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Abstract

Nonconforming finite element methods are sometimes considered as a variational crime and so we
may regard its coupling with boundary element methods. In this paper, the symmetric coupling of
nonconforming finite elements and boundary elements is established and a priori error estimates are
shown. The coupling involves a further continuous layer on the interface in order to separate the
nonconformity in the domain from its boundary data which are required to be continuous. Numerical
examples prove the new scheme useful in practice. A posteriori error control and adaptive algorithms
will be studied in the forthcoming Part II.
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1. Introduction

One main motivation for applying nonconforming finite element methods such as
the Crouzeix-Raviart elements is their divergence property which is very useful
in the numerical modelling of incompressible media. Typical examples are the
Navier-Stokes or Stokes equations where exterior problems arise naturally (cf.
[11, Sect. 1.4]. If streaming fluids surround fixed structures, e.g. an aircraft’s
wing, we encounter inhomogeneities in the geometry (and possibly in the fluid
as well) which are easily calculated with a nonconforming finite element method
(nc-FEM) but also non-local effects in the infinite domain. The truncation of the
finite element grid is not advisable because of increasing computer costs. Instead,
infinite elements have to be employed and, along this class of schemes, we suggest
to adapt the boundary element method (BEM).

This “mariage à la mode” was initiated by engineers. Its mathematical justification
started in the later seventies with papers by Brezzi, Johnson, Nédélec, Bielak,
MacCamy among others. Quasi-optimal a priori error estimates for the coupling of
finite and boundary elements were then obtained for Lipschitz boundaries, systems
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of equations, and nonlinear problems (approximated by finite elements), e.g. in
[5, 9, 10, 12, 18] (see also the literature quoted therein); the symmetric coupling,
which is modified here, was introduced mathematically by Costabel in [5].

The coupling of boundary elements with nc-FE, treated here for the first time, may
be regarded as a variational crime [1]. The energy space for the hypersingular
operator is the trace space H 1/2(0) which does not include discontinuous spline
functions. As a consequence, we suggest the introduction of a continuous discrete
variable to circumvent further variational crimes in the BE part. It is the aim of this
paper to show in a simple model problem that the coupling is feasible and reliable
and even competitive to the conforming case. In part II of this paper, we will study
a posteriori error estimates and adaptive mesh-refinement algorithms [3]. Further
investigations are necessary to handle Stokes or Navier-Stokes problems where we
take real advantage of nonconforming finite elements.

The rest of Part I is organised as follows. In Section 2 we present the model
problem which is a (nonlinear) interface problem for the Laplacian. The boundary
integral operators and their mapping properties are recalled from the literature in
Section 3 in order to rewrite equivalently the exterior part of the problem in Section
4. The weak form of the recast model problem is monotone, and we obtain unique
solutions in Section 5. The discretisation is described in Section 6, and the discrete
problem is analysed in Section 7, where we show quasi-optimal a priori error
estimates. Numerical examples in Section 8 confirm our theoretical convergence
results and illustrate the practical performance of the scheme.

2. Model Problem

In a bounded two–dimensional Lipschitz domain � with boundary 0 = ∂� and
exterior domain �c := R2 \ � we are given a possibly nonlinear mapping A :
L2(�)2 → L2(�)2, jumps u0 ∈ H 1/2(0), t0 ∈ H−1/2(0) and a right-hand side
f ∈ L2(�) and look for functions u ∈ H 1(�), v ∈ H 1

loc(�c) and real constants a
and b satisfying

−divA(Du) = f in �, (2.1)
1v = 0 in �c, (2.2)

lim
|x|→∞

{v(x)− b log(x)} = a, (2.3)

u = v + u0 on 0, (2.4)

A(Du|�) · n = ∂v

∂n
+ t0 on 0. (2.5)

Here, D denotes the gradient, 1 denotes the Laplacian, and n is the unit normal
on 0 pointing into �c. The Lipschitz and uniform monotonicity properties of A
are described in Section 5.
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Remark 1. The model situation could be generalised to other operators, e.g. to lin-
ear elasticity, or other dimensions (with other radiation conditions (2.3)). Moreover
we might add Dirichlet, Neumann or mixed boundary conditions and, furthermore,
also could analyse the case that �c ⊂ R2\� is a (e.g. multiply connected) bounded
domain. Finally, we could add a right-hand side in (2.2).

