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Abstract

Nonconforming finite element methods are sometimes considered as a variational crime and so we
may regard its coupling with boundary element methods. In this paper, the symmetric coupling of
nonconforming finite elements and boundary elements is established and a priori error estimates are
shown. The coupling involves a further continuous layer on the interface in order to separate the
nonconformity in the domain from its boundary data which are required to be continuous. Numerical
examples prove the new scheme useful in practice. A posteriori error control and adaptive algorithms
will be studied in the forthcoming Part 11.
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1. Introduction

One main motivation for applying nonconforming finite element methods such as
the Crouzeix-Raviart elements is their divergence property which is very useful
in the numerical modelling of incompressible media. Typical examples are the
Navier-Stokes or Stokes eguations where exterior problems arise naturally (cf.
[11, Sect. 1.4]. If streaming fluids surround fixed structures, e.g. an aircraft’s
wing, we encounter inhomogeneities in the geometry (and possibly in the fluid
as well) which are easily calculated with a nonconforming finite element method
(nc-FEM) but also non-local effects in the infinite domain. The truncation of the
finite element grid is not advisable because of increasing computer costs. Instead,
infinite el ements have to be employed and, along this class of schemes, we suggest
to adapt the boundary element method (BEM).

This“mariagealamode’ wasinitiated by engineers. ltsmathematical justification
started in the later seventies with papers by Brezzi, Johnson, Nédéec, Bielak,
MacCamy among others. Quasi-optimal apriori error estimatesfor the coupling of
finite and boundary elementswere then obtained for Lipschitz boundaries, systems
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of equations, and nonlinear problems (approximated by finite elements), e.g. in
[5, 9, 10, 12, 18] (see dso the literature quoted therein); the symmetric coupling,
which is modified here, was introduced mathematically by Costabel in [5].

The coupling of boundary elements with nc-FE, treated here for thefirst time, may
be regarded as a variational crime [1]. The energy space for the hypersingular
operator is the trace space H/2(I") which does not include discontinuous spline
functions. Asaconsequence, we suggest the introduction of a continuous discrete
variableto circumvent further variational crimesinthe BE part. Itistheaim of this
paper to show in asimple model problem that the coupling isfeasible and reliable
and even competitive to the conforming case. In part 11 of this paper, we will study
aposteriori error estimates and adaptive mesh-refinement algorithms[3]. Further
investigations are necessary to handle Stokes or Navier-Stokes problems where we
take real advantage of nonconforming finite elements.

The rest of Part | is organised as follows. In Section 2 we present the model
problem which isa(nonlinear) interface problem for the Laplacian. The boundary
integral operators and their mapping properties are recalled from the literature in
Section 3in order to rewrite equiva ently the exterior part of the problem in Section
4. Theweak form of the recast model problem is monotone, and we obtain unique
solutionsin Section 5. The discretisation isdescribed in Section 6, and the discrete
problem is analysed in Section 7, where we show quasi-optimal a priori error
estimates. Numerical examples in Section 8 confirm our theoretical convergence
results and illustrate the practical performance of the scheme.

2. Model Problem

In a bounded two—dimensional Lipschitz domain & with boundary I' = 92 and
exterior domain Q. = R? \ Q we are given a possibly nonlinear mapping A :
L?%()? — L%(Q)?, jumpsug € HY?(I"), to € H~Y?(I") and aright-hand side
f € L3() and look for functionsu € HX(Q2), v € H} _(Q.) and redl constants a
and b satisfying

_divA(Du) = f  inQ, (2.2)

Av =0 in Qe (22)

| Ilim {v(x) —blog(x)} = a, (2.3
u=v-+uop onTl, (2.9)

A(Dul|g) -n = z—;} 4+t onT. (2.5)

Here, D denotes the gradient, A denotes the Laplacian, and » is the unit normal
on I" pointing into €2.. The Lipschitz and uniform monotonicity properties of A
are described in Section 5.
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Remark 1. Themodel situation could begeneralisedto other operators, e.g. tolin-
ear elasticity, or other dimensions (with other radiation conditions(2.3)). Moreover
we might add Dirichlet, Neumann or mixed boundary conditions and, furthermore,
asocould analysethecasethat 2, ¢ R?\ Qisa(e.g. multiply connected) bounded
domain. Finally, we could add aright-hand sidein (2.2).

3. Preliminaries on Boundary Integral Operators

Let H* () denote the usual Sobolev spaces [13] with the trace spaces H*~1/2(I")
(s € R) for abounded Lipschitz domain € with boundary T Let || - | (., and

| | k(o) denote the norm and semi-normin H*(w) for v € Q and an integer k.

