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Summary. In non-convex optimisation problems, in particular in non-con-
vex variational problems, there usually does not exist any classical solution
but only generalised solutions which involve Young measures. In this paper,
first a suitable relaxation and approximation theory is developed together
with optimality conditions, and then an adaptive scheme is proposed for
the efficient numerical treatment. The Young measures solving the approx-
imate problems are usually composed only from a few atoms. This is the
main argument our effective active-set type algorithm is based on. The sup-
port of those atoms is estimated from the Weierstrass maximum principle
which involves a Hamiltonian whose good guess is obtained by a multilevel
technique. Numerical experiments are performed in a one-dimensional vari-
ational problem and support efficiency of the algorithm.
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1. Introduction

Many problems from non-convex optimisation theory (as e.g. optimal con-
trol and non-cooperative games) and variational calculus do not possess a
classical solution because approximate solutions show typically fast oscil-
lation. This phenomenon leads to a necessity of a natural extension of such
problems, often constructed by means of Young measures. It is the purpose
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of this paper to propose an effective algorithm for computing a numerical
approximation to Young measures solving such problems.

To simplify the explanation we focus on the following multidimensional
scalar variational problem, although the adaptive approximation algorithm
proposed in this paper works in a general context, as well.

Minimise &(u):= / F(xz,Vu(z)) + G(z,u(x)) dz,

0
subjecttou € WP(£2), ulso = up.

(P)

Here, WP (2) is the standard Sobolev spafe : 2 — R; (u,Vu) €
LP(2; RN} andup € W'1/PP(912) determines the prescribed trace
of u on the boundary(? of (2. Through the paper? C R™ will be a
bounded Lipschitz domain arfd’(2; R") a Lebesgue space of measurable
functionsy : £2 — R™ such that|y|| := ([, |y(z)[Pdz)"/? < +oo; we
assumd < p < +oo. Furthermore, we will assume that: 2 x R™ — R
andG : 2 x R — R are CaratBodory functions satisfying

(1.1) ¢|s|P = C < F(z,s) <C(1+s”), |G(z,u)| <alx)+ Clul?

for somea € LY(2),c > 0andC € R, and1 < ¢ < pn/(n — p)

(if p > n, then simplyg < +00). These assumptions guarantee that
WhP(£2) — R is well defined, continuous, and coercive. Howedeis not
weakly lower semi-continuous in caggz, -) is not convex. This causes
faster and faster oscillations of the gradient of minimising sequendéy of
and afailure of existence of a solution(f®); for numerical analysis of direct
minimisation of discretized problems we refer to [C, CCK, CKL,CL,L]. To
relax this problem we can either consider a weak lower semi-continuous
envelope ofb or extend® continuously on a suitable hull of the original
spaceW?(£2). The former option requires to make a convexification of
F(z,-) which may be practically difficult to obtain even in very special
cases; cf. [CP] or [BC] for a numerical approach. Here we will follow the
latter option using the continuous extension which is easy to calculate and
yields also more information about oscillations of the gradient of minimising
sequences aP). For other works in this spirit see e.g. [NW1,NW2,P1,P2,
R1,R2,R3].

2. Young measures and relaxed variational problems

To construct a suitable extension @), we will first introduce a certain
convexo-compact envelope of the Lebesgue spatg?; R™).

Let rca(R™) = Cp(R™)* denote the space of Radon measureRon
Co(R™) being the space of continuous functionsi®h vanishing at infin-
ity, cf. [DS]. Then we considef.°(£2; rca(R™)) =2 L1(£2; Co(R™))* (the
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subscript “w” stands for the adjective “weakly measurable”) and define the
set of LP-Young measures

(21) V(LR = {v = {n)rea € L2 rea(R™);
vy Ercaf (R™) fora.a.xe,

/Q /R s|Pva(ds)de < 400} .

Here,rcaf (R™):= {puerca(R™); >0, [p. u(ds) = 1} is the set of prob-
ability Radon measures. Also, we have used the usual convention wijting
instead ofv(x). A natural (horm,weak*)-continuous and dense embedding
of LP(£2;R") into YP(§2;R™) is defined byy +— v := {d,()}zen With
§s € rcal (R™) denoting the Dirac measure supported & R™. The set
YP(£2; R™) thus forms a convex-compact hull ofL? (2; R™); see e.g. [R2,
Chap. 3] for more details.

A relaxation of (P) can now be done simply by a continuous exten-
sion of all data involved i{P) from L?({2; R™) to its convex hull, namely
YP(£2;R™). This creates the problem

minimise & (u, v) := /Q {/n F(z,s)vy(ds) + G(z,u(z)) | dx,

subject to/ svz(ds) = Vu(z) fora.a.x € 12,
R”

(VRS Wl’p(ﬂ), v e YP(2;R™), ulpn = up.

(RP)

Let us note that the probleiRP) has a convex structure (i.e. minimises a
convex functiona® on a convex set of feasible paits, v/) providedG(z, -)

is convex; the convexity of (z, -) is not needed for the convexity ¢ The
important fact is thatRP) is a correct relaxation afP).

Proposition 1.If (1.1) holds, then

0] (RP) always possesses a solution,

(i)  inf(P) = min(RP),

(i)  every minimising sequence(®¥) contains a subsequence converging
(when embedded hy — (u, {0y () }zc)) to @ solution to(RP),
and

(iv) conversely, any solution t(RP) can be attained by a minimising

sequence ofP).