3. Preliminaries on Boundary Integral Operators

Let Hs(�) denote the usual Sobolev spaces [13] with the trace spaces Hs−1/2(0)

(s ∈ R) for a bounded Lipschitz domain � with boundary 0. Let ‖ · ‖Hk(ω) and
| · |Hk(ω) denote the norm and semi-norm in Hk(ω) for ω ⊆ � and an integer k.
The L2(�)-scalar product is denoted as (·, ·) while 〈·, ·〉 denotes duality between
Hs(0) and H−s(0) (defined by extending the scalar product in L2(0)).

In order to rewrite the exterior problem, we need some boundary integral operators.
Given v ∈ H 1/2(0) and φ ∈ H−1/2(0) we define, for z ∈ 0,

(Vφ)(z) := − 1

π

∫
0

φ(ζ ) log |z − ζ | dsζ ,

(Kv)(z) := − 1

π

∫
0

v(ζ )
∂

∂nζ

log |z− ζ | dsζ ,

(K∗φ)(z) := − 1

π

∫
0

φ(ζ )
∂

∂nz

log |z − ζ | dsζ ,

(Wv)(z) := 1

π

∂

∂nz

∫
0

v(ζ )
∂

∂nζ

log |z − ζ | dsζ .

This defines linear and bounded boundary integral operators when mapping be-
tween the following Sobolev–spaces [6]

V : Hs−1/2(0)→ Hs+1/2(0),

K : Hs+1/2(0)→ Hs+1/2(0),

K∗ : Hs−1/2(0)→ Hs−1/2(0),

W : Hs+1/2(0)→ Hs−1/2(0),

where s ∈ [−1/2, 1/2]. The single layer potential V is symmetric, the double layer
potential K has the dual K∗ and the hypersingular operatorW is symmetric. Both,
V andW are strongly elliptic in the sense that they satisfy a Gårding inequality (in
the above spaces with s = 0) [6].

Let Hs(0)/R := {φ ∈ Hs(0) : 〈1, φ〉 = 0}. Then, it is known that V :
H−1/2(0)/R→ H 1/2(0) andW : H 1/2(0)/R→ H−1/2(0) are positive definite.
Assuming that the capacity of 0 is smaller than one, the single layer potential V is
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positive definite on H−1/2(0). (For a definition of the capacity of 0, we refer, e.g.
to [15] and mention here the sufficient condition that � lies in a ball with radius
less than 1. Thus, this condition on 0 can always be achieved by scaling [8, 15].)
We refer, e.g., to [6–8, 15–17] for proofs and more details.

4. Rewriting the Exterior Problem

There is an infinite set of formulae which characterise the Cauchy data (v, ∂v/∂n)|0
of a function v with (2.2)–(2.3). We quote only two of them from the literature.

Lemma 1 [7]. Let v ∈ H 1
loc(�c) satisfy (2.2) and (2.3), then (ξ, φ) :=

(v, ∂v/∂n)|0 ∈ H 1/2(0)×H−1/2(0) satisfies

2
(

ξ

φ

)
=
( 1+ K −V
−W 1− K∗

)(
ξ

φ

)
+
( 2a

0

)
. (4.1)

Conversely, for each (ξ, φ) ∈ H 1/2(0) × H−1/2(0) there exists a function v ∈
H 1

loc(�c) with (2.2)–(2.3) if and only if (4.1) holds. The function v is given by the
representation formula

v(x) = 1

2π

∫
0

φ(z) log |x − z| dsz − 1

2π

∫
0

ξ(z)
∂

∂nz

log |x − z| dsz + a (4.2)

for x ∈ �c. �

SinceV is positive definite it is invertible and we may consider the Poincaré–Steklov
operator S : H 1/2(0)→ H−1/2(0), defined as

S := (W + (K∗ − 1)V−1(K− 1))/2.

This operator is linear, symmetric and positive definite [4], and is a Dirichlet–
Neumann map as shown in the following known lemma (see, e.g. [2, 4]). For
uniqueness of solutions we may prescribe one of the constants a and b in (2.3) and
we prescribe a = 0 in the sequel.

