NH,

y C t thod
> o ey "
ﬁ mechanics and

engineering

ELSEVIER Comput. Methods Appl. Mech. Engrg. 190 (2001) 4663-4675
www.elsevier.com/locate/cma

Averaging technique for FE — a posteriori error control
in elasticity.
Part II: A-independent estimates

Carsten Carstensen, Stefan A. Funken ™

Universitat Kiel, Mathematics Seminar, Ludewig-Meyn-Strasse 4, 24098 Kiel, Germany
Received 22 February 2000

Abstract

In the second part of our investigation on a posteriori error estimates and a posteriori error control in finite element analysis in
elasticity, we focus on robust a posteriori error bounds. First we establish a residual-based a posteriori error estimate which is reliable
and efficient up to higher-order terms and Z-independent multiplicative constants; the Lamé constant 4 steers the incompressibility.
Second we show the robust efficiency and reliability of averaging techniques in certain norms. Numerical evidence supports that the
reliability of depends on the smoothness of given right-hand sides and is independent of the structure of a shape-regular mesh. © 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Error control and efficient mesh-design in finite element simulations of computational engineering and
scientific computing are frequently based on a posteriori error estimates [1,11,14-16], where the question of
nearly incompressible material and locking phenomena is usually excluded. For a Poisson ratio v close to
1/2, the Lame constant A is very large and dominates in the Navier—Lame equations

A+ pwVdivu + pAu = —f. (1.1)

The second part of our investigation [6,7] on efficient and reliable averaging techniques in a posteriori error
control shows that the constants ¢; and ¢, in the estimate

E/ci<n<cE+ho.t. (1.2)

for the error £ and the computable a posteriori error bound 5 are independent of the meshsize and the
parameter /. In (1.2), the error norm is (|| - [ 2, denotes the L*(2)-norm)

E = |2ue(u — )l 2() + [|4d1v (u = )] 2(g) (1.3)
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and the error estimator for the residual-based a posteriori error estimate reads

. 1/2

n=|lhs(f+ leFUh)HLZ(Q) + ||h£'/ [Gh]”é*HLZ(ug)a (1.4)
where 47 and s denote the element size and edge size, g, is the discrete stress with elementwise divergence
divs and edgewise jump of the normal components [6;]ns on the union of all edges U& (the skeleton of all
element boundaries). The arguments in [4,5,9] allow a refined estimate that states that the edge contribu-
tions dominate, i.e., (1.2) holds for (1.3) and

n= ||h(1§'/2[ah”|L2(ué“)) +ho.t (1.5)
The final result states that any averaging technique is reliable, e.g., that (1.2) holds for (1.3) and

]1 = mln )||O-}1 - G*HLZ(Q) + h.o.t., (1.6)

€T g

where 2(7,g) denotes the globally continuous and piecewise affine splines which satisfy Neumann
boundary conditions.

The Part II in this series on averaging techniques provides robust error control for a finite element
discretisation of (1.1) in the sense that 4 (explicitly arising in the error norm E as well as in the error es-
timator #) does not affect the constants ¢; and ¢, in (1.2). We study the influence of the approximation of
mixed inhomogeneous boundary conditions and the higher-order terms (h.o.t.).

The outline of the paper is as follows. The model problem and precise descriptions of material properties
and the regularity of right-hand sides are given in Section 2 together with precise statements of (1.2)—(1.6)
that include the proper treatment of boundary conditions. Algorithms are described in Section 3. Nu-
merical evidence is provided in Section 4 and shows almost asymptotic exactness of our realisation of the
ZZ7Z-estimator for adapted meshes when we start with a structured grid. For more unstructured perturbed
grids, the reliability and efficiency are still observed with very good constants. The proofs are given in
Section 5 following arguments in [5,6,8]. It should be stressed that the error norm £ in (1.3) is not the energy
norm and indeed, the authors tried and failed to prove the reliability for the ZZ-estimator in the energy
norm (cf. [6, Section 6 in Part I] for a heuristic). Nevertheless, numerical examples indicate that the energy-
norm version of the ZZ-estimator performs well.

In Part III of this series [7], we investigate non-conforming schemes which are locking-free and we will
provide robust reliable and efficient averaging techniques for their practical realisation.

