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Adaptive Mixed Finite Element Method for Reissner—-Mindlin Plates

We use a modified mized finite element method for the Reissner-Mindlin plate model to study its numerical properties
in practical use. We derive an a posteriori error estimate to control adaptive mesh-refining algorithms and study the
question of reliability. Numerical examples prove the new scheme efficient.

1. Mechanical Model and Finite Element Discretisation

Due to Reissner-Mindlin theory the deformation vector of a plate 2 with small thickness ¢ and only transverse load
[ contains three independent components, the rotations ¥ = (¥,,9y) € H3(2)? and the transverse displacement
w € H(Q). The standard Reissner-Mindlin variation formulation is — because of the shear locking phenomena —
not sufficient for effective finite element discretisation. So we reformulate the problem with an additional variable [1]

v = (tlz—a)(V'w—ﬂ) 0<a<t? (1)
where o is a parameter to stabilize the discretisation and with the bilinear forms
a(w,¥;v,p) = /ns(ﬂ) :Ce(p) de + a/n(Vw —9)-(Vv—yp)dz (2)
b gin) = [ (Vw-9)onde ®)
ctim) = B[ yomds  p=-t?/1-ar) ()

The strain is € = sym(V4), the elasticity operator is defined by Ce = f—zﬁtr el + glk-e (4, X Lamé-Constants ). The

continuous problem now reads: Find (w,9,7) € H}(Q) x H}(Q)? x L?(22)2 such that

a(w,9;v,0) +b(v,p37) = /nfv dz (5)
b(w,9;n) +c(v;n) = 0 for all (v, p, 1) € H3(Q) x Hy(Q)* x L*(Q)*. (6)

We consider a regular triangulation 7 of  with discrete spaces of 7T—piecewise polynomials of degree < k(k € IN)
Pu(T) = {veL*(Q) NT €T, ulr € Py (1)} Si(T) = Pu(T) N HY (D) (7)

We choose here Hy X Hy x Ly = So(T) x 82(T)? x Po(T)? as in [6]). The discrete problem now reads: Find
(W,0,T) € Hy x Hg x L, such that

a(W,0;V, ) + b(V, &;T)
b(W,0;H) +¢(T; H)

/fV dz ®8)
a
0 for all (V,®,H) € Hy x Hg x L. (9)

2. Stabilization Techniques

Fig. 1: Transversale displace-
ment W of the plate with e =1
and o = 1/h%
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In [1] is shown, that (5-6) lead asymtotically to a stable and locking free finite element discretisation. Here and in
other theoretical contributions the stabilization parameter o is set equal 1 [3]. But in practical use ~ with coarse
meshes — the choice of a has an essential influence on the solution quality. If a is too small, spurious modes appears.
If it is too large, the system is too stiff. Trying to find an optimal o we made several numerical investigations. Here
results are given for an all side clamped plate of 11 -0.00lm under a unit load f = 1000N/m?, p = 4.2N/m?,
A = 3.6N/m?. It is meshed with 4 - 4 squares, each divided in 2 triangels (32 fe, 211 dof). If & = 1 the fe-solution
is unusable (Fig. 1). Best approximation we get with a = 5...50, here the maximal transverse displacement is
Wmer = 1.2mm (analytical solution: wmey = 1.26mm). If e.g. a = 5000 we get wmar = 0.34mm. Due to our
numerical expierience we set o mesh dependent. With hr = diam(T') we recommend

o = hy? (10)

which is in the example a = 8. (10) corresponds to similar results in [5] and [6].

3. A Posteriori Error Estimation

Let (w,9,7) € H3(R) x H3(RQ)? x L?(2)? solve (5-6) and suppose that (W, ©,T) satisfies (8-9) for all (V,®, H) €
Hy x Hg x L.. Then, there exists a positive constant C' which is independent of ¢, hr and « such that we have

1/2
19— ©llaz) + 1w =W llay@) + 117 = T llg-s diviay + 7 = T llza@y < C(3_ n3) . (11)
TeT

For each element T € T we define our error indicator nr (€ edges of triangulation £ C 87)
n% = hi / [div(e(VW ~ ©)) +divl + f[* dz + h%-/ |divCe(©) + (VW — ©)|* dz + (12)
T T
/ VW[ do+ ﬁ/ VOl dz +
T tJr
(ks [ (VW =€) +T)  nglfds + bz [ [10=(©)] - nsl'ds)

Eet

The proof of (11) is given in [4], we will just mention, that ~ besides the standard a posteriori arguments — we need
precise mapping properties of the weak formulation, -dependent interpolation spaces is in [2] and an estimate of

B;/ 2(7') due to Tartar. Concluding we will show some results of our adaptive mesh refinement algorithm.

Fig. 2: All side clamped L-shaped domain (load and
material as above) after 3 and 5 automatic refinement
steps controlled by (12)

We see the expected refinement towards the corner.
Here and in further examples (12) designs resonable
adaptive refined meshes. B2
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