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A POSTERIORI ERROR CONTROL
IN LOW-ORDER FINITE ELEMENT DISCRETISATIONS
OF INCOMPRESSIBLE STATIONARY FLOW PROBLEMS

CARSTEN CARSTENSEN AND STEFAN A. FUNKEN

Abstract. Computable a posteriori error bounds and related adaptive mesh-
refining algorithms are provided for the numerical treatment of monotone
stationary flow problems with a quite general class of conforming and non-
conforming finite element methods. A refined residual-based error estimate
generalises the works of Verfürth; Dari, Duran and Padra; Bao and Barrett.
As a consequence, reliable and efficient averaging estimates can be established
on unstructured grids. The symmetric formulation of the incompressible flow
problem models certain nonNewtonian flow problems and the Stokes problem
with mixed boundary conditions. A Helmholtz decomposition avoids any regu-
larity or saturation assumption in the mathematical error analysis. Numerical
experiments for the partly nonconforming method analysed by Kouhia and
Stenberg indicate efficiency of related adaptive mesh-refining algorithms.

1. Introduction

Adaptive finite element methods play an important practical role in compu-
tational fluid dynamics. They are often justified by a posteriori error estimates
which provide computable upper and lower error bounds which then serve as er-
ror indicators. In this paper, we unify and refine the derivation of such residual
error estimates for possibly nonlinear flow problems, such as the Stokes problem
[V2, V3, DDP] and certain monotone nonNewtonian flow problems [BB, P]. The
refinement enables a justification of averaging techniques which are quite popular
in engineering applications.

In the presentation emphasis is on a unifying proof for conforming, nonconform-
ing, and even a conforming-nonconforming scheme [KS]. Because of possible Neu-
mann boundary conditions, we study the symmetric formulation which appears to
be less frequently analysed in the mathematical literature. For notational simplicity
we only give details for 2D regular triangulations but allow mixed inhomogeneous
boundary data.

Given a Lipschitz continuous monotone mapping A : R2×2
sym → R2×2

sym, Dirichlet
data uD ∈ H1(Ω)2 and right-hand sides f ∈ L2(Ω)2 and g ∈ L2(ΓN )2 in a bounded
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1354 CARSTEN CARSTENSEN AND STEFAN A. FUNKEN

Lipschitz domain Ω ⊂ R2, find u ∈ H1(Ω)2 and p ∈ L2(Ω) which satisfy

div σ + f = 0 and div u = 0 in Ω,(1.1)
σ = A(ε(u))− p I and ε(u) := (∇u +∇u>)/2 in Ω,(1.2)

u = uD on ΓD and σ · n = g on ΓN .(1.3)

The stress-strain relation σ = A(ε(u)) − p I (where I denotes the 2 × 2-unit
matrix) models Newtonian fluids for a linear function A(α) = 2µα with viscosity
µ > 0; ε(u) is the linear Green strain rate for the velocity field u. Then (1.1)-(1.3)
is the (stationary) Stokes problem in the symmetric form with mixed boundary
conditions. Non-Newtonian flows, such as the Carreau law, are included as long as
there are positive constants c1 and c2 such that the Lipschitz continuous function
A : R2×2

sym → R2×2
sym (where R2×2

sym denotes the set of real symmetric 2 × 2 matrices)
satisfies, for all α, β ∈ R2×2

sym,

c1 |α− β|2 ≤ (A(α) −A(β)) : (α− β),(1.4)
|A(α) −A(β)| ≤ c2 |α− β|.(1.5)

(Colon denotes the scalar product in R2×2
sym, i.e., α : β =

∑2
j,k=1 αjk βjk.) The

boundary Γ := ∂Ω of a bounded Lipschitz domain Ω in R2 is split into a closed
Dirichlet boundary ΓD ⊆ Γ with positive surface measure and the remaining Neu-
mann boundary ΓN := Γ \ ΓD. We mention that in the case ΓN = ∅, the pressure
p is defined only up to a constant and we require

∫
Γ
uD · n ds = 0.

The discrete problem is characterised by a (possibly nonconforming) discrete
space V ×Q ⊂ L2(Ω)2×L2(Ω) with respect to an underlying regular triangulation
T of the domain Ω. A discrete solution (uh, ph) in (a subspace of) L2(Ω)2 ×L2(Ω)
is supposed to satisfy∫

Ω

A(εT (uh)) : εT (vh) dx −
∫

Ω

ph divT vh dx

=
∫

Ω

f · vh dx+
∫

ΓN

g · vh ds (vh ∈ V),
(1.6)

−
∫

Ω

qh divT uh dx = 0 (qh ∈ Q).(1.7)

Since discrete functions may be discontinuous, a lower index T on differential op-
erators (e.g., ∇T uh, divT vh, etc.) denotes their T -elementwise action which may
be different from their distributional meaning.

Remarks 1.1. (i) The continuity condition div u = 0 is usually utilised in the Stokes
problem to replace the term div 2µ ε(u) in (1.1) by µ∆u. In the resulting nonsym-
metric formulation the natural Neumann boundary condition reads ∂u/∂n+p n = g
and is correct from a variational point of view, but not from a physical perspective.
Hence, if Neumann data arise in the problem, the symmetric formulation (1.1)-
(1.3) is the reasonable mathematical model. However, the analysis presented below
applies to the omitted nonsymmetric formulation as well.

(ii) Stability results and a priori error estimates for mixed and nonconforming
finite element spaces V × Q can be found in [BF, BS, GR, KS]. It turns out that,
in contrast to the nonsymmetric formulation, the nonconforming Crouzeix-Raviart
elements are not uniformly stable for the Stokes problem [FM]. Instead, a noncon-
forming finite element method is stable where one component of the displacement
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ADAPTIVE FINITE ELEMENT METHODS 1355

is discretised with conforming linear elements and the other with nonconforming
linear elements [KS], i.e., the trial space for the displacement field is V = V1 × V2

where

V1 := {V ∈ C(Ω) : V is affine on each T ∈ T and vanishes on ΓD},
(1.8)

V2 := {V : V is affine on each T ∈ T , continuous at midpoints of inner
(1.9)

element boundaries, and vanishes at midpoints of edges E ⊂ ΓD}
(with usual modifications on ΓD for inhomogeneous boundary conditions for the
trial space) and Q are the T -piecewise constants (with vanishing integral mean over
Ω if ΓN = ∅).

(iii) A posteriori error estimates and adaptive mesh-refining algorithms are in-
cluded in [DDP, P, V1, V2, V3] for the nonsymmetric formulation without Neu-
mann boundary data.

(iv) The unique existence of exact solutions (u, p) to (1.1)-(1.3) and discrete
solutions (uh, ph) to (1.6)-(1.7) is discussed in the literature (see, e.g., [BB, BF,
Ci, GR, KS, QV, T] and the references quoted therein). In this paper we therefore
adopt the point of view that the continuous problem has a unique solution and there
are (not necessarily unique) known functions (uh, ph) with certain T -elementwise
regularity properties given to us which satisfy the Galerkin conditions (1.6)-(1.7).
There is no stability assumption on the discrete problem and indeed, in this way,
unstable methods are analysed as well in their a posteriori error control (but this
is not to recommend generally the application of unstable schemes).

(v) The class of finite element spaces under consideration in this paper is char-
acterised by the fact that the integral mean of the jump [uh] vanishes (or is at least
small) across interior edges. We stress that we do not need any a priori, saturation,
or stability assumption on the discretisation or regularity of the exact solution.

(vi) The refined error estimate of this paper was (for the Stokes problem) an-
nounced in [CV]. The presented analysis results from a long term research, inde-
pendent from [DDP], [P], and [BB], that started with mixed methods in [Ca1] and
with the Stokes problem in [CJ].

In this paper, we establish a new residual-based efficient and (to some extent)
reliable error estimate that applies to a general class of finite element discretisa-
tions. To describe the results in a simplified setting, suppose for (1.8)-(1.9), in
this introduction that f ∈ H1(Ω) and the (possibly discontinuous) discrete solu-
tion (uh, ph) is T -piecewise smooth, satisfies divT uh = 0,

∫
E\Γ[uh] ds = 0, and∫

E∩ΓD
(uh − uD) ds = 0 for all E ∈ E , where E denotes the set of all edges in T .

Suppose σh := A(εT (uh))− ph I is a T -piecewise polynomial of degree at most k.
For each T ∈ T , define the element contribution to the residual-error bound

η2
R :=

∑
T∈T η

2
R,T by

η2
R,T := h4

T ‖∇f‖2L2(T ) +
∑

E∈E∧E⊂∂T
hE
(
‖[σhnE ]‖2L2(E) + ‖[∂uh/∂s]‖2L2(E)

)
.

(1.10)

Here hT and hE are diameters of an element T ∈ T and an edge E ∈ E , respectively.
The jump of a (possibly discontinuous) function G across the inner edge E is written
[G] with modifications according to boundary data, and ∂/∂s is the derivative along
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1356 CARSTEN CARSTENSEN AND STEFAN A. FUNKEN

edges with respect to the arc-length (see Section 2 for details). All the contributions
in (1.10) are computable residuals of (1.1)-(1.3) weighted with mesh-sizes.

Our first result shows that ηR is a reliable a posteriori error estimate in the sense
that there exists an h-independent positive constant c3 such that

‖εT (u− uh)‖2L2(Ω) + ‖p− ph‖2L2(Ω) ≤ c3
∑
T∈T

η2
R,T = c3 η

2
R.(1.11)

Secondly, the estimate (1.11) is efficient in the sense that the reverse inequality
holds with an h-independent positive constant c4

ηR ≤ c4
(
‖εT (u − uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

)
+ h.o.t.,(1.12)

up to higher order terms h.o.t. which are known and generically of higher order.
In the error estimator (1.11), the edge contributions dominate. This gives rise

to a ZZ-type averaging estimator for the stress field as in [CB]. We prove for the
conforming-nonconforming scheme (1.8)-(1.9) that

‖εT (u− uh)‖2L2(Ω) + ‖p− ph‖2L2(Ω) ≤ c5‖ σh − σ∗h ‖L2(Ω) + h.o.t.
(1.13)

even in a more local form. Here, h.o.t. are known terms being generically of higher
order and σ∗h is a continuous (not necessarily symmetric) T -piecewise affine approx-
imation to the known T -piecewise constant function σh which satisfies approximate
Neumann boundary conditions. Taking the minimal choice defines an estimator (in
practice an approximation will be computed)

ηZ := min
τh
‖ σh − τh ‖L2(Ω),(1.14)

where τh is as σ∗h above. Then, with higher order terms that depend on the smooth-
ness of the exact solution, we have efficiency

ηZ ≤ ‖ σ − σh ‖L2(Ω) + h.o.t.(1.15)

with a constant 1 in front of the error on the right-hand side and unknown higher
order terms. (The proof of (1.15) uses the triangle inequality and an approximation
estimate of minτh ‖ σ − τh ‖L2(Ω) = h.o.t.)