The L?(2)-scalar product is denoted as (-, -) while (-, -) denotes duality between
H*(I') and H~%(T") (defined by extending the scalar product in L2(I")).

In order to rewritethe exterior problem, we need some boundary integral operators.
Givenv € HY2(I') and ¢ € H~Y2(I") we define, for z € T,

1
V) () = ——/¢<c>log|z—§|ds;,
T Jr
1 0
(Kv)(@) = ——/ v(0)——log |z — ¢| dse,
T Jr Bn;
1 0
(K*)(2) = ——/¢<c>—log|z—c|ds¢,
T Jr on;
W _ 19 2 o J
W)(2) = nanz,/pv(g)an; glz — | ds;.

This defines linear and bounded boundary integral operators when mapping be-
tween the following Sobolev—spaces [6]

V:H Y1) - BT,

K HHY2(0) — HTY2(T),

K*: HSYAT) — HSVA(D),

W HSPY2(0) — HSVA(D),
wheres € [—1/2, 1/2]. Thesinglelayer potential V issymmetric, thedoublelayer
potential X hasthe dual K* and the hypersingular operator W is symmetric. Both,

V and W are strongly elliptic in the sense that they satisfy a Garding inequality (in
the above spaces with s = 0) [6].

Let HST)/R = {¢p € H’() : (1, ¢) = 0}. Then, it is known that V :
H-Y2(I)/R - HY2(Myand W : HY/2(I') /R — H~Y(I") arepositive definite.
Assuming that the capacity of " issmaller than one, the single layer potential V' is
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positive definite on H~/2(T"). (For adefinition of the capacity of I', we refer, e.qg.
to [15] and mention here the sufficient condition that 2 liesin a ball with radius
lessthan 1. Thus, this condition on I can always be achieved by scaling [8, 15].)
We refer, e.g., to [6-8, 15-17] for proofs and more details.

4. Rewriting the Exterior Problem

Thereisaninfiniteset of formulaewhich characterisethe Cauchy data (v, dv/on)|r
of afunction v with (2.2)—(2.3). We quote only two of them from the literature.

Lemmal[7]. Letv € H () satisfy (2.2) and (2.3), then (£, ¢) =
(v, dv/dn)|r € HY2(I') x H=Y/2(T") satisfies

2<§>):(1—+v§ 1jc*)(§>>+<25l)' (4.1)

Conversely, for each (£, ¢) € HY?(I") x H~Y%(I") there exists a function v €
H' (Q.) with (2.2)«2.3) if and only if (4.1) holds. The function v isgiven by the

loc

representation formula

1 1 0
o(x) = Z/sz)log x — 2lds, — E/FS(Z)W loglx — z|ds, +a (42)

for x € Q.. O

SinceV ispositivedefiniteit isinvertibleand wemay consider the Poincaré-Steklov
operator S : HY2(I') — H~Y(I"), defined as

S:=W+ K —)pv K -1)/2
This operator is linear, symmetric and positive definite [4], and is a Dirichlet—
Neumann map as shown in the following known lemma (see, eg. [2, 4]). For
uniqueness of solutionswe may prescribe one of the constantsa and » in (2.3) and
we prescribe a = 0inthe sequdl.

Lemma?2. Letv € H}

loc

(2.) satisfy (2.2)«2.3) witha = 0, then
Dvlr-n:—Svlr. (43)

Conversely, for £ € HY/2(I") thereexistsauniquefunctionv € H} () satisfying
(2.2)42.3) (witha = 0) and

vr=£¢ and (Dv-n)|r = —SE&. O (4.9

Remark 2. The Poincaré-Steklov operator asitsinverse have various representa
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tions and we mention only

V+QA+W A+ 2=w a4+ =851 (4.5)
(For aproof of (4.5), takethesecondidentity in(4.1) toobtaing = —W~1(1+K*)¢
and put thisinto thefirst identity in (4.1).)

5. Weak Formulation of the Model Problem

Using Lemma 2 (to replace the traction on the interface) and direct calculations,
we gain the weak form of the interface problem (2.1)«(2.5): Find u € H(Q)
satisfying, for all n € H1(Q),

(A(Du), Dn) + (Sulr, nlr) = (f, n) + {to + Suo, nlr). (5.1)

In addition, suppose that A : L2(Q)2 — L2%(2)2 be uniformly monotone and
Lipschitz continuous, i.e., there exists positive constants ¢ 4 and C 4 with

= (A(U) - A(T), o — T)a

2
CA” o -1 ||L2(Q)2 =

(5.2)
[ A(o) — A(7) ||L2(Q)2 <Cullo -7 ||L2(Q)2v (5.3

foral o, T € L2(Q)2.