Sketch of the prooFollowing [R2], we take a sufficiently large (but separa-
ble) linear space of testintegranbds= C'(£2)-{F'}+C(2) @ C,(R™) with
Cp(R?):= {v € C(R"); limy_oc v(s)[s| 7P = 0} and "®" the tensorial
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product,i.eH = {go(z)F (2, 8) + > pnite 9i(®)0i(8); g0, 9i € C(2), v; €
Cp(R™)}. Itis natural to endowd by the norm

|7z, s)]
2.2) hllg:=  sup .
( H H (z,8)ENXR™ 1+ |S|p

We putYj(2;R") = {n € H*; Hyitien C LP(RY) @ 7 =w*
Iiml_,ooiH(uk)} where the embeddingq LP(£2;R™) — H* is defined
by (i (y fQ ))dx. Then we introduce an auxiliary relaxed
problem

minimise @q(u,n):= (n, F) +/ G(z,u(x))dz,
Q _
(RPx) subjectto (n,g®@id) =Vy-g  Vge C(2;R"),
ue Wh(2), neYy(2;R"Y), ulpe = up,

with id : R™ — R"™ denoting the identity. It is known [R2, Sect. 5.2] that
(RPg) is acorrectrelaxation @P) in the sense thdRPy; ) always possesses
asolutionjnf(P) = min(RP ), every minimising sequence @) contains

a subsequence converging, when embedded by (u,iy(Vu)), to a
solution to(RPy ), and conversely any solution (&P ) can be attained by
a minimising sequence o¢P).

Moreover, itis known [R2, Sect. 5] that, singe> 1, there cannot appear
concentration of energy in the sense that the{set> F(z, Vu,(x)); i €
N} is not only bounded in.!(£2) but even relatively weakly compact in
L'(£2) provided{u; };cn is @ minimising sequence f¢P).

Therefore, we can equally modifRPy) by adding the restriction that
7 is attainable by sequences non-concentrating energy in the above sense
(thoser is calledp-nonconcentrating). Thisnonconcentrating € Y7, (£2;
R™) has a Young measure representatidn the sense

(2.3) (0, ) = /Q / h(, $)ve(ds)d

for anyh € H. The Young measure is defined uniquely becaudg is
rich enough, namelyl O C(2) ® C,(R™), cf. [S] or also Ball [B] or [R2,
Chap. 3]. This shows th&RP) and(RPy) are equivalent.

As to (iii), having a minimizing sequencgu;};cn for (P), by local
sequential weak* compactnessiaf (£2; R"™) there is its subsequence (de-
noted again a$u; }) such that(u;, i (Vu;)) — (u,n) weakly* and(u, )
solves(RPy). In particular,n must bep-nonconcentrating, and we can
consider its Young-measure representatioithen(u, v) solves(RP) and
(ui, 6(Vu;)) — (u,v) weakly* becaus@/?((2; R™) is a coarser-com-
pactification ofL?(2; R™) thanY7},(£2; R™), cf. [R2] for details.
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Conversely, if(u, v) solves(RP), then(u, n) withn € Y};(£2;R™) given
by (2.3) solvegRPy), and then (cf. [R2, Sect. 5.2]) there is a minimising
sequencéu; };c for (P) attaining(u, n). This sequence attairis, v/), too,
which proves (iv). O

3. Convex approximation of Young measures

We will now construct a convex finite-dimensional approximation of the set
YP(£2;R™). For this, we need to discretise bathandR", i.e. thex- and
s-variables.

Astothe discretisation a?, we now suppos€ polyhedral and consider,
foreveryl € N, atriangulatiory; of {2 such thatim;_, ., maxac7; diam(A)
= 0 and7; C T;41, i.e. the nested triangulations refine everywheregon
Then we defing?, by

(k+1)"

(3.1 [Ph(,s)= )

i=1

1
meas, (A)

/ h(&,s)de  ifxeAeT].
A

RequiringP, : H — H, we must slightly enlarge the linear spaéelefined
in the proof of Proposition 1, namely we will consider

(3.2) H:=C(2)-{F}+ ] C7n(2) & C,(R™),
leN

whereC'7;(12):= {ge L>*(£2); VAT, : g|p €C(A)} denotes the space

of element-wise continuous functions. Endowifidggain by the norm (2.2),
one can see thatP,h||y < |h||g andP, o P, = P, sothatP, : H - H

is a continuous projector. Moreover, since the collection of triangulations is
countablel J;.y C7;(£2) is separable if endowed by te&°-norm and so is
alsoH.

As to the discretisation d®”, we now choosen € Rt andk € N and
make a uniform partition of the hypercult®! := [—m, m]” C R™ to k"
similar hypercubes of the siden/k and consider thus a discretisation of
the whole rangéR™ as outlined on Fig. 1 fon = 1 andn = 2; of course,
some parts of this partition &” are inevitably unbounded.

