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Abstract

In the third part of our investigations on averaging techniques for a posteriori error control in elasticity we focus on nonconforming
finite elements in two dimensions. Kouhia and Stenberg [Comput. Methods Appl. Mech. Engrg. 124 (1995) 195] established robust a
priori error estimates for a Galerkin-discretisation where the first component of the discrete displacement function is discretised with
conforming and the second with nonconforming P1 finite elements. Here we study robust, i.e., A-independent reliability and efficiency
estimates for averaging error estimators. Numerical evidence supports that the reliability depends on the smoothness of given right-
hand sides and independent of the structure of a shape-regular mesh. © 2001 Elsevier Science B.V. All rights reserved.

Keywords: Elasticity; A posteriori error estimates; Adaptive algorithm; Reliability; Finite element method; Nonconforming finite
elements

1. Introduction

For a Poisson ratio v close to 1/2, the Lamé constant / is very large and dominates the Navier-Lamé
equations

A+ pwVdivu + uAu = f, (1.1)

the standard model of homogeneous isotropic linear elastic materials. In a conforming finite element
analysis, the poor approximation of Adiv (u — u;,) leads to (quasi-optimal) error estimates in which the large
parameter A enters and causes a poor convergence in the energy norm. Although the convergence rate is
optimal, the multiplicative factor is that large that the entire finite element approximation is pointless unless
one refines unreasonably high.

Mixed and nonconforming finite element methods have been proposed to remedy this locking phe-
nomenon such as PEERS or conforming-nonconforming schemes. We refer to [3,17,19] for background
information on these finite element techniques and their a priori error analysis. To the best of our
knowledge, in the rapidly developing field of a posteriori error analysis, only [6,7] provide robust error
control for a finite element discretisation of (1.1) in the sense that A may explicitly arise in the error norm E
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as well as in the (computable) error indicator # but does not affect the constants ¢; and ¢, in the reliability
estimate E < ¢ and efficiency estimate 1 < ¢, E + h.o.t.

Nonconforming finite element schemes are much more established for fluid dynamics than for elasticity
and so is their a posteriori error analysis [1,9]. Therefore, we first establish reliability and efficiency for
residual-based error estimates n = ng := (3., Mk, T)l/ * with the local error indicators Nrr

2 1/2 1/2 2
T ||h-’7f||L2(r) + ||h{”/ (o '”6"H|L2(ar) + ||h(§/ [a”h/aS]HLZ(a(T) (1.2)

for the element 7 € 7. In case fis (globally) smooth, we even improve this estimate by replacing ||z f|| (r

in (1.2) by the higher-order term ||45-Df| (T . While the jumps of the dlscrete stress vectors on 1nter1or
edges |1y *[o) - ng]| 12(x) are well estabhshed the nonconforming error ||y *[duy, /s]]| 12(¢) quantifies the lack
of continuity along the edge E with the derivative 0/0s w1th respect to the arc-length as in [2,4,14]. For the
Laplace equation the two jump terms together read Hh [Du;,]H 12 and owing to local equivalences of
norms, averaging techniques can be justified on the basis of 7, as in [5]. For the elasticity problem (1.1) at
hand, the two jump contributions measure different residuals, namely equilibrium and compatibility of
displacement and strain. Consequently, we face an estimator n = 1, + 1, + h.o.t (the higher-order terms,
h.o.t, are computable) with one stress-averaging term #, from Parts I and 11 [10,11] plus an averaging term
of the discrete gradient Dsu;, (not the discrete strains). It seems surprising that, for the lower-order non-
conforming—conforming scheme [17] with a regular triangulation of the domain into triangles and a test
space ¥ =Y X V",

v :={V € C(Q): V is affine on each T € 7 and vanishes on I'p}, (1.3)
v = {V: V is affine on each 7 € 7, continuous at midpoints of inner element
boundaries, and vanishes at midpoints of edges E C I'p} (1.4)

(and modifications on I'p, the Dirichlet boundary, for inhomogeneous boundary conditions for the discrete
displacements), we can prove 1, < cij, + h.o.t. and so establish robust reliable and efficient a posteriori error
control for the stress averaging estimator
= min ||o; — ¢ . 1.5
Nz a2 g) llan ||L2(Q) (1.5)
This work investigates robust a posteriori error control general for conforming or nonconforming
schemes and shows

E/ci<n<cE+hot. (1.6)

The conforming—nonconforming scheme (1.3) and (1.4) is the natural choice as it is robust (bounded errors
E for 1 — o0) and allows a robust a posteriori error estimation in the sense of (1.6). This paper is the third
in a series initiated with Parts I and II [10,11] that analyses reliability of averaging techniques for a pos-
teriori error control without any severe restriction on the meshes; the shape-regular finite element grid may
be highly refined and locally nonsymmetric.

The outline of the remaining part of this paper is as follows. Notation and the results are provided in
Section 2. Numerical experiments in Section 3 illustrate the robust behavior of the a priori error estimates
of the nonconforming—conforming scheme. Proofs are given in Section 4.

