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Czech Republic

3 Institute of Information Theory and Automation, Academy of Sciences,
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Summary. In non-convex optimisation problems, in particular in non-con-
vex variational problems, there usually does not exist any classical solution
but only generalised solutions which involve Young measures. In this paper,
first a suitable relaxation and approximation theory is developed together
with optimality conditions, and then an adaptive scheme is proposed for
the efficient numerical treatment. The Young measures solving the approx-
imate problems are usually composed only from a few atoms. This is the
main argument our effective active-set type algorithm is based on. The sup-
port of those atoms is estimated from the Weierstrass maximum principle
which involves a Hamiltonian whose good guess is obtained by a multilevel
technique. Numerical experiments are performed in a one-dimensional vari-
ational problem and support efficiency of the algorithm.

Mathematics Subject Classification (1991):65K10, 65N50, 49M40

1. Introduction

Many problems from non-convex optimisation theory (as e.g. optimal con-
trol and non-cooperative games) and variational calculus do not possess a
classical solution because approximate solutions show typically fast oscil-
lation. This phenomenon leads to a necessity of a natural extension of such
problems, often constructed by means of Young measures. It is the purpose
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of this paper to propose an effective algorithm for computing a numerical
approximation to Young measures solving such problems.

To simplify the explanation we focus on the following multidimensional
scalar variational problem, although the adaptive approximation algorithm
proposed in this paper works in a general context, as well.

(P)


 Minimise Φ(u) :=

∫
Ω

F (x,∇u(x)) + G(x, u(x)) dx,

subject tou ∈ W 1,p(Ω), u|∂Ω = uD.

Here,W 1,p(Ω) is the standard Sobolev space{u : Ω → R; (u, ∇u) ∈
Lp(Ω; Rn+1)} anduD ∈ W 1−1/p,p(∂Ω) determines the prescribed trace
of u on the boundary∂Ω of Ω. Through the paper,Ω ⊂ R

n will be a
bounded Lipschitz domain andLp(Ω; Rn) a Lebesgue space of measurable
functionsy : Ω → R

n such that‖y‖ := (
∫
Ω |y(x)|pdx)1/p < +∞; we

assume1 < p < +∞. Furthermore, we will assume thatF : Ω × R
n → R

andG : Ω × R → R are Carath́eodory functions satisfying

(1.1) c|s|p − C ≤ F (x, s) ≤ C(1 + |s|p) , |G(x, u)| ≤ a(x) + C|u|q

for somea ∈ L1(Ω), c > 0 and C ∈ R, and1 < q < pn/(n − p)
(if p ≥ n, then simplyq < +∞). These assumptions guarantee thatΦ :
W 1,p(Ω) → R is well defined, continuous, and coercive. However,Φ is not
weakly lower semi-continuous in caseF (x, ·) is not convex. This causes
faster and faster oscillations of the gradient of minimising sequences of(P)
and a failure of existence of a solution to(P); for numerical analysis of direct
minimisation of discretized problems we refer to [C,CCK,CKL,CL,L]. To
relax this problem we can either consider a weak lower semi-continuous
envelope ofΦ or extendΦ continuously on a suitable hull of the original
spaceW 1,p(Ω). The former option requires to make a convexification of
F (x, ·) which may be practically difficult to obtain even in very special
cases; cf. [CP] or [BC] for a numerical approach. Here we will follow the
latter option using the continuous extension which is easy to calculate and
yields also more information about oscillations of the gradient of minimising
sequences of(P). For other works in this spirit see e.g. [NW1,NW2,P1,P2,
R1,R2,R3].

2. Young measures and relaxed variational problems

To construct a suitable extension of(P), we will first introduce a certain
convexσ-compact envelope of the Lebesgue spaceLp(Ω; Rn).

Let rca(Rn) ∼= C0(Rn)∗ denote the space of Radon measures onR
n,

C0(Rn) being the space of continuous functions onR
n vanishing at infin-

ity, cf. [DS]. Then we considerL∞
w (Ω; rca(Rn)) ∼= L1(Ω;C0(Rn))∗ (the
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subscript “w” stands for the adjective “weakly measurable”) and define the
set ofLp-Young measures

(2.1) Yp(Ω; Rn) :=
{
ν ≡ {νx}x∈Ω ∈L∞

w (Ω; rca(Rn));

νx ∈rca+
1 (Rn) for a.a.x∈Ω,∫

Ω

∫
Rn

|s|pνx(ds)dx < +∞}
.

Here,rca+
1 (Rn) := {µ∈rca(Rn); µ≥0,

∫
Rn µ(ds) = 1} is the set of prob-

ability Radon measures. Also, we have used the usual convention writingνx

instead ofν(x). A natural (norm,weak*)-continuous and dense embedding
of Lp(Ω; Rn) into Yp(Ω; Rn) is defined byy 7→ ν := {δy(x)}x∈Ω with
δs ∈ rca+

1 (Rn) denoting the Dirac measure supported ats ∈ R
n. The set

Yp(Ω; Rn) thus forms a convexσ-compact hull ofLp(Ω; Rn); see e.g. [R2,
Chap. 3] for more details.

A relaxation of(P) can now be done simply by a continuous exten-
sion of all data involved in(P) from Lp(Ω; Rn) to its convex hull, namely
Yp(Ω; Rn). This creates the problem

(RP)




minimise Φ̄(u, ν) :=
∫

Ω

[∫
Rn

F (x, s)νx(ds) + G(x, u(x))
]

dx,

subject to
∫

Rn

sνx(ds) = ∇u(x) for a.a.x ∈ Ω,

u ∈ W 1,p(Ω), ν ∈ Yp(Ω; Rn), u|∂Ω = uD.

Let us note that the problem(RP) has a convex structure (i.e. minimises a
convex functional̄Φ on a convex set of feasible pairs(u, ν) providedG(x, ·)
is convex; the convexity ofF (x, ·) is not needed for the convexity of̄Φ. The
important fact is that(RP) is a correct relaxation of(P).

Proposition 1. If (1.1) holds, then
(i) (RP) always possesses a solution,

(ii) inf(P) = min(RP),
(iii) every minimising sequence of(P) contains a subsequence converging

(when embedded byu 7→ (u, {δ∇u(x)}x∈Ω)) to a solution to(RP),
and

(iv) conversely, any solution to(RP) can be attained by a minimising
sequence of(P).