Then we use the Q1 finite elements inside the hyperdafe let us
remind that these elements are just the tensorial products of linear functions
in each coordinate. In such a way, we get the collecfigni = 1, ..., (k +
1)™} of the basis function®’, — R defined by taking 1 at a selected grid
point and O at all restingk + 1) — 1 grid points. We can prolong the basis
functionsv; outside the hypercubB)!, just by puttingv;(s) := v;(Pr(s))
wherePr(s) = Pr((s;)j=1,..,m) := (min(m, max(—m, s;))j=1,..m) IS
the orthogonal projection of onto the hypercubé,. Thus we get; €
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by

Fig. 1. A discretisation ofR™ for n = 1 andn = 2

Cp(R™). Note that always;(s) > 0 andzgﬂl)" vi(s) = 1forall s € R",
which are actually the only essential properties of the chosen finite-element
discretisation ofR™ we will need. Then, supposing(-, s) € Cr(£2), we

can construct a projectd, ,,, : H — H defined by

(k+1)™

(3.3) [Prmhl(z,8):= Y h(z,5)vi(s).
=1

The projectorP;, ,,, is bounded ifH is endowed with the norm (2.2) (here
| Px.m || can be greater than 1) and commutes with

We now consider a discretisation parameter (I, k, m) and create the
discretisation of2 x R™ as described above. The set ofédlis naturally or-
deredbyl; < ds meaningthatthe discretisation createdbis arefinement
ofthe one created b . In particulard; = (11, k1, m1) =< d2 = (l2, k2, m2)
just says that; < lo, m1 < mg, andm;ika/(meki) is an integer. The set
of all d’s is obviously directed by this ordering and thus we can use it to
index nets; in particular, we will often work with nondecreasing sequences
of d's and then writed — oo having equivalently just the meaning that
min(l, k, m) — oo. For givend = (I, k, m) we will now consider a projec-
tor Py:= Py o Py = Py o P, 1.€.

(k+1)" .
(3.4) [Pah)(z,s)= > (A)/Ah(g,si)vi(s)dg if e AET].

¢ meas,,
=1

By the formula (2.3), we can identify the sBt({2; R™) with a subset of
YE(£2;R™) with H from (3.2). For brevity, we will not distinguish between
YP(£2;R") and its image it} (2; R™).

The adjoint projectof’; obviously maps?™ into itself.

Lemma 1.We haveP; Y/, (£2;R™) C YP(£2;R™).
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Proof. First, forv € YP(£2;R™), one can see as in [R2, Examples 3.5.4-5]
that

(k+1)"

(3.5) [Pivle= Y ai(x)s,, with
i=1

1 .
a;(z) = m&asn(A)/A/n vi(s)ve(ds)ds if xzeAeT,

whered; € rca(R") denotes the Dirac measure supported @tR”. Note
that alwaysa;(z) > 0 and ng{l)n a;(x) = 1 because, is a prob-
ability measure and because the basis functions satigfy > 0 and
zg”" v;i(s) = 1.Hence Pjv € Y*°(2;R") so thatP; mapg)P(£2; R")
into itself.

Second, for a genergl € Y}, (£2; R"), there is its so-calleg-noncon-
centrating modifications € YP(£2;R"™) defined (here even uniquely) by
(2.3) for anyh € C(2) ® C,(R™); cf. [R2, Sect. 3.4]. In fact, (2.3) holds
for anyh € H having growth lesser thay in particular forP;h which is

even bounded. Then, for ahyc H,

(Pyn,h) = (n, Pgh) = /Q/n [Pih](z, s)v.(ds)dz

= / / h(z, s)[Pjv].(ds)dz,
Q n
ie. Pin = Piv e YP(2;R") by (3.5). O

Remark 11n view of (3.5), the “discrete” Young measures frdji)? (12;

R™) are element-wise constant (also called homogeneous) and can be sup-
ported only at a finite number, namely+ 1)™, grid points ofR™. The Dirac
measures in (3.5) are called atoms.

Remark 2.The set of “approximate Young measurel;)?(2;R") =
P;YI’}(Q; R™) is convex; in fact, its convexity follows from the convexity
of YP(£2; R™) and linearity ofP; even without knowing the explicit formula
(3.5).

4. Convex approximation of relaxed problems

The above set of “discrete” Young measugg)”(f2; R") can be used

to construct a finite-dimensional approximation of various relaxed optimi-
sation problems, in particular ¢RP). Often, such relaxed problems have
a convex structure, contrary to the “original” problems. The convexity of
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P;YP(£2;R™) then allows us to keep “as much” convex structure in the
approximate problems as possible, which is very advantageous for both
efficiency and reliability. For instance, in zero-sum games, a saddle-point
search is much more effective if a convex/concave structure is preserved
[R2, Sect. 7.3].

For any discretisation parametér= (I, k, m) we define an approxima-
tion of the relaxed problertRP) by

minimise®(u, v) ::/Q [/ F(z, s)vy(ds) + G(z,u(z)) | dz,

(RPy) subject to/ svz(ds) = Vu(z) fora.a.x € (2,
R

uel, ve P YP(5R"), ulan = up,
wherelU;:= {u € WHP(02); VAET, : u|x is affing}.

Proposition 2. Suppose (1.1) and letp be compatible in the sense that

up = ug|ag for someuy € Uy, lp € N. Then,

0] for d sufficiently large(RP;) always possesses a solution.

(i) Ford = (I,k,m) — oo withl — oo sufficiently slowly in com-
parison withk, m — oo, one hasnin(RP;) — min(RP) and every
cluster point of sequence of solutiong RF;) solves(RP).

Proof. For anyd = (I, k,m) > do = (lo, ko, mo) With mg > max;—1__,
[0uo /0] L (02), ONE can see that the set of feasible pairg) for (RP;) is
nonempty, contains a pdit, »°) with a suitable/ supported at vertices of
the hypercubgs?, and satisfiegy,,, sv(ds) = Vug(z). Then, the existence
of solutions tq RP;) claimed in (i) follows by standard coercivity, continuity,
and compactness arguments; note that the feasible S&Mpf is finite-
dimensional.