2. Model example and results

The stress field o satisfies the equilibrium equations:
f+dive=0 in Q, (2.1)
g-n=g only, (2.2)

for a given volume force f € LZ(Q)2 and an applied surface load g € L2(I’ N)z. The Lipschitz boundary
I' = 3Q of the plane body, occupied by a bounded domain Q in R?, consists of a closed Dirichlet part I'p
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with positive surface measure and a remaining, relatively open and possibly empty, Neumann part
I'y :=T'\ I'p. Suppose that I'p is connected.

The Dirichlet data up € C(I'p) are supposed to be differentiable at any flat piece of I'p such that the
surface gradient is square-integrable (written up € H'(I'p)). Then, we suppose that the exact displacement
field u belongs to H'(Q)?, i.e., u € L*(Q)* and the gradient Du satisfies Du € L2(Q)*?, and satisfies

u=up onIp. (2.3)
The linear Green strain tensor &(u) := symDu = 5(u;x + uy;) ;4_, , is linearly related to the stress g,

o =Ce¢(u) in Q. (2.4)
The two positive Lamé constants A and p play different roles in the material law

Crt = Mr(1)laxy +2ur forall 7 € Rjyf;f (2.5)
While p is fixed we carefully analyze 2 — oo in the material law (2.5) and denote the dependence of 4
explicitly in the notation.

There exists exactly one (weak) solution u € H 1(Q)2 to (2.1)—~(2.4) which is approximated by a finite
element method on a mesh 7. We suppose that 7 is a regular triangulation of @ C R? in the sense of
Ciarlet [13], i.e.,  is a finite partition of Q in closed triangles or parallelograms; two distinct elements 7}
and 7> in 7 are elther disjoint or 71 N 7, is a complete edge or a common node of both 7} and 7. With 7~
let & denote the set of all edges, and we assume that £ € & either belongs to I'p or £ N I'p has vanishing
surface measure, so there is no change of boundary conditions within one edge £ C I'. Furthermore, let
P.(T), respectively, Oy (T) denote the set of algebraic polynomials of total respective partial degree <k and
define 2(T) := 2,(T) if T is a triangle and P (T) := Qx(T) if T is a parallelogram.

Then, the finite element solution u, is supposed to be smooth on each triangle, e.g., u, € H*(T )2, but
may be discontinuous at inner element boundaries. Consequently, the distributional derivatives of u;, may
involve Dirac measures on edges and are different from their 9 -elementwise application which we will
denote differently by the subindex 7, e.g., e5(u) or divsu defined by es(u) = ¢(u|,) on each element
TeT

Despite the (possibly) discontinuous approximation u;, we suppose that amongst the test functions in the
weak form of the equilibrium condition are continuous .7 -piecewise affine, i.e., we assume

/Qe(v;,): (Cs;y(uh)dx:/Qf-vhdx—i—/rNg-vhds (2.6)

holds for all test functions v, € & := (7 )’ N HL(Q).
The Lebesgue and Sobolev spaces L*(Q) and H'(Q) are defined as usual [16,18] and

PUT) = {V € LQ): VT € 7, V], € (D)},

SNT) =L(T)NC(Q),

Hy(Q) = {v e H'(Q)": vl = 0},

H*(Q) := {v € I*(Q): 0"lv/ox* € L*(Q) for all multiindices o with |o| <k},
HYT):={ve*(Q): VT € T, v|, € H(T)}.

Given u, let g, := Cées(u;) and let [-] denote the jumps across edges. For the discrete stress, [g,]ns is defined
on the skeleton | J& along the edge E € & as [o)]ns = 0 if E C I'p, as [oyng] := g — oyn if E C I'y, and as
[o4]ns = (ah\T+ — o]y )ng on an interior edge 7. N7 = E, Ty € 7. For the displacements, the derivative
along E € & 1s given by 0. /0s and [Ou,/0s] denotes the difference of the traces at £ =T, N7 of the
tangential derivatives of u, in T, and 7T_. If E C I'p belongs to the Dirichlet part of the boundary, then
[Ouy, /Os] := d(up — u;,)/0s. If E C I'y belongs to the Neumann part of the boundary, then [Ou,/ds] := 0. To
stress that the derivatives along | J & are understood edgewise, we write [Ogu;/0s] for them.
The first result is a standard residual a posteriori error estimate; all proofs will be given in Section 4.
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Theorem 2.1. Let u € H'(Q)” solve (2.1)~(2.4) and let w, € H*(T) satisfy (2.6). Suppose [ € L*(Q)* and
g € LX(I'x)’. Then

12027 (= wi)l| 2 o) + NI 4divr (u = un )| 2

<o (||h,7(f +divr o) 20 + 18 [oalnsll . (U * 172 (0521, /35]]| , (Uﬂ,)) : (2.7)
The (hy, hg, L)-independent constant c¢; > 0 depends on the shape of the elements and patches only.

In case divsag;, = 0, e.g., for lowest-order schemes, the edge contributions dominate.