Lemma 2. Let v ∈ H 1
loc(�c) satisfy (2.2)–(2.3) with a = 0, then

Dv|0 · n = −Sv|0. (4.3)

Conversely, for ξ ∈ H 1/2(0) there exists a unique function v ∈ H 1
loc(�c) satisfying

(2.2)–(2.3) (with a = 0) and

v|0 = ξ and (Dv · n)|0 = −Sξ. � (4.4)

Remark 2. The Poincaré–Steklov operator as its inverse have various representa-
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tions and we mention only

(V + (1+ K)W−1(1+ K∗))/2 =W−1(1+ K∗) = S−1. (4.5)

(For a proof of (4.5), take the second identity in (4.1) to obtain ξ = −W−1(1+K∗)φ
and put this into the first identity in (4.1).)

5. Weak Formulation of the Model Problem

Using Lemma 2 (to replace the traction on the interface) and direct calculations,
we gain the weak form of the interface problem (2.1)–(2.5): Find u ∈ H 1(�)
satisfying, for all η ∈ H 1(�),

(A(Du),Dη) + 〈Su|0, η|0〉 = (f, η)+ 〈t0 + Su0, η|0〉. (5.1)

In addition, suppose that A : L2(�)2 → L2(�)2 be uniformly monotone and
Lipschitz continuous, i.e., there exists positive constants cA and CA with

cA‖ σ − τ ‖2
L2(�)2 ≤ (A(σ )−A(τ ), σ − τ),

(5.2)

‖A(σ )−A(τ ) ‖L2(�)2 ≤ CA‖ σ − τ ‖L2(�)2, (5.3)

for all σ, τ ∈ L2(�)2.

It is known that the problems (2.1)–(2.5) and (4.2) are equivalent in the following
sense.

Theorem 1. If u ∈ H 1
loc(� ∪ �c) is a solution of (2.1)–(2.5), then u|� solves

(5.1). Conversely, if u ∈ H 1(�) is a solution of (5.1), then u can be extended
by using the representation formula (4.2) to a function u ∈ H 1

loc(� ∪ �c) which
solves (2.1)–(2.5).

Proof: The proof is based on standard arguments in the context of strong and weak
solutions of partial differential equations, and the use of Lemma 2; cf. [2, 10, 12]
for details and related results. �

The left-hand side in (5.1) defines an operator B as

B(u)(η) :=
∫

�

A(Du) ·Dη dx + 〈Su|0, η|0〉,

which maps H 1(�) into its dual H 1(�)∗. Then, Equation (5.1) reads

B(u) = f ∈ H 1(�)∗. (5.4)
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Since S is bounded and positive definite, B inherits monotonicity and Lipschitz
continuity from A. Hence, from standard arguments in the theory of monotone
operators, we gain existence and uniqueness of solutions in our model problem.

Theorem 2 [2]. The operator B is uniform monotone and Lipschitz continuous.
The problems (2.1)–(2.5) and (5.1) have unique solutions.

6. Discretisation

Let the triangulation T be regular in the sense of Ciarlet [1] and cover the bounded
Lipschitz domain � exactly

� = ∪
T∈T

T

such that T ∈ T is a closed triangle with interior angles greater than the (universal)
constant cθ > 0 and diameter hT > 0. We assume that two non-identical triangles
share at most a common edge or a common vertex.

With any partition T we associate some discrete spaces. The nc-FE space SNC(�)

consists of, in general, discontinuous functions

SNC(T ) ⊂ H 1(�; T ) := {u ∈ L2(�) : ∀T ∈ T , u|T ∈ H 1(T )}.

For functions in H 1(�; T ) we consider the elementwise gradient DT defined by

(DT u)|T = D(u)|T (T ∈ T ; u ∈ H 1(�; T ))

and endow H 1(�; T ) with the discrete scalar-product (recall that (·, ·) is the scalar
product in L2(�))

(DT u,DT v)+ (u, v) (u, v ∈ H 1(�; T ))

and the semi-norm

|u|H 1(�;T ) := ‖DT u‖L2(�) (u ∈ H 1(�; T )).