Let us now consider a sequenee € U; with |9, = up such that
(u, 6(Vuy)) converges to a solution ¢RP); cf. [R2, Proposition 5.5.1]
with a modification for the Dirichlet boundary conditions. This shows that
min(RP; o o)) — min(RP); for the definition of(RP; .. ..)) see Sect. 6
below. Unfortunately, the pair;, 6(Vu;)) need not be feasible fgRP;),
yet we can modify slightly(V;) by replacing it with a suitable! so
that (u;, v') is admissible foRP;) and|®(u;, 1) — &(w;)| < e(l, k,m) is
arbitrarily small provided andm are sufficiently large (depending possibly
onl); cf. also (6.3). Thus we obtain convergence of minima claimed at the
point (ii).

The convergence of solutions in terms of cluster points then follows by
standard compactness, continuity, and coercivity arguments; we omit the
details. O
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To guarantee the smoothness ®dfwith respect to the geometry of
WHP(0) x L°(£2;rca(R™)), we must suppose the differentiability of
G(z,-) only; let G'(z, -) denote its derivative. Namely, we want to assure
u— [, G(z,u(x))dr : WHP(£2) — R to be aC'-function. For this, it
suffices to assume (cf. [R4] or [R2, Sect. 5.3]) that

(4.1)  Ja;eL¥@V(Q), BbeR: |G (z,u)] < ai(z) + blulT,
(4.2)  3ayeL¥2 (), IbeR:
|G (22, u1) =G (2, ua) | < (az(@)+blur |77 +-Dlua|?™?) [ur —ua;

note that (4.2) requireg > 2 which is always possible provided >
2n/(n + 2).

Using convexity of the set of feasible element§B#P, ) and the supposed
smoothness @b, one can derive the necessary and sufficient optimality con-
ditions for a solution td R P;) in the form of a Weierstrass-type maximum
principle.

Proposition 3. Suppose (1.1), (4.1), and (4.2), and (et v) solve(RF,).
Then there is somg € L°°(f2;R™) element-wise constant such that the
maximum principle

(4.3) ?é%zf%i(x’ s) = A HY(x, s)vy(ds) fora.a.c € 2

and the identity
(4.4) / (A-Vz—G'(u) - 2)de =0 VzeU, zlpn =0,
¢

are satisfied, where the “discrete Hamiltonia®t¢ € H is given by
(4.5) Hi:= Py(A\®@id - F).

Moreover, ifG(z, ) is convex for a.ax € 2, then conversely evely, v/)
solves(RP;) provided it is feasible fof R P;) and satisfies (4.3)—(4.5) for
some\ € L>®(2;R"™).

Proof. See [R2, Proposition 5.5.3] with the modification®f : H — H
given now by (3.4) for corresponding optimality conditions &Pz 4)
defined agRPy) but with P;Y}(£2; R™) instead oft}; (£2; R™). This gives
then (4.3)—(4.4) fo(RPy 4). However, the problem®&RP;) and(RPy 4) are
if fact identical becaus®; Y}, (2;R™) = P;YP(£2;R™), see Lemma 1.
Supposing=(z, -) convex,® is convex with respect to the geometry of
WLP(02) x L2 (§2; rca(R™)) and optimality conditions (4.3)—(4.5) are also
sufficient. Note thak (possibly non-constant along elementse 7;) can
be replaced by its element-wise averages without affecting (4.3)—(4.5).
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Let us remark thak is the Lagrange multiplier with respect to the con-
straint [, sv(ds) = Vu. These sufficient optimality conditions gives the
theoretical basis for our adaptive-refinement scheme. Another important
fact is that, due to a special construction of the projed@grthe max-
imum principle is satisfied if (and only if), on each elemeht € 7,
it holds H(z,5;) < [pn Hi(x,s)v,(ds) for every grid points; with
i=1,...,(k+ 1)" Thus (4.3) can be checked in a finite number of points.

5. An active-set strategy ins-variable

The above mentioned substantial advantages of convex approximatign (RP
are deteriorated by a need of a very large dimensionality of the approximate
relaxed problems. Realize that the dimensiorPg?(2; R™) with d =
(I, k,m) is card(T;)(k + 1)".

The maximum principle (4.3) predicts generically that the solutions to
(RP;) will be typically supported not at all + 1)™ grid points but only at
a very few ones on each element. This is a basis for our adaptive technique
where we approximatéRP;) by (RP; 4), requiring the involved discrete
Young measures to be supported only on a (suitably) prescribed set
2 x R™. The support of a Young measuras defined as

Supp(v):= {(z,s) € 2 x R"; s € supp(vz)}

wheresupp(v;) C R" is the support of the measurg € rca(R") in the
usual sense; this defin8sipp () up to zero-measure sets 6h Then the
problem(RP; 4) reads
(RPy,4)
minimise @(u,y):—/ [/ F(z, s)vy(ds) + G(z,u(z)) | dx,
Q n
subject to/ svz(ds) = Vu(z) fora.a.x e (2,

wel, vePjYP(I;R"), Supp(v) C A, ulpn = up.

Proposition 4. Suppose (1.1), (4.1), and (4.2) and (et v) solve (RP;)
with A being the corresponding multiplier. Let C {2 x R™ satisfy
(5.1)

{(:v, s)e N x R"™; sis agrid point H4(z,s) = m%x’;’—lﬁl\(x, 5)} C A.
SER™

Then, every solution t(RP; 4) solves alsqRF;).
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Proof. Obviously, every feasible poiriti, 7) of (RP; 4) solves alsqRP;)
provided® (i, 7) < min(RP;).