2. Model example and results

The stress field o satisfies the equilibrium equations

f+dive=0 in Q, (2.1)

g-n=g only (2.2)

for given volume force / € L2(2)¢ and applied surface load g € L*(I'y)". The Lipschitz boundary I' = 0Q of

the body, occupied by a bounded domain Q in RY, consists of a closed Dirichlet part I'n with positive
surface measure and a remaining, relatively open and possibly empty, Neumann part I'y :=I' \ I'p.

The Dirichlet data up € C(I'p) are supposed to be differentiable at any flat piece of I'p such that the

surface gradient is square-integrable (written up € H'(I'p)). Then, we suppose that the exact displacement
field u belongs to H'(Q)?, i.e., u € L*(Q)? and the gradient Du is an L*(Q)**“-function, and satisfies

u=up On FD. (23)
The linear Green strain tensor &(u) := symDu = (1/2)(u;x + ukﬁj)“ikzl is linearly related to the stress o

o=C,(u) in Q. (2.4)



C. Carstensen, S.A. Funken | Comput. Methods Appl. Mech. Engrg. 190 (2001) 4663—4675 4665

The two positive Lame constants 1 and u play different roles in the material law

Cr=Ar (7)1 +2u7 forall 7 € RY? (255)

sym ?

where tr denotes the trace of a matrix and 1 is the unit matrix. While y is fixed we carefully analyse 1 — oo
in the material law (2.5) and denote the dependence of 4 explicitly in the notation.

There exists exactly one (weak) solution u € H I(Q)d to (2.1)—(2.4). (The Lebesgue and Sobolev spaces
L*(Q) and H'(Q) are defined as usual [12,13].) The unknown exact solution u is approximated by a finite
element method on a mesh 7. We suppose that .7 is a regular triangulation of @ C R? in the sense of
Ciarlet [10], i.e., 7 is a finite partition of  into closed triangles or parallelograms if 4 = 2 and tetrahedrons
if d = 3. We suppose that two distinct elements 7} and 75 in  are either disjoint or 7} N 75 is a complete
face, a common edge or a common node of both 77 and 75. With 7 let 4" denote the set of all nodes and let
& denote the set of all faces if d = 3 and an edge if d = 2. For simplicity, we call £ € & an edge (even if
d =3 and E is a face) and we assume that E € & either belongs to I'p or EN I'p has vanishing surface
measure, so there is no change of boundary conditions within one edge E C I'. Furthermore, let P,(T), resp.
Oi(T), denote the set of the algebraic polynomials of total, resp. partial, degree < k and define
P(T) := P(T) if T is a triangle or tetrahedron and 2,(T) := Q(T) if T is a parallelogram.

Then the finite element methods provide a discrete solution u;, which belongs to &,

S =T = {v, € C(Q) :NT € T,v,|, € 2,(T)} (2.6)

and satisfy, for all test functions v, € ¥p := {v, € ¥ : v, =0 on I'p}, with homogeneous Dirichlet con-
ditions, the discrete weak form of equilibrium

/s(vh) s Co(uy) dx = /f -y dx+/ g - vy ds. (2.7)
Q Q I'n
In case of pure Dirichlet conditions I' = I'p we require

/F(uD —uy)-nds=0 (2.8)

(while there is no such further condition if I'y has a positive surface measure). To assess the error in the
geometric boundary conditions, we define the abstract error term

np = inf {||es (u, — 1’])||Lz(9) :n€H' (Q)d, n=up on Ip}. (2.9)

The infimum in (2.9) is attained (so we could replace inf by min therein) and can be estimated in case the
boundary approximation of u;, is specified (cf. Remark 2.1 below for a brief discussion).

The discrete stress jumps [o]ns on the skeleton U& are defined along the edge E € & as [o4]ns = 0 if
E C I'p, as [ox)ns = (<7;,|T+ — au|; )ng) on an interior edge T NT_ = E, T, € 7, and [o,|ngs = g — oyn on
E C I_"N.

The standard residual-based a posteriori error estimate has the following new robust variant (proofs will
be given in Section 5). The subsequent result is a precise statement of the upper bound in (1.2) for the
estimator (1.4).