Sketch of the proof.Following [R2], we take a sufficiently large (but separa-
ble) linear space of test integrandsH := C(Ω̄)·{F}+C(Ω̄)⊗Cp(Rm) with
Cp(Rn) := {v ∈ C(Rn); lim|s|→∞ v(s)|s|−p = 0} and “⊗” the tensorial
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product, i.e.H = {g0(x)F (x, s)+
∑

finite gi(x)vi(s); g0, gi ∈ C(Ω̄), vi ∈
Cp(Rn)}. It is natural to endowH by the norm

(2.2) ‖h‖H := sup
(x,s)∈Ω×Rn

|h(x, s)|
1 + |s|p .

We put Y p
H(Ω; Rn) = {η ∈ H∗; ∃{yi}i∈N ⊂ Lp(Ω; Rn) : η =w*-

limi→∞iH(uk)} where the embeddingiH : Lp(Ω; Rn) → H∗ is defined
by 〈iH(y), h〉 =

∫
Ω h(x, y(x))dx. Then we introduce an auxiliary relaxed

problem

(RPH)




minimise Φ̄0(u, η) := 〈η, F 〉 +
∫

Ω
G(x, u(x))dx,

subject to 〈η, g ⊗ id〉 = ∇y · g ∀g ∈ C(Ω̄; Rn),

u ∈ W 1,p(Ω), η ∈ Y p
H(Ω; Rn), u|∂Ω = uD,

with id : R
n → R

n denoting the identity. It is known [R2, Sect. 5.2] that
(RPH) is a correct relaxation of(P) in the sense that(RPH) always possesses
a solution,inf(P) = min(RPH), every minimising sequence of(P) contains
a subsequence converging, when embedded byu 7→ (u, iH(∇u)), to a
solution to(RPH), and conversely any solution to(RPH) can be attained by
a minimising sequence of(P).

Moreover, it is known [R2, Sect. 5] that, sincep > 1, there cannot appear
concentration of energy in the sense that the set{x 7→ F (x,∇ui(x)); i ∈
N} is not only bounded inL1(Ω) but even relatively weakly compact in
L1(Ω) provided{ui}i∈N is a minimising sequence for(P).

Therefore, we can equally modify(RPH) by adding the restriction that
η is attainable by sequences non-concentrating energy in the above sense
(thoseη is calledp-nonconcentrating). Thisp-nonconcentratingη ∈ Y p

H(Ω;
R

n) has a Young measure representationν in the sense

(2.3) 〈η, h〉 =
∫

Ω

∫
Rn

h(x, s)νx(ds)dx

for any h ∈ H. The Young measureν is defined uniquely becauseH is
rich enough, namelyH ⊃ C(Ω̄) ⊗ Cp(Rn), cf. [S] or also Ball [B] or [R2,
Chap. 3]. This shows that(RP) and(RPH) are equivalent.

As to (iii), having a minimizing sequence{ui}i∈N for (P), by local
sequential weak* compactness ofY p

H(Ω; Rn) there is its subsequence (de-
noted again as{ui}) such that(ui, iH(∇ui)) → (u, η) weakly* and(u, η)
solves(RPH). In particular,η must bep-nonconcentrating, and we can
consider its Young-measure representationν. Then(u, ν) solves(RP) and
(ui, δ(∇ui)) → (u, ν) weakly* becauseYp(Ω; Rm) is a coarserσ-com-
pactification ofLp(Ω; Rn) thanY p

H(Ω; Rn), cf. [R2] for details.
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Conversely, if(u, ν) solves(RP), then(u, η) with η ∈ Y p
H(Ω; Rn) given

by (2.3) solves(RPH), and then (cf. [R2, Sect. 5.2]) there is a minimising
sequence{ui}i∈N for (P) attaining(u, η). This sequence attains(u, ν), too,
which proves (iv). ut

3. Convex approximation of Young measures

We will now construct a convex finite-dimensional approximation of the set
Yp(Ω; Rn). For this, we need to discretise bothΩ andR

n, i.e. thex- and
s-variables.

As to the discretisation ofΩ, we now supposeΩ polyhedral and consider,
for everyl ∈ N, a triangulationTl ofΩ such thatliml→∞ max4∈Tl

diam(4)
= 0 andTl ⊂ Tl+1, i.e. the nested triangulations refine everywhere onΩ.
Then we definePl by

(3.1) [Plh](x, s) :=
(k+1)n∑

i=1

1
measn(4)

∫
4

h(ξ, s)dξ if x∈4∈Tl.

RequiringPl : H → H, we must slightly enlarge the linear spaceH defined
in the proof of Proposition 1, namely we will consider

(3.2) H := C(Ω̄) · {F} +
⋃
l∈N

CTl
(Ω) ⊗ Cp(Rm),

whereCTl
(Ω) := {g∈L∞(Ω); ∀4∈Tl : g|4 ∈C(4̄)} denotes the space

of element-wise continuous functions. EndowingH again by the norm (2.2),
one can see that‖Plh‖H ≤ ‖h‖H andPl ◦ Pl = Pl, so thatPl : H → H
is a continuous projector. Moreover, since the collection of triangulations is
countable,

⋃
l∈N

CTl
(Ω) is separable if endowed by theL∞-norm and so is

alsoH.
As to the discretisation ofRn, we now choosem ∈ R

+ andk ∈ N and
make a uniform partition of the hypercubeBn

m := [−m, m]n ⊂ R
n to kn

similar hypercubes of the side2m/k and consider thus a discretisation of
the whole rangeRn as outlined on Fig. 1 forn = 1 andn = 2; of course,
some parts of this partition ofRn are inevitably unbounded.