The remaining sections of the paper are organised as follows. The detailed
notation as the precise statement of the reliability, namely inequality (1.11), is in-
troduced in Section 2. The main argument in its proof in Section 3 is a Helmholtz
decomposition which allows the application of Clément approximations [Cl]. In
order to obtain a refined estimate we have to modify the approximation operators
as in [Ca2, CV, CB]. The efficiency estimate (1.12) holds in a local form as shown
in Section 4. The reliability of averaging techniques is established for unstructured
grids in Section 5 where we indicate their efficiency. Numerical examples in Sec-
tion 6 for the Stokes problem and the scheme (1.8)-(1.9) support our theoretical
predictions and illustrate the superiority of the averaging technique in practise.

2. A reliable and efficient

residual-based a posteriori error estimate

In order to state the precise form of (1.11), we specify the hypotheses on the
class of conforming and nonconforming finite elements under question.
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Let T be a regular triangulation of Ω ⊂ R2 in the sense of Ciarlet [Ci], i.e., T is
a finite partition of Ω into closed triangles or parallelograms; two distinct elements
T1 and T2 in T are either disjoint or T1 ∩ T2 is a complete edge or a common node
of both T1 and T2. With T let E denote the set of all edges, and we assume that
E ∈ E either belongs to ΓD or E ∩ ΓD has vanishing surface measure, so there is
no change of boundary conditions within one edge E ⊆ Γ.

Furthermore, let Pk(T ) and Qk(T ) denote the set of the algebraic polynomials
of total and partial degree ≤ k, respectively, and define Pk(T ) := Pk(T ) if T is a
triangle and Pk(T ) := Qk(T ) if T is a parallelogram.

The discrete solution (uh, ph) satisfies (1.6)-(1.7) and is supposed to belong to
H2(T )2×H1(T ), where Hk(T ) := Hk(

⋃
T∈T intT ). The test function space V×Q

in (1.6)-(1.7) is supposed to satisfy

S := S1(T )2 ∩H1
D(Ω) ⊆ V ⊆ H2(T ) and L0(T ) ⊆ Q ⊂ L2(Ω).

(2.1)

Here, the Lebesgue and Sobolev spaces L2(Ω) and H1(Ω) are defined as usual
[Ho, LM] and

Lk(T ) := {V ∈ L∞(Ω) : ∀T ∈ T , V |T ∈ Pk(T )},
S1(T ) := L1(T ) ∩ C(Ω),

H1
D(Ω) := {v ∈ H1(Ω)2 : v|ΓD = 0}.

Since the test and trial functions are possibly discontinuous, we define their jumps
across the edges as follows. If E ∈ E is an inner edge, i.e., E 6⊂ Γ, then E = T1∩T2

for two different T1, T2 ∈ T , and [∂uh/∂s] denotes the difference of the traces of
the tangential derivatives of uh in T1 and T2. Similarly [σhnE ] denotes the jump of
the stress vectors, i.e., for x ∈ E and a normal nE on E,

[σhnE ](x) := lim
δ→0+

(
σh(x+ δnE)− σh(x− δnE)

)
nE.

If E ⊂ ΓD belongs to the Dirichlet part of the boundary, then [∂uh/∂s] := ∂(uD −
uh)/∂s and [σhnE ] := 0. If E ⊂ ΓN belongs to the Neumann part of the boundary,
then [∂uh/∂s] := 0 and [σhnE ] := g − σhn.

Let N denote the set of all nodes in T , and denote the set of free nodes by
K := N \ΓD. LetM denote the set of all midpoints of edges in T . Let ϕz ∈ S1(T )
denote a hat function for z ∈ N defined by ϕz(x) = 0 if x ∈ N and x 6= z and
ϕz(z) = 1. Let ωz := {x ∈ Ω : ϕz(x) > 0} denote the patch of z ∈ N .

For a fixed node y ∈ N \ K we choose a neighbouring free node ζ(y) ∈ K and
set ζ(y) := y if y ∈ K such that I(y) = {z′ ∈ N : y = ζ(z′)} yields a partition
(I(z) : z ∈ K) of N and the connected and open enlarged patch Ωz :=

⋃
z∈I(z) ωz

with diameter hz := diam(Ωz) for z ∈ K.
Theorem 2.1 implies the estimate (1.11) as a particular case.

Theorem 2.1. Let (u, p) ∈ H1(Ω)2 × L2(Ω) solve (1.1)-(1.3) and let (uh, ph) ∈
H2(T )2 × L2(Ω) solve (1.6)-(1.7). Suppose that ΓD is connected. Then there exist
h-independent constants c6, . . . , c9 that depend on the shape of the elements and the
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1358 CARSTEN CARSTENSEN AND STEFAN A. FUNKEN

patches (Ωz : z ∈ K) only such that

‖εT (u− uh)‖2L2(Ω) + ‖p− ph‖2L2(Ω)

≤c6
∑
T∈T
‖ divuh‖2L2(T )+c7

∑
z∈K

h2
z min
fz∈R2

‖ div σh+f−fz‖2L2(Ωz)

+ c8
∑
E∈E

hE(‖[σhnE ]‖2L2(E) + ‖[∂uh/∂s]‖2L2(E))

+ c9 inf
v
‖∇T (uh − v)‖2L2(Ω).

(2.2)

The infimum in (2.2) is taken over all v ∈ H1(T )2 such that
∫
E [v] ds = 0 if E ∈ E

and E 6⊂ ΓD and
∫
E v ds =

∫
E uD ds if E ∈ E and E ⊆ ΓD.

Remarks 2.1. (i) We refer to [QV] for discussion and references on mixed boundary
values in the Stokes problem. It seems not to be clear how a change of boundary
conditions affects the regularity of the solution in the general case. As a con-
sequence, any type of a priori estimate is avoided in Theorem 2.1 (a saturation
assumption, for instance, is disputable to indicate efficiency, but not reliability).

(ii) In the case of pure Dirichlet boundary conditions, i.e., Γ = ΓD and∫
Γ
uD · n ds = 0, we normalise p, ph ∈ L2(Ω)/R by

∫
Ω
p dx = 0 =

∫
Ω
ph dx.

(iii) Our analysis is partly based on the observation of a Galerkin orthogonality
for continuous test functions, i.e.,∫

Ω

(σ − σh) : ε(vh) dx = 0 (vh ∈ S).(2.3)

To prove (2.3), we use integration by parts to infer from (1.1)-(1.3) that for vh ∈ S
(with S as in (2.1)),∫

Ω

A(ε(u)) : ε(vh) dx−
∫

Ω

p div vh dx

=
∫

Ω

A(εT )(uh) : ε(vh) dx−
∫

Ω

ph div vh dx.
(2.4)

(iv) For triangles, the condition S1(T )2 ∩H1
D(Ω) ⊆ V in (2.1) is satisfied for all

standard conforming or nonconforming finite element spaces. On parallelograms,
the nonconforming nodal basis functions do not include the conforming Q1-finite
elements; our a posteriori error estimates require nonconforming ansatz and trial
spaces on parallelograms of higher order.

(v) The main argument in the proof of Theorem 2.1 is a Helmholtz decomposition
which was first utilised in [A, Ca1, CD, DDP] in the context of a posteriori error
estimates.

(vi) The refinement in Theorem 2.1 over [BB, CJ, DDP, P] concerns the second
term on the right-hand side with the factor c7. Since the open cover (Ωz : z ∈ K)
of Ω has finite overlap, we have the estimate

∑
z∈K

h2
z min
fz∈R2

‖ divσh + f − fz‖2L2(Ωz) ≤ c10 ‖ hT (divT σh + f) ‖2L2(Ω),

(2.5)

where hT is the T -piecewise constant defined on Ω by hT |T = hT for T ∈ T .
If σh := A(εT (uh)) − ph I is T -piecewise constant, divT σh = 0, and by using a
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ADAPTIVE FINITE ELEMENT METHODS 1359

Poincaré inequality we obtain∑
z∈K

h2
z min
fz∈R2

‖f − fz‖2L2(Ωz) ≤ c10 ‖ h2
T∇f ‖2L2(Ω) ,(2.6)

which leads to the volume contributions in (1.10).
(vii) The term infv ‖∇T (uh − v)‖2L2(Ω) in the a posteriori estimate can be es-

timated once the treatment of the Dirichlet boundary conditions in the discrete
problem is specified. Suppose that

∫
E

[uh] ds = 0 if E ∈ E and E 6⊂ Γ and that
uD− uh vanishes at one point of each edge. Then, with an h-independent constant
c11 > 0,

inf
v
‖∇T (uh − v)‖L2(Ω) ≤ c11‖ h1/2

E ∂(uD − uh)/∂s ‖L2(ΓD),(2.7)

from where the term infv ‖∇T (uh − v)‖L2(Ω) is bounded by the jump terms
‖[∂uh/∂s]‖L2(E) in (2.2) and so may be neglected in the a posteriori estimate.

To see (2.7), choose v|T := uh|T on each element which has no edge E ⊂ ΓD.
On each of the remaining elements Tm we have m ∈ Tm ∩ ΓD ∩ M, where M
denotes the set of all midpoints of edges in E . Choose v = uh − am ψm, where ψz
describes the nonconforming hat function for the midpoint m on Tm. The coefficient
am =

∫
E(uD − uh) ds/hE ∈ R2 guarantees that v is admissible in (2.7). Then

‖∇T (uh − v)‖2L2(Ω) =
∑

z∈M∩ΓD

|am|2 ‖∇ψm ‖2L2(Tm) ≤ c11

∑
z∈M∩ΓD

|am|2,
(2.8)

where c11 = maxz ‖∇ψm ‖22,Tm depends on the shape of the elements only. Since
uD − uh has a zero on E, ‖ uD − uh ‖2,E ≤ hE ‖ ∂(uD − uh)/∂s ‖2,E and with
Cauchy’s inequality,

|am|2 ≤ (
∫
E

|uD − uh| ds)2/h2
E ≤ hE ‖ ∂(uD − uh)/∂s ‖2L2(E).