Theorem 2.2. Let u € H'(Q)* solve (2.1)~(2.4) and let u, € L (T)* satisfy (2.6). Suppose [ € H'(Q)* and
g € L3(I'n)*. Then

12027 (0 = wn) [ 2(0) + (1417 (4 = n) [ 2

<c (|h2/2[ah]ngr||ﬂ(uﬁ) + ||nY* [0 guy /5] HLZ(Ug) + | hifo||Lz(Q>). (2.8)

The (hs,hg, A)-independent constant cq > 0 depends on the shape of the elements and patches only.

Remark 2.1. (i) The residual-based a posteriori error estimates (2.16) and (2.8) are efficient in the sense of
(1.6). (For a proof, cf., e.g. [9] and below.)

(i1)) One drawback of the estimate in (2.16) and (2.8) is the presence of constants whose strict estimation
could result in a huge overestimation (of a factor 20-30, cf. [8]).

(iii) The aim of this paper is the analysis of averaging techniques since there is an obvious choice of a
constant ¢; = 1 from the efficiency estimate.

Compared to conforming schemes, the equilibrium and compatibility errors give rise to two averaging
processes. Let &y denote the edges on the Neumann boundary and recall from Part I [10]

2T, g) :={c" € SUT)** ¢*(2) - ng = g(z) for all z€ & NE with E € &y}, (2.9)

which requires some continuity on g: At those nodes z on I'y, where I'y is flat and so the normal vectors
coincide ng, = ng, for two distinct neighboring £, E, € &, the continuity of ¢* at z € E; N E; N A" implies

that the restrictions g|,, and g|,, coincide at z. Note that 2(7, g) = %'(7)” in the case of pure Dirichlet
conditions. Then

2=, lon = ol (2.10)

is a lower bound of each averaging estimator (up to the Neumann boundary conditions). Similarly, let ¢,
denote the tangential unit vector along I and define
. (2.11)
L2(I'p)

hy? (651—; - Ql‘g)

Theorem 2.3. Let u € H'(Q)” solve (2.1)~(2.4) and let u, € H*(T)* satisfy (2.6). Suppose [ € L*(Q)* and
g € L*(I'x). Then

n, == I'[]il’l7 s <|Dfulz - Q||L2(Q) + ’
Qes! (7)™

Nz — U*g}gg) o — J*HLZ(Q) <|2per(u — uh)HLZ(Q) + [[Adivy (u — uh)”LZ(Q)

3/2 3/2
< Cs (772 +1, + ”hé‘/ aéuD/GSZHLZ(rD) + ||h23'Df||L3(Q) + ||h(s/ aé”g/aSHLZ(rN))-
(2.12)

The (hz,hg, A)-independent constant cs > 0 depends on the shape of the elements and patches only.
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It is clear that 1, is efficient. By choosing Q as an approximation to the exact displacement gradient Du
and a triangle inequality, we have

Ou
12 D
M, < | Drun — Ollp20) + ‘ hy <6— - Qté“>
s 12(I'p)
1/2
<D (un — “)HLZ(Q) + || Du — Q||L2(Q) + ||h£'/ (Du — Q)fﬁ)HLZ(rD)a (2.13)

and the last two terms are of higher order if u is smooth.

Moreover, we show that 5, can be neglected in (2.12) in case of the conforming-nonconforming scheme
(1.3) and (1.4) from [17]. To involve nonhomogeneous Dirichlet data, suppose that u, belongs to
W = W' x #, where the jumps on inner element edges or Dirichlet edges that satisfy different continuity
conditions in each component

W= {w, € £1(T): VE € &, [w,] vanishes at the endpoints of E}, (2.14)

Wy = {w,, € L\(T):VEEE, /[wh}ds = 0}; (2.15)

E
the jump at boundary edges is understood as [w;] := 0 on I'y and [w;] := up — w;, on I'p.

Certain triangulations are excluded which normally yield a singular discrete problem and are hence in
practice avoided anyway: Suppose &p consists of at least two edges and that each edge E ¢ I which is
parallel to the x;-axis has at least one endpoint which does not belong to the boundary too.

The subsequent a posteriori estimate (2.16) states reliability as in (1.6). The efficiency in (1.6) follows
from Theorem 2.3.

Theorem 2.4. Let u € H' (Q)2 solve (2.1)~(2.4) and let u, € W, x W 5 satisfy (2.6). Suppose f € H' (Q)2 and
g€ H' (&) and up € C(I'n)|JH"(I'n) belongs to HX(y) for each edge y of the polygon I's. Then

12027 (u = wi)[| 20y + NI 4divr (u = un )] 2

<oy + 11 /0% sy + 12068 /05 1) + DS ) (2.16)

The (hg, hg, 2)-independent constant cs > 0 depends on the shape of the elements and patches only.

Instead of 1, we calculate 1, := |g) — /0,12 With the averaging operator ./ based on a function
o; € () which satisfies g(z) = o7 (z)ng(z) for each endpoint z of an edge E on I'y. We define
Aoy =0, =Y I.(01)p., (2.17)

zeN"

where for z € A\ I'nSI.(0)) = f.,.ondx is the integral mean of g, over w., For z € A"\ I'y the discrete
Neumann condition g(z) = o} (z)ng is taken into account by solving 4 x 4 linear system of equations. We
refer to Part I [10] for computational details.