Then we use the Q1 finite elements inside the hypercubeBn
m; let us

remind that these elements are just the tensorial products of linear functions
in each coordinate. In such a way, we get the collection{vi; i = 1, ..., (k +
1)n} of the basis functionsBn

m → R defined by taking 1 at a selected grid
point and 0 at all resting(k + 1)n − 1 grid points. We can prolong the basis
functionsvi outside the hypercubeBn

m just by puttingvi(s) := vi(Pr(s))
wherePr(s) ≡ Pr((sj)j=1,...,m) := (min(m,max(−m, sj))j=1,...,m) is
the orthogonal projection ofs onto the hypercubeBn

m. Thus we getvi ∈
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Fig. 1. A discretisation ofRn for n = 1 andn = 2

Cp(Rn). Note that alwaysvi(s) ≥ 0 and
∑(k+1)n

i=1 vi(s) = 1 for all s ∈ R
n,

which are actually the only essential properties of the chosen finite-element
discretisation ofRn we will need. Then, supposingF (·, s) ∈ CTl

(Ω), we
can construct a projectorPk,m : H → H defined by

(3.3) [Pk,mh](x, s) :=
(k+1)n∑

i=1

h(x, si)vi(s).

The projectorPk,m is bounded ifH is endowed with the norm (2.2) (here
‖Pk,m‖ can be greater than 1) and commutes withPl.

We now consider a discretisation parameterd = (l, k, m) and create the
discretisation ofΩ×R

n as described above. The set of alld’s is naturally or-
dered byd1 � d2 meaning that the discretisation created byd2 is a refinement
of the one created byd1. In particular,d1 = (l1, k1, m1) � d2 = (l2, k2, m2)
just says thatl1 ≤ l2, m1 ≤ m2, andm1k2/(m2k1) is an integer. The set
of all d’s is obviously directed by this ordering and thus we can use it to
index nets; in particular, we will often work with nondecreasing sequences
of d’s and then writed → ∞ having equivalently just the meaning that
min(l, k, m) → ∞. For givend = (l, k, m) we will now consider a projec-
tor Pd := Pl ◦ Pk,m = Pk,m ◦ Pl, i.e.

(3.4) [Pdh](x, s) =
(k+1)n∑

i=1

1
measn(4)

∫
4

h(ξ, si)vi(s)dξ if x∈4∈Tl.

By the formula (2.3), we can identify the setYp(Ω; Rn) with a subset of
Y p

H(Ω; Rn) with H from (3.2). For brevity, we will not distinguish between
Yp(Ω; Rn) and its image inY p

H(Ω; Rn).
The adjoint projectorP ∗

d obviously mapsH∗ into itself.

Lemma 1.We haveP ∗
d Y p

H(Ω; Rn) ⊂ Yp(Ω; Rn).
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Proof.First, forν ∈ Yp(Ω; Rn), one can see as in [R2, Examples 3.5.4–5]
that

(3.5) [P ∗
d ν]x =

(k+1)n∑
i=1

ai(x)δsi with

ai(x) =
1

measn(4)

∫
4

∫
Rn

vi(s)νξ(ds)dξ if x∈4∈Tl ,

whereδs ∈ rca(Rn) denotes the Dirac measure supported ats ∈ R
n. Note

that alwaysai(x) ≥ 0 and
∑(k+1)n

i=1 ai(x) = 1 becauseνx is a prob-
ability measure and because the basis functions satisfyvi(s) ≥ 0 and∑(k+1)n

i=1 vi(s) = 1. Hence,P ∗
d ν ∈ Y∞(Ω; Rn) so thatP ∗

d mapsYp(Ω; Rn)
into itself.

Second, for a generalη ∈ Y p
H(Ω; Rn), there is its so-calledp-noncon-

centrating modificationν ∈ Yp(Ω; Rn) defined (here even uniquely) by
(2.3) for anyh ∈ C(Ω̄) ⊗ Cp(Rn); cf. [R2, Sect. 3.4]. In fact, (2.3) holds
for anyh ∈ H having growth lesser thanp, in particular forPdh which is
even bounded. Then, for anyh ∈ H,

〈P ∗
d η, h〉 = 〈η, Pdh〉 =

∫
Ω

∫
Rn

[Pdh](x, s)νx(ds)dx

=
∫

Ω

∫
Rn

h(x, s)[P ∗
d ν]x(ds)dx,

i.e.P ∗
d η = P ∗

d ν ∈ Yp(Ω; Rn) by (3.5). ut

Remark 1.In view of (3.5), the “discrete” Young measures fromP ∗
d Yp(Ω;

R
n) are element-wise constant (also called homogeneous) and can be sup-

ported only at a finite number, namely(k+1)n, grid points ofRn. The Dirac
measures in (3.5) are called atoms.

Remark 2.The set of “approximate Young measures”P ∗
d Yp(Ω; Rn) =

P ∗
d Y p

H(Ω; Rn) is convex; in fact, its convexity follows from the convexity
of Yp(Ω; Rn) and linearity ofP ∗

d even without knowing the explicit formula
(3.5).

4. Convex approximation of relaxed problems

The above set of “discrete” Young measuresP ∗
d Yp(Ω; Rn) can be used

to construct a finite-dimensional approximation of various relaxed optimi-
sation problems, in particular of(RP). Often, such relaxed problems have
a convex structure, contrary to the “original” problems. The convexity of
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P ∗
d Yp(Ω; Rn) then allows us to keep “as much” convex structure in the

approximate problems as possible, which is very advantageous for both
efficiency and reliability. For instance, in zero-sum games, a saddle-point
search is much more effective if a convex/concave structure is preserved
[R2, Sect. 7.3].

For any discretisation parameterd = (l, k, m) we define an approxima-
tion of the relaxed problem(RP) by

(RPd)




minimiseΦ̄(u, ν) :=
∫

Ω

[∫
Rn

F (x, s)νx(ds) + G(x, u(x))
]

dx,

subject to
∫

Rn

sνx(ds) = ∇u(x) for a.a.x ∈ Ω,

u ∈ Ul, ν ∈ P ∗
d Yp(Ω; Rn), u|∂Ω = uD,

whereUl := {u ∈ W 1,p(Ω); ∀4∈Tl : u|4 is affine}.

Proposition 2. Suppose (1.1) and letuD be compatible in the sense that
uD = u0|∂Ω for someu0 ∈ Ul0 , l0 ∈ N . Then,
(i) for d sufficiently large,(RPd) always possesses a solution.

(ii) For d = (l, k, m) → ∞ with l → ∞ sufficiently slowly in com-
parison withk, m → ∞, one hasmin(RPd) → min(RP) and every
cluster point of sequence of solutions to(RPd) solves(RP).