(2.9)

(viii) In the example of the conforming-nonconforming finite element space (1.8)-
(1.9), the discrete solution uh satisfies the Dirichlet boundary condition at the
boundary nodes in the first component, i.e., e1 ·uh(z) = e1 ·uD(z) for all z ∈ N∩ΓD,
and in the second component the discrete midpoint value equals the integral mean of
the exact boundary value at a boundary edge, i.e., e2 ·uh(m) = e2 ·

∫
E
uD ds/hE for

the midpoint m of E ∈ E , E ⊂ ΓD. Then, for the same h-independent constant c11

as in (2.8) the arguments in (vii) plus a finer estimate of the affine interpolation error
show that the term infv ‖∇T (uh − v)‖2L2(Ω) is of higher order. Let IuD ∈ C(ΓD)2

denote the E-piecewise affine nodal interpolant to uD on ΓD. If uD|E ∈ H2(E) for
all E ∈ E with E ⊂ ΓD, then

infv ‖∇T (uh − v)‖L2(Ω) ≤ c11‖ h1/2
E ∂(uD − IuD)/∂s ‖L2(ΓD),(2.10)

infv ‖∇T (uh − v)‖L2(Ω) ≤ c11‖ h3/2
E ∂2

EuD/∂s
2 ‖L2(ΓD).(2.11)

(ix) The constants in Theorem 2.1 depend on the shape of the patches by the
overlap of (Ωz : z ∈ K). The further assumption that each element contains at least
one free node reduces this dependence to usual dependence on the elements.
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3. Proof of reliability

To put emphasis on possible Neumann data, let us suppose in this section that
ΓN has positive surface measure. (Γ = ΓD requires the exact and discrete pressure
to have a vanishing integral mean on Ω, but, apart from this modification, appears
less technical.)

Let (u, p) solve (1.1)-(1.3), let (uh, ph) solve (1.6)-(1.7), and consider the errors

e := u− uh ∈ H1(T )2 and ε := p− ph ∈ L2(Ω).(3.1)

For abbreviation, we frequently write ‖ · ‖2,Ω := ‖ · ‖L2(Ω) and ‖ · ‖1,2,Ω := ‖ · ‖H1(Ω)

and neglect the domain Ω if there is no risk of confusion. Furthermore, we define
the following residuals, which contribute to (1.10) or to the infimum in (2.2),

η2
1 :=

∑
T∈T
‖ divuh‖2L2(T ),

(3.2)

η2
2 :=

∑
z∈K

h2
z min
fz∈R2

‖ divσh + f − fz‖2L2(Ωz),

(3.3)

η2
3 :=

∑
E∈E

hE‖[σhnE ]‖2L2(E),

(3.4)

η2
4 := inf

{
‖∇T (uh − v)‖2L2(Ω) : v ∈ H1(T ) and for all E ∈ E there holds

(3.5)

∫
E

[v] ds = 0 if E 6⊂ Γ and
∫
E

v ds =
∫
E

uD ds if E ⊂ ΓD
}
,

η2
5 :=

∑
E∈E

hE‖[∂uh/∂s]‖2L2(E).

(3.6)

In the first step of the proof, we define an auxiliary function v which allows us
to control the error by an energy integral.

Lemma 3.1. There exist a constant c12 = c12(Ω) and a function w ∈ H1
D(Ω) with

divw = ε and ‖w‖H1(Ω) ≤ c12‖ε‖L2(Ω).(3.7)

Furthermore, the function v := c−1
1 c22c

2
12 e−w satisfies (with c1, c2 from (1.4)-(1.5))

c22c
2
12

2
‖εT (e)‖2L2(Ω) +

1
4
‖ε‖2L2(Ω) ≤

∫
Ω

(σ − σh) : εT (v) dx + c−2
1 c42c

4
12 η

2
1 .

(3.8)

Proof. Since Ω has a polygonal boundary, we can enlarge Ω to Ω̂ such that the
open surface piece (or finite collection of pieces) ΓN ⊂ ∂Ω belongs to the interior
of the bounded Lipschitz domain Ω̂. The function ε is extended to ε̂ by a constant
ε0 := −

∫
Ω
ε dx/meas(Ω̂ \ Ω) so that

∫
Ω̂
ε̂ dx = 0. The Stokes problem

∆ŵ −∇q = 0 and div ŵ = ε̂ in Ω̂(3.9)
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has a unique solution ŵ ∈ H1
0 (Ω̂)2 and q ∈ L2(Ω̂), which satisfies the a priori

estimate [GR, T, BF]

‖ŵ‖H1(Ω̂) ≤ c13‖ε̂‖L2(Ω̂) ≤ c14‖ε‖L2(Ω)(3.10)

with constants c13 and c14 that depend only on the geometry of Ω̂ and Ω, but not
on ε. The restriction w := ŵ|Ω satisfies (3.7).

According to the definition of v, σ, and σh, we calculate

(3.11)
∫

Ω

(σ − σh) : εT (v) dx = c−1
1 c22c

2
12

∫
Ω

(A(ε(u))−A(εT (uh))) : εT (e) dx

− c−1
1 c22c

2
12

∫
Ω

ε : divT e dx−
∫

Ω

(A(ε(u))−A(εT (uh))) : εT (w) dx + ‖ε‖22,Ω.

The symmetry of A(ε(u))−A(εT (uh)) and the estimates (1.5) and (3.7) yield

∫
Ω

(A(ε(u))−A(εT (uh))) : ε(w) dx

≤ c2‖εT (e)‖2,Ω‖∇w‖2,Ω ≤
c22c

2
12

2
‖εT (e)‖22,Ω +

1
2
‖ε‖22,Ω.

(3.12)

Because div u = 0, ‖ divT e‖2,Ω = η1, and (1.4), (3.11)-(3.12), we calculate

c22c
2
12

2
‖εT (e)‖22,Ω +

1
2
‖ε‖22,Ω ≤

∫
Ω

(σ − σh) : εT (v) dx + c−1
1 c22c

2
12 η1 ‖ε‖2,Ω.

(3.13)

Now we consider a Helmholtz decomposition of εT (v) from [CD] (see also [A,
Ca1, CJ]). Recall Curlβ = (∂β/∂x2,−∂β/∂x1) ∈ L2(Ω;Rd×2) if β ∈ H1(Ω)d for
d = 1, 2.

Lemma 3.2 ([CD, FM]). There exist α∈H1
D and β∈H2(Ω) with (Curl Curlβ)n=

0 on ΓN satisfying

εT (v) = ε(α) + Curl Curlβ a.e. in Ω.(3.14)

Proof. We sketch a proof for convenient reading. Let α solve the elliptic problem
div ε(α) = divT εT (v) with boundary conditions α = 0 on ΓD and ε(α)n = εT (v)n
on ΓN , i.e.,

∫
Ω(ε(α)− εT (v)) : ε(η) dx = 0 for all η ∈ H1

D(Ω). Since ε(α)− εT (v) is
symmetric, the solution α satisfies∫

Ω

(ε(α)− εT (v)) :∇η dx = 0 (η ∈ H1
D(Ω)2).(3.15)

Hence, each row of ε(α)− εT (v) is divergence-free and (ε(α)− εT (v))n vanishes on
ΓN . Hence there exists some β̂ ∈ H1(Ω)2 with ε(α)−εT (v) = Curl β̂ (see [GR, Sect.
3] for proofs). Moreover, since ε(α)−εT (v) is symmetric, Curl β̂ :ε(η) = Curl β̂ :∇η,
and by integration by parts

0 =
∫

Ω

Curl β̂ : ε(η) dx = −
∫

ΓN

Curl β̂ n · η ds (η ∈ H1
D(Ω)).

(3.16)

We conclude Curl β̂n = 0 whence ∂β̂/∂s = 0 on ΓN and so β̂ is constant on each
component of ΓN . If Γj is a connectivity component of Γ that does not include ΓD,
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then β̂ = β̂j is constant there and we deduce∫
Γj

β̂ n ds = β̂j

∫
Γj

n ds = 0(3.17)

from the divergence theorem. Since ΓD is connected, there is exactly one component
Γ0 that includes ΓD.

The symmetry of Curl β̂ reads β̂2,2 = −β̂1,1, i.e., div β̂ = 0. The divergence
theorem on Ω and (3.17) then show that for all j 6= 0

0 =
∫

Ω

div β̂ dx =
∫

Γ0

β̂ n ds.(3.18)

Hence, β̂ n has a vanishing integral over all connectivity components of Γ and is
divergence free. Thus, there exists some β ∈ H2(Ω)/R that satisfies β̂ = Curlβ
[T, GR].

The Helmholtz decomposition (3.14) of εT (v) from Lemma 3.1 leads to

(3.19)
c22c

2
12

2
‖εT (e)‖2L2(Ω) +

1
4
‖ε‖2L2(Ω) ≤

∫
Ω

(σ − σh) : ε(α) dx

+
∫

Ω

(σ − σh) : Curl Curlβ dx + c−2
1 c42c

4
12 η

2
1 .

The two integrals on the right-hand side in (3.19) will be estimated in Lemma 3.4
and 3.5 below. Therein, we require a Clément-type approximation operator [Cl, Ci,
BS] in a refined form (see also [CB, CV]).

For a regular triangulation T with set of edges E we associate mesh-size weights
hT and hE , which are T -piecewise and E-piecewise constant defined on Ω and the
skeleton

⋃
E of all points on edges by hT |T = hT for T ∈ T and hE |E = hE for

E ∈ E , respectively.

Lemma 3.3 ([Ca2]). There exists a linear mapping J : H1
D(Ω)2 → S, bounded if

domain and range space are endowed with H1-semi norms, which satisfies

‖h−1
T (ϕ− Jϕ)‖L2(Ω) + ‖h−1/2

E (ϕ− Jϕ)‖L2(
S
E) ≤ c15 ‖∇ϕ‖L2(Ω)

(3.20)

for all ϕ ∈ H1
D(Ω). In addition, there holds for all R ∈ L2(Ω)2

∫
Ω

R · (ϕ− Jϕ) dx ≤ c16 ‖∇ϕ‖L2(Ω)

(∑
z∈K

h2
z min
Rz∈R2

∫
Ωz

|R −Rz|2dx
)1/2

.

(3.21)

The positive constants c15, c16 do not depend on the mesh-sizes hT and hE , but on
the shape of the elements only.

The first integral on the right-hand side in (3.19) is studied in the next lemma.

Lemma 3.4. We have

∫
Ω

(σ − σh) : ε(α) dx ≤ max{c15, c16} (η2
2 + η2

3)1/2‖∇α‖L2(Ω).

