can be approximated by a smoother functional. The Yosida-regularization
leads to viscoplastic material description in the sense of Perzyna where, given a viscosity
w > 0, for all preceding examples df we define

o(0,a) = % inf{|(c — 7.0 — B)| : (z. ) € Ry x R™ with &(z, p) <0}  (4.13)

For i > 0 there exists a unique solution of ProbleR) (7,12]. The dissipation functional
(4.11) is, in some sense, converging towards (4.7) as 0 [12].

The time-dependent problem is solved with an implicit time discretization such as gen-
eralized mid-point rules like Crank—Nicolson or backward Euler schemes. The schemes
converge under some regularity assumptions on the solutions [3,6,9] so we focus on the
numerical analysis of one typical time step written in the standard weak form.

Definition 4.2. (Problem (PX,)). Let H € HJ(Q)", Lijn < L*(Q R, L™ <
L?(92; R™) be closed subspaces. Gives € H, po,00 € Lggm, and, a0 € L™ at
some timerg one step of a backward Euler scheme consists of sedking, o, «) <
H x Lg;m” X Lgyxm" x L™, which approximates the variables at time= 7y + Ar, and
satisfies

/UZG(U)dx:/ v-bdx (4.14)
Q Q

forall v € H, whereb := b(r1) € L%(Q)", and, for all(z, B) € Lg;rﬁ x L™ there holds

/Q{(p—po)i(f—rf)—(a—ao)2(ﬂ—a)}dxSAtfgso(f,ﬂ)dx—Atfgw(a,a)dx

(4.15)
where it is understood thefg2 (o, a)dx < oo and we set

p=ew)—Clo (4.16)

Remark 2. For the backward Euler scheme, the derivatiygsx) are approximated by
differences(p — po, @ — ag)/At and the conditions are satisfiedrat The generalized
mid-point rule leads to a problem with a different update which is essentially the same. It
is known that there exists a unique solution to Problé, ) [3,6,7,8,9,10].

Remark 3Definition 4.2 includes the continuous case (i.e., no space discretizatidtii)-fer
Hy(Q)", Ly = L2(R; Riym), L™ := L%(Q; R™). Furthermore, a space discretization
isincluded in Definition 4.2 as well. For exampledifis a regular triangulation in the sense
of Ciarlet [1], letS1(9) be the set of continuous functions with vanishing boundary values
which are affine on each elemeéhte J, andSo(9) the space of functions that are constant
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Domain Decomposition in Plasticity 185

on each elemerit € J. Then, letH := S1(J)", L™ := (So(J))™ etc. Further details are
given in the next section in the context of domain decomposition.

In [6], the problem in Definition 4.2 is called the dual formulation. The primary problem
is obtained utilizing notions in convex analysis as follows. The condition (4.15) reads

1
when we use the notion of a subdifferential
a € dp(b) ifandonlyifforallc a:(c —b) < @(c) — p(b) (4.18)

Sinceg is convex, (4.17) is equivalent to

1
(0,a) € aw*(E(p — po, a0 — ) (4.19)
wheregp* is the dual functional (also called Fenchel-transformed), tgiven by
©*(b) :=supb : c — ¢(c)} (4.20)

We refer to standard references on convex analysis [4,16].

Let us postpone the computationgf to the end of this section and recagf() to the
primal problem (4.14), (4.16), (4.19). If we use (4.16) to eliminateve finally obtain the
following equivalent problem (recat ™! = C).

Definition 4.3. (Problem (Pa,)). Under the same conditions as in Definition 4.2 we seek
(u, p,a) € H x Lg;}ﬁ x L™ satisfying, for all(v, ¢, 8) € H x Lg;‘rﬁ x L™,

Jo Cle) — pl: e(v)dx = [qv-bdx (4.21)
/Q{C[e(u) —pli(Atg — p+ po) +a: (Atf —ag+a)}dx (4.22)
< Atfggo*(q,ﬂ)dx - Atfgw*((p — po)/At, (ap — )/ At) dx
With standard arguments one proves that Probl&m(is the stationary condition of a

minimizer in the minimization problemM), i.e., a minimizer off is a solution of Pa;)
and vice versa.