Proof. For anyd = (l, k, m) � d0 = (l0, k0, m0) with m0 ≥ maxi=1,...,n

‖∂u0/∂xi‖L∞(Ω), one can see that the set of feasible pairs(u, ν) for (RPd) is
nonempty, contains a pair(u0, ν

0) with a suitableν0 supported at vertices of
the hypercubeBn

m and satisfies
∫

Rn sν0
x(ds) = ∇u0(x). Then, the existence

of solutions to(RPd) claimed in (i) follows by standard coercivity, continuity,
and compactness arguments; note that the feasible set of(RPd) is finite-
dimensional.

Let us now consider a sequenceul ∈ Ul with ul|∂Ω = uD such that
(ul, δ(∇ul)) converges to a solution of(RP); cf. [R2, Proposition 5.5.1]
with a modification for the Dirichlet boundary conditions. This shows that
min(RP(l,∞,∞)) → min(RP); for the definition of(RP(l,∞,∞)) see Sect. 6
below. Unfortunately, the pair(ul, δ(∇ul)) need not be feasible for(RPd),
yet we can modify slightlyδ(∇ul) by replacing it with a suitableνl so
that(ul, ν

l) is admissible for(RPd) and|Φ̄(ul, ν
l) − Φ(ul)| ≤ ε(l, k, m) is

arbitrarily small providedk andm are sufficiently large (depending possibly
on l); cf. also (6.3). Thus we obtain convergence of minima claimed at the
point (ii).

The convergence of solutions in terms of cluster points then follows by
standard compactness, continuity, and coercivity arguments; we omit the
details. ut
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To guarantee the smoothness ofΦ̄ with respect to the geometry of
W 1,p(Ω) × L∞

w (Ω; rca(Rn)), we must suppose the differentiability of
G(x, ·) only; let G′(x, ·) denote its derivative. Namely, we want to assure
u 7→ ∫

Ω G(x, u(x))dx : W 1,p(Ω) → R to be aC1-function. For this, it
suffices to assume (cf. [R4] or [R2, Sect. 5.3]) that

(4.1) ∃a1 ∈Lq/(q−1)(Ω), ∃b∈R : |G′(x, u)| ≤ a1(x) + b|u|q−1,

(4.2) ∃a2 ∈Lq/(q−2)(Ω), ∃b∈R :
|G′(x, u1)−G′(x, u2)| ≤ (a2(x)+b|u1|q−2+b|u2|q−2)|u1−u2|;

note that (4.2) requiresq ≥ 2 which is always possible providedp >
2n/(n + 2).

Using convexity of the set of feasible elements of(RPd)and the supposed
smoothness of̄Φ, one can derive the necessary and sufficient optimality con-
ditions for a solution to(RPd) in the form of a Weierstrass-type maximum
principle.

Proposition 3. Suppose (1.1), (4.1), and (4.2), and let(u, ν) solve(RPd).
Then there is someλ ∈ L∞(Ω; Rn) element-wise constant such that the
maximum principle

(4.3) max
s∈Rn

Hd
λ(x, s) =

∫
Rn

Hd
λ(x, s)νx(ds) for a.a.x ∈ Ω

and the identity

(4.4)
∫

Ω
(λ · ∇z − G′(u) · z)dx = 0 ∀z ∈ Ul, z|∂Ω = 0,

are satisfied, where the “discrete Hamiltonian”Hd
λ ∈ H is given by

(4.5) Hd
λ := Pd(λ ⊗ id − F ) .

Moreover, ifG(x, ·) is convex for a.a.x ∈ Ω, then conversely every(u, ν)
solves(RPd) provided it is feasible for(RPd) and satisfies (4.3)–(4.5) for
someλ ∈ L∞(Ω; Rn).

Proof. See [R2, Proposition 5.5.3] with the modification ofPd : H → H
given now by (3.4) for corresponding optimality conditions for(RPH,d)
defined as(RPH) but withP ∗

d Y p
H(Ω; Rn) instead ofY p

H(Ω; Rn). This gives
then (4.3)–(4.4) for(RPH,d). However, the problems(RPd) and(RPH,d) are
if fact identical becauseP ∗

d Y p
H(Ω; Rn) = P ∗

d Yp(Ω; Rn), see Lemma 1.
SupposingG(x, ·) convex,Φ̄ is convex with respect to the geometry of

W 1,p(Ω)×L∞
w (Ω; rca(Rn)) and optimality conditions (4.3)–(4.5) are also

sufficient. Note thatλ (possibly non-constant along elements4 ∈ Tl) can
be replaced by its element-wise averages without affecting (4.3)–(4.5).ut
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Let us remark thatλ is the Lagrange multiplier with respect to the con-
straint

∫
Rn sν(ds) = ∇u. These sufficient optimality conditions gives the

theoretical basis for our adaptive-refinement scheme. Another important
fact is that, due to a special construction of the projectorPd, the max-
imum principle is satisfied if (and only if), on each element4 ∈ Tl,
it holds Hd

λ(x, si) ≤ ∫
Rn Hd

λ(x, s)νx(ds) for every grid pointsi with
i = 1, ..., (k + 1)n. Thus (4.3) can be checked in a finite number of points.

5. An active-set strategy ins-variable

The above mentioned substantial advantages of convex approximation (RPd)
are deteriorated by a need of a very large dimensionality of the approximate
relaxed problems. Realize that the dimension ofP ∗

d Yp(Ω; Rn) with d =
(l, k, m) is card(Tl)(k + 1)n.

The maximum principle (4.3) predicts generically that the solutions to
(RPd) will be typically supported not at all(k + 1)n grid points but only at
a very few ones on each element. This is a basis for our adaptive technique
where we approximate(RPd) by (RPd,A), requiring the involved discrete
Young measures to be supported only on a (suitably) prescribed setA ⊂
Ω × R

m. The support of a Young measureν is defined as

Supp(ν) := {(x, s) ∈ Ω × R
n; s ∈ supp(νx)}

wheresupp(νx) ⊂ R
n is the support of the measureνx ∈ rca(Rn) in the

usual sense; this definesSupp(ν) up to zero-measure sets onΩ. Then the
problem(RPd,A) reads

(RPd,A)


minimise Φ̄(u, ν) :=
∫

Ω

[∫
Rn

F (x, s)νx(ds) + G(x, u(x))
]

dx,

subject to
∫

Rn

sνx(ds) = ∇u(x) for a.a.x ∈ Ω,

u ∈ Ul, ν ∈ P ∗
d Yp(Ω; Rn), Supp(ν) ⊂ A, u|∂Ω = uD.