Each solution(u,v) to (RP;) is simultaneously a feasible point for
(RPy 4) because it satisfies the maximum principle (4.3) anthgp(v) C
A for our special choice ofl. Thereforemin(RP; 4) < min(RP;).

Thus, having a solutioli, ) to (RP, 1), we have proved (i, 7) =
min(RPy 4) < min(RP;) and hencéa, 7) solves alsqRF;). O

If we knew a priori the correct “discrete Hamiltoniak'?, we could im-
mediately use Proposition 4 to solve a presumably much “smaller” problem
(RP; 4) instead ofRP,). As we can at most gue$4{, we need a tool how
to verify a posteriori whether a solution {®P; 4) solves alsqRF;) and
need a certain effective method to get an enough good guess of tHe set
Let us first deal with the first task, the second will be addressed in Sect. 6.

Proposition 5.Suppose (1.1), (4.1) and (4.2). l@&tx, -) be convex for a.a.

x € 12, let(u, v) solve(RP; 4) with a corresponding Lagrange multipliex
Suppose that the discrete maximum principle (4.3)—(4.5) is satisfied. Then
(u,v) solves(RF,).

Proof. Any (u,v) feasible for(RP; 4) is also feasible fo(RP;). More-
over, (u, v) satisfies all the optimality conditions (4.3)—(4.5) because the
adjoint equation (4.4), which is independentdif formulated for(RP; 4 ),

is satisfied for the obtained multiplierand because the satisfaction of the
maximum principle (4.3) is assumed. Sir€ér, -) is convex, the necessary
optimality conditions (4.3)—(4.5) are also sufficient {&P;), see Proposi-
tion 3. Therefordu, v) solves(RF;). O

Remark 3Forn small the approximate relaxed probl¢RP;) can be solved
directly; see [R1] for variational problems or [R2, Sects. 4.3 and 7.3] for an
optimal control and a zero-sum game problems with- 1. However, for

n substantially larger than 1 such methods cannot be effectively used and
ultimatively a certain adaptivity idea is needed.

6. Estimation of the Hamiltonian in a multilevel technique

Let us now focus to a good guess of the active 4etnspiring by the
condition (5.1), we put

(6.1) A= {(ZL',S) € 2xR": h(x,s) > ?el%}rfh($’§) - 5} ,

wheree > 0 is some tolerance andwill play a role of some guess of the
“correct” Hamiltonian#¢.
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Proposition 6. Supposéh — HngLoo(QXs) < ¢/2 for some solutiortu, v/)
of (RP;) with a corresponding Lagrange multiplierand for somes C R™
so large that, for a.ax € {2,

(6.2) Argmax HY(x,-) U Argmax h(z,-) C S.

Let A be chosen according (6.1). Then every solution{R&; 4) solves
(RPRy).

Proof.In view of Proposition 4, it suffices to show thatfrom (6.1) satisfies
(5.1). Letus take such tha#{{ (z, s) = maxzern HS(z, 3) forany(z, s) €
Supp(v). Then, by (6.2)Supp(r) C 2 xS up toazero measure set. Taking
(z,s) € Supp(v) and using again (6.2), we thus have S and therefore

h(z,s) > Hi(z,s) — % = gré%%’l-{i(:c, 5) — % > max h(z,5) —e.

Thus we showed that (5.1) is satisfied fbfrom (6.1). O

The above assertion suggests to look for a good guegs, of and of
) to get a good guess of the Hamiltoniafi. In a two-level approach, we
consider two discretisation := (I, kg, m) < (I, k1, m) =: dy; note that it
uses the same spatial triangulation (thdiscretisation is unchanged). Our
argument will be supported by the problem created as a limik fer o,
which form € R* U {+00} motivates the auxiliary problem

(RP(l,oo,m))

minimise ®(u,v):= /Q [/n F(z,s)vy(ds) + G(z,u(x)) | dz,

subject to/ svz(ds) = Vu(z) fora.a.x € (2,
R
uwe U, ve P YP(;R"),

Supp(v) C 2 x B, ulsn = up.

Proposition 7. Suppose (1.1), (4.1) and (4.2) andfix

0] For m sufficiently large, we havein(RP; o 1)) = min(RP; o o))
and, moreovennin(RP;) = min(RP; ; ,y) — min(RP; o)) for
k — oo.

(i) If, in addition, F'(z,-) is smooth andG(x,-) is strictly convex,
(ug, i) solves(RP . )) With Ay being the corresponding multi-
plier, and if (u, v) solveg RP;  m)) with A being the corresponding
multiplier, thenu, — v and A\, — A.

Proof. Take a solutioftu, v) tomin(RP; ) and the corresponding multi-
plier A € L*°(f2;R™) element-wise constant. Likewise in Proposition 3, one
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can seethat, is supported on the set of maximiser§cﬁ = P(A\®id—F)
with P, defined by (3.1); cf. also [R2, Sect. 5.5]. AShas a super-linear
growth by (1.1) and\ is essentially bounded ové?, this support is a priori
bounded and so containedit, for m large enough. Themyin(RP; o )

is equivalent tanin(RP;  ))-

To showmin(RP 1, 1)) — min(RPy ), We will seek(u®, /%) fea-
sible for (RP ,,,)) and converging to somgu, v) solving (RP; o m))-
We will construct(u*, %) by takingu* = u and by a suitable modifica-
tion of P, v. Note that unfortunatelyu, P;,,») need not be feasible for

