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On microstructures occuring in a model of finite-strain elastoplasticity in- 
volving a single slip-system. 

itartin9 from a novel variational principle the flow theory of elastoplasticity can be formulated as a minimization 
problem with respect to the total deformation and the update of the plastic deformation gradient. For a specific 
nodel involving a single slip-system the latter quantity can be eliminated. The resulting minimization problem with 
upect to the total deformation only turns out to be not quasiconvex, thus giving rise to the occurrence of layered 
nicrostmctures. Finite element calculations indeed show these layers. The results are, however, mesh-dependent. 
ro overcome this effect a partial rank one convezification of the potential given is performed. 

1. Finite elastoplasticity 

Ve assume the now well established multiplicative split of the deformation gradient F = D4 into a plastic and an 
lastic part: F = FeFp. Then the internal energy W of an elastoplastic material is supposed to  depend only on Fe 
nd a set of hardening parameters p. This means we have 

- 
W(F,Fp,P) = W(FF,-l,P) = W(F*,P).  (1) 

Jext we are going to introduce thermodynamically conjugate forces to the independent variables F, F;’,p via 

8W q =  --. 8W Q = - -  8W T=- 
8F ’ OFF’ ’ 8P 

Iere T is the first Piola-Kirchhoff stress-tensor. Furthermore we aSsume that the yield-function cp depends only on 
hose forces and on P = F;’. At the same time cp should, like the internal energy, only depend on F, and p. This 
zaves us with 

- 
cp(T, Q, q)  = V(Q, q), where Q = (F;’)=Q = -F,TDF.W(Fe, p) = PTQ. (3) 

?he material model is completed by evolution laws for the internal parameters, the so-called flow-rules 

0 for V(Q,d I 0, 
00 else. 

1 0, which can be put in the form (P-’P,@) E 8J(Q,q), where J(Q,q) = { 
2. Variational formulation 

,et us now proceed to a timediscretized formulation by replacing the time-derivatives in (4) by time-increments 
f the form A(P,Po) = (8Po + (l-8)P)-l(P-P0) or A(P,Po) = (8P;l + (1-B)P-’)(P-P0) for 0 5 8 5 1. 
’hen equations (2) and (4) (in a discretized version) as well as the equilibrium conditions divT + f = 0, f being a 
ody-force, and the respective boundary conditions (we have for simplicity assumed only displacement boundary 
mditions) can be obtained by variation of the functional (here T denotes the length of the time-step considered) 

Ve are able to eliminate 
= sup {as + q s - J(Q, q ) }  = sup { Q S  + q . s I p(V, q)  

and q from this functional by introducing the Legendre-transform J*(S, s) 
0 } which leads to the functional 

(6) 

f,po,po has now the advantage of being stationary at  a minimum with respect to  4, PO and po, see [l] for details. 
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3. A model with a single slip system 

Let us apply the formalism derived above to a specific model with internal energy and yield function given by 

where V(j)  = aj2 - 9 logj. Here A 2 0 is a Lam&parameter, a > 0 is a parameter describing isotropic hardening 
and p is a single scalar variable. The internal energy corresponds to compressible neo-Hookean material. The vectors 
{m,n}, m-n = 0, constitute a so called slip-system. Equations (7) form a typical description of an elastoplastic 
metal-crystal. The flow rule (4) becomes in this case (P-lP,p) = (sign(m - q n )  m @ n, -1) from which we 
can conclude that the plastic strain P assumes the form P = 1 + ym @ n, where y is a scalar parameter. The 
Legendre-transform can now be calculated explicitly and the functional (6) becomes 

where Cmm = m . FTFm and Cmn = m - FTFn are the components of the right Cauchy-Green-tensor in the 
directions given by m and n. We further take the variation of zf,yo,m with respect to  y, solve for 7 and thus are 
able to eliminate y (see again (11) ending up with a functional with 4 as the only independent variable 

4. Convexity properties and microstructures 

Let us denote the F-dependent part of the integrand in (9) by ?&.,o,m(F). This constitutes a formal elastic internal 
energy. Let us consider fi.,o,po(F) for the parameter values yo = 0, = 0 and the rank onefamily of deformation 
gradients F = 1 + 4 (m + n) @ (n - m). This yields w(X) = X2 - 4 isz. For a small enough it is easy to 
see that @(A) is not convex, hence T@.,o,Po(F) is not rank one convex and by virtue not quasiconvex indicating the 
possibility of the occurrence of microstructures, see [2], [3]. 

Figure 1 Figure 2 

RlT$'(F) =sup{ (1 - X ) W ( F - X a @ b ) + X W ( F + ( l -  

A finite element calculation of a simple shear 
deformation of a square-shaped body (under 
plane strain assumptions) clearly shows those 
microstructures. Figure 1 shows a plot of 
the internal parameter y. The slip system 
(m, n} is rotated by an angle of 45 degrees 
with respect to  the coordinate axes. These 
results, however, are mesh-dependent. In or- 
der to avoid this phenomenon we calculated 
a relaxed energy by the partial rank one- 
convexivication given by 

A) a 8 b) I 0 I X ,< 1, la( = 1 }, (10) 
compare the exposition in [3]. We used the NAG-library subroutine EO4JAF which employs a gradient line-search 
algorithm in order to solve the constraint optimization problem given in (10). A typical result of this procedure is 
depicted in figure 2; once again y is plotted. One should note that the variations in figure 2 are less than 5 % of 
those in figure 1. The results are essentially mesh-independent now. 
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