For further reference, let

S1(T ) := {u ∈ H 1(�) : ∀T ∈ T , u|T ∈ P1}.

denote the conforming piecewise affine functions. The set of edges in T is denoted
by E and the set of all midpoints of some edge E ∈ E is denoted byM. Then, the
Crouzeix-Raviart finite element space is

SNC(T ) := {u ∈ L2(�) : ∀T ∈ T , u|T affine and ∀ z ∈M, u continuous at z}.
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In order to discretise the boundary integral operators, we associate with T a partition
G := {E ∈ E : E ⊂ 0} of the boundary and consider

S1(G) := {w ∈ C(0) : ∀E ∈ G, w|E affine}, (6.1)

S0(G) := {w ∈ L2(0) : ∀E ∈ G, w|E constant}, (6.2)

namely the piecewise affine continuous and the (in general discontinuous) piece-
wise constants on 0. Then, the discrete problem reads: Find (U,4,8, λ) ∈
SNC(T ) × S1(G) × S0(G) × R satisfying, for all (V,2,9,µ) ∈ SNC(T ) ×
S1(G)× S0(G)× R,

(A(DT U),DT V )− 〈8,V 〉 = (f, V )+ 〈t0, V 〉,
−2〈U,9〉 − 〈V8,9〉 + 〈(K+ 1)4,9〉 = −2〈u0,9〉,
〈(K∗ + 1)8,2〉 + 〈W4,2〉 + 〈λ,2〉 = 0,

〈4,µ〉 = 0.

(6.3)

Remark 3. The system is symmetric but, because of the minus sign in front of
〈V8,9〉, not positive definite. Changing signs, we can rewrite this discrete prob-
lem to obtain a non-symmetric but positive definite system.

Remark 4. Because of the last identity in (6.3), 〈4, 1〉 = 0, whence
4 ∈H 1/2(0)/R. SinceW1 = (K+1)1 = 0 (take (ξ, φ) = (1, 0), a = 1 in Lemma
1 for a proof) and so, owing to the third identity in (6.3), the real number −λ is the
integral mean of (K∗ + 1)8 +W4, and so λ = 0. Hence, the discrete problem
could be equally rewritten as: Find (U,4,8) ∈ SNC(T ) × S1(G)/R × S0(G)
satisfying, for all (V,2,9) ∈ SNC(T )× S1(G)/R× S0(G),

3(A(DT U),DT V )− 〈8,V 〉 = (f, V )+ 〈t0, V 〉,
−2〈U,9〉 − 〈V8,9〉 + 〈(K+ 1)4,9〉 = −2〈u0,9〉,

〈(K∗ + 1)8,2〉 + 〈W4,2〉 = 0.

(6.4)

Remark 5. The unknowns (U,4,8) are discrete analogues of (u, ξ, φ) where u

solves (5.1) and (ξ, φ) are the Cauchy data of the exterior part v of the interface
problem of Section 2. The point is that 4 6= U |0 − u0 as the later function does
not belong to the energy space H 1/2(0) of the hypersingular operator.

7. A Priori Convergence Estimate

Let hT : L∞(�) → R be piecewise constant with hT |T = diam(T ) for each
element T ∈ T . Suppose that u ∈ H 2(�) and that A(Du) ∈ H 1(�).

Theorem 3. There exist positive constants c0 and h0 such that for all meshes T
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with mesh-size maxT∈T hT < h0, the discrete problem (6.4) has a unique solution
U and there holds

|u− U |H 1(�;T ) ≤ c0

(
‖hTD2u ‖L2(�) + ‖hT divA(Du)) ‖L2(�)

+ distH−1/2(0)(Su|0 − t0; S0(G))
)
.

(distX(w; Y) denotes the best approximation error in the norm of X when approx-
imating w ∈ X with functions in Y .)