(3.22)
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Proof. Utilising (2.3), A := Jα ∈ S ⊂ V , α − A ∈ H1
D(Ω), and elementwise

integration by parts, we infer

∫
Ω

(σ − σh) : ε(α) dx =
∫

Ω

(σ − σh) : ε(α−A) dx

(3.23)

=
∫

Ω

(div σh + f) · (α−A) dx +
∑
E∈E

∫
E

[σhnE](α −A) ds.

Recall that [σhnE ] is the jump of σhnE across an interior element boundary E ∈ E ,
and is defined by g− σhn on ΓN and [σhnE ] = 0 on ΓD. From Cauchy’s inequality
and (3.20)-(3.21) we conclude

∫
Ω

(σ − σh) : εT (α) dx

≤
(
c16

∑
z∈K

h2
z min
fz∈R2

‖ divσh+f−fz‖22,Ωz+c15

∑
E∈E

hE‖[σhnE ]‖22,E
)1/2

‖∇α‖22,Ω

≤ max{c15, c16} (η2
2 + η2

3)1/2‖∇α‖2,Ω.

(3.24)

The second integral on the right-hand side in (3.19) is studied in the next lemma,
where c17 will be characterised below in (3.28) as an analogue to c15.

Lemma 3.5. We have

∫
Ω

(σ − σh) : Curl Curlβ dx ≤ c−1
1 c22c

2
12c17(η2

4 + η2
5)1/2 ‖σ − σh‖L2(Ω).

(3.25)

Proof. Let a ∈ H1
D(Ω) and b ∈ H2(Ω) define a Helmholtz decomposition of σ − σh

as in Lemma 3.2, i.e.,

σ − σh = ε(a) + Curl Curl b a.e. in Ω.(3.26)

Since (Curl Curl b)n = 0 on ΓN we have L2-orthogonality of Curl Curlβ and ε(a)
and deduce from v := c−1

1 c22c
2
12 e− w and an integration by parts that

(3.27) c1c
−2
2 c−2

12

∫
Ω

(σ − σh) : Curl Curlβ dx =
∫

Ω

Curl Curl b : εT (e) dx

=
∫

ΓD

uD ·Curl Curl b n ds−
∫

Ω

Curl Curl b : εT (uh) dx.

Let B ∈ S1(T )2 denote an approximation to Curl b as in Lemma 3.3 where the
role of the Dirichlet and Neumann boundaries is interchanged; here ΓN acts as
the Dirichlet boundary, i.e., B ∈ C(Ω)2, Curl b = B on ΓN . Recall that 0 =
Curl Curl b n = ∂Curl b/∂s such that Curl b is constant on each component of ΓN
and so the interpolation indeed yields Curl b = B on ΓN . As in Lemma 3.3 we have

‖CurlB‖2 + ‖h−1/2
E (Curl b−B)‖2,∪E ≤ c17 ‖D2b‖2.(3.28)

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



1364 CARSTEN CARSTENSEN AND STEFAN A. FUNKEN

Note that CurlB nE = 0 on ΓN and, furthermore, CurlB nE is constant on each
E ∈ E . Thus, for v ∈ H1(T )2 as in Theorem 2.1,

(3.29)
∫

ΓD

uD ·CurlB nds =
∫

ΓD

v ·CurlB nds

+
∑
E∈E

∫
E\Γ

[v] ·CurlB nE ds =
∫

Ω

∇T v : CurlB dx,

where we utilised an elementwise integration by parts. From the symmetry of
Curl Curl b, (3.27), and (3.29), we infer

(3.30) c1c
−2
2 c−2

12

∫
Ω

(σ − σh) : Curl Curlβ dx =
∫

ΓD

uD ·Curl(Curl b−B)n ds

+
∫

Ω

Curl(B − Curl b) :∇T uh dx −
∫

Ω

CurlB :∇T (uh − v) dx.

From Curl b = B on ΓN and the integration by parts formula on the closed Lipschitz
curve (or curves of) Γ we deduce

(3.31)
∫

ΓD

uD ·Curl(Curl b−B)n ds =
∫

ΓD

uD · ∂(Curl b −B)/∂s ds

= −
∫

ΓD

∂uD/∂s · (Curl b−B) ds.

Elementwise integration by parts, Cauchy’s inequality, (3.28), (3.30), and (3.31)
result in

(3.32) c1c
−2
2 c−2

12

∫
Ω

(σ − σh) : Curl Curlβ dx ≤ ‖ CurlB ‖2 ‖∇T (uh − v) ‖2

+
∫
∪E

[∂uh/∂s] · (Curl b−B) ds ≤ c17 ‖D2b‖2 max{η5, ‖∇T (uh − v)‖2}.

Proof of Theorem 2.1. Combining Lemmas 3.4 and 3.5 we obtain from (3.19) and
‖ σ − σh ‖2 ≤ c2‖ εT (e) ‖2 + ‖ ε ‖2 and ‖ ε(α) ‖2 ≤ ‖ εT (e) ‖2 that

(3.33)
c22c

2
12

2
‖εT (e)‖22 +

1
4
‖ε‖22 ≤ max{c15, c16} (η2

2 + η2
3)1/2‖εT (e)‖2

+ c−1
1 c22c

2
12c17(η2

4 + η2
5)1/2 (c2‖ εT (e) ‖2 + ‖ ε ‖2) + c−2

1 c42c
4
12 η

2
1 .

With Young’s inequality, the terms ‖εT (e)‖2 and ‖ ε ‖2 on the left-hand side can
be absorbed. This concludes the proof of Theorem 2.1.

4. Efficiency

This section is devoted to efficiency investigations whose aim is to prove the
converse estimate up to higher order terms. Some of the technical results of the
section are preliminary to the proof of reliability of the averaging techniques in the
subsequent section.
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ΓN

E

Γ
ΓN

N

Γ

ΓD

D

z

Figure 1. Coarse triangulation where the inner edge E violates
geometric restrictions

To indicate the efficiency of the a posteriori error bound (1.10) we follow Verfürth
[V1] and refine a corresponding estimate in [DDP].

To cover the conforming-nonconforming scheme (1.8)-(1.9) as well as conform-
ing finite element schemes, we suppose that uh belongs to W = W1 ×W2 where
the jumps on interior element edges or Dirichlet edges satisfy different continuity
conditions in each component:

W1 := {V ∈ Lk(T ) : ∀E ∈ E , [V ] vanishes at the endpoints of E},(4.1)

W2 := {V ∈ Lk(T ) : ∀E ∈ E ,
∫
E

[V ] ds = 0}.(4.2)

Here, 1 ≤ k and the jump on boundary edges is understood as [V ] := 0 on ΓN and
[V ] := uD − V on ΓD.

According to the different role of the two components, we need different mild
restrictions on the coarseness of the mesh: Assume first that each connectivity
component of ΓD (ΓD is no longer necessarily connected) contains more than one
edge in E . Second assume that each edge E 6⊂ Γ has at least one endpoint which is
an interior node (see Figure 1 where the second condition is violated).

Suppose that uD ∈ C(ΓD)2 satisfies uD|E ∈ H1(E)2 for all E ∈ E with E ⊂ ΓD,
and write ∂mE uD/∂s

m for the E-piecewise derivative of uD on ΓD with respect to
the arc-length. Recall that IuD ∈ C(ΓD)2 denotes the E-piecewise affine nodal
interpolant to uD on ΓD (i.e., IuD(z) = uD(z) for all z ∈ N ∩ ΓD, and IuD|E is
affine on E ∈ E with E ⊂ ΓD). Let fT ∈ S0(T )2 be the L2-projection of f on
S0(T )2 and let gE denote an E-piecewise polynomial approximation to g on ΓN .

Theorem 4.1 implies the estimate (1.12) as a particular case.

Theorem 4.1. Let (u, p) ∈ H1(Ω)2×L2(Ω) solve (1.1)-(1.3), (uh, ph) ∈ H2(T )2×
L2(Ω) solve (1.6)-(1.7), uh ∈ W, and set σh := A(εT (uh)) − ph I. Then there
exists an h-independent constant c19 > 0 such that, for all T ∈ T and the patch
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ωT :=
⋃
{T ′ ∈ T : T ∩ T ′ ∈ E ∪ T } of neighbouring elements

∑
E∈E∧E⊂∂T

hE
(
‖[σhnE ]‖2L2(E) + ‖[∂uh/∂s]‖2L2(E)

)
≤ c19

(
inf

v=uD on ΓD
‖εT (uh − v)‖2L2(ωT )

+ inf
τ∈H(div;ωT )2

(‖σh − τ‖22,ωT + h2
E‖ divT (σh − τ)‖22,ωT )

+ ‖h1/2
E (g − gE)‖2L2(ΓN∩∂ωT ) + h2

T ‖f − fT ‖2L2(ωT )

+ ‖ h1/2
E ∂(uD − IuD)/∂s ‖2L2(ΓD∩∂ωT )

)
.

(4.3)

In particular, we have the efficiency estimate

∑
E∈E∧E⊂∂T

hE
(
‖[σhnE ]‖2L2(E) + ‖[∂uh/∂s]‖2L2(E)

)
+ h2

T ‖ f + div σh ‖2L2(T ) + ‖ div uh ‖2L2(T )

≤ c19

(
‖εT (u− uh)‖2L2(ωT ) + ‖p− ph‖2L2(ωT ) + ‖h1/2

E (g − gE)‖2L2(ΓN∩∂ωT )

+ h2
T ‖f − fT ‖2L2(ωT ) + ‖ h1/2

E ∂(uD − IuD)/∂s ‖2L2(ΓD∩∂ωT )

)
.

(4.4)

Remarks 4.1. (i) The constant c19 in Theorem 4.1 depends on the shape and on
the degree of the finite elements (not on their diameters).

(ii) The condition uh ∈ W is satisfied for all conforming finite element methods
as well as for the conforming-nonconforming scheme (1.6)-(1.7).

(iii) The compatibility condition in (4.1) could be further relaxed. The proof
shows that any compatibility condition which guarantees an affine function e1 · [v]
vanishes is indeed sufficient.

(iv) The mild restrictions on the mesh are violated in the example indicated in
Figure 1. Note that successive red-refinements cannot change that the top trian-
gle can rigidly move around the midpoint of E. A green-refinement of E in the
top triangle cures the failure (see, e.g., [V1] for the definition of red-green-blue
refinement).