3. Numerical experiments

The three numerical experiments of Parts I and I1[10,11] are complemented in this section with L>-stress-
error norms ey and corresponding estimators n, and 7, for conforming-nonconforming finite element
spaces. The following algorithm generated all meshes (perturbed for 9 = 1) of this paper and defines all
quantities displayed in the examples below.

Algorithm (4Y)) (resp. (4%)).
(a) Start with coarse mesh 7, k = 0.
(b) Solve the discrete problem with respect to the actual mesh 7, with N degrees of freedom and error
ex = |lo — Gh”LZ(Q)'
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(c) For Algorithm (4”,) compute, for all 7 € 7,
Nr =Ny r = |lon— ‘Qio-hHLZ(T)'

For Algorithm (4}) compute, for all T € 7 i, = 1z, as in with

2 1/2 2 1/2 2
7712e,T = |h»f“7f||L2(T) + ||h{f’/ (o 'n]HLZ(aT) + .”th(s"/ [a”h/as]”LZ(aT)'

(d) Compute a given stopping criterion based on (ZTeffk nzT)l/ 2 denoted ng Tesp. 1., and decide to ter-
minate or to go to (e).
(e) Mark the element T (red refinement) provided

2 maxiny g
(f) Mark further elements (red-green—blue-refinement) to avoid hanging nodes. Generate a new triangu-
lation 7, using edge midpoints if ¥ = 0 and points on the edges at a random distance at most 0.34;
from the edge midpoints if ¥y = 1. Perturb the nodes z € A", of the mesh T w+1 at random with values
taken uniformly from a ball around z of radius ¥27%/15. Correct boundary nodes by orthogonal projec-
tion onto that boundary piece they are expected such that Q, I'p, I'y are matched by the resulting mesh

T 141 exactly. Update k and go to (b).

All examples concern the Navier-Lamé equation (1.1) in the form of (2.1)—(2.6) (cf. Part I [10, Sub-
section 4.1-4.3] for more details) and the conforming-nonconforming finite element scheme (1.3) and (1.4).

3.1. L-shaped domain with analytic solution

The model example on the L-shaped domain models singularities at re-entrant corners for Young’s
modulus £ =100,000 and the Poisson coefficient 0.3 <v < 0.5. The considered exact solution is trac-
tion free, g =0, on the Neumann boundary I'y :=conv{(0,0),(—1,1)}Jconv{(0,0),(—1,—1)} and
f=0.

Starting from the initial mesh 7, from Fig. 1 (top, left), we run Algorithm (4%,). Here, in distinction
to corresponding calculations in Parts I and II we use an initial mesh with twelve instead of six ele-
ments, because of the mild restrictions on the mesh (each edge £ ¢ I' has at least one endpoint which is
an interior node). Fig. 1 shows a sequence of refined meshes from Algorithm (4!,) (v =0.499) with

DKDEDRR

Fig. 1. 7y,..., 7 generated by Algorithm (4%)) in Section 3.1.
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optimal experimental convergence order 1. The resulting mesh after 11 adaptive refinements and a
zoom at the re-entrant corner is shown in Fig. 2 and displays a rather high mesh-refinement near the
singularity. All meshes are symmetric with respect to the x-axis and show a circular refinement around
the origin. The shown meshes are similar to meshes shown in Part I [10, Subsection 4.1] for v=10.3
and differ significantly from those given in Part II [11, Subsection 4.1] for v =0.499; the adapted
meshes for nonconforming finite element schemes appear stable as v — 0.5 in contrast to the con-
forming scheme.

Errors ey and error estimators 7., 1, are displayed versus the number of degrees of freedom N for
v = 0.3 and 0.499 for uniform meshes and adaptively refined meshes generated by Algorithms (4°,) resp.
(4%) in Fig. 3.

The errors ey and error estimators 7,,, #; have nearly the same magnitude for v = 0.3 and 0.499 and
comparable N. This is experimental evidence for the robustness of the conforming-nonconforming finite
element formulation.

For the sequences of uniform meshes we obtain experimentally convergence = 0.54 which coincides with
the theoretically expected rate. (Note, N o< 22 in two dimensions.) The adaptive mesh-refining Algorithm
(4°) improves this experimental convergence order to 1 which is optimal for the used family of finite el-
ement spaces.

0.02f -~

001} LN , 750 B < 0.5k - N GAERNIINNINAN
ooy : ) ' : < -05f

-0.02~

-1

-0.031

004k Ko R X
: : /\ : : 3

-0.04 -0.03 -0.02 -0.01 ] 0.01 0.02 0.03 0.04 -1 -0.5 ] 0.5 1 15 2

Fig. 2. Mesh .77}, and magnified details at the re-entrant corner for Section 3.1 (v = 0.499).