Theorem 2.1. Let u € H'(Q)! solve (2.1)-(2.4) and let u, € & satisfy (2.7). Suppose f € L*(Q)* and
g € L*(I'x). Then

hr (f + divron)ll20 + 1182 [04nal |2 0s) + ’71))~
(2.10)

22t = 1)) + 1A (e = )| <5

The (hg, hg, A)-independent constant c; > 0 depends on the shape of the elements and patches only.

The refinement concerns the volume contribution ||47(f + div7a4)||;2o Which can be replaced by a
higher-order term as in the estimator (1.5).
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Theorem 2.2. Let u € H'(Q)! solve (2.1)~(2.4) and let u, € & (T)" satisfy (2.7). Suppose f € H'(Q)" and
g € L*(I'x). Then

)y 1/2
2pe = ) o + 12V — ) a0y < 5 (12 lonbmelizoey + 1BV oy + 1o ). (2.11)
The (hr,hg, A)-independent constant cq > 0 depends on the shape of the elements and patches only.

The efficiency of the error estimators in (2.10) resp. (2.11) was shown by Verfiirth in [15] whence we state
the theorem and do not recall the proof of the first inequality in (1.2).

Theorem 2.3. Let uc H'(Q)" solve (2.1)~(2.4) and let u, € & satisfy (2.7). Suppose f € H'(Q)* and
g € H'(I'n), and up € H*(I'p). Then

. 1/2
hz (f + divron)ll g + 1Ay [oalnellp2 s < s (||2#8(“ —up)||p2(q) +

WV f IILz<g>)~ (2.12)

;» dlv(u — uh) | |L2(Q)

+ ||} *Bup /05

3/2
o) + 1 22 Bsllzry + |

The (hz,hg, A)-independent constant cs > 0 depends on the shape of the elements and patches only.

The final part concerns averaging techniques where we have robust reliable and efficient error control.
Recall from Part I [6] that, with &y denoting the edges on the Neumann boundary,

2T, g) ={o; € SUT)" :6:(z) ng=g(z) forallze /" NE with E e &y} (2.13)

which requires some continuity on g: At those nodes z on I'y where I'y is flat and so the normal vectors
coincide ng, = ng, for two distinct neighbouring £, E,, € &x, the continuity of ¢} at z € E, N E; N A" im-
plies that the restrictions g|, and g|;, coincide at z. Note that 2(7,g) = & H(7)" in the case of pure
Dirichlet conditions. Then

= mi — o 2.14
Nz UZEQ(E}@HW 0h||1,2(£2) ( )

is a lower bound of each averaging estimator (up to the Neumann boundary conditions). The subsequent
result implies (1.2) for the estimator (1.6).

Theorem 2.4. Let u € H'(Q)* solve (2.1)~(2.4) and let u, € ' (T)* satisfy (2.7). Suppose f € H'(Q)" and
g € HX(éx), i.e, g|, € HX(E)’ for all E € & with E C Tx. Then

Nz — ngzl(ig‘g)HG - U;HLZ(Q) <|[2pe(u — “h)”LZ(Q) + [[Adiv(u — ”h)||L2(Q)

N (’Iz + ||h.27vf||1,2(!2) +ip + ||h2/265g/65||L2(pN))- (2.15)

The (hs, hg, A)-independent constant cg > 0 depends on the shape of the elements and patches only.

Remark 2.1. The term np can be of higher order. For instance, if the geometric boundary conditions of u,
are satisfied in each node,

uy(z) =up(z) forall nodesze A'p:= A" NTp (2.16)

and the Dirichlet data up € H'(I'p) are &p-piecewise smooth, e.g., up|, € H*(&) for all E € & with E C I'p,
then

p < 07"]/[(15/2@60(14;, — up)/d;

: (2.17)

<cHh3/26%u 0s?
I st/ 2(Ip)

L(I'p

where %, denotes the local edge-length on U& and 04(-)/0s denotes the edgewise tangential derivative. The
s-independent constant ¢ is independent of up and depends only on the aspect ratio of the elements in 7.
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(The estimate (2.17) is proved in [5] for d = 2, in [2] for d = 3.) In case of pure Dirichlet conditions, (2.16) is

feasible in simple cases with the additional property (2.8). In general, (2.16) and (2.8) may not hold
simultaneously.