(v) In corresponding results in [BB, CJ] the error term ‖∇(u− uh) ‖2,ΩT arises
which is replaced here by the Green strain error ‖ ε(u− uh) ‖2,ΩT . For conforming
schemes, u− uh ∈ H1

D(Ω) and this improvement is not important since Korn’s in-
equality provides global equivalence. For nonconforming schemes, Korn’s inequality
is not available [FM]. For the conforming-nonconforming finite element scheme with
(1.8)-(1.9), Korn’s inequality is globally available for uh and u but not necessarily
for u− uh. (The different statement in [BB] is still unproven.)

The remaining part of the section is devoted to the proof of Theorem 4.1 preceded
by several technical lemmas.

The first lemma provides a version of Korn’s inequality (certainly known to the
experts but not easily found in textbooks).

Lemma 4.1. Let RM(Ω) denote the rigid body motions in Rd (d = 2, 3). Then,
‖ · ‖H1(Ω) and ‖ ε(·) ‖L2(Ω) are two equivalent norms on H1(Ω)d/RM(Ω).
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Proof. The standard version of Korn’s inequality is the estimate

‖ · ‖2 + ‖∇ · ‖2 ≤ c20

(
‖ · ‖2 + ‖ ε(·) ‖2

)
in H1(Ω)d(4.5)

and can be found in textbooks. The main point in the lemma is the related estimate

min
r∈RM(Ω)

‖ v − r ‖1,2 ≤ c12 ‖ ε(v) ‖2(4.6)

for v ∈ H1(Ω)d. We sketch an indirect proof for convenient reading. If this inequal-
ity was false, we could find a sequence (wj) in H1(Ω)2/RM(Ω) with

lim
j→∞

‖ ε(wj) ‖2 = 0 and min
r∈RM

‖wj − r ‖1,2 = 1.

Banach-Alaoglu’s theorem yields a weakly convergent subsequence in H1(Ω)d and
by Rellich’s theorem there exists a strongly convergent subsequence (vj) in L2(Ω)d.
Hence we may and will assume without loss of generality that there exists a weak
limit v in H1(ω)d with limj→∞ ‖ v− vj ‖2 = 0. Since ‖ ε(·) ‖2 is sequentially weakly
lower semi-continuous, we deduce ε(v) = 0, i.e., v ∈ RM(Ω). Korn’s inequality
(4.5) shows
(4.7)

1 = min
r∈RM(Ω)

‖ vj − r ‖1,2 ≤ ‖∇(vj − v) ‖1,2 ≤ c20

(
‖ ε(vj − v) ‖2 + ‖ vj − v ‖2

)
,

but the right-hand side in (4.7) tends toward zero. This contradiction proves (4.6).
We omit the proof of the remaining assertions.

Lemma 4.2. Let T1, . . . , TJ ∈ T be a sequence of neighbouring elements such that
E = Tj ∩ Tj+1 ∈ E is an edge which is not parallel to the x1-axis. Then, all r ∈ W
with rTj ∈ RM(Tj), j = 1, . . . , J are rigid, i.e., r ∈ RM(

⋃J
j=1 Tj).

Proof. It suffices to prove the assertion for J = 2; the general case follows by
induction. Consider a common edge E of two distinct neighbouring elements T1

and T2 where there exist real numbers aT , bT , cT with

r(x) = (aT − cT x2, bT + cT x1) for x ∈ T.(4.8)

The condition (4.1) shows that the first component [r1] of the jump [r] of r vanishes
at two distinct points. In case E is not aligned with the x1-axis, this shows that the
affine function [r1] vanishes, i.e., aT1 = aT2 and cT1 = cT2 . Condition (4.2) implies
that [r2] vanishes at the midpoint of E. Knowing cT1 = cT2 already, bT1 = bT2

follows from this and (4.8). Thus, if E is not aligned with the x1-axis, [r] = 0, i.e.,
r ∈ RM(T1 ∪ T2).

Lemma 4.3. Let ωz be the patch of z ∈ N . Suppose that either z is an interior
point of Ω or that z does not belong to exactly one edge E ∈ E parallel to the x1-axis
(cf. Figure 1). Let r ∈ W such that r|T ∈ RM(T ) for all T ∈ T with T ⊂ ωz.
Then r|ωz ∈ RM(ωz).

Proof. In two dimensions, there are either zero, one or two edges E @ ωz with
E ⊂ R × {z2}, where “E @ ωz” stands for all edges E ∈ E with z ∈ E. If there is
no such edge, the assertion follows from Lemma 4.2.

In case there is one such edge E ⊂ R×{z2} and z is an interior point, Lemma 4.2
reveals r ∈ RM(ωz \ {E}) and, since the set ωz \ {E} is connected, r ∈ RM(ωz).

In case there are two such edges E1 and E2 ⊂ R× {z2} we find that r is a rigid
body motion on either of the two components of ωz \R×{z2}. The jump [r2] across
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Ej ⊂ R × {z2} is affine on R × {z2} and vanishes at the midpoints of Ej . Hence,
[r2] = 0. From this and [r1] = 0 we then deduce r ∈ RM(ωz).

Lemma 4.4. Let ωz be a patch of z ∈ N ∩ ΓD such that ΓD ∩ ∂ωz = E1 ∪ E2 for
two distinct edges E1, E2 ∈ E which are parallel. Suppose uD = 0 and r ∈ W with
εT (r) = 0 on ωz. Then r = 0 on ωz.

Proof. Lemma 4.2 shows that r is a rigid body motion on each connectivity com-
ponent of ωz \ R × {z2}. If there is no edge E with z ∈ E parallel to the x1-axis,
then r is a global rigid body motion which is zero at the midpoint mj of Ej and so
r = 0. The same conclusion can be drawn if E1 and E2 are parallel to the x1-axis.
In the remaining case, Ej is not parallel to the x1-axis but possibly one other edge.
As in the proof of Lemma 4.2 we deduce from the boundary conditions in W that
r|Ej = 0. Hence, r = 0 on that component of ωz \ R× {z2}, to which Ej belongs.
E1 and E2 belong to different components and so r = 0 on ωz.

Lemma 4.5. Let ωz be a patch of z ∈ N which is either an interior node or belongs
to a straight part of ΓD in the sense that {z} = E1 ∩ E2, E1, E2 ∈ E for parallel
E1, E2 ⊂ ΓD. Then, there exists an h-independent constant c22 > 0 such that for
all vh ∈ W,

(4.9)
( ∑
E@ωz

hE ‖[∂vh/∂s]‖2L2(E)

)1/2

≤ c22

(
‖ h1/2
E ∂(uD − IuD)/∂s ‖L2(ΓD∩∂ωz) + inf

v=uDon ΓD
‖ ε(vh − v) ‖L2(ωz)

)
.

In the infimum, “v = uD on ΓD” stands for all v ∈ H1(ωz)2 if z is an interior
node and otherwise for all v ∈ H1(ωz)2 with v|E1∪E2 = uD|E1∪E2 .

Proof. In the first step, we prove the lemma for the homogeneous case uD = 0. The
left- and right-hand sides of (4.9) are semi-norms on the spaces

Cz :=Wz ∩H1
D(ωz) ⊂ Wz := {V |ωz : V ∈ W},(4.10)

where H1
D(ωz) := H1(ωz)2 if z is an interior node and H1

D(ωz) := {v ∈ H1(ωz)2 :
v = 0 on E1 ∪E2} if z ∈ E1 ∪E2 ⊂ ΓD. We claim that the right-hand side of (4.9)
is a norm on Wz/Cz.

Suppose that vh ∈ Wz satisfies infv∈H1
D(ωz) ‖ εT (vh−v) ‖L2(ωz) = 0. Then, there

exists a sequence (vj) in H1
D(ωz) with limj→∞ ‖ εT (vh − vj) ‖L2(ωz) = 0. Hence,

ε(vj) is bounded in L2(ωz) and so is (vj) in H1
D(ωz)/RM(ωz) owing to Korn’s

inequality in the form of Lemma 4.1. Banach-Alaoglu’s theorem yields a weakly
convergent subsequence (vk) with weak limit v in H1(Ω)2. Then ‖ εT (vh−v) ‖2,ωz =
0, and so r := vh − v belongs to RM(T ) for all T ∈ T with T ⊂ ωz. Note that
v = vh − r is a piecewise polynomial in H1

D(ωz) and so v ∈ Cz and r ∈ Wz.
For z /∈ ΓD, Lemma 4.3 shows that r is a rigid body motion on ωz and this

implies vh = r+v ∈ Cz. If z lies on the Dirichlet boundary, Lemma 4.4 shows r = 0
and so vh ∈ Cz. Thus in any case vh = 0 in the quotient space Wz/Cz.

The left- and right-hand sides of (4.9) are norms on the finite-dimensional space
Wz/Cz and hence equivalent. This proves (4.9) with a constant c22 that depends
on ωz provided uD = 0. A scaling argument shows that the weights hE are chosen
properly so that c22 is independent from hz but merely dependent on the shape of
the elements and so the shape of the patch.
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In the second part of the proof, we have z ∈ ΓD ∩E1 ∩E2 and allow uD 6= 0. We
extend the nodal interpolant IuD to Ω by taking the remaining nodal values equal
to zero. Then, IuD ∈ S1(T )2. Let ψj be the nonconforming nodal basis function
related to the midpoint mj of the edge Ej . Then the discrete function

wh := vh − IuD − a1 ψ1 e2 − a2 ψ2 e2,

aj :=
e2

hEj
·
∫
Ej

(uD − IuD) ds, j = 1, 2,
(4.11)

satisfies the compatibility conditions for homogeneous Dirichlet data as considered
in the first step of this proof. Hence, we obtain in particular

h
1/2
Ej
‖∂wh/∂s‖2,Ej ≤ c22 inf

w∈H1
D(ωz)

‖ εT (wh − w) ‖2,ωz .(4.12)

As in the proof of (2.11) and similar to (2.9) we have

|aj | ≤ ‖ h1/2
E ∂(uD − IuD)/∂s ‖2,Ej , j = 1, 2.(4.13)

Note also that with
⋃
E denoting the skeleton of all points on an edge, we have

h
1/2
Ej
‖ ∂Eψj/∂s ‖2,SE + ‖∇T ψj ‖2,ωz ≤ c23 .(4.14)

Combining (4.12)-(4.14) we conclude

‖ ∂(uD − vh)/∂s ‖2,Ej
≤ ‖ ∂wh/∂s ‖2,Ej + ‖ ∂(uD − IuD)/∂s ‖2,Ej + c23(|a1|/h1/2

E1
+ |a2|/h1/2

E2
)

≤ c22h
−1/2
Ej

inf
w=IuD on ΓD

‖ εT (vh − w − a1 ψ1 e2 − a2 ψ2 e2) ‖2,ωz
+ c24 ‖ ∂(uD − IuD)/∂s ‖2,ΓD∩∂ωz

≤ c22 h
−1/2
Ej

inf
w=IuD on ΓD

‖ εT (vh − w) ‖2,ωz + c25 ‖ ∂(uD − IuD)/∂s ‖2,ΓD∩∂ωz .