It is known that the problems (2.1)—(2.5) and (4.2) are equivalent in the following
sense.

Theorem 1. If u € Hl}w(sz U Q) is a solution of (2.1)«2.5), then u|o solves
(5.1). Corversdly, if u € HY(Q) is a solution of (5.1), then u can be extended
by using the representation formula (4.2) to a function u € H,})C(Q U Q.) which
solves (2.1)—<2.5).

Proof: Theproof isbased on standard argumentsin the context of strong and weak
solutions of partial differential equations, and the use of Lemma 2; cf. [2, 10, 12]
for details and related results. O

The left-hand side in (5.1) defines an operator B as
B = [ A - Dydx+ (Sulr. nie)
Q

which maps H1() into itsdual H1(Q)*. Then, Equation (5.1) reads

Bw) = f € HY(Q)*. (5.4)



234 C. Carstensenand S. A. Funken
Since S is bounded and positive definite, B inherits monotonicity and Lipschitz
continuity from A. Hence, from standard arguments in the theory of monotone
operators, we gain existence and uniqueness of solutions in our model problem.
Theorem 2 [2]. The operator B is uniform monotone and Lipschitz continuous.
The problems (2.1)—(2.5) and (5.1) have unique solutions.

6. Discretisation
Let thetriangulation 7" beregular in the sense of Ciarlet [1] and cover the bounded

Lipschitz domain 2 exactly

Q= UT
TeT

suchthat T € 7 isaclosed trianglewith interior angles greater than the (universal)
constant ¢y > 0 and diameter hy > 0. We assume that two non-identical triangles
share at most a common edge or a common vertex.

With any partition 7" we associ ate some discrete spaces. The nc-FE space SV € (Q)
consists of, in general, discontinuous functions

SNC(T) Cc HY (S T) i={u e L?(Q) : VT € T, uly € HX(T)}.
For functionsin H1($2; 7) we consider the el ementwise gradient D7 defined by
(Drw)lr = Dwlr (T € Tiue H{( 7))

and endow H1(Q; 7) with the discrete scalar-product (recall that (-, -) isthe scalar
product in L2(2))

(Dru, Drv) + w,v)  (u,ve HX 7))
and the semi-norm
lul g1, 1) = IDTull 120 (u € HY(; 7).
For further reference, let
SYT) :={ue HYQ):VT € T, ulr € P1}.
denote the conforming piecewise affinefunctions. The set of edgesin 7 isdenoted
by £ and the set of all midpoints of some edge E € £ isdenoted by M. Then, the

Crouzeix-Raviart finite element spaceis

SNC(T) :={u e L3Q) : VYT € T, u|r afineand ¥z € M, u continuous at z}.
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Inorder todiscretisetheboundary integral operators, weassociatewith 7" apartition
G:={E €& : E c I'} of theboundary and consider

SYG) :={w e C(I") : VE € G, w|g affine}, (6.1)
$9G) :={w e LAT") : VE € G, w|g constant}, (6.2)

namely the piecewise affine continuous and the (in general discontinuous) piece-
wise constants on I'.  Then, the discrete problem reads. Find (U, E, ®,A) €
SNC(T) x S1(G) x SO%G) x R satisfying, for all (V, 0, ¥, u) € SNC(T) x
51(G) x $%G) x R,

(A(D7U), DrV) — (D, V) = (f, V) + (10, V),
=2(U,¥) — VO, V) + (K+DE, V) = —2ug, ¥), 63)
(KF4+1D®,0)+ (WE, ®)+ (A, 0) =0, '
(8, uy =0.

Remark 3. The system is symmetric but, because of the minus sign in front of
(V®, W), not positive definite. Changing signs, we can rewrite this discrete prob-
lem to obtain a non-symmetric but positive definite system.

Remark 4. Because of thelast identity in (6.3), (E, 1) = 0, whence

E eHY2(I')/R. Sincewl = (K+1)1 = 0(take (&, ¢) = (1,0),a = linLemma
1for aproof) and so, owing to the third identity in (6.3), the real number — isthe
integral mean of (K* + 1)® + WE, and so . = 0. Hence, the discrete problem
could be equally rewritten as: Find (U, &, ®) € SNC(T) x SY(G)/R x S°(G)
satisfying, forall (V, ®, W) € SNC(T) x S1(G)/R x $°(G),

3(A(D7U), D7 V) — (®, V) = (f, V) + (to, V),
—2U, V) — (VO, V) + {(K+DE, V) = —2(uop, ¥), (6.4)
(K*+1)®,0)+ (WE, ®) =0.