3. Adaptive algorithms

The numerical examples provide experimental evidence of the efficiency, reliability and robustness of the
a posteriori error estimate and illustrates the performance of adaptive algorithms.

Instead of 7, we calculate 1., := ||o}, — /0|2, With the averaging operator ./ based on a function
o eI 7)) which satisfies g(z) = o1 (z)ng(2) for each endpoint z of an edge E on I'y. We define
Aoy = a) = Z/z(ﬂh)%7 (3.1)
zeN"
where, for z € A"\ I'x, #.(0) fQ oy, dx is the integral mean of ¢, over Q., For z € 4" N Ty the discrete

Neumann condition g(z) = ‘7;.( z)ng 18 included by solving 4 x 4 linear system of equations. We refer to
Part I [6] for computational details.

The following algorithm generated all meshes of this paper and is explained with more details in Part L.
We merely mention that some notations are defined therein ¥ = 1 yields perturbed meshes for comparison
to ¥ =0.

Algorithm ((47), resp. (42)).
(a) Start with a coarse mesh 7,k = 0.
(b) Solve the discrete problem with respect to the actual mesh 77, with N degrees of freedom and error
ey = ||6_0-h”L2( Q)"
(c) For Algorithm (4”,) compute, for all T € 7,

Ny =Noyr = o — ‘%GhHLZ(T)

For Algorithm (4}) compute, for all T € T n; = 5z, with

ri= Hf||L2(T) + |l[on '"]||L2(ar)~

(d) Compute a given stopping criterion based on (3, -, nzr)l/ ?_ denoted ng» respectively, 4, and decide
to terminate or go to (e).
(e) Mark the element 7 (red refinement) provided,

3 X7 S M
(f) Mark further element (red-green-blue-refinement) to avoid hanging nodes. Generate a new triangula-
tion 7, using edge-midpoints if 9 = 0 and points on the edges at a random distance at most 0.3 Ay
from the edge-midpoints if ¥y = 1. Perturb the nodes z € 4", of the mesh T r+1 at random with values
taken uniformly from a ball around z of radius ¥27%/15. Correct boundary nodes by orthogonal projec-
tion onto that boundary piece they are expected such that Q, I'p, I'y are matched by the resulting mesh
T 1,1 exactly. Update k and go to (b).

4. Numerical experiments

The three numerical experiments of Part I [6] are complemented in this section with L?-stress-error norms
ey and corresponding estimators 77, and 7,; notation is adopted from Algorithm (42), resp. (4%). All ex-
amples concern the Navier—Lamé equation (1.1) in the form of (2.1)—(2.6) and more details are reported in
Part I [6, Sections 4.1-4.3].
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4.1. L-shaped domain with analytic solution

The model example of the L-shaped domain with corners (0,0), (—1,—1) (0,-2), (2,0), (0,2), and
(=1, 1) models singularities at re-entrant corners for Young’s modulus £ = 100,000 and the Poisson co-
efficient 0.3 <v < 0.5. The considered exact solution is traction free, g = 0, on the Neumann boundary
I'x := conv{(0,0),(—1,1)} Uconv{(0,0), (—1,—1)} and f = 0.

Starting from the initial mesh 7 from Fig. 1 (top, left), we run Algorithm (4°,). The resulting mesh after
11 adaptive refinements and a zoom at the re-entrant corner is shown in Fig. 2 and displays a rather high
mesh-refinement near the singularity.

Errors ey and error estimators 1, 1, are displayed versus the number of degrees of freedom N for
v = 0.333 and 0.499 for uniform meshes and adaptively refined meshes generated by Algorithms (4°)), resp.
(4%) in Fig. 3. For the sequences of uniform meshes, we obtain experimentally convergence ~0.54 which
coincides with the theoretically expected rate. (Note, N oc #~2 in two dimensions.) Although the refined
meshes J 1,...,7 do not show the expected ‘standard’ refinement (circular around the origin) for
1 = 0.499, the adaptive mesh-refining Algorithm (4°)) improves this experimental convergence order to 1
which is optimal for the used family of finite element spaces.