10 T T T T 10 T T T T
)
©
E
4 . - 4
2 'F o w1
E g )
7 & ’
w Error (uniform) ««---- = Error (uniform) «-----
g ota_A (uniform) ------ 2 eta_A (uniform) ---x---
e eta_R (uniform) ---@--- % eta_R (uniform -
5 Error (R-adap) - o Error (R-adap)
£ eta_A (R-adap) - a eta_A (R-adap) -
w eta_R (R-adap) & nd ota_R (R-adap) -
Error (A-adap) —+— 5 Error (A-adap) —+—
eta_A (A-adap) —x— = eta_A (A-adap) —»—
01 F eta_R (A-adap) —&— 4 wooq b ota_R (A-adap) —8— 4
s L n L n L L L
10 100 1000 10000 100000 10 100 1000 10000 100000
Number of Unknowns Number of Unknowns

Fig. 3. Error indicators 17, and 5, vs N for uniform and adaptive meshes from Algorithms (4°,) and (4%) of Section 3.1 (v = 1/3 left,
v = 0.499 right.)
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As in Parts I and II [10,11] we investigated experimentally whether super-convergence properties are
responsible for the good performance of averaging techniques for a posteriori error control in practice. We
take Algorithm (4!)) to study the influence of local symmetries in the mesh; Algorithm (4!,) perturbs the
nodes in step (f). (We refer to [10] for a figure of a sequence of perturbed refined meshes from Algorithm
(41).)

For perturbed and nonperturbed meshes from Algorithm (4”,) we display the extreme quotients of the
error estimator 1, over the error ey = |lo — ;|2 versus 1/2 —v, ie., the displayed constants are
min{7,/ex}, and max{n,/ex} for different values of N corresponding to 7 ,..., 7 for k as implicitly
shown in Fig. 3.

Fig. 4 shows that the reliability constant is bounded from above and the efficiency constant from below
independently of the Poisson ratio v. This numerical experiment confirms numerically that the a posteriori
error estimate is /#-independent and supports that also for perturbed meshes the estimate (2.12) is reliable
and efficient.

3.2. Cook’s membrane problem

A tapered panel is clamped on the left end as depicted in Fig. 5 subject to a shearing load on the
right end, i.e., g = (0,1000) on the right edge of Q := conv{(0,0), (48,44), (48,60),(0,44)},¢ = 0 on the

o e o
09} S e N
_____ [P .
08 w
— \
0.7 min ( eta_A/llell ), pertubed —+— B

max ( eta_A/llell ), pertubed =--x---
min (eta_A /llell ), non pertubed ---x---
max ( eta_A /llell ), non pertubed @

0.6 | 4

05 L L " n "
0.1 0.01 0.001 0.0001 1e-05

1/2-nu
Fig. 4. Computed reliability/efficiency constants versus 1/2-v for perturbed and nonperturbed meshes from Algorithm (47,) of
Section 3.1.
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Fig. 5. Isolines of the approximated von Mises stress after 11 refinements generated by Algorithm (4°,) and magnified detail at (0, 44)
of Section 3.2 (v = 0.499).
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T T T T T T T T
g 10}F 9 ERUS 1
£ E
I I
a a
8 8
<3 eta_A (uniform) ---%--- 8
S eta_R (uniform) ---@--- 5
eta_A (R-adap) 0.44
eta_R (R-adap)
eta_A (A-adap)
eta_R
1F e 1} -
L L s s L L s s
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Number of Unknowns Number of Unknowns

Fig. 6. Error indicators 77, and 1, versus N for uniform and adaptive meshes from Algorithms (4°,) and (4%) of Section 3.2 (v = 1/3
left, v = 0.499 right.).

remaining part of I'y, u =0 on I'p, and f = 0. The material constants are £ = 100,000 and v =1/3 or
0.499 and the initial mesh 7 is displayed in Fig. 6 (top, left).

A plot of 7, generated by Algorithm (4°,) as some magnified details near the re-entrant corner (zoom
of (0,6) x (40,46)) is given in Fig. 5 for v =1/3.

The a posteriori error estimates 7., and 7, for v = 0.3 (left) and v = 0.499 (right) computed with uniform
and adaptive refinements are given in Fig. 6.

The adaptive mesh-refining Algorithms (4%) and (4%) yield a slope —1/2. Assuming that the error es-
timator 1, is efficient and reliable as in Section 3.1 we obtain convergence order 1 which is asymptotically
better than uniform refinement as observed in Fig. 6. For v = 0.3 and v = 0.499 corresponding graphs in
Fig. 6 have nearly the same slope and magnitude which supports that the estimates are (hs, hs, A)-inde-
pendent.

A sequence of refined meshes generated by Algorithm (4',) (v =0.499) with optimal experimental
convergence order 1 is shown in Fig. 7.