(RP(k.m))- We choose/* in the form
(6.3) P = (1 - k) Py mV + e/

with somes;, > 0 small and withv*™ € P;Y(£2;R"). Besides, we need
that [, svk(ds) = Vu(z),sothayy = [qn SUE™(ds) = Jgn sVE(ds)+
(I — 1/er)orm With Opm = [ou s[(Pf, V)2 — vul(ds). As
|h = Pemhlli@ioBn)) — 0for k — oo, P, v — v weakly* because
(v— P v h) = vh— Pemh) < [[V|[lh — Pemhllpoiomn)) — 0
for any h € H andv with Supdv) C 2 x By,. Thuséy,,, — 0. It
allows us to choose;, converging to0 sufficiently slowly so that also
(1-1/ek)dk,m — 0.Supposing that was taken even so large that s(pp
is contained in the interior oB},, we havey;, ,,(xz) € B}, providedk is
large enough. Then there exists a Young meastifé supported on the grid
points of B}, and satisfyingy; m := [gn sUE™(ds). From (6.3), one gets
obviouslyv* € P;Yf(2;R") andv® — v weakly* becauseé’y;, v — v
and because;, — 0.

For(u,v)asolutiontqRP; .. . )), u solves the convexified problem, i.e.
minimises c@b(u) := [,[PF]*™*(x, Vu) + G(x,u)dx overU;, where the
double star denotes the convex hull. &z, -) is assumed strictly convex,
so is also cgP and thusu is determined uniquely.

Let us now consider a solutiofuy, v) to (RP; 4 ,,,)) With the corre-
sponding multiplier\;. By Proposition 2(ii), every cluster point of the
sequencdug } must minimise cgb. As u is determined uniquely, we get
ug, — u strongly inWP(£2) because: andu, live in a finite-dimensional
spacel/; of element-wise affine functions on the fixed triangulation

Then, from (4.3) withd = (I, 0o, c0) derived in [R2, Proposition 5.3.2],
we can see that, minimisess — [P, F](z,s) — A(z) - s so that its first
momentum [, sv,(ds) = Vu(xz) minimises the convexified functional,
i.e.s— [PF]*(z,s) — \x) - s. As F(x,-) is smooth, als¢P, F|(x, ) is
smooth, and by [F, Corollary 3] so |®,F]**(z, -). Here, we used also the
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super-linear growth ofP, F(x, -). Hence

(6.4) i[BF]**(x, Vu(z)) — A(z) = 0.
As u is unique, so is\.

Moreover, from (4.3) fod = (I, k, m) one can derive similarly as (6.4)
that

(6.5) Ai(x) € Os[PyF ™ (x, Vug(z)) ,

where 9; denotes the sub-differential with respect to theariable. As

PyF = Py, P F — P F pointwise inf2 x B!, for k — oo, the same holds
for the convex hulls. A&/ uy(z) — Vu(z) andVu(z) lives in the interior

of By, from (6.4) and (6.5) we infek;(z) — A(z) fora.axz € 2. O

By Proposition 7, we can presume that the probl¢Rf;,) and(RPy, )
do not differ from each other too muchdjf is already large enough. Then
we can také, = Hfg with ug and\y corresponding to a “smaller” problem

(RPy,) as a good guess of the Hamilton'rm‘/(i for (RPy,).

Proposition 8.Suppose (1.1), (4.1), and (4.2). Li&tx, -) be smooth(7(z, -)

be strictly convex, and let be sufficiently large so that the equivalence in
Proposition 7(i) holds.

(i) Foranye > 0, we have

Elk‘o \V/dl == (l,kl,m) t do
(6.6) = (L, ko,m) : | HR = HY | oonny) < &/2,

where); and A\ are multipliers corresponding to some solutions to
(RP;,) and (RPy, ), respectively.

(i)  For any ko, there isS bounded such tha$ > Argmax H¢(z,-)
providedd > (I, ko, m) and X is the multiplier corresponding to a
solution(u, v) of (RP;).

Proof. By Proposition 7(ii),{ \x } ren is @ Cauchy sequence, so that also
the sequencd \; ® id — F}en is Cauchy inL>°(£2 x S) for any S
bounded, in particular fo$ = By),. Then alsq Py, ,,, P (A, ®id — F') }reny =
(M }en is Cauchy inL>® (€2 x BY,), from which (6.6) follows.

As F(z,-) has a super-linear growth agd; } ,en is Cauchy, Argmax

H(Al;k’m) is a priori bounded provide# is large enough. O
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Corollary 1. For anye > 0 there isky € N such that, for alld; =
(I,ki,m) = do = (I, ko, m), any solution offRP;, 4) solve also(RP;,)
provided

6.7) A= {(:c, s) € 2 xR"; HP(z,5) > ?é%)é%iz(z,g) - e}

and )\ is the multiplier corresponding to some solution(BP,, ).

Proof. Takek sufficiently large so that (6.6) holds, then takso large that
S D Argmax ’Hi(:c, -) providedd > (I, ko, m) (see Proposition 8(ii)) and
eventually use Proposition 6 with= 1> and#§ = H{!. O

The above idea yields a multi-level algorithm with a chdin< d; <
dy = ... 2dj = ... 2 dywithd; = (I,k;,m). Thus we come to the
following conceptual algorithm.

(1) Initialisation: Choosey, ¢1,,...€5-1 > 0, pute := &g, j := 0,
h:=0.

(2) Activation: computed from (6.1).

(3) Optimisation routine: solvgRP; 4). It gives (u,v) € U; x
P;YP(£2;R™) and the multiplie\ € L>(2;R"™).

(4) 1f (4.3)—(4.5) is satisfied on the levé}, then go to (6), else con-
tinue.