DX
SYXOKDXDXDXX
DXOXDXDXOK

SXUKDXDXDXDXIXTX

]

7

Fig. 1. 7,..., 7 generated by Algorithm (4°,) in Section 4.1 (v = 0.4999).

: N/ N
0.03F re s NG N AN / ....................
002} B RS S A0 B A NZA

: : NN N L NN N
oorkoN L IR A2 N A

: ; o5k NI NASSSNN N

N IR : b 8

: . cosh o PSRN N N
Py B N DRI IN A N |- A N

z : ; .
-0.02 :

: : T I _ :
ook N LISANANL LN :

; i T ; 2 H i i i i

-0.01 0 0.01 0.02 0.03 0.04 -1 -0.5 o 05 1 1.5 2

Fig. 2. Mesh 77}, and magnified detail at the re-entrant corner for Section 4.1 (u = 0.499).
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Fig. 3. Error indicators 57, and 17, vs N for uniform and adaptive meshes from Algorithm (4°,) and (4%,) of Section 4.1 (v = 1/3 left,
v = 0.499 right).

The displacement formulation shows incompressibility locking phenomena in Fig. 3, i.e., the error in
energy norm is not bounded (for a given number of unknowns) as v — 1/2.

Super-convergence properties are frequently believed to be responsible for the good performance of
averaging techniques for a posteriori error control in practice. We take Algorithm (4!)) to study the in-
fluence of local symmetries in the mesh. Algorithm (4!)) perturbs the nodes in step (f). (We refer to [6] for a
figure of a sequence of perturbed refined meshes form Algorithm (4!)).

For perturbed and non-perturbed meshes from Algorithm (4?,), we display the extreme quotients of the
error estimator 1, over the error ey = [|o — 04|20, Versus 1/2—v, ie., the displayed constants are
mm{nA/eN} and max{n,/ey} for different values of N corresponding to J |,..., 7 for k as implicitly
shown in Fig. 1.

Fig. 4 shows that the reliability constant is bounded from above and the efficiency constant from below
independently from the Poisson ratio v. Ths numerical experiment confirms numerically that the a poste-
riori error estimate is s-independent and supports that also for perturbed meshes the estimate (2.15) is
reliable and efficient.

4.2. Cook’s membrane problem

A tapered panel is clamped on the left end as depicted in Fig. 5 subject to a shearing load on the right
end, i.e., g = (0,1000) on the right edge of 2, g = 0 on the remaining part of I'y, #u =0 on I'p and /' = 0.

09f
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0.7

06

05 |

h m AlTalt), -....,.
max { eta_A / Hoif nnnpombod —a— ]

04t

03

L L s L :
0.1 0.01 0.001 0.0001 1605
112 - nu

Fig. 4. Computed reliability/efficiency constants vs 1/2 — v for perturbed and non-perturbed meshes from Algorithm (4?,) of Section
4.1.



4670 C. Carstensen, S.A. Funken | Comput.

TS 4§4§
SRS
TR
NS RIRGRKK
AN EERERKK
NERKRRN

4151

41@
Vi /
i

A1

7
<
7\

55

AR

40,5+

’(é}
2

40}

27N
LI D
LI
INET

NN

A
o

A
QAN
W
VN
N
X\
/N

7\

L]

7]

L]
NN

AV,

\7
LN

LN\
L L7

Methods Appl. Mech. Engrg. 190 (2001) 4663—4675

‘ \
AN AN,

WV

“}VAVA

N/]
&
N

N

N

X0
SRR
W

N

SN

e
0

9

RRRRRRK
NN

LV{
D
X

NS
e
X

N
X

0y

NN

Fig. 6. 7,...,7; generated by Algorithm (4°)) in Section 4.2 (v = 1/3).

The material constants are £ = 100,000 and v = 1/3 or 0.499 and the initial mesh 77 is displayed in Fig. 6
(top, left).

A plot of 7 |; generated by Algorithm (4°,) as some magnified detail near the re-entrant corner (zoom of
(0,5) x (40,45)) is given in Fig. 5 for v=1/3.

The a posteriori error estimates 7, and n, for v =1/3 (left) and v = 0.499 (right) computed with uni-
form and adaptive refinements are given in Fig. 7.