=7
<22 7)
<Z T2
X272
2
T N AT
77 v PITS
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7771
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<KW 7~ SeNT
= AR W7 NN 7P
", S 225 %
NSKZ7~D SRSK 7= g
0577 S s
L »«‘«Immr:;» i}
N4 N
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Fig. 7. 7,...,7 7 generated by Algorithm (4°,) in Section 3.2 (v = 0.3).
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3.3. Compact tension specimen

The compact tension specimen of Fig. 6 is loaded with a surface load g = (0,100) on I'y=
{(x,y) € I': |[y| = 60} and f = 0; E=100,000 and v = 0.3 and 0.499. As the problem is symmetric, one half
of the domain was discretised. We fixed the horizontal displacement with the constraint that the integral
mean of all horizontal displacements is zero.

For coarse meshes, the problem behaves like a problem with re-entrant corner at 4 = (50,0) and hence
we expect a higher mesh-refinement. The numerical solution for this problem with v =0.499 and
N =22,065 and a magnification of the adaptively refined mesh around (50, 0) is provided in Fig. 8. The a
posteriori error estimates #,, and #, are plotted versus the number of degrees of freedom N in Fig. 9.
Assuming efficiency and reliability constants as computed in Section 3.1 we obtain optimal convergence
rates 1 of ey for adaptive meshes. The experimental convergence rate of ., and #, is approximately 1
for the adaptive meshes and (computed from the last two meshes) 0.5 resp. 0.27 for uniform meshes (see
Fig. 10).

Both adaptive mesh-refining Algorithms (4°,) and (4%) improve this experimental convergence order to
the optimal order one. Similar as in Sections 3.1 and 3.2 corresponding graphs of the error estimators

AvaN g IS NN .
NN

S A A KL
NSRSEESVNNVNV VAL
S 25
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; T\
S mm |

50 mm ! 50 mm !

Fig. 8. Isolines of the approximated von-Mises stress after nine refinements generated by Algorithm (4%,) and magnified details at
(50,0) of Section 3.3 (v =0.499).
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Fig. 9. Error indicators 57, and 5, versus N for uniform and adaptive meshes from Algorithms (4°,) and (4%) of Section 3.3 (v =1/3
left, v = 0.499 right.).



C. Carstensen, S.A. Funken | Comput. Methods Appl. Mech. Engrg. 191 (2001) 861-877 871

N
OSI

2AAVA RIRARS
DL

Fig. 10. 7,...,7; generated by Algorithm (4°,) in Section 3.3.

N7, Nz show the same slope and magnitude for v = 0.3 and v = 0.499 and so prove to be robust for in-
compressibility.

4. Proofs
Let u solve (2.1)—(2.4) resp. let u;, solve (2.6). Then, define the exact and discrete pressure
p:=—Adivu and p,:=—Adivsy, (4.1)
such that the stress—strain relations read (1,., denotes the d x d-unit matrix)
o =2ue(u) — plax, and o, = 2ues(u) — prlaxs. (4.2)
For brevity, we define the errors
e=u—u, € H(7) and 0:=p—p, € L}Q) (4.3)

and frequently write || - [l == [| - [l ;2) @nd || - [[; 0 == Il - ll ;1) and in this notation even neglect the do-
main @ if there is no risk of confusion.

In the first step of the proof, we consider an auxillary variable to control ¢ in the sequel. Notice that we
need the extra condition fQ 0dx =0in case I' = I'p. Since fE[uh] -ngds = 0 for the jump [u,] of u;, across an
interior edge £ € &, [,ddx = 0is equivalent to [,.(up — u;) - nds = 0 and means an extra condition on the
choice of u;, on the boundary I' = I'p.

Lemma 4.1 (Brezzi and Fortin [3], Carstensen and Funken [9]). If either I'y has positive surface measure or
if 'y = 0 and then [, (up — uy) - nds = 0, there exist a constant ¢; = ¢7(2; I'v) and a function w € H}(Q) with

divw=20 and [[wl; g < c1(0]|L2 (). (4.4)
Similar to [9,11] we employ w to define some function
vi=2ucie —we HY (T ). (4.5)

Lemma 4.2 (Carstensen and Funken [9,11]). We have

1 )
220G @+ ( 5+ 2062) 01 < [ (0= ) 70, @6
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Following [4-7,9] a Helmholtz decomposition of ¢ (v) allows the split into equilibrium and noncon-
forming error contributions. Recall Curl f = (9/dx, — 0f/dx,) € L*(Q; R?) if p € HY(Q)* ford = 1,2

2

Lemma 4.3 (Carstensen and Dolzmann [6], Falk and Morely [15]). For each z € H' ()" there exist

o € H)(Q) and B € H*(Q) with (Curl Curl f)n =0 on I'y satisfving
e7(z) = e(a) + C 'Curl Curlf a.e. in Q. (4.7

The subsequent approximation properties are a key to our reliability proof of the averaging techniques
for error control.

Lemma 4.4 (Carstensen [4], Carstensen and Bartels [5], Carstensen and Verfiirth [12]). There exists a linear
mapping ¢ : HIID(Q)2 — &, bounded if domain and range space are endowed with H'-seminorms, which
satisfies

15 (0 = £y + 105 0lley + 150 = £}y <eslDle (4.8)

for all ¢ € HL\(Q). In addition, there holds for all R € L*(Q)

1/2
> hmin [ [R—R[dx]| . (4.9)
“ ReR? Q.