Proof: With the solution u ∈ H 1(�), we define φ := −Su|0 + Su0 and ξ :=
u|0 − u0. Let e := u−U , ε := φ −8 ∈ H−1/2(0), and δ := ξ −4 ∈ H 1/2(0).
The same (laborious) calculations which lead from (4.1) to (4.4) show that

ρ0 := −2e − Vε + (K + 1)δ ⊥ S0(G), (7.1)

ρ1 := (K∗ + 1)ε +Wδ ⊥ S1(G)/R, (7.2)

where ⊥ denotes orthogonality in L2(0). Let t := A(Du) · nE , where nE is the
normal on each edge E and let E be the set of all edges in T . Furthermore, let
w ∈ S1(T ) and perform an elementwise integration by parts to employ (5.3) and
(2.1), (2.5) with ∂v/∂n = φ, and utilise (6.4) directly to infer that

(A(Du)−A(DT U),DT e)

= (A(Du)−A(DT U),D(u−w))+ (A(Du)−A(DT U),D(w − U))

≤ CA‖DT e ‖L2(�)‖D(u−w) ‖L2(�) + (A(Du),D(w − U)) (7.3)

− 〈8,w− U〉 − (f,w − U)− 〈t0, w − U〉
≤ CA‖DT e ‖L2(�)‖D(u−w) ‖L2(�) + 〈ε,w − U〉 −

∫
∪E\0

t[U ] ds,

where [U ] denotes the jump of U across an inner element side E ∈ E and∪E \0 :=
(∪E) \ 0 denotes the union of all inner edges; ∪E := ∪E∈EE is the skeleton of all
edges in T

From the definition of ρ0 and ρ1 and the orthogonal relations (7.1) and (7.2) it
follows, with 〈ε, (K + 1)δ〉 = 〈(K∗ + 1)ε, δ〉,

2〈ε, e〉 = 〈ε, (K+ 1)δ〉 − 〈Vε, ε〉 − 〈ρ0, ε〉
= −〈Wδ, δ〉 − 〈Vε, ε〉 + 〈ρ1, δ〉 − 〈ρ0, ε〉
= −〈Wδ, δ〉 − 〈Vε, ε〉 − 〈ρ0, φ − 8̃〉 + 〈ρ1, ξ − 4̃〉 (7.4)

for all 4̃ ∈ S1(G)/R and all 8̃ ∈ S0(G). Combining (7.3) and (7.4) and utilising



Coupling of Nonconforming FEM and BEM I 237

(4.2), we obtain

cA‖DT e ‖2
L2(�)

+ 1

2
〈Wδ, δ〉 + 1

2
〈Vε, ε〉

≤ CA‖DT e ‖L2(�)‖D(u−w) ‖L2(�) + 〈ε;w− u〉 −
∫
∪E\0

t[U ] ds

− 1

2
〈ρ0, φ − 8̃〉 + 1

2
〈ρ1, ξ − 4̃〉

≤ CA‖DT e ‖L2(�)‖D(u−w) ‖L2(�) + ‖ ε ‖H−1/2(0)‖w − u ‖H 1/2(0)

−
∫
∪E\0

t[U ] ds + 〈e, φ − 8̃〉 + ‖Vε + (K+ 1)δ ‖H 1/2(0)

× ‖φ − 8̃ ‖H−1/2(0) + ‖ ρ1 ‖H−1/2(0)‖ ξ − 4̃ ‖H 1/2(0).

(7.5)

Define [U ]|0 := ẽ− e where ẽ ∈ S0(G) is the G-piecewise integral mean of e and
let 8̃ denote the G-piecewise integral mean of φ. Then,

〈e, φ − 8̃〉 = 〈e − ẽ, φ − 8̃〉 = 〈e − ẽ, φ〉 = −
∫

0

t[U ] ds (7.6)

if we notice that t = φ = A(Du) · n by (2.5). Hence, for all t̃ which are constant
on each E ∈ E ,

−
∫
∪E\0

t[U ] ds + 〈e, φ − 8̃〉 = −
∫
∪E

t[U ] ds =
∫
∪E

(t̃ − t)[U ] ds, (7.7)

because the integral of [U ] over each edge E vanishes. Define the constant t̃ as the
integral mean of t on each edge E. A standard technique in nc-FE, cf., e.g. [1],
leads to the estimate∫

∪E
(t − t̃ )[e] ds ≤ c1 ‖hTDA(Du)) ‖L2(�)‖hTDT e ‖L2(�). (7.8)