Proposition 4. Suppose (1.1), (4.1), and (4.2) and let(u, ν) solve(RPd)
with λ being the corresponding multiplier. LetA ⊂ Ω×R

n satisfy
(5.1){

(x, s)∈Ω × R
n; s is a grid point, Hd

λ(x, s) = max
s̃∈Rn

Hd
λ(x, s̃)

}
⊂ A.

Then, every solution to(RPd,A) solves also(RPd).
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Proof. Obviously, every feasible point(ũ, ν̃) of (RPd,A) solves also(RPd)
providedΦ̄(ũ, ν̃) ≤ min(RPd).

Each solution(u, ν) to (RPd) is simultaneously a feasible point for
(RPd,A) because it satisfies the maximum principle (4.3) and soSupp(ν) ⊂
A for our special choice ofA. Thereforemin(RPd,A) ≤ min(RPd).

Thus, having a solution(ũ, ν̃) to (RPd,A), we have proved̄Φ(ũ, ν̃) =
min(RPd,A) ≤ min(RPd) and hence(ũ, ν̃) solves also(RPd). ut

If we knew a priori the correct “discrete Hamiltonian”Hd
λ, we could im-

mediately use Proposition 4 to solve a presumably much “smaller” problem
(RPd,A) instead of(RPd). As we can at most guessHd

λ, we need a tool how
to verify a posteriori whether a solution to(RPd,A) solves also(RPd) and
need a certain effective method to get an enough good guess of the setA.
Let us first deal with the first task, the second will be addressed in Sect. 6.

Proposition 5.Suppose (1.1), (4.1) and (4.2). LetG(x, ·) be convex for a.a.
x ∈ Ω, let(u, ν) solve(RPd,A) with a corresponding Lagrange multiplierλ.
Suppose that the discrete maximum principle (4.3)–(4.5) is satisfied. Then
(u, ν) solves(RPd).

Proof. Any (u, ν) feasible for(RPd,A) is also feasible for(RPd). More-
over, (u, ν) satisfies all the optimality conditions (4.3)–(4.5) because the
adjoint equation (4.4), which is independent ofA if formulated for(RPd,A),
is satisfied for the obtained multiplierλ and because the satisfaction of the
maximum principle (4.3) is assumed. SinceG(x, ·) is convex, the necessary
optimality conditions (4.3)–(4.5) are also sufficient for(RPd), see Proposi-
tion 3. Therefore(u, ν) solves(RPd). ut

Remark 3.Forn small the approximate relaxed problem(RPd) can be solved
directly; see [R1] for variational problems or [R2, Sects. 4.3 and 7.3] for an
optimal control and a zero-sum game problems withn = 1. However, for
n substantially larger than 1 such methods cannot be effectively used and
ultimatively a certain adaptivity idea is needed.

6. Estimation of the Hamiltonian in a multilevel technique

Let us now focus to a good guess of the active setA. Inspiring by the
condition (5.1), we put

(6.1) A =
{

(x, s) ∈ Ω×R
n : h(x, s) ≥ max

s̃∈Rn
h(x, s̃) − ε

}
,

whereε > 0 is some tolerance andh will play a role of some guess of the
“correct” HamiltonianHd

λ.
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Proposition 6.Suppose‖h − Hd
λ‖L∞(Ω×S) ≤ ε/2 for some solution(u, ν)

of (RPd) with a corresponding Lagrange multiplierλ and for someS ⊂ R
n

so large that, for a.a.x ∈ Ω,

(6.2) Argmax Hd
λ(x, ·) ∪ Argmax h(x, ·) ⊂ S.

Let A be chosen according (6.1). Then every solution to(RPd,A) solves
(RPd).

Proof.In view of Proposition 4, it suffices to show thatA from (6.1) satisfies
(5.1). Let us takeν such thatHd

λ(x, s) = maxs̃∈Rn Hd
λ(x, s̃) for any(x, s) ∈

Supp(ν). Then, by (6.2),Supp(ν) ⊂ Ω×S up to a zero measure set. Taking
(x, s) ∈ Supp(ν) and using again (6.2), we thus haves ∈ S and therefore

h(x, s) ≥ Hd
λ(x, s) − ε

2
= max

s̃∈Rn
Hd

λ(x, s̃) − ε

2
≥ max

s̃∈Rn
h(x, s̃) − ε.

Thus we showed that (5.1) is satisfied forA from (6.1). ut
The above assertion suggests to look for a good guess of(u, ν) and of

λ to get a good guess of the HamiltonianHd
λ. In a two-level approach, we

consider two discretisationsd0 := (l, k0, m) � (l, k1, m) =: d1; note that it
uses the same spatial triangulation (thex-discretisation is unchanged). Our
argument will be supported by the problem created as a limit fork → ∞,
which form ∈ R

+ ∪ {+∞} motivates the auxiliary problem

(RP(l,∞,m))


minimise Φ̄(u, ν) :=
∫

Ω

[∫
Rn

F (x, s)νx(ds) + G(x, u(x))
]

dx,

subject to
∫

Rn

sνx(ds) = ∇u(x) for a.a.x ∈ Ω,

u ∈ Ul, ν ∈ P ∗
l Yp(Ω; Rn),

Supp(ν) ⊂ Ω × Bn
m, u|∂Ω = uD.

Proposition 7.Suppose (1.1), (4.1) and (4.2) and fixl.
(i) For m sufficiently large, we havemin(RP(l,∞,m)) = min(RP(l,∞,∞))

and, moreover,min(RPd) ≡ min(RP(l,k,m)) → min(RP(l,∞,m)) for
k → ∞.

(ii) If, in addition, F (x, ·) is smooth andG(x, ·) is strictly convex,
(uk, νk) solves(RP(l,k,m)) with λk being the corresponding multi-
plier, and if(u, ν) solves(RP(l,∞,m)) withλ being the corresponding
multiplier, thenuk → u andλk → λ.