The adaptive mesh-refining Algorithms (45) and (4%) yield a slope —1/2. Assuming that the error es-
timator 7, is efficient and reliable as in Example 4.1 we obtain convergence order 1 which is asymptotically

better than uniform refinement as observed in Fig. 7.
Since the exact solution is unknown for this example, we only show the a posteriori error estimate by 1,
resp. 1.,. (Here, we consider the L2-norm of ¢ — ¢, which cannot be calculated by Galerkin-orthogonality

as the energy norm in Part 1.)
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Fig. 7. Error indicators ., and 1, vs N for uniform and adaptive meshes from Algorithm (4%,) and (4%) of Section 4.2 (v = 1/3 left,
v = 0.499 right.)

For p=1/3, 0.499 and all values of N corresponding to 7 y,..., 7, implicitly shown in Fig. 7 we
calculate 2.63 <1, /n,, < 3.6; the behaviour of the error estimators #, and 7, is the same with respect to 4.
In contrast, the quotient 17, /5., seems to be unbounded as 4 and max (k)" increase for the error indicators
ng and n,, in Part I [6] (c.f. [6, Section 4.3]).

By Algorithm (4°,) we obtain meshes with slightly smaller quantities 1, and 5, than those generated by
Algorithm (4%) and to reach a given tolerance Algorithm (4%) needs more adaptive iterations than (4°)).

4.3. Compact tension specimen

The compact tension specimen of Fig. 8 is loaded with a surface load g=(0,100) on I'y =
{(x,y) €I':|y| =60} and f =0; E =100,000 and v=1/3 and 0.4999. The specimen is subjected to a
vertical elongation. As the problem is symmetric, one half of the domain was discretised. We fixed the
horizontal displacement with the constraint that the integral mean of all horizontal displacements is zero.

For coarse meshes, the problem behaves like a problem with re-entrant corner at 4 = (50,0) and hence
we expect a higher mesh-refinement. The numerical solution for this problem with v = 1/3 and N = 21, 503
and a magnification of the adaptively refined mesh around (50,0) is provided in Fig. 8. The a posteriori
error estimates 1, and 5, are plotted versus the number of degrees of freedom N in Fig. 9 (see Fig. 10).
Assuming efficiency and reliability constants as computed in Section 4.1 we obtain optimal convergence

AR RN RN RN

XL

L

55 mm

5
¢l
0
N
)
q
%

Lamm

|
[ 50 mm ] 50 mm |

Fig. 8. Plot of the approximated von-Mises stress after 11 refinements generated by Algorithm (4°,) and magnified detail at (50, 0) of
Section 4.3 (v =1/3).
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Fig. 9. Error indicators 1,, and 5, vs N for uniform and adaptive meshes from Algorithm (4°,) and (4%) of Section 4.3 (v = 1/3 left,

v = 0.499 right).

Fig. 10. 7, ...

,7 7 generated by Algorithm (4')) in Section 4.3 (v = 1/3).

rates 1 of ey for adaptive meshes. The convergence rate of n_, and 5, is approximately 1 for the adaptive

meshes and (computed from the last two meshes) 0.44, resp. 0.11 for uniform meshes.
Both adaptive mesh-refining Algorithms (4°,) and (4%) improve this experimental convergence order to

the optimal order one. Similar as in Section 4.2 we get 2.6 <1, /n,, < 3.45 for all calculated examples.

5. Proofs

Let u solve (2.1)—(2.4), respectively, let u, satisfy (2.7). Then define the exact and discrete pressure

p:=—Adivu and p;,:= Adivy, (5.1)
such that the stress—strain relations read

o =2uc(u) —pl and o, =2ue(uy) — pil. (5.2)
For brevity, we define the errors

e:=u—u, € H'(Q)" and d:=p—p, € [}(Q) (5.3)
and frequently write || - [, = |[,29) and || [[; 50 == | |[g1q and in this notation even neglect the

domain Q if there is no risk of confusion.
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In the first step of the proof, We consider an auxiliary variable to control ¢ in the sequel. Notice that we
need the extra condition [, 6 dx = 0 in case I' = I'p which then is equivalent to (2.8).