(5) Correction: increase the tolerance by putting 2. Go to (2).

(6) If j < Jthen continue, else end.

(7) Refinement: puj:=j + 1, h:= Hij’l, e:=¢;. Goto (2).

The flow chart of this algorithm is schematically drawn on Fig. 2.

Remark 4Sinceh = 0 is taken for initialisation, on the coarsest grigl

the algorithm putsd = (2 x B},. As the maximum principle (4.3)—(4.5)
forms necessary optimality conditions, the algorithm always performs the
“refinement” after the very first run of the “optimisation routine”.

Remark 5.In the “correction” step, always the tolerance is made greater
so that, after a finite number of steps, it achieves such a value that (6.1)
activates all grid points, i.ed = {2 x B’ is accepted. Thus the algorithm
eventually must come to a satisfaction of the discrete maximum principle.
As this maximum principle is supposed also sufficient, the algorithm must
after a finite number of steps come to a situation that all assumptions of
Proposition 4 are satisfied and thus it found a solution on the discretisation
leveld;.
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INITIALIZATION
BEGIN CHOOSE INITIAL DISCRETIZATION

ACTIVATION

ACTIVATE THE GRID POINTSWITH
GREAT VALUE OF THE HAMILTONIAN

OPTIMIZATION ROUTINE

SOLVE THE DISCRETE PROBLEM
CONSIDERING THE ACTIVE GRID POINTS

IS THE MAX. YES
PRINCIPLE SATISFIED AT ALL
GRID POINTS ?
NO_—5iSCRETIZATION
LEVEL
CORRECTION REFINEMENT

REFINE THE DISCRETIZATION
TAKE GREATER TOLERANCE AND TAKE THE ORIGINAL TOLERANCE

Fig. 2. A conceptual algorithm for adaptive refinementiwvariable

Remark 6For d; sufficiently large, we explained in Corollary 1 tlﬁﬁ“

represents a good estimate of the Hamlltom@ﬁ and thus the correction
step is supposed to be effective only few times (|f at all) for the discretisation
d;. Thefactthat > 0 canbe chosensmallforlarggclaimedin Corollary 1

is important, indicating high expected efficiency(&P; 4) in comparison
with (RP;) because, for = 0, only those atoms are activated (i.e. contained
in A) Wherer\ll1 attains its maximum.

Remark 7 A-posteriori verification of the maximum principle (4.3)—(4.5)
and activation of the setl, which are the only operations to be made on
the whole grid of the discretisatiaf}, are supposed “cheap” in comparison
with the execution of the optimisation routine so that they will not delay
substantially the calculations; this naturally need not be trué¢ifor 1)"
extremely large, i.e. for a very fine discretisations in ¢heariable.

7. Numerical example

Inthis section we report on numerical experience and illustrate our algorithm
in the shifted Tartar’s broken extremal example [NW2], namely

1
) minimise /O [ (2)? — 1) + (u(x) — g(2))?] da,
subjecttou € W12(0,1), u(0) = 29, u(l) = 21.

This correspondst(P)wnhn =1,02:=(0,1),p =4, F(z,5):= (s°—1)?
andG(x, u) = (u — g(x))%. For gx) i= — (@ — 2)° — b — a1,
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zo:= g(0), andz; := (£ — Lay, + 5522)(1 — a1,), the relaxed problem

(RP) has the unique solution [NW1]

u() = {g(:ﬂ),

s1(z —2p)° + (2 — ap),

l—uT'(af)é_l 4 HUT/(x)(Sl forz e (0,1'1));
Vg =

5u’(a;) forx € ($b> 1)

SinceG(z, ) is quadratic, the discrete relaxed probl¢RP;) has a lin-
ear/quadratic structure. Thus, finite direct solvers canin principle be applied
to solve it. However, our numerical experiments proved that this direct ap-
proach appears limited to very small number of unknowns hence we will
focus to solvgRP; 4) as proposed in Sect. 6.

In the implementation of the proposed algorithm we employed a uniform
grid in boths2 and[a, ] > B}, (the space of atoms) fan sufficiently large,
cf. Proposition 7(i). The spatial grid of mesh-si2e' is defined by the
N := 2! elements, so thalj = {A = 27!(i — 1,4); i = 1,...,2'}. For
eachA € T, the discrete set of atoms (i.e. grid points [enb]) at level
j=0,1,...,Jis defined as + 277 (b — a)i/K for 0 < i < k; := 2/K.
This yields a presumably very coarse uniform grid + (b — a)/K, ..., b
of ko + 1 grid points between andb for j = 0 and then halves each interval
successively ag increases to the finest grid fgr= J with k; + 1 grid
points.

To describe the set of active atoms in our MATLAB realization, we de-
fined a sparse matrix which, for each elemént- 2~/(i—1, i) characterised
the set of active atoms as non-zero entriestoms (i, :). For instance, the
initialisation is given byatoms =sparse (ones (N,1)x1: K + 1).

For any reasonable set of active grid points (we will comment on that
below), the optimisation problep consists of minimising

x-Hx+ f-x subjectto Az <b,

whereA - ¢ < b is understood component-wise; here we adopted notation
from the MATLAB gp manual which differs from previous sections.