Remark 5. The unknowns (U, B, ®) are discrete analogues of (u, &, ¢) where u
solves (5.1) and (&, ¢) are the Cauchy data of the exterior part v of the interface
problem of Section 2. The point isthat E # U|r — ug as the later function does
not belong to the energy space H/2(I") of the hypersingular operator.

7. A Priori Convergence Estimate

Let hy : L*°(Q2) — R be piecewise constant with hr|7 = diam(T) for each
element T e 7. Suppose that u € H?(Q2) and that A(Du) € HY(RQ).

Theorem 3. There exist positive constants cg and hg such that for all meshes 7
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with mesh-size maxrerh7 < ho, the discrete problem (6.4) has a unique solution
U and there holds

lu—Ulprger) < co(n ha D% |l 2.y + Il hr diVADW) Il 20

+ dig-.H—l/Z(r)(Suh‘ — 10; So(g)))-

(distx (w; Y) denotes the best approximation error in the normof X when approx-
imating w € X with functionsinY.)

Proof: With the solution u € HL(Q), we define ¢ := —Su|r + Sup and £ :=
ulp —up. Lete:=u—U,e . =¢p—d e HV2I),ands := & — E € HYA(I).
The same (laborious) calculations which lead from (4.1) to (4.4) show that

00 = —2¢ — Ve + (K + 1§ L %), (7.2)
o1 = (K* + e +Ws L SY(G)/R, (7.2)

where L denotes orthogonality in L2(I'). Let r := A(Du) - ng, where ng isthe
normal on each edge E and let £ be the set of all edgesin 7. Furthermore, let
w € SY(T) and perform an elementwise integration by parts to employ (5.3) and
(2.2), (2.5) withdv/9n = ¢, and utilise (6.4) directly to infer that

(A(Du) — A(D7U), Dre)

= (A(Du) — A(D7U), D(u — w)) + (A(Du) — A(D7U), D(w — U))

< Cal Dre ”LZ(Q)” D(u —w) ||L2(Q) + (A(Du), D(w — U)) (7.3)
—(P,w—-U)—-(ffw—-U)—(to,w—U)

fCA”DTe”LZ(Q)”D(u_w)||L2(Q)+<E’w_U>_/\ t[U] ds,
UE\D

where[U] denotesthejump of U acrossaninner elementside E € £ andUE\T =
(U&E) \ T denotes the union of al inner edges; UE := Ugce E isthe skeleton of all
edgesinT

From the definition of pg and p; and the orthogonal relations (7.1) and (7.2) it
follows, with (e, (K + 1)8) = ((K* + )¢, §),

2(e, e) = (€, (K + 1)8) — (Ve, €) — (po, €)
= —(W$,8) — (Ve, €) + (01, 8) — (0o, €)
= —(W8,8) — (Ve, €) — (po, ¢ — @) + (p1,€ — E) (7.4)

foral & € $1(G)/Rand dl & € S°(G). Combining (7.3) and (7.4) and utilising
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(4.2), we aobtain

1 1
call Dre l7oq) + 5 W8, 8) + S(Ve, €)

< Call Dre 2@l D(u — w) ||L2(Q)+(€§W—M>—/\ t[U] ds
UE\T

1 ~ 1 =
— 500, ¢ = @) + S{p1.§ — E) (7.5)

< Cull Dre ||L2(Q)|| D(u —w) ||L2(Q) + € llg-12myllw —u ||H1/2(F)

~ / H{U]ds + (e, ¢ — ) + || Ve + (K + D8 ||
Ue\r

< 1 — @ | y-12ry + Il o1 I g-172(0) 1 € — & ey

Define[U]r := & — e whereé € S9(G) isthe G-piecewise integral mean of ¢ and
let ® denote the G-piecewise integral mean of ¢. Then,

(e,qﬁ—d)):(e—é,d)—d))=(e—§,¢)=—/t[U]ds (7.6)
r

if wenoticethat t = ¢ = A(Du) - n by (2.5). Hence, for all  which are constant
oneach E € €&,

—/ tf[U] ds + (e, p — ®) = —/ tlUlds = | (¢ —1)[Ulds, (7.7)
ue\r

ue ue

because theintegral of [U] over each edge E vanishes. Definethe constant 7 asthe
integral mean of ¢ on each edge E. A standard technique in nc-FE, cf., eg. [1],
leads to the estimate

(t — fN)[E] dS < C1 ” hTD.A(DM)) ”LZ(Q) ” hTDTe ”LZ(Q) (78)
ue

Gathering (7.5)—(7.8) together, we conclude the theorem with standard estimations
absorbing the error terms on the right-hand side. O

Remark 6. The best-approximation error dist;-1/2(r (Sulr — fo; S°%(G)) in The-
orem 3 is bounded by O (h%?) when h denotes the maximal mesh-size on the
boundary and Su|r — o belongsto H1(I").