Proof.Take a solution(u, ν) tomin(RP(l,∞,∞))and the corresponding multi-
plierλ ∈ L∞(Ω; Rn) element-wise constant. Likewise in Proposition 3, one
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can see thatνx is supported on the set of maximisers ofHd
λ := Pl(λ⊗id−F )

with Pl defined by (3.1); cf. also [R2, Sect. 5.5]. AsF has a super-linear
growth by (1.1) andλ is essentially bounded overΩ, this support is a priori
bounded and so contained inBn

m for m large enough. Then,min(RP(l,∞,m))
is equivalent tomin(RP(l,∞,∞)).

To showmin(RP(l,k,m)) → min(RP(l,∞,m)), we will seek(uk, νk) fea-
sible for (RP(l,k,m)) and converging to some(u, ν) solving (RP(l,∞,m)).
We will construct(uk, νk) by takinguk = u and by a suitable modifica-
tion of P ∗

k,mν. Note that unfortunately(u, P ∗
k,mν) need not be feasible for

(RP(l,k,m)). We chooseνk in the form

(6.3) νk = (1 − εk)P ∗
k,mν + εkν

k,m

with someεk > 0 small and withνk,m ∈ P ∗
d Y(Ω; Rn). Besides, we need

that
∫

Rn sνk
x(ds) = ∇u(x), so thatyk,m :=

∫
Rn sνk,m

x (ds) =
∫

Rn sνk
x(ds)+

(1 − 1/εk)δk,m with δk,m :=
∫

Rn s[(P ∗
k,mν)x − νx](ds). As

‖h − Pk,mh‖L1(Ω;C(Bn
m)) → 0 for k → ∞, P ∗

k,mν → ν weakly* because
〈ν − P ∗

k,mν, h〉 = 〈ν, h − Pk,mh〉 ≤ ‖ν‖‖h − Pk,mh‖L1(Ω;C(Bn
m)) → 0

for any h ∈ H and ν with Supp(ν) ⊂ Ω × Bn
m. Thus δk,m → 0. It

allows us to chooseεk converging to0 sufficiently slowly so that also
(1−1/εk)δk,m → 0. Supposing thatm was taken even so large that supp(νx)
is contained in the interior ofBn

m, we haveyk,m(x) ∈ Bn
m providedk is

large enough. Then there exists a Young measureνk,m supported on the grid
points ofBn

m and satisfyingyk,m :=
∫

Rn sνk,m
x (ds). From (6.3), one gets

obviouslyνk ∈ P ∗
d Y p

H(Ω; Rn) andνk → ν weakly* becauseP ∗
k,mν → ν

and becauseεk → 0.
For(u, ν)a solution to(RP(l,∞,∞)),usolves the convexified problem, i.e.

minimises colΦ(u) :=
∫
Ω[PlF ]∗∗(x,∇u) + G(x, u)dx overUl, where the

double star denotes the convex hull. AsG(x, ·) is assumed strictly convex,
so is also colΦ and thusu is determined uniquely.

Let us now consider a solution(uk, νk) to (RP(l,k,m)) with the corre-
sponding multiplierλk. By Proposition 2(ii), every cluster pointu of the
sequence{uk} must minimise colΦ. As u is determined uniquely, we get
uk → u strongly inW 1,p(Ω) becauseu anduk live in a finite-dimensional
spaceUl of element-wise affine functions on the fixed triangulationTl.

Then, from (4.3) withd = (l, ∞,∞) derived in [R2, Proposition 5.3.2],
we can see thatνx minimisess 7→ [PlF ](x, s) − λ(x) · s so that its first
momentum

∫
Rn sνx(ds) = ∇u(x) minimises the convexified functional,

i.e. s 7→ [PlF ]∗∗(x, s) − λ(x) · s. As F (x, ·) is smooth, also[PlF ](x, ·) is
smooth, and by [F, Corollary 3] so is[PlF ]∗∗(x, ·). Here, we used also the
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super-linear growth of[PlF ](x, ·). Hence

(6.4)
∂

∂s
[PlF ]∗∗(x,∇u(x)) − λ(x) = 0.

As u is unique, so isλ.
Moreover, from (4.3) ford = (l, k, m) one can derive similarly as (6.4)

that

(6.5) λk(x) ∈ ∂s[PdF ]∗∗(x,∇uk(x)) ,

where∂s denotes the sub-differential with respect to thes-variable. As
PdF = Pk,mPlF → PlF pointwise inΩ ×Bn

m for k → ∞, the same holds
for the convex hulls. As∇uk(x) → ∇u(x) and∇u(x) lives in the interior
of Bn

m, from (6.4) and (6.5) we inferλk(x) → λ(x) for a.a.x ∈ Ω. ut

By Proposition 7, we can presume that the problems(RPd0) and(RPd1)
do not differ from each other too much ifd0 is already large enough. Then
we can takeh = Hd0

λ0
with u0 andλ0 corresponding to a “smaller” problem

(RPd0) as a good guess of the HamiltonianHd1
λ1

for (RPd1).

Proposition 8.Suppose (1.1), (4.1), and (4.2). LetF (x, ·) be smooth,G(x, ·)
be strictly convex, and letm be sufficiently large so that the equivalence in
Proposition 7(i) holds.
(i) For anyε > 0, we have

∃k0 ∀d1 = (l, k1, m) � d0

= (l, k0, m) : ‖Hd0
λ0

− Hd1
λ1

‖L∞(Ω×Bn
m) ≤ ε/2 ,(6.6)

whereλ1 andλ0 are multipliers corresponding to some solutions to
(RPd1) and(RPd0), respectively.

(ii) For any k0, there isS bounded such thatS ⊃ Argmax Hd
λ(x, ·)

providedd � (l, k0, m) andλ is the multiplier corresponding to a
solution(u, ν) of (RPd).