/R (¢ — J)dx< C9||D(PHL2(Q> <
Q zeAN
The positive constants cg, ¢y do not depend on the mesh-sizes hz and hs, but on the shape of the elements only.
Suppose that in any component and on each edge £ C I'p, E € &, the continuous function u;, — up has
at least one zero on E. This assumption is satisfied if for each j = 1,2 and F € §p :={E € §: E C I'p}, we
have either e; - u,(z) = e; - up(z) for some node A'p := A" NE or [ e (u, —up)ds =0.
To estimate the error u;, — up on the boundary and the incompatibility error we consider the error term
np = inf{||es (u, — n)HLz(Q): ne Hl(Q)d7 n=upon I'p}. (4.10)
We have the following analogy to [9, Remark 2.1.vii].

Lemma 4.5. There exists 1 € H'(Q)* with § = up on 'y such that

Mo = &7 (un = 1)l 2 () < ClOHhL/z[aé”h/@S]HLZ(Ug)7 (4.11)

where hg denotes the local edge lengths on | J& and Q4 - /Os the edgewise tangential derivative. The hs-inde-
pendent constant cy is independent of up and depends only on the aspect ratio of the elements in 7 .

Proof. The existence and uniqueness of 1 as a weak solution to

div(es(up — 1)) =0 in Q, er(up —n)n=0 on Iy, and n=upon I'p (4.12)

follows from the theory of elliptic partial differential equations in linear elasticity. Given 1 we define
o € H)(Q) and p € H*(Q) with (Curl Curl B)n = 0 on I'y satisfying & (u;, — 1) = &(o) + Curl Curl f sim-
ilar to Lemma 4.3. Let b = Curl f§ and notice that 0b/0s = Curl fn. Then, integrations by parts and (4.12)
show

er(un — )5 = /Q(Doc + Curl Curl) f: g5 (uy, — ) dx = /98,7(% —n) : Curl Curl fdx

= /Dy(uh —n) : Curl Curl fdx = /Dyuh : Curl bdx —/ up - Curlbnds (4.13)
Q Q I'p
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(in the last step we used n = up on I'p and (Curl Curl f)n =0 on I'y). Let b, € &, (.7)2 denote an ap-
proximation to b := Curl f as in Lemma 4.4 where the role of the Dirichlet and Neumann boundaries is
interchanged: here I'y acts as the Dirichlet boundary, i.e., b, € C(Q)Z, Curlf = b, on I'y. (Recall that
0 = Curl Curl fn = 0b/0s such that Curl  is constant on each component of I'y and so the interpolation
yields indeed Curlf = b, on I'y.) As in Lemma 4.4 we have

ICurlbyl, + 1" (b Billa) yo + 15 (b = ba)ll, < cn|D*Bll,. (4.14)

Since Curlbyng = 0 on I'y and, furthermore, Curlb,ng is constant on each £ € &. On interior edges, [u;] has
integral mean zero. This and an elementwise integration by parts show

/unh : Curl b, dx = / uy, - Curlbyngds + Z / [up] - Curlb,ngpds = / uy, - 0by, /Os ds. (4.15)
Q r = Jer

I'n

Taking this in (4.13) we deduce with an elementwise integration by parts

ob ob
e (uy — 17)||§ = /QDyu;, : Curl(b — by) dx +/r <uh a—sh — up as) ds

/Uﬂ {ag;h] ~(bbh)ds/FDagSD~(bbh)ds

ob, 0b
—~ —up-— | ds. 4.16
+/FD (uh Os “p 6s> s ( )

The boundary I" consists of a finite number of closed Lipschitz curves along which we integrate by parts to
obtain

Jup o(b — by)
— (b — =— = ds. 4.1
[So -t /F up - PP g (4.17)
With (4.17) in (4.16) we deduce with Cauchy’s inequality
2 Guh / abh
ot il == [ G| et [ ) o
_ Ou _ ob
< =12 (p — 1/2 | Ot 120, 1/2 90 .
<|lhg (b bh)||27Ug hy s U + |lhg " (un “D)Hz,rD hy s ro
(4.18)
Since in each component, u, — up has at least one zero, we deduce
O(u, —u
llan — il p < he % (4.19)
2E

If ¢z denotes the tangential unit vector, |0b;/0s| = |Curlb,tg| < |Curlbd,]|. Since Curlbd,, is constant on each
element 7 € 7, we have with A2 < c1»|T| that

2

0b
| 22 || < cnl/Curldy); (4.20)
2E
Involving (4.19) and (4.20) in (4.18), we infer from (4.14) that
Ou o(u, —u
ot~ )3 <enl Dl || 2 || a2l ) (@a1)
Os Os 2

2Ux
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With L?-orthogonality of &(a) and Curl Curl  we have