238 C. Carstensenand S. A. Funken

Remark 7. Inthe notation of the proof we furthermore have

le |Hl(Q;T) +1le ||H1/2(I‘)/R +1é ||H—l/2(r)
<C (|| hy D?u || 20+ hrAiVA(Du)) || 120y +disty -1z R (Sulr; So(g»).

8. Numerical Example

To illustrate our convergence result we consider a numerical example and start
with some remarks on the numerical implementation in Matlab. The duality pairs
on the left hand side, eg. (A(D7U), (D7V), (VO,¥) and (K E, ¥) where
U,V,d, V¥, E are piecewise constant or piecewise linear functions can be cal-
culated amost analytically. (See[14] for termswith integral operators.)

In order to approximate the right hand side for given functions f € L2(I'), ug €
HY2(I"), and 1 € L*(T") we compute [, fn; dx viaamid-point quadrature rule
on any triangle T and the integrals (¥, uo) and (ro, V) are approximated by an
8-point Gaussian quadrature formula

Since A isalinear operator in our examples we get alinear system of eguations
which is solved directly.

Example 8.1. Let us consider the interface problem (2.1)—«2.5) on the L-shaped
domainin Fig. 1 with exact solution

u(r,0) =r?2sn29/3) and w(x,y) =log(|(x + 1/2, y — 1/2))

in polar resp. Cartesian coordinates (r, 9) resp. (x, y). The solution has atypical
corner singularity such that the convergence rate of the h—version with a uniform
mesh does not lead to the optimal convergence rate. Theright hand side f and the
jumps ug and to are computed by (2.1) and (2.5) from u and v above. With those
data, we computed the discrete solution of (6.3).

Y
1 Table 1. Error |e|1 and convergence
rate y;, in Example 8.1
h lel1 Yh
LA 1 023819
-1 1x 1/2 0.23163 0.0403
14 0.14471 0.6786
18 0.09033 0.6799
116 0.05696 0.6636

132 0.03826 0.6701

-1

Figurel. L-shape
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In Table 1 we give the numerical resultsfor the uniform meshes. For the sequence
of uniform mesheswe obtai n experimentally aconvergencewhichisapproximately
h2/3 which coincides with the theoretically expected rate.

%

e
Q¢ Q
. — r 0.8
M1 o2 K 1 ———1F—————+ 0
- - --0.8
// o
/ I t |

-2 —0.8' —'0.6 0 O.é 6.8 2
Figure 2. Configuration of Example 8.2

Solution of the problem

Solution of the problem

i

NANANANAN AN ZA7AVA VA ViaVa ViV |
JAVAVAVAYAVAVA N NN AN NANAN |
RAVANAVAVAVAVANNNANAYANAYAN /)

Figure 3. Solution of Example 8.2

Example 8.2. Asamore practical example, we consider the following problem,
where A = 5id in(2.1), up = 0 and g = 0 on the coupling boundary I'c :=0Q U
9Q2.. This problem models the potential of a capacitor in an unbounded domain
with different permeabilities in 2. and 2. The charge at boundaries I'p 1 and
I'p o aret1, respectively. 2, Q.,'c andT'p . aregiven asdepicted inFig. 2. The
exact geometry is given there, too. Three times uniform refinement, e.g. joining
midpoints of each edge by straight lines, of the mesh shown in Fig. 2 gives the
used mesh. The solution for this problem with 4 = 0.12 isshown in Fig. 3.

The calculation required 1225.27 sec CPU on a Ultra Sparc | and corresponds
to 5825 degrees of freedom (5504 in the finite element part and 160 boundary
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elements, yielding 480 degrees of freedom on the boundary plus 1 for the Lagrange
multiplier ).

The streamlinesin Fig. 3 give knowledge of gradients of the potential. Due to the
higher permeability in  the streamlines ook more depressed and flat than in the
case A = id. Although we are using the nc-FEM in €2 the streamlines are smooth,
also near the coupling boundary.
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