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Adaptive Mixed Finite Element Method for Reissner-Mindlin Plates 

We use a modified mixed finite element method for the Reissner-Mindlin plate model to study its numerical properties 
in pmctical use. We derive an a posteriori e m r  estimate to control adaptive mesh-refining algorithms and study the 
question of reliability. Numerical examples prove the new scheme eficient. 

1. Mechanical Model and Finite Element Discretisation 

Due to Reissner-Mindlin theory the deformation vector of a plate Q with small thickness t and only transverse load 
f contains three independent components, the rotations r9 = (19 , ,6~)  E H,'(R)' and the transverse displacement 
w E Hi@). The standard Reissner-Mindlin variation formulation is - because of the shear locking phenomena - 
not sufficient for effective finite element discretisation. So we reformulate the problem with an additional variable [l] 

(1)  0 < 0 < t -2 
1 

y =  ( $ - a ) ( V w - r 9 )  

where a is a parameter to stabilize the discretisation and with the bilinear forms 

a(w, 8; 21, $0) := Jnp - 19) * ( V V  - $9) dx 

b(w,r9;q) := / ( V w - r 9 ) . q d x  
n 

The strain is E = sym(Vd), the elasticity operator is defined by CE = &$tr EI + 
continuous problem now reads: Find (w ,  0 ,  y) E H,'(Q) x H,' (Q)' x L2(Q)z such that 

(p ,  X LambConstants ). The 

b ( w , W + c ( y ; 7 )  = 0 for all (v, c p ,  7) E H,'(Q) x H,~(R)'  x L'(Q)'. (6) 

P k ( 7 )  :={uEL2(Q)  l V T E 7 , u l T  E p k ( T ) }  s k ( 7 )  :=Pk(T)nH,'(Q) (7) 

We consider a regular triangulation 7 of Q with discrete spaces of 7-piecewise polynomials of degree 5 k ( k  E IN) 

We choose here H, x Hd x L, = &(7) x Sz(7)' x Po(7)' as in [6]. The discrete problem now reads: Find 
(W, 0, r) E H, x Hd x L, such that 

2. Stabilization Techniques 

Fig. 1: Transversale displace- - 
ment W of the plate with CY = 1 
and Q = l /h$  

0.. 0.. 
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In [l] is shown, that (5-6) lead asymtotically to a stable and locking free finite element discretisation. Here and in 
other theoretical contributions the stabilization parameter a is set equal 1 [3]. But in practical use - with coarse 
meshes - the choice of a has an essential influence on the solution quality. If a is too small, spurious modes appears. 
If it is too large, the system is too stiff. Trying to find an optimal a we made several numerical investigations. Here 
results are given for an all side clamped plate of 1 . 1 0.001m under a unit load f = 1000N/m3, p = 4.2N/m2, 
X = 3.6N/m2. It is meshed with 4 . 4  squares, each divided in 2 triangels (32 fe, 211 dof). If a = 1 the fe-solution 
is unusable (Fig. 1). Best approximation we get with a = 5...50, here the maximal transverse displacement is 
wmor = 1.2mm (analytical solution: wmar = 1.26mm). If e.g. a = 5000 we get wmoz = 0.34mm. Due to  our 
numerical expierience we set a mesh dependent. With hT = diam(T) we recommend 

a = hG2 (10) 

which is in the example a = 8. (10) corresponds to similar results in [5] and [6]. 

3. A Posteriori Error Estimation 

Let (w, 2 9 , ~ )  E HA(S2) x Hb(S2)2 x L2(s2)2 solve (5-6) and suppose that (W, 0, r) satisfies (8-9) for all (V, 'P, H) E 
Hw x H,g x L,. Then, there exists a positive constant C which is independent o f t ,  hT and a such that we have 

IIr9-011H~(n)+IIw-WllH~(n)+ I lT-r11~-1(di~n]  +tlly-rllLa(n) < - C ( C  ?$)1/2. (11) 
TET 

For each element T E 7 we define our error indicator r ) ~  (& edges of triangulation & C 87) 

q$ := h$ Jdiv(a(VW - 0)) + divr + f I 2  d x + h i  ldivC~(0) + a(VW - @)I2 d x + J, 

The proof of (11) is given in [4], we will just mention, that - besides the standard a posteriori arguments - we need 
precise mapping properties of the weak formulation, t-dependent interpolation spaces is in [2] and an estimate of 
fi:I2(7) due to Tartar. Concluding we will show some results of our adaptive mesh refinement algorithm. 

Fig. 2: All side clamped L-shaped domain (load and 
material aa above) after 3 and 5 automatic refinement 
steps controlled by (12) 

We see the expected refinement towards the corner. 
Here and in further examples (12) designs resonable 
adaptive refined meshes. 
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