Proof. By Proposition 7(ii),{λk}k∈N is a Cauchy sequence, so that also
the sequence{λk ⊗ id − F}k∈N is Cauchy inL∞(Ω × S) for any S
bounded, in particular forS = Bn

m. Then also{Pk,mPl(λk⊗id−F )}k∈N =
{H(l,k,m)

λk
}k∈N is Cauchy inL∞(Ω × Bn

m), from which (6.6) follows.
As F (x, ·) has a super-linear growth and{λk}k∈N is Cauchy, Argmax

H(l,k,m)
λk

is a priori bounded providedk is large enough. ut
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Corollary 1. For any ε > 0 there isk0 ∈ N such that, for alld1 =
(l, k1, m) � d0 = (l, k0, m), any solution of(RPd1,A) solve also(RPd1)
provided

(6.7) A =
{

(x, s) ∈ Ω × R
n; Hd0

λ0
(x, s) ≥ max

s̃∈Rn
Hd0

λ0
(x, s̃) − ε

}

andλ0 is the multiplier corresponding to some solution of(RPd0).

Proof.Takek0 sufficiently large so that (6.6) holds, then takeS so large that
S ⊃ Argmax Hd

λ(x, ·) providedd � (l, k0, m) (see Proposition 8(ii)) and
eventually use Proposition 6 withh = Hd0

λ0
andHd

λ = Hd1
λ1

. ut

The above idea yields a multi-level algorithm with a chaind0 � d1 �
d2 � ... � dj � ... � dJ with dj = (l, kj , m). Thus we come to the
following conceptual algorithm.

(1) Initialisation: Chooseε0, ε1, , ...εJ−1 > 0, put ε := ε0, j := 0,
h := 0.

(2) Activation: computeA from (6.1).

(3) Optimisation routine: solve(RPd,A). It gives (u, ν) ∈ Ul ×
P ∗

d Yp(Ω; Rn) and the multiplierλ ∈ L∞(Ω; Rn).
(4) If (4.3)–(4.5) is satisfied on the leveldj , then go to (6), else con-

tinue.
(5) Correction: increase the tolerance by puttingε := 2ε. Go to (2).

(6) If j < J then continue, else end.

(7) Refinement: putj := j + 1, h := Hdj−1
λ , ε := εj . Go to (2).

The flow chart of this algorithm is schematically drawn on Fig. 2.

Remark 4.Sinceh = 0 is taken for initialisation, on the coarsest gridd0
the algorithm putsA = Ω × Bn

m. As the maximum principle (4.3)–(4.5)
forms necessary optimality conditions, the algorithm always performs the
“refinement” after the very first run of the “optimisation routine”.

Remark 5.In the “correction” step, always the tolerance is made greater
so that, after a finite number of steps, it achieves such a value that (6.1)
activates all grid points, i.e.A = Ω × Bn

m is accepted. Thus the algorithm
eventually must come to a satisfaction of the discrete maximum principle.
As this maximum principle is supposed also sufficient, the algorithm must
after a finite number of steps come to a situation that all assumptions of
Proposition 4 are satisfied and thus it found a solution on the discretisation
leveldj .
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Fig. 2. A conceptual algorithm for adaptive refinement ins-variable

Remark 6.Fordj sufficiently large, we explained in Corollary 1 thatHdj−1
λj−1

represents a good estimate of the HamiltonianHdj

λj
, and thus the correction

step is supposed to be effective only few times (if at all) for the discretisation
dj . The fact thatε > 0 can be chosen small for largek0 claimed in Corollary 1
is important, indicating high expected efficiency of(RPd,A) in comparison
with (RPd) because, forε = 0, only those atoms are activated (i.e. contained
in A) whereHd1

λ1
attains its maximum.

Remark 7.A-posteriori verification of the maximum principle (4.3)–(4.5)
and activation of the setA, which are the only operations to be made on
the whole grid of the discretisationdj , are supposed “cheap” in comparison
with the execution of the optimisation routine so that they will not delay
substantially the calculations; this naturally need not be true for(k + 1)n

extremely large, i.e. for a very fine discretisations in thes-variable.

7. Numerical example

In this section we report on numerical experience and illustrate our algorithm
in the shifted Tartar’s broken extremal example [NW2], namely

(7.1)


 minimise

∫ 1

0

[
(u′(x)2 − 1)2 + (u(x) − g(x))2

]
dx,

subject tou ∈ W 1,p(0, 1), u(0) = z0, u(1) = z1.

This corresponds to(P) with n = 1,Ω := (0, 1),p = 4,F (x, s) := (s2−1)2

andG(x, u) := (u − g(x))2. For g(x) := − 3
128(x − xb)5 − 1

3(x − xb)3,



Numerical approximation of young measures in non-convex variational problems 411

z0 := g(0), andz1 := (25
24 − 1

12xb + 1
24x2

b)(1 − xb), the relaxed problem
(RP) has the unique solution [NW1]

u(x) =

{
g(x),
1
24(x − xb)3 + (x − xb),

νx =

{
1−u′(x)

2 δ−1 + 1+u′(x)
2 δ1 for x ∈ (0, xb),

δu′(x) for x ∈ (xb, 1).

SinceG(x, ·) is quadratic, the discrete relaxed problem(RPd) has a lin-
ear/quadratic structure. Thus, finite direct solvers can in principle be applied
to solve it. However, our numerical experiments proved that this direct ap-
proach appears limited to very small number of unknowns hence we will
focus to solve(RPd,A) as proposed in Sect. 6.

In the implementation of the proposed algorithm we employed a uniform
grid in bothΩ and[a, b] ⊃ B1

m (the space of atoms) form sufficiently large,
cf. Proposition 7(i). The spatial grid of mesh-size2−l is defined by the
N := 2l elements, so thatTl = {4 = 2−l(i − 1, i); i = 1, ..., 2l}. For
each4 ∈ Tl, the discrete set of atoms (i.e. grid points on[a, b]) at level
j = 0, 1, . . . , J is defined asa + 2−j(b − a)i/K for 0 ≤ i ≤ kj := 2jK.
This yields a presumably very coarse uniform grida, a + (b − a)/K, . . . , b
of k0 +1 grid points betweena andb for j = 0 and then halves each interval
successively asj increases to the finest grid forj = J with kJ + 1 grid
points.

To describe the set of active atoms in our MATLAB realization, we de-
fined a sparse matrix which, for each element4 = 2−l(i−1, i) characterised
the set of active atoms as non-zero entries inatoms (i, :). For instance, the
initialisation is given byatoms =sparse (ones (N, 1) ∗ 1 : K + 1).