(4.15)

To change “w = IuD on ΓD” to “w = uD on ΓD” in the infimum, we will prove
that

inf
w=uD−IuD on ΓD

‖ ε(w) ‖2,ωz ≤ c26 ‖ h1/2
E ∂(uD − IuD)/∂s ‖2,ΓD∩∂ωz .

(4.16)

Since uD − IuD vanishes at the endpoints of each edge Ej , it suffices to prove for
an edge E = Ej of T ∈ T that

inf
w=uD−IuD on E

‖ ε(w) ‖2,T ≤ c26 h
1/2
E ‖ ∂(uD − IuD)/∂s ‖2,E.

(4.17)

Several explicit constructions of sufficient w are possible. For instance, let w ∈
H1(T )2 be the harmonic extension of the boundary values w = uD − IuD on E
and w = 0 on ∂T \ E. Then,

‖∇w ‖2,T ≤ c27 ‖w ‖H1/2(∂T ).(4.18)

From a characterisation of the trace space H1/2(∂T ) by interpolation of H1(∂T )
and L2(∂T ) we deduce

‖w ‖H1/2(∂T ) ≤ c28 ‖w ‖1/21,2,∂T‖w ‖
1/2
2,∂T = c28 ‖w ‖1/21,2,E‖w ‖

1/2
2,E .

(4.19)
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With Young’s inequality we infer from (4.18)-(4.19) that

‖∇w ‖2,T ≤ c29

(
h

1/2
E ‖ ∂w/∂s ‖2,E + h

−1/2
E ‖w ‖2,E

)
.(4.20)

A transformation argument shows that the constant c29 is hE-independent and only
depends on the shape of T . From (4.20) and a standard estimate of w = uD−IuD,
we deduce (4.17) and then (4.16).

The remaining terms such as h1/2
E ‖[∂vh/∂s]‖2,E for an inner edge in ωz can be

treated similarly utilising an estimate for h1/2
E ‖[∂wh/∂s]‖2,E as in (4.12). We omit

the details.

Lemma 4.6. Let ωE :=
⋃
{T ∈ T : E ⊂ T } denote the neighbourhood E ∈ E with

E 6⊂ ΓD. Then, there exist hE-independent constants c30, c31, c32, c33 such that

h
1/2
E ‖[σh nE ]‖2,E ≤ c30 inf

τ∈H(div;ωE)2

(
‖σh − τ‖2,ωE + hE‖ divT (σh − τ)‖2,ωE

)(4.21)

if E is an inner edge. If E ⊂ ΓN and ωE = TE for some TE ∈ T , there holds, for
each gE ∈ Pk(E),

h
1/2
E ‖σh nE − gE‖2,E ≤ c31 inf

τn=gE

(
‖σh − τ‖2,TE + hE‖ divT (σh − τ)‖2,TE

)
,

(4.22)

h
1/2
E ‖σh nE − g‖2,E ≤ h

1/2
E ‖gE − g‖2,E

(4.23)

+ c32 inf
τn=g

(
‖σh − τ‖2,TE + c33hE‖ divT (σh − τ)‖2,TE

)
,

where in the infima in (4.22) and (4.23), “τn = gE” and “τn = g” stand for all
functions τ ∈ H(div;ωE)2 with τn = gE and τn = g on E, respectively.

Proof. The proof follows [V1] and considers the T -piecewise quadratic bubble func-
tion bE for the edgeE ⊂ ∂T ; bE vanishes on ∂T \E and is normalized by max bE = 1.
The norms ‖ · ‖2,E and ‖b1/2E · ‖2,E are equivalent, with equivalent constant c34,
on the finite dimensional space which [σh nE ] belongs to. Let E ∈ E be an in-
ner edge, E = T1 ∩ T2 for some T1, T2 ∈ T . Then using the extension operator
P : C(E)→ C(T1 ∪ T2) of [V1] and∫

ωE

{
∇(bEP ([σh nE ])) : τ + bEP ([σhnE ]) · div τ

}
dx = 0,(4.24)

(owing to integration by parts) we infer

‖[σh nE ]‖22,E ≤ c34

∫
E

bEP ([σh nE ]) · [σh nE ] ds

(4.25)

= c34

∫
ωE

{
∇(bEP ([σh nE ]))(σh−τ)+bEP ([σh nE ]) divT (σh−τ)

}
dx.

Cauchy’s inequality, the inverse estimate

‖∇(bEP ([σh nE ]))‖2,ωE ≤ c35h
−1
E ‖bEP ([σh nE ])‖2,ωE ,

and
‖bEP ([σh nE ])‖2,ωE ≤ c36h

1/2
E ‖[σh nE ]‖2,E
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lead to

h
1/2
E ‖[σh nE ]‖2,E ≤ c34c36

{
c35‖σh − τ‖2,ωE + hE‖ divT (σh − τ)‖2,ωE

}
.

(4.26)

The proof of (4.21) is finished. The same arguments prove (4.22) for an edge on the
boundary ΓN as well by straightforward modifications. We omit the details which
lead to (4.22) and mention in the proof of (4.23) only that instead of (4.25) we now
study

(4.27) ‖σh nE − gE‖22,E ≤ c34

∫
E

bEP (σh nE − gE) · (σh nE − gE) ds

≤ c34

∫
E

bEP (σh nE − gE) · (σh− τ)nE ds+ c34

∫
E

bEP (σh nE − gE) · (g− gE) ds

and integrate by parts only in the second to last term.

Proof of Theorem 4.1. We prove (4.3) by combining the estimates of Lemma 4.5
and 4.6. One needs to notice carefully that the conditions on the mesh allow, for
any edge E even on the boundary, the choice of some endpoint z ∈ N such that E
is involved in the patch-oriented estimates.

Notice that v = u and τ = σ can be included and that A is Lipschitz continuous.
To prove (4.4) it remains to observe (u is divergence free)

‖ div uh‖2,T ≤ ‖εT (u− uh)‖2,T(4.28)

and estimate the term div σh+fT following [V1]. To do so, consider the nonnegative
cubic bubble function bT on T ∈ T with max bT = 1. Then, the norms ‖ · ‖2,T and
‖b1/2T · ‖2,T are equivalent on the finite dimensional space to which div σh + fT
belongs, and so

c−1
37 ‖ divσh + fT ‖22,T

≤
∫
T

bT (div σh + fT ) · (div(σh − σ)− f + fT ) dx

≤
∫
T

∇(bT (div σh + fT )) : (σh − σ) dx+ ‖ div σh + fT ‖2,T ‖f − fT ‖2,T

≤ ‖∇(bT (div σh + fT ))‖2,T ‖σ − σh‖2,T + ‖ divσh + fT ‖2,T ‖f − fT ‖2,T .

(4.29)

Utilising the inverse estimate ‖∇(bT (div σh + fT ))‖2,T ≤ c38h
−1
T ‖ div σh + fT ‖2,T ,

we obtain

hT ‖ div σh + fT ‖2,T ≤ c37c38‖σ − σh‖2,T + c37hT ‖f − fT ‖2,T .
(4.30)

5. Averaging techniques for a posteriori error control

The ZZ-estimator [ZZ] and estimators often based on gradient recovery tech-
niques can be justified on arbitrary shape-regular meshes by the refined estimate
of the previous sections. The first result shows the reliability of low order con-
forming schemes; below we discuss estimators for the lowest order conforming-
nonconforming finite element scheme (1.8)-(1.9).

Let (u, p) ∈ H1(Ω)2 × L2(Ω) solve (1.1)-(1.3) and let (uh, ph) ∈ W with k = 1
satisfy (1.6)-(1.7). As in Stokes’ problem suppose that A maps deviatoric strains
onto deviatoric ones, i.e., trA(E) = 0 for all E ∈ R2×2

sym with trE = 0.
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Let N ∗ denote the set of all z ∈ N which are either free nodes or belong to
two aligned edges on ΓD. If z ∈ N ∗ ∩ ΓD such that ΓD ∩ ∂ωz = E1 ∪ E2 =: γz
for two aligned distinct edges E1, E2 ∈ E and such that there exists a third edge
E3 ∈ E \{E1, E2} through z and parallel to the x1-axis, then for some interior node
ζ ∈ N with E3 = conv{z, ζ} ⊂ R × {z2} (e.g., ζ = ζ(z) as in Theorem 2.1) we
define Ωz := ωz ∪ ωζ . In all remaining cases of z ∈ N ∗ we define Ωz := ωz and
γz := ∅.

Theorem 5.1 implies the estimate (1.13) and the reliability of (1.14).

Theorem 5.1. Let (u, p) ∈ H1(Ω)2×L2(Ω) solve (1.1)-(1.3) and (uh, ph)∈H2(T )2

×L2(Ω) solve (1.6)-(1.7). Suppose that ΓD is connected and uD ∈ C(ΓD)∩H1(ΓD)
is piecewise H2(ΓD) in the sense that uD|γz ∈ H2(γz)2 for z ∈ N ∗ ∩ ΓD.

Then, there exists an h-independent constant c39 > 0 that depends on the shape
of the elements and the patches (ωz : z ∈ K) only such that

(5.1) ‖εT (u− uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

≤ c39

( ∑
z∈N∗

(
min

τz∈S1(T |ω̂z )2×2

(
‖ σh − τz ‖2L2(Ωz) + ‖ h1/2

E (g − τz n) ‖2L2(ΓN∩∂ωz)

)
+ ‖ h3/2

E ∂2
EuD/∂s

2 ‖2L2(ΓD∩∂ωz)

))1/2

+ c7

(∑
z∈K

min
fz∈R2

‖ hT (f − fz) ‖2L2(Ωz)

)1/2

.