Let the first NV 4+ 1 component of the)-dimensional unknown vector
x describe the discrete displacements at the grid points and thereafter the
coefficients of theD — N — 1 =nnz (atoms ) active atoms. The finite
element basis consists 87+ 1 hat functions which vanish outside lofi —
1,7+ 1) and equal one @h. Then, the leadingN + 1) x (N + 1)-block of
the D x D-matrix H is the tridiagonal matrix of the exa&£ (0, 1)-products
of the N + 1 hat functions with a typical local mass matfix 1; 1, 2]h /6.
The corresponding firsV + 1 entries off are theL?(0, 1)-products of hat
functions withg evaluated by an elementwi8enode Gaussian quadrature
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Fig. 3. Support of Young measure (left) and a displacement (right) on the jexe}

rule. The remaining entries vanish ih. Thus, H is not positive definite.
In order to regularise the problem, we added > times theD x D-unit
matrix to the exact matri¥{. The remaining contributions iffi are given
by the nonlinear functioris> — 1)? evaluated withs replaced by the atom
linked to the current component.

The2N x D-matrix A as the2 N-dimensional vectob characterise the
equality side restrictions: the element-wise constrains force the sum of the
components of to equal one and the measure to have the mean value equal
the the slope on each element. Hence, the only non-zero entrieamd f
arele-_l = AQifl,Z =1, Agm = 1/h = —AQZ"H_I, andAQi,g = s if the
i-th component of: corresponds to an atosin thei-th element.

The remaining restrictions are directly incorporated by inequalities
TN+2, TN+3,---,TDp < 400 (the measure-coefficients are non-negative)
and, finally,up(0) < 21 < up(0) andup(1) < zny4+1 < up(1l) according
to the geometric boundary condition.

The MATLAB gp routine provides us with a solution to the problem
gp as well as with the Lagrange multipliarutilised in the definition of the
Hamiltonian (4.5). Therefore, the proposed algorithm can easily be realized
in MATLAB.

In the following, we comment on a numerical experiment obtained for
€; =279/100anda = —2 —7/7,b = 2 +exp(1)/13, 7, = 1/2 — /100,

h =1/3,andK = 1. In Fig. 3 and 4 we show on the left side set of active
atoms as thick lines and on the right the exact and approximate displacements
obtained for our algorithm fof = 3 (in Fig. 3 with6 elements anél atoms)

andj = 6 (in Fig. 4 with 24 elements and5 atoms).

The plus signs at the positioi8~'i, s) and (27!(i — 1), s) in the left
plots illustrate the fine set of possible atomgn the element at the level
j. There are two kinds of horizontal lines which link two of those plus signs
on elements. The thinner lines trough midpoints suctRa$(i — 1/2), s)
indicate that the atom is active on the elemert—'(; — 1,i) while the
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Fig. 4. Support of Young measure (left) and a displacement (right) on the jexve

thicker line implies, in addition, that the coefficient related to the atam
significant (i.e. “actually” positive, namely larger thao—3).

The plus signs in the right displacement plots indicate the exact solution
at the nodes of spacial grid.

The refinement in the-variable (we halved the distance of atoms in each
level) can naturally be combined with a refinement in space (we furthermore
halved the elements at every second level). A statistical report on the algo-
rithm’s practical performance is given in Table 1 where, for each lgvel
we displayed the total number of atoms and their average per element. In
the second last column we show the sapu (j) over all dimensiongD
which are considered in the termination of tirgsub-routine until the level
j is reached. Assuming that the CPU-time for the algorithm is mainly de-
termined by thegp applications, we count only the effort for those calls
which is monotone iD. The exact CPU-time depends on the quality of the
feasible solutions and is expected to be more expansive than linear growth.
Then, we may compare the corresponding accumulated cpstsj) with
the idealised costs for one run of the sub-routine with the current dimen-
sionD; = N(K?2/ + 1). The quotientpu (j)/D; in the last column may
be regarded as the guaranteed estimate of the reduction of computer costs
by our strategy.

Remark 8.For the finest discretisation, there ave+ 1 + N (K27 + 1)
unknowns and the MATLAB optimisation toolbox solvgp (quadratic
programming) performed reasonably only for less than hundred unknowns.
In particular, we cannot offer a comparison of real CPU-time because we did
not succeed with thgp sub-routine for higher dimensions. This underlines
the reliability of our multilevel active set strategy.

Remark 9Even for a small number of unknowns, the side restrictions ap-
peared very stringently. It was not only advisable but necessary to provide
the gp sub-routine with a feasible point. In our implementation, we took
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Table 1. Performance of proposed algorithm with additional space-refinement

j D; nnz(atoms) /N cpu (y) cpu (5)/D;
level  number active atoms estimated guaranteed
of atoms per element CPU-time  cost reduction
1 3 3 23 2.3
2 4 4.8 59 1.9
Fig. 3— 3 9 4.8 195 35
4 17 4 256 1.2
5 33 3.9 369 .93
Fig. 4 — 6 65 4.1 492 .31
7 129 4.2 617 .20
8 257 5.2 916 .07
9 513 6.8 1292 .05

the current displacement approximation or initially an affine approximation
(which,e.g., satisfies the Dirichlet conditions). Then, like in (6.3), we added
further atoms (namely or b) to guarantee that, on each element, the current
slope belong to the convex set of active atoms. After that, a feasible set of
coefficients existed and was constructed.

Remark 10From various numerical tests, we concluded that it is faster and
more reliable to choose the initial (i.e. coarsest) grid indhvariable very
coarse, say below10.

Remark 111t appeared reasonable to decrease the tolerance, i.e., to lower
¢; from one to the next finer level.

Remark 12The values for, b and the brake point,, are chosen irrational

to avoid the perfect situation whetel belongs to the possible set of atoms
and the solution brakes just at the mesh point. In this case, the practical
performance is even more reliable and efficient.
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