Definition 4.4. (Problem (M)). Under the same conditions as in Definition 4.3 we seek a
minimizer(u, p, ) of

1 1
flu, p,a) = 5/ Cle(u) — p] : (e(u) — p)dx + 5/ |a|2dx (4.23)
Q Q
+At/ ©*((p — po)/At, (ag — a)/At) dx — f b-udx (4.24)
Q Q

H nxn m
|nH><Lsym x L™,

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 177-190 (1997)



186 C. Carstensen

Altogether, we indicated in this section that a time-discretization of the elastoplastic
evolution leads typically to the Problem() which is of the form considered in section 2.
Further details on possible subspaces are discussed in the next section.

A computation of the duals of the dissipation functionals, as described above concludes
this section.

Example 5. (Isotropic hardening) Let ¢ be defined by (4.8) witkb given in (4.10), we
have, for allA € Rgym andB € R,

0*(A, B) = sup (0 :A+aB)
|devo | <oy (1+Ha)

where|devo| < 0,(1+ Ha) indicates that in the supremu@, o) is an arbitrary element
satisfyingo € ngx,g, a > 0 and|devo| < oy(1+ Ha). Assumep*(A, B) < oo. Since
(o,a) = s - (I,xn, 0) satisfies those conditions for anye R, ¢*(A, B) < oo implies
tr A = 0. Furthermore, for alk > 0, ®(AA, @) <0if A := 0, (1 + Ha)/|A|. Hence,

MA? +aB = |Aloy + a(B + Hoy|A]) < ¢*(A, B) < o0

for all ¢ > 0. Thus, we obtaiB + Ho,|A| < 0. According to Cauchy'’s inequality, recall
A =devAbytrA =0,

devo :devA +¢B < o,(1+ Ha)|devA| + aB = 0,|A| + (o, H|A| + B)
for all admissible(o, «). The above calculations prove

oy|A| iftr A=0A B+ Hoy|A| <0

*"(A’B):{ 0o iftr A%£OV B+ HoylA] > 0 (4.25)

Given (u, p) in Problem 1), the minimization with respect t@ concerns only the term

3 [o lel?dx and the side restrictio® + Hoy|A| < 0 whereA = (p — po)/At and

B = (axp—a)/At. The side restriction reads> g+ Hoy|p—pol| = 0 (becausep, o > 0)
and so the minimization with respectdchas the unique solutiam = og + Hoy|p — pol.
Putting this into the functionagt, we get a simpler minimization problem where we seek a
minimizer (u, p) of

1 1
flu,p) = E/QC[G(M)—p]I(G(u)—p)dx+E/Q(ao+Hoy|p—Po|)2dx (4.26)

+/ oy|p—po|dx—/ b-udx
Q Q

in H x Lggn under the side restrictiontp — po) = 0.

Remark 4. Note that the side restriction reduces th@ + 1) /2 unknown variables op
(pointwise in the continuous case or on each element in the space-discrete situation) to
n(n 4+ 1)/2 — 1 and is easily implemented in numerical calculations.

Example 6. (Kinematic hardening) Lety be defined by (4.8) witkb given in (4.11), we
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Domain Decomposition in Plasticity 187

have, for allA, B € Rg/m
¢*(A, B) = sup (c:A+a:B)
|devo —deva|<a,

whereo, o € Rg;m” are arbitrary under the given restriction. Arguing as in Example 5
assumep*(A, B) < oo and infer trA = 0 = tr B. Since(o, o) is admissible for any
o € Rgym, we further concludé = —A. Then, again withd = devA,
©*(A, B) = sup devic —a) 1A= sup devo :A=oy|A]
|devo—deve|<oy |devo <o,

which finally shows

. [ oylA] ftrA=0AB=-A
"’(A’B)_{ oo iftrA#£O0VB#—A (4.27)
The restrictionB = —A for ¢*(A, B) < oo allows us to reduce the set of variables because
a = p — po + ap. Indeed, in Problem)) we seek a minimizefu, p) of

1 1
flup) = 5/at[e(u)—p]:(e(u)—p)olx+5/|p—po+<m|zolx(4.28)
Q Q

+fay|p—po|dx—/b~udx
Q Q

in H x Lggy under the side restrictiontp — po) = 0.