For any reasonable set of active grid points (we will comment on that
below), the optimisation problemqp consists of minimising

x · Hx + f · x subject to Ax ≤ b,

whereA · x ≤ b is understood component-wise; here we adopted notation
from the MATLAB qp manual which differs from previous sections.

Let the firstN + 1 component of theD-dimensional unknown vector
x describe the discrete displacements at the grid points and thereafter the
coefficients of theD − N − 1 =nnz (atoms ) active atoms. The finite
element basis consists ofN +1 hat functions which vanish outside ofh(i−
1, i+1) and equal one atih. Then, the leading(N +1)× (N +1)-block of
theD×D-matrixH is the tridiagonal matrix of the exactL2(0, 1)-products
of theN + 1 hat functions with a typical local mass matrix[2, 1; 1, 2]h/6.
The corresponding firstN + 1 entries off are theL2(0, 1)-products of hat
functions withg evaluated by an elementwise3-node Gaussian quadrature
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Fig. 3. Support of Young measure (left) and a displacement (right) on the levelj = 3

rule. The remaining entries vanish inH. Thus,H is not positive definite.
In order to regularise the problem, we added10−5 times theD × D-unit
matrix to the exact matrixH. The remaining contributions inf are given
by the nonlinear function(s2 − 1)2 evaluated withs replaced by the atom
linked to the current component.

The2N × D-matrixA as the2N -dimensional vectorb characterise the
equality side restrictions: the element-wise constrains force the sum of the
components ofx to equal one and the measure to have the mean value equal
the the slope on each element. Hence, the only non-zero entries ofA andf
aref2i−1 = A2i−1,` = 1, A2i,i = 1/h = −A2i,i+1, andA2i,` = s if the
i-th component ofx corresponds to an atoms in thei-th element.

The remaining restrictions are directly incorporated by inequalities0 ≤
xN+2, xN+3, . . . , xD ≤ +∞ (the measure-coefficients are non-negative)
and, finally,uD(0) ≤ x1 ≤ uD(0) anduD(1) ≤ xN+1 ≤ uD(1) according
to the geometric boundary condition.

The MATLAB qp routine provides us with a solution to the problem
qp as well as with the Lagrange multiplierλ utilised in the definition of the
Hamiltonian (4.5). Therefore, the proposed algorithm can easily be realized
in MATLAB.

In the following, we comment on a numerical experiment obtained for
εj = 2−j/100 anda = −2 −π/7, b = 2 + exp(1)/13, xb = 1/2 −π/100,
h = 1/3, andK = 1. In Fig. 3 and 4 we show on the left side set of active
atoms as thick lines and on the right the exact and approximate displacements
obtained for our algorithm forj = 3 (in Fig. 3 with6 elements and9 atoms)
andj = 6 (in Fig. 4 with24 elements and65 atoms).

The plus signs at the positions(2−li, s) and(2−l(i − 1), s) in the left
plots illustrate the fine set of possible atomss on the elementi at the level
j. There are two kinds of horizontal lines which link two of those plus signs
on elements. The thinner lines trough midpoints such as(2−l(i − 1/2), s)
indicate that the atoms is active on the element2−l(i − 1, i) while the
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Fig. 4. Support of Young measure (left) and a displacement (right) on the levelj = 6

thicker line implies, in addition, that the coefficient related to the atoms is
significant (i.e. “actually” positive, namely larger than10−3).

The plus signs in the right displacement plots indicate the exact solution
at the nodes of spacial grid.

The refinement in thes-variable (we halved the distance of atoms in each
level) can naturally be combined with a refinement in space (we furthermore
halved the elements at every second level). A statistical report on the algo-
rithm’s practical performance is given in Table 1 where, for each levelj,
we displayed the total number of atoms and their average per element. In
the second last column we show the sumcpu (j) over all dimensionsD
which are considered in the termination of theqp sub-routine until the level
j is reached. Assuming that the CPU-time for the algorithm is mainly de-
termined by theqp applications, we count only the effort for those calls
which is monotone inD. The exact CPU-time depends on the quality of the
feasible solutions and is expected to be more expansive than linear growth.
Then, we may compare the corresponding accumulated costscpu (j) with
the idealised costs for one run of theqp sub-routine with the current dimen-
sionDj = N(K2j + 1). The quotientcpu (j)/Dj in the last column may
be regarded as the guaranteed estimate of the reduction of computer costs
by our strategy.

Remark 8.For the finest discretisation, there areN + 1 + N(K2J + 1)
unknowns and the MATLAB optimisation toolbox solverqp (quadratic
programming) performed reasonably only for less than hundred unknowns.
In particular, we cannot offer a comparison of real CPU-time because we did
not succeed with theqp sub-routine for higher dimensions. This underlines
the reliability of our multilevel active set strategy.

Remark 9.Even for a small number of unknowns, the side restrictions ap-
peared very stringently. It was not only advisable but necessary to provide
the qp sub-routine with a feasible point. In our implementation, we took
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Table 1. Performance of proposed algorithm with additional space-refinement

j Dj nnz(atoms) /N cpu (j) cpu (j)/Dj

level number active atoms estimated guaranteed
of atoms per element CPU-time cost reduction

1 3 3 23 2.3
2 4 4.8 59 1.9

Fig. 3→ 3 9 4.8 195 3.5
4 17 4 256 1.2
5 33 3.9 369 .93

Fig. 4→ 6 65 4.1 492 .31
7 129 4.2 617 .20
8 257 5.2 916 .07
9 513 6.8 1292 .05

the current displacement approximation or initially an affine approximation
(which,e.g., satisfies the Dirichlet conditions). Then, like in (6.3), we added
further atoms (namelya or b) to guarantee that, on each element, the current
slope belong to the convex set of active atoms. After that, a feasible set of
coefficients existed and was constructed.

Remark 10.From various numerical tests, we concluded that it is faster and
more reliable to choose the initial (i.e. coarsest) grid in thes-variable very
coarse, sayK below10.

Remark 11.It appeared reasonable to decrease the tolerance, i.e., to lower
εj from one to the next finer level.

Remark 12.The values fora, b and the brake pointxb are chosen irrational
to avoid the perfect situation where±1 belongs to the possible set of atoms
and the solution brakes just at the mesh point. In this case, the practical
performance is even more reliable and efficient.
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