Moreover, suppose g ∈ C(ΓN )2 is E-piecewise in H1(ΓN )2, i.e., g|E ∈ H1(E)2 for
E ∈ E with E ⊂ ΓN . Assume that σ∗h ∈ S1(T )2×2 satisfies g(z) = σ∗h(z)nE(z) for
each endpoint z of an edge E on ΓN . Then,

‖εT (u − uh)‖L2(Ω) + ‖p− ph‖L2(Ω)

≤ c39

(
‖ σh − σ∗h ‖L2(Ω) + ‖ h3/2

E ∂2
EuD/∂s

2 ‖L2(ΓD) + ‖ h3/2
E ∂Eg/∂s ‖L2(ΓD)

)
+ c7

(∑
z∈K

min
fz∈R2

‖ hT (f − fz) ‖2L2(Ωz)

)1/2

.

(5.2)

Remarks 5.1. (i) If g is E-piecewise in H2(ΓN)2, the perturbation term ‖h3/2
E ∂g/∂s‖2

in (5.2) can be improved to ‖ h5/2
E ∂2

Eg/∂s
2 ‖2.

(ii) The discrete Neumann boundary conditions on the nonsymmetric σ∗h can
be satisfied exactly even at corner points (with two different normals); see (6.2.i)-
(6.2.ii) below for details.

(iii) The choice of the remaining degrees of freedom in σ∗h is arbitrary: any
averaging scheme is reliable. The efficiency of the averaging process is a different
topic and has to be checked separately.

(iv) It is interesting to notice that the higher order terms in the reliability es-
timate depend on the smoothness of the data while the the higher order terms in
the efficiency estimate depend on the smoothness of the exact solution.
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Lemma 5.1. For any z ∈ N ∗ there exists an h-independent constant c40 > 0 such
that, for all vh ∈ W (for k = 1),

(5.3)
( ∑
E@Ωz

hE ‖[∂vh/∂s]‖2L2(E)

)1/2

≤ c40

(
‖ h3/2
E ∂2(uD − IuD)/∂s2 ‖L2(ΓD∩∂ωz) + min

Vh,τh
‖ ε(vh − Vh)− τh ‖L2(Ωz)

)
.

In the minimum of (5.3), Vh is arbitrary in S1
D(T |Ωz ) := {V ∈ C(Ωz)2∩S1(T |Ωz )2 :

V = 0 on γz} and τh is arbitrary in S1(T |Ωz )2×2 = {(τjk) ∈ C(Ωz)2×2 : ∀T ∈
T , τjk|T ∈ P1(T ) provided T ⊂ Ωz}.

Proof. In the first step of the proof we consider uD = 0 and show that the
right-hand side of (5.3) is a norm on the space Wz/Cz from (4.10). To check
definiteness, suppose that vh ∈ Wz, Vh ∈ S1

D(T |Ωz ), and τh ∈ S1(T |Ωz )2×2 satisfies
τh = εT (vv − Vh) and so the T -piecewise constant function εT (vv − Vh) is continu-
ous, where it is constant on Ωz. Thus we can find an affine mapping Ax + b such
that r(x) := vh(x) − Vh(x) − Ax − b satisfies εT (r) = 0 on Ωz , i.e., r|T ∈ RM(T )
for all T ∈ T with T ⊂ Ωz. The compatibility conditions on the edges for vh imply
the same for r and so Lemma 4.4 shows r ∈ RM(ωz) if z is an interior node or
if no edge E @ ωz is parallel to the x1-axis. In the case that z ∈ ΓD we have
ΓD ∩ ∂ωz = E1 ∪ E2 for two aligned distinct edges E1, E2 ∈ E . If they are parallel
to the x1-axis we have r ∈ RM(ωz) from Lemma 4.4. If there exists another edge
E3 = conv{z, ζ} ⊂ R× {z2} we have r ∈ RM(ωζ). Since r is the same rigid body
motion on both elements joining E3 we find r ∈ RM(Ωz) using Lemma 4.2. The
interior jumps in the left-hand side of (5.3) vanish in any case. The boundary con-
tributions vanish as well since the affine function vh − Vh vanishes at the midpoint
mj of Ej for j = 1, 2 and so on the straight line through γz.

We have seen that the left-hand side of (5.3) vanishes if the right-hand side does.
A compactness and a scaling argument concludes the proof of the lemma if uD = 0.

In the second part of the proof, we have z ∈ ΓD∩E1∩E2 for two aligned distinct
edges Ej = conv{z, ζj} ⊂ ΓD, j = 1, 2, and allow uD 6= 0. Extend IuD (prescribing
remaining nodal values) to IuD ∈ S1(T )2 and define the affine functions

a1(x) := (x−ζ1)·(ζ2−ζ1)
|ζ2−ζ1|2 e1 · uD(ζ2) + (ζ2−x)·(ζ2−ζ1)

|ζ2−ζ1|2 e1 · uD(ζ1),(5.4)

a2(x) := (x−m1)·(m2−m1)
hE2 |m2−m1|2

∫
E2
e2 · uD ds+ (m2−x)·(m2−m1)

hE1 |m2−m1|2
∫
E1
e2 · uD ds.(5.5)

The discrete function

wh := vh − (e1 · IuD) e1 − a2 e2(5.6)

satisfies the compatibility conditions for homogeneous Dirichlet data considered in
the first step of this proof. Hence, we obtain in particular, for j = 1, 2,

h
1/2
Ej
‖∂wh/∂s‖2,Ej ≤ c22 min

Vh,τh
‖ ε(wh − Vh)− τh ‖2,Ωz .(5.7)

Notice that τh = ε(a1 e1 +a2 e2) is constant and so allowed in the minimum in (5.7).
Hence we may replace wh in (5.7) by w̃h := wh+a1 e1 +a2 e2−Vh where Vh is such
that (a1 − e1 · IuD) e1 − Vh vanishes at all nodes different from z (a1 − e1 · IuD
has zeros ζ1, ζ2 by construction). This shows w̃h = vh + (a1(z) − e1 · uD(z))ϕz e1

with ϕz being the nodal basis function at z. From ‖∇ϕz ‖2 ≤ c41 and a triangle
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inequality we deduce
min
Vh,τh

‖ ε(wh − Vh)− τh ‖2,Ωz
≤ min

Vh,τh
‖ ε(vh − Vh)− τh ‖2,Ωz + c41|a1(z)− e1 · uD(z)|.(5.8)

As in (4.15), we infer

(5.9) h
1/2
Ej
‖ ∂(uD − vh)/∂s ‖2,Ej ≤ h

1/2
Ej
‖ ∂wh/∂s ‖2,Ej

+ h
1/2
Ej
‖ ∂e1 · (uD − IuD)/∂s ‖2,Ej + h

1/2
Ej
‖ ∂(a2 − e2 · uD)/∂s ‖2,Ej .

Standard arguments in one dimension show

(5.10) |a1(z)− e1 · uD(z)|+ h
1/2
Ej
‖ ∂e1 · (uD − IuD)/∂s ‖2,Ej

+ h
1/2
Ej
‖ ∂(a2 − e2 · uD)/∂s ‖2,Ej ≤ c42 ‖ h3/2

E ∂2(uD − IuD)/∂s2 ‖2,E1∪E2 .

Combining (5.7)-(5.10) we conclude that (5.3) holds.

Proof of Theorem 5.1. Some terms in Theorem 2.1 simplify because uh is T -piece-
wise affine. For instance, divT σh = 0 and divT uh = 0. The term infv ‖∇T (uh −
v)‖2 can be bounded as in (2.7) of Remark 2.1. The remaining edge contributions
are estimated with Lemmas 4.6 and 5.1 (with Vh = 0) in a manner similar to the
proof of Theorem 4.1. In this way, we obtain

(5.11) ‖εT (u− uh)‖22 + ‖p− ph‖22 ≤ c27
∑
z∈K

min
fz∈R2

‖ hT (f − fz) ‖22,Ωz

+ c43

∑
z∈N∗

(
min

τz,τ̃z∈S1(T |ω̂z )2×2
(‖ σh − τz ‖22,Ωz + h2

z‖ divT (σh − τz) ‖22,Ωz

+ ‖ εT (uh)− τ̃z ‖22,Ωz + ‖ h1/2
E (g − τz n) ‖22,ΓN∩∂ωz + ‖ h3/2

E ∂2
EuD/∂s

2 ‖22,ΓD∩∂ωz
)
.

An inverse estimate shows for one summand in (5.11) that

hz‖ divT (σh − τz) ‖2,Ωz ≤ ‖ σh − τz ‖2,Ωz .(5.12)

The equivalence of norms and a scaling argument for the hz-independent constant
c45 > 0 shows for T -piecewise constants L0(T |Ωz ) and the continuous T -piecewise
affine functions S1(T |Ωz ) that, for all α ∈ L0(T |Ωz )2×2,

c45 min
γ∈R2×2

sym

‖α− γ ‖2,Ωz ≤ min
β∈S1(T |Ωz )2×2

sym

‖α− β ‖2,Ωz ≤ min
γ∈R2×2

sym

‖α− γ ‖2,Ωz .
(5.13)

A Cauchy inequality and (1.4) reveal that for all α, β ∈ R2×2
sym,

c1 |α− β| ≤ |A(α) −A(β)| ≤ c2 |α− β|.(5.14)

Owing to monotonicity arguments, the mapping A is a bijection on R2×2
sym and so

we deduce from (5.13)-(5.14) for the piecewise constant εT (uh) that

(5.15) c1 min
τ̃z∈S1(T |Ωz )2×2

sym

‖ εT (uh)− τ̃z ‖2,Ωz ≤ c1 min
γ∈R2×2

sym

‖ εT (uh)− γ ‖2,Ωz

≤ min
γ∈R2×2

sym

‖A(εT (uh))−A(γ) ‖2,Ωz = min
γ∈R2×2

sym

‖A(εT (uh))− γ ‖2,Ωz

≤ c−1
45 min

τh∈S1(T |Ωz )2×2
sym

‖A(εT (uh))− τh ‖2,Ωz

= c−1
45 min

τh∈S1(T |Ωz )2×2
sym

‖ dev(σh − τh) ‖2,Ωz ≤ c−1
45 min

τh∈S1(T |Ωz )2×2
sym

‖ σh − τh ‖2,Ωz .
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Here we used devA=A−tr(A)/2 I and, in the second to last step, that A(εT (uh))=
σh − ph I is pointwise almost everywhere deviatoric (since 0 = divT u = tr εT (uh))
and so is the optimal τh.

A combination of (5.11), (5.12), and (5.15) concludes the proof of Theorem 5.1.

6. Numerical experiments

In this section we report on the numerical performance of the two a posteriori
estimates established in this paper (Theorems 2.1 and 5.1) and give two strategies
to refine a given mesh automatically.