Example 7. (Perfect plasticity) If ¢ is defined by (4.8) with® given in (4.12), then a

nxn

simple calculation shows, for any € Rgy,,

oyldevA| iftrA=0

i) = { 0o iftrA#£0 (4.29)

5. Domain decomposition in plasticity

In this section, we consider Algorithm 2.1 in the minimization proble) of elastoplas-

ticity described in section 4. In the case of isotropic and kinematic hardening, we seek the
minimizer (u, p) of f in H x L whereH < Hj(Q)andL C {r € L3(2; Riym) : trr = 0}

are closed subspaces (we shiffed= p — po so thatL is a vector space). The functigh

has the form (2.4), i.ef = ¢ + ¥, with

¢ (u, p)

5/ Clew) — pl : () — p) dx+5/ K2IpPdx + £, p) (5.1)
2 Q 2 Q

Yv(u, p) = /QK~O'y|p|dx (5.2)

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 177-190 (1997)
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wheret is a linear functional (resulting fronf as from shifting the variable) andk and
k are positive constants & 1 ork = Ho, ands = 1 ork = 14 2Hap).

It is known that the continuous quadratic functiopdl:, p) — £(u, p) is H x L-elliptic
and so the conditions (2.5) and (2.6) are satisfied.

Since the non-differentiable pagt only affects internal variables ih, Theorem 2.1
guarantees that Algorithm 2.1 yields a linear convergent procedure in each of the examples
below.

In our model situation, we consider a regular triangulafioim the sense of Ciarlet (see,

e.g., [1] for a definition) and consider

Vv {ue H: VT € Tu|r € P1(T; R")} (5.3)
W = {reL:VT € Jr|r € Po(T; Rg;nﬁ’)} (5.4)

where?, (T; R™) is the space of polynomial with total degreek, k = 0, 1, onT in each
of them components. This define$ =V x W.

5.1. Alternating u—p-minimization

LetJ =2,X; =V x {0} andX> = {0} x W. Then, in any step of Algorithm 2.1 we solve
one linear equation and one non-linear minimization problem,

uyp1 = argming (., py) (5.5)
pv+1 = argming(uy41, ) + ¥ (5.6)

where argmirg is the minimizer of a minimization problem with the functign The
problem (5.6) is local, i.e., it can be solved for each pwiit 2 or for any element” € J
separately. Moreover, this minimization problem may be solved analytically and hence we
assume that it is solved exactly.

The conditions orX 1, X7 are obviously satisfied withy = 1,J = 2,and (2.5) and (2.6)
are trivially true. According to Theorem 2.1 the alternating scheme (5.5)-(5.6) is linearly
convergent with a convergence raténdependent of/.

5.2. Multiplicative additive Schwarz method for the displacements

As a typical example in domain decomposition [11,14], we assume that the finite element
spacél is decomposed into subspaces

Vi={veV:v=00nQ\;} (G(=1,...,1) (5.7)

as follows. We assume that we are given a partimﬁfn...,sz(,’ of Q which are quasi-
uniform of sizehg. Then, the subdomaif; is defined to be a mesh subdomain containing
Q? with a distance fromdQ2; N Q to Q? greater than or equal tp1g with some prescribed
fixed constanty > 0. Finally, letVo C V" be a coarse finite element space with respect to
quasi-uniform triangulation of sizy.

Then, there exist bounded linear mappim@s: V" — V;,i = 0,1, ..., I, such that

1
2(; 1001710 = CxllvFa gy (5.8)
1=
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(See, e.g., [14, Lemma 7.1] for a proof and the explicit constructio@;0f Then,X; :=
Vi—cax{O}fori =1,...,1+1, X742 := {0} xW, J := I +2 satisfy (2.1)—(2.3) while (2.5)
and (2.6) are trivial. According to Theorem 2.1 the Algorithm 2.1 is linearly convergent
with a convergence ratgindependent of/.

5.3. General situation

We consider a set of overlapping subdomdins. . ., ; and a partitionvs, . .., w; of Q,
Q=QU---UQ=wU---Uwy (5.9)

whose boundaries align the meghwhich described” andW'. Define¥; as in (5.7) and
considefl’g empty (i.e., no coarse grid correction) or as in Subsection 5.2 (with coarse grid
correction). Assume (5.8) (e.g., as in the situation of Subsection 5.2) and define

W, ={weW:w=00nQ\a} (=1...,1) (5.10)

To be more flexible, we allovi2; = ¢ (respectivelyw; = @) corresponding td"; = {0}
(respectivelyif’; = {0}) for somei € {0, ..., I}.