Gathering (7.5)–(7.8) together, we conclude the theorem with standard estimations
absorbing the error terms on the right-hand side. �

Remark 6. The best-approximation error distH−1/2(0)(Su|0 − t0; S0(G)) in The-
orem 3 is bounded by O(h3/2) when h denotes the maximal mesh-size on the
boundary and Su|0 − t0 belongs to H 1(0).
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Remark 7. In the notation of the proof we furthermore have

| e |H 1(�;T ) + ‖ ε ‖H 1/2(0)/R + ‖ δ ‖H−1/2(0)

≤ C
(
‖hTD2u ‖L2(�)+‖hT divA(Du)) ‖L2(�)+distH−1/2(0)/R(Su|0; S0(G))

)
.

8. Numerical Example

To illustrate our convergence result we consider a numerical example and start
with some remarks on the numerical implementation in Matlab. The duality pairs
on the left hand side, e.g. (A(DT U), (DT V ), 〈V8,9〉 and 〈K4,9〉 where
U,V,8,9,4 are piecewise constant or piecewise linear functions can be cal-
culated almost analytically. (See [14] for terms with integral operators.)

In order to approximate the right hand side for given functions f ∈ L2(0), u0 ∈
H 1/2(0), and t0 ∈ L2(0) we compute

∫
� fηj dx via a mid-point quadrature rule

on any triangle T and the integrals 〈9,u0〉 and 〈t0, V 〉 are approximated by an
8-point Gaussian quadrature formula.

Since A is a linear operator in our examples we get a linear system of equations
which is solved directly.

Example 8.1. Let us consider the interface problem (2.1)–(2.5) on the L-shaped
domain in Fig. 1 with exact solution

u(r, θ) = r2/3 sin(2θ/3) and v(x, y) = log(|(x + 1/2, y − 1/2|)
in polar resp. Cartesian coordinates (r, θ) resp. (x, y). The solution has a typical
corner singularity such that the convergence rate of the h–version with a uniform
mesh does not lead to the optimal convergence rate. The right hand side f and the
jumps u0 and t0 are computed by (2.1) and (2.5) from u and v above. With those
data, we computed the discrete solution of (6.3).

–1

–1

1

1

y

x

q

Figure 1. L-shape

Table 1. Error |e|1 and convergence
rate γh in Example 8.1

h |e|1 γh

1 0.23819
1/2 0.23163 0.0403
1/4 0.14471 0.6786
1/8 0.09033 0.6799

1/16 0.05696 0.6636
1/32 0.03826 0.6701
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In Table 1 we give the numerical results for the uniform meshes. For the sequence
of uniform meshes we obtain experimentally a convergence which is approximately
h2/3 which coincides with the theoretically expected rate.

Ω
cΩ

D,1Γ D,2Γ

ΓC

–2

–2

–0.8

–0.8

–0.6 0

0

0.6 0.8

0.8

2

2

Figure 2. Configuration of Example 8.2
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1

1.5

Solution of the problem

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
Solution of the problem

Figure 3. Solution of Example 8.2

Example 8.2. As a more practical example, we consider the following problem,
where A = 5 id in (2.1), u0 = 0 and t0 = 0 on the coupling boundary 0C :=∂�∪
∂�c. This problem models the potential of a capacitor in an unbounded domain
with different permeabilities in �c and �. The charge at boundaries 0D,1 and
0D,2 are±1, respectively. �, �c, 0C and 0D,· are given as depicted in Fig. 2. The
exact geometry is given there, too. Three times uniform refinement, e.g. joining
midpoints of each edge by straight lines, of the mesh shown in Fig. 2 gives the
used mesh. The solution for this problem with h = 0.12 is shown in Fig. 3.

The calculation required 1225.27 sec CPU on a Ultra Sparc I and corresponds
to 5825 degrees of freedom (5504 in the finite element part and 160 boundary
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elements, yielding 480 degrees of freedom on the boundary plus 1 for the Lagrange
multiplier λ).

The streamlines in Fig. 3 give knowledge of gradients of the potential. Due to the
higher permeability in � the streamlines look more depressed and flat than in the
case A = id. Although we are using the nc-FEM in � the streamlines are smooth,
also near the coupling boundary.
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