Lemma 5.1 [3,6]. There exist a constant cs = ¢5(Q, I'x) and a function w € H)(Q) == {v e H(Q)* : v=00n
I'n} with

divw=9 and W[l ) < cs]16]]12(0) O. (5.4)
Similar to [6] we employ w to define some function

vi=2ucle—we H'(Q)". (5.5)
Lemma 5.2. We have

21¢e(e) |72 g) + (1/2 + 2pc3/4) |0

P < /Q (6 — o) : &(v) du. (5.6)

Proof. A direct calculation (merely employing the definitions in (5.1), (5.2) and (5.5) yields

4cller @I + (1 -+ 202/ 2)I01 = [ (0= on) s a(o) d + 20 [ ele) s o) (5.7)
Q Q
Employing (5.4), Cauchy’s, and Young’s inequalities we deduce
1
21 / a(e) : o(w) dx < 2426 ()13 + 5 1113 (5.8)

A combination of (5.7) and (5.8) shows the assertion (5.6). O

The subsequent approximation operator is the key to our reliability proof of the averaging techniques
for error control. The set of free nodes is #" := 4"\ I'p and for each node €, is a (possibly enlarged) patch
(i.e., union of neighbouring elements) of diameter 4, [4,5].

Lemma 5.3 [4,5,9]. There exists a linear mapping ¢ : H\(Q) — & which satisfies

IV 20l + 115 (0 — 70)|l2i0) + 11752 (0 = F0)l20e) < 05Vl 20 (5.9)

for all ¢ € H\(Q). In addition, there holds for all R € L*(Q)*

zeA

12
[ R-to= 7o) el Dol (Zhigﬂg, [ r-rf dx> . (5.10)
Q z Q.

The positive constants cq,ciy do not depend on the mesh-sizes hy and hg, but on the shape of the elements
only. 0O

Proof of Theorem 2.1. Because of Lemma 5.2 and with some 7 as in (2.9), we focus on the term

/Q(a—ah):8(v)dx:2,uc§/g(a—ah):s(n—uh)dx—i—/(a—ah):8(2—/2) dx, (5.11)

Q

when z := 2uci(u — ) — w and we employed (2.7) for v, = #z. This and Lemma 5.2 show

2e() oy + 181y < (172]3 + [e=a):ete= s dx) (5.12)

A 7 -elementwise integration by parts and a reorganisation of all the boundary term on Ué& (cf. [14,15] for
details) with the volume residual R := f + divs+, = f and the stress jumps J yield
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/(a—ah) : s(z—jz)dx:/R-(z—fz)dx—/ J-(z— Jz) ds. (5.13)
Q Q Ue
Lemma 5.3 and a few applications of Cauchy’s inequality prove, with R, € R? for z € .4,
1/2
/Q(G —a) ez gz)de< (cw| Y RIR=RIGo | +osllhi Tl | IV, (5.14)

zeAd

By Korn’s inequality, the definitions of z, n, and because of (5.4)
IV:ll, S cnlle@)]l, < ens(l[2uee)l], + np + [19]],)- (5.15)

Thus, Young’s inequality shows in (5.14) that

1 1
/Q(G —03) 1 e(z— Jz)dx< 5”2/13(@)“22(9) JFQ ||5||iz(g) +cu ||h:§/2J||§~ug + ’7123 + th”R —Rz“;Q;

zeX

(5.16)
The assertion of Theorem 2.1 follows from (5.12) and (5.16) when we set R, = 0. O

Proof of Theorem 2.2. Coming back to (5.16) but choosing R, as the integral mean of R = f on Q. and
Poincaré inequality show [|R — R.||,, < C(€.)[|Vf]|,, where C(€.)/h. depends on the shape of the patch

only. Then, for each element 7 C Q.,C (Q,)/hr is hs-independent and depends on the aspect ratio of the
elements only. This, and the fact that the patches have a finite overlap show that

YR =Ry <cuslliZ V11 (5.17)

zeA

Utilising (5.17) in (5.16), the assertion of Theorem 2.2 follows from (5.12).

Proof of Theorem 2.4. Coming back to (5.16) we follow the lines of the proof in Part I (cf. (5.9)—(5.12) in [6]
with w instead of z) to verify

[ o= o= 2@ <AL lon = a3lle + 10 Bue 0l + 10 TS ). (518)

This, (5.12) and (5.15) prove the assertion.
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