Then, defineXy := Vg x {0}, x0 := 0, X;4+1 =V; x W; andy;(x) = 1 forx € w; and
xi(x) = 0 otherwisefoi =1,...,1,J:=1+1,and

Qj-1u

PiiX — X, () (30 (Gef{l....,JD (5.11)
It is important to notice that, necessarifyy, ..., ; is overlapping and, ..., w; is a
non-overlapping decomposition &f. Then, (2.1)—(2.3) are satisfied according to (5.8) as

(2.7), (2.8).

According to Theorem 2.1 the Algorithm 2.1 is linearly convergent with a convergence
rateq independent of/.

The natural choice; = Q? (Q? as in Subsection 5.2) has the disadvantage that a coupled
non-linear minimization problem has to be solved numerically and the only advantage of
reducing the dimension of the original problem.

5.4. Remarks

The linear convergent procedures in Subsections 5.1 and 5.2 avoid a minimization of a (high-
dimensional) non-smooth non-linear problem. Alternatively, regularization techniques with
a posteriori error control were suggested, cf., e.g., [6].

The analysis of this paper suggests that the appearance of the non-smooth non-linear
contributionyr does not affect the quality of the convergence behaviour (compared with the
linear elastic situatioy = 0). For example, Theorem 2.1 guarantees linear convergence of
Algorithm 2.1 also for regularized problems proposed in the literature which approximate
¥ by some smooth functional [6] with the same convergence properties.

The above notation is linked to the finite element discretization because of its practical
importance. However, we stress that the continuous case is included as well.

© 1997 by John Wiley & Sons, Ltd. Numer. Linear Algebra Appl., Vol. 4, 177-190 (1997)



190

C. Carstensen

REFERENCES

1.

10.

11.

12.

13.
14.
15.

16.

S. C. Brenner and L. R. Scofthe Mathematical Theory of Finite Element Methobkxts in
Applied Mathematics, vol. 15. Springer, New York, 1994.

C. Carstensen. Interface problems in viscoplasticity and plastliégM J. Math. Anal.25,
1468-1487, 1994.

C. Carstensen. Coupling of FEM and BEM for interface problems in viscoplasticity and plas-
ticity with hardening SIAM J. Numer. Anal 33, 171-207, 1996.

I. Ekeland and R. Temar@onvex Analysis and Variational Probleniorth-Holland, Ams-
terdam, 1976.

R. Glowinski, J. L. Lions and R. €molieres Numerical Analysis of Variational Inequalities.
North-Holland, Amsterdam, 1981.

W. Han and B. D. Reddy. Computational plasticity: the variational basis and numerical analysis.
Computational Mechanics Advan¢@s 285—-400, 1995.

C. Johnson. On finite element methods for plasticity probldxusner. Math,. 26, 79-84,
1976.

C. Johnson. Existence theorems for plasticity problémgath. pures et appl55, 431-444,
1976.

C. Johnson. A mixed finite element method for plasticity problems with harde8iAd4 J.
Numer. Anal.14, 575-583, 1977.

C. Johnson. On plasticity with hardenidgurnal. of Math. Anal. and Appl62, 325-336,
1978.

P. L. Lions. On the Schwarz alternating methodrioceedings of the First International Sym-
posium of Domain Decomposition Methods for Partial Differential Equati®sGlowinski,
G. Golub, G. Meurant and J. Periaux, editors, pp. 1-42, 1987.

P.-M. Suquet. Dicontinuities and plasticityNlonsmooth Mechanics and Applicatip@$SM
Courses, vol. 302, J. J. Moreau and P. D. Panagiotopoulos, editors, pp. 279-341. Springer-
Verlag, New York, 1988.

R. TemamMathematical Problems in Plasticit@authier-Villars, Paris, 1985.

J. Xu. lterative methods by space decomposition and subspace corr8ttibhReview34,
581-613, 1992.

H. Yserentant. Old and new convergence proofs for multigrid metiAats.Numerica285—
326, 1993.

E. ZeidlerNonlinear Functional Analysis and its ApplicatiorSpringer-Verlag, New York,
vol. I, A and B, 1990; vol. Ill, 1985; vol. IV, 1988.

Numer. Linear Algebra Appl., Vol. 4, 177-190 (1997) © 1997 by John Wiley & Sons, Ltd