The proposed estimator in Theorem 5.1 is based on a function σ∗h ∈ S1(T )2×2

which satisfies g(z) = σ∗h(z)nE(z) for each endpoint z of an edge E on ΓN . We
define

σ∗h :=
∑
z∈N
Izσh ϕz ,(6.1)

where I : L2(Ω)2×2 → S1(T )2×2 for z ∈ N \ ΓN is, with �ωz σh dx denoting the
integral mean of σh over Ωz,

Izσh := �
ωz

σh dx .

For z ∈ ΓN we distinguish between the following cases (i) and (ii) to fulfill the
discrete Neumann condition g(z) = σ∗h(z)nE at z.

(6.2.i) In case z ∈ E1 ∩ E2 for two distinct edges E1, E2 ⊂ ΓN with linearly in-
dependent outer unit normals nE1 and nE2 on E1 and E2, respectively, we choose
Izσh to be the unique solution ( x11 x12

x21 x22
) of the linear system

n1,E1 n2,E1 0 0
0 0 n1,E1 n2,E1

n1,E2 n2,E2 0 0
0 0 n1,E2 n2,E2




x11

x12

x21

x22

 =


g1|E1(z)
g2|E1(z)
g1|E2(z)
g2|E2(z)

 .

(6.2.ii) In the remaining cases z ∈ E1 ∩ ΓD or z ∈ E1 ∩ E2 with two parallel
outer unit normals nE1 , nE2 , we choose tE1 to be the unit tangent to Ω at z that is
perpendicular to nE1 , and let Izσh be the solution ( x11 x12

x21 x22
) of the uniquely solvable

system
n1,E1 n2,E1 0 0

0 0 n1,E1 n2,E1

t1,E2 t2,E2 0 0
0 0 t1,E2 t2,E2




x11

x12

x21

x22

 =


g1|E1(z)
g2|E1(z)(

�ωz(σh,11, σh,12) dx
)
tE1(

�ωz(σh,21, σh,22) dx
)
tE1

 .

In the error indicator ηZ,T this amounts to, for each T ∈ T ,

ηZ,T := ‖σh − σ∗h‖L2(T ) .(6.3)

Since the symmetric formulation with P 2
1 ×P0-finite elements is unstable for the

conforming and the nonconforming case, we considered the conforming-nonconform-
ing scheme from (1.8)-(1.9).

The implementation is performed on triangles in Matlab in the spirit of [ACF]
using analytic formulae in the calculation of the stiffness matrix. Since A(α) = 2µα
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in (1.2) is a linear operator in our examples, the linear system of equations can be
solved directly. In order to approximate the right-hand side for a given function
g ∈ L2(ΓN )2, we compute

∫
ΓN

gvh ds via a three-point Gaussian quadrature rule
on any edge E. The Dirichlet boundary conditions are implemented as in Remark
2.1(viii).

In the comparison of uniform mesh-refinement with adaptive refinement tech-
niques we use the following adaptive Algorithms (AR) and (AZ). Both algorithms
are different in the error indicators only.

Algorithm 6.1. (AR) resp. (AZ) (a) Start with a coarse mesh T0, k = 0.
(b) Solve the discrete problem with respect to the actual mesh Tk.
(c) Compute ηT for all T ∈ Tk, where, for (AR),

η2
T = η2

R,T := h4
T ‖∇f‖2L2(T ) +

∑
E∈E∧E⊂∂T

hE
(
‖[ΣnE]‖2L2(E) + ‖[2µ∂U/∂s]‖2L2(E)

)
and, for (AZ), with an averaged function σ∗h of the discrete stress field σh as
in (6.1),

ηT = ηZ,T := ‖σh − σ∗h‖L2(T ).

(d) Compute a given stopping criterion and decide to terminate or to go to (e).
(e) Refine the element T (red refinement) provided,

1
2

max
T ′∈Tk

ηT ′ ≤ ηT .

(f) Refine further elements (red-green-blue refinement) to avoid hanging nodes.
Define the resulting mesh as the actual mesh Tk+1, update k and go to (b).

Remarks 6.1. (i) Details on the so-called red-green-blue refinement strategies can
be found in [V2].

(ii) Stopping criteria for termination in step (d) can be based on ηT :=
(
∑

T∈T η
2
T )1/2. For instance, we can terminate in (d) if ηTk is less then a cer-

tain percentage of ηT0 . If f is sufficiently smooth and the mesh is sufficiently fine,
ηZ might be regarded as a very good guess for the exact error.

(iii) Utilising the initial mesh displayed in Figure 2, Algorithm (AR) (resp. (AZ))
generates a sequence of meshes which satisfy the assumptions of Section 4.

Example 6.1. The first numerical example for the Stokes problem is on the L-
shaped domain Ω := (−1, 1)2 \ [0, 1]× [−1, 0] with f = 0 and A(α) = 2α [V2]. The
geometries of Ω, ΓD and ΓN are depicted in Figure 2, where T0 is shown as well.
The boundary values uD, g are taken from the exact solution (u, p) which reads, in
polar coordinates for α = 856399/1572864≈ .54448, ω = 3π/2,

u(r, ϕ) =rα
(
(1 + α)

(
sin(ϕ),− cos(ϕ)

)
w(ϕ) +

(
cos(ϕ), sin(ϕ)

)
wϕ(ϕ)

)
,

p(r, ϕ) =− rα−1
(
(1 + α)2wϕ(ϕ) + wϕϕϕ(ϕ)

)
/(1− α),

w(ϕ) =
(
sin((1 + α)ϕ) cos(αω)

)
/(1 + α)− cos

(
(1 + α)ϕ

)
−
(
sin((1 − α)ϕ) cos(αω)

)
/(1− α) + cos((1− α)ϕ).

A plot of the mesh T9 generated by Algorithm (AR) as some magnified detail
near the re-entrant corner (zoom of (−0.1, 0.1)2) is given in Figure 3 and shows a
high refinement of the mesh near the singularity at the origin.

The resulting improvement of the convergence is outlined in Figure 4, where the
error eN := ‖2ε(u−uh)− (p−ph)I‖L2(Ω) is plotted versus the number of degrees of
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DΓ

NΓ

Figure 2. Initial mesh T0 of the
domain Ω and boundary ΓD, resp.
ΓN in Example 6.1.

Figure 3. Mesh T9 and magni-
fied detail at the re-entrant cor-
ner in Example 6.1.

freedom N on a log/log-scale. (A slope −1/2 in Figures 4 and 5 corresponds to an
experimental convergence rate 1 owing to N ∝ h−2 in two dimensions.) Figure 4
shows the convergence rates for the uniform refinement in comparison with the
mentioned adaptive Algorithm (AR) or (AZ); eta R (eta Z adapted) corresponds
to ηR for a sequence of meshes generated by Algorithm (AZ). According to the re-
entrant corner, the uniform refinement yields a convergence rate of approximately
0.544 which coincides with the theoretically expected rate. The adaptive mesh-
refining Algorithms (AZ) and (AR) improve this experimental convergence order
to 1 which is expected to be optimal for V1 × V2-elements.

In Table 1 we displayed the errors and the bounds for different meshes computed
with uniform refinements. Here, N is the number of unknowns, eN is the error-norm
(evaluated by using a 7-point Gauss quadrature formula of order 6 on each element),
and ηR (resp. ηZ) is the computed upper bound of the a posteriori estimate.
From Table 1 and Figure 4 we observe that the quotients ηR/eN (resp. ηZ/eN)
remain bounded from above in agreement with our theoretical results. Moreover,
the quotient of overestimation ηR/eN is approximately 2.5 for uniform refinements
(Table 1) and becomes slightly larger (≈ 3.3) for the adaptive strategies (AR) and
(AZ). The error estimator ηZ estimates the error asymptotically exactly for uniform
refinements and both adaptive strategies which could result from local symmetries

Table 1. Errors eN and error estimates ηR, ηZ for uniform meshes
of Example 6.1.

N eN ηR ηR/eN ηZ ηZ/eN
45 5.1346 9.4007 1.8308 4.8630 0.9471
161 4.0600 8.7255 2.1491 4.0150 0.9889
609 2.9155 6.8511 2.3499 2.8915 0.9918
2369 2.0357 4.9026 2.4082 2.0232 0.9939
9345 1.4075 3.4146 2.4260 1.4003 0.9949
37121 0.9690 2.3575 2.4327 0.9646 0.9954
147969 0.6658 1.6219 2.4356 0.6629 0.9956
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Figure 4. Errors eN vs N for uniform and adaptive meshes of Example 6.1.
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Figure 5. A posteriori error indicator ηR and ηZ vs N for uniform
and adaptive meshes of Example 6.2.

in the mesh and superconvergence. Preasymptotically we obtain by Algorithm (AZ)
meshes with slightly smaller errors eN and quantities ηR and ηZ . This numerical
example supports the assertion that the estimates are reliable and efficient.
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Figure 6. Mesh T0 and magnified detail at re-entrant corner of
Mesh T9 of Example 6.2.
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Figure 7. Approximation to streamlines based on T12 of Example 6.2.

Example 6.2. Finally, we report on a benchmark example. Here, we consider the
backward facing step with initial mesh and a magnified detail at re-entrant corner
after nine iterations using Algorithm (AZ) as plotted in Figure 6 (cf. [BW]). Here,
we chooseA(α) = α/50. Neumann boundary conditions are g := (68, (2y−3)/1100)
for x = −2, 1 ≤ y ≤ 2 and g := (17, (1 − y)/4400) for x = 8, 0 ≤ y ≤ 2. On the
remaining boundary we define homogeneous Dirichlet conditions.

In Figure 5 we plot the a posteriori error estimates ηR and ηZ for uniform
and adaptive meshes. The convergence rate of ηR and ηZ is approximately 1 for
the adaptive meshes and 0.66 for uniform meshes. As expected, the a posteriori
estimates ηR and ηZ decrease faster for adaptively refined meshes with an optimal
convergence rate. If we supposed that ηz is almost exact, then the error estimator
ηR would overestimate by a factor ≈ 3.1. The quantities ηR and ηZ are smaller on
meshes obtained by Algorithm (AZ) than Algorithm (AR).

The approximate streamlines based on T12 and Algorithm (AZ) are plotted in
Figure 7 in agreement with corresponding pictures in the literature.

In all examples, the meshes are highly nonuniform and the experimental con-
vergence rates of the true and estimated error have been improved to the optimal
order which supports the assertion that our adaptive schemes are very useful in
practise.
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