ID*B]l, = [|[Curl Curl Bl < lle (s — m)l, = 1,

whence a division of (4.12) by ||D*B||, shows the assertion with (u, — up)|;, = [us]l;,. O

Proof of Theorem 2.1. With (4.5) and 5 as in Lemma 4.5, set z := 2uc3(u — ) — w € H)(Q). Then, Lemma
4.5 and |0 — g,/ <|[]2us(e)|l, + [0, shows

/Q(a—a,,):gf(u)dxzzucg/(a—o,,) e (1 —uh)dx+/(a—ah):8(z)dx

Q

<2pcsennp ([12ne(e)|l, + 119]1,) + /Q(<7 —on) &z — Jz)dx (4.22)

because [,(0 —0,) :&(fz)dx =0 owing to the Galerkin property from (2.1), (2.2) and (2.6) for
v, = ¢z € &. This and Lemma 4.2 show

126e(€) 1720 + 1611720 < €13 <77D + /Q(" —0n) ier (2= J2) dX) (4.23)

and it remains to analyze the last integral in (4.23). This term arose in the context of conforming estimates
in Part I [11] and can be estimated by standard arguments as an elementwise integration by parts and (4.8)
but also (4.9). We refer to [11] and omit the details. [

Proof of Theorem 2.2. With div;0, = 0 we can employ (4.9) to estimate the term fg (z— #z)dx that
arises after an integration by parts in the last integral in (4.23). We refer to [12,4] for more details (in case of
the Laplace operator) and omit them here. [

Suppose for each edge E € &p and each component j = 1,2 that the function e, - (u, — up) has either
integral mean zero or vanishes at the endpoints of E and suppose that up € H*(&p), i.e., up|; is in H*(E) for

each edge F € ép.

Lemma 4.6. The function n € H'(Q)* with § = up on I'y from Lemma 4.5 satisfies

n (a o ) ) (4.24)

for all Q € 9'(7 )2X2 The hg-independent constants cy4, ci5 are independent of up and depend only on the
aspect ratio of the elements in I .

3/2
Mo = ller (un — Ml 20) < cralli*O2up /05 12

+cis <|D7uh oll, + ’

Proof. Let Q € (7 )2X2 b, and b as in the proof of Lemma 4.5 (4.16) therein to see with an integration by

parts over Q
0b ob
(uh o up - > ds
D

}’IZD = /QDyuh : Curl (b — bh)d)C+/ Os Os

I
0by, 0b

:/(Dfuh—Q):Curl(b—bh)dx—i—/Q:Curl(b—bh)dx—i—/ Uy - —— —up - ds
Q Q I'p aS a

auD

<Dy — Ol,||Curl(b — b)), — /chﬂQ. (b — by) dx +/F (— - QtE) (b —by)ds

dup by b
_ [ %oy 9n _ 42
/FD 5s (b bids+ /FD (“” as P % )ds (4.25)
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where we utilized b = b;, on I'y. The last two integrals in (4.25) are analyzed as in Lemma 4.5. Let i, and #p
be the edgewise integral mean of u;, and up, respectively. Then, since 0b,/0s is constant on each edge, we
have

6uD abh 0b
ol A PG ”“d”/rn (”"E‘”D 3 )ds
_ _ by, 1/2 1/2
= ’ (w, — uip) B ds<¢ ||Cur1bh||2E||h (wy — ”D)”zrn (4.26)

By assumption, for E € ép and j = 1,2, the function e; - (&1, — #ip) is either zero or e; - (u;, — up) vanishes at
the endpoints of E. In the latter case, a standard estimate shows

lle - (@ — p)lloz < llej - (s — up)llop < hz|up /05| - (4.27)

The second term on the right-hand side in (4.25) that involves the integrand (CurlQ) - (b—b;) =
(Curl+(Q — D7uy,)) - (b — by) requires an inverse estimate

[|Curl~(Q — Df/"“h)”z,r < Cléh}l 1Q — Drusllr (4.28)

(recall that Q — Dsu, is affine on T € 7). Employing (4.26)-(4.28), Cauchy’s inequality, and the stability
and approximation properties (4.14), we deduce in (4.25) that

1o < |[Druy — O, || Curl(b — by) ||, + [|h7Curl(Q — Dywy) |18 (b = by)
0
h:g/2<uD_ QIE> ‘

< |0l (014|h3§/263¢/2“0/652|2,r0 + ci5[|Druy — Q|| + c1s

+ ey’ | Curl by |, | 7Y 82 up /052, 1,

hy? (6”—‘3 - QtE> ) (4.29)
2.I'p

_|_

el -

from which the assertion is concluded as in Lemma 4.5. O

Proof of Theorem 2.3. We start as in the Proof of Theorem 2.1 and consider (4.23) where we employ
Lemma 4.6 to estimate 7. The remaining term is estimated in Part II [11] where we showed that

/Q(O' —0y) 1 e7(z— Jz)dx < Cl7||DZH2<H°'h - O-*”LZ(Q) + ||h3‘;'/26(§g/as||L2(FN) erf”LZ(Q)) (4.30)

As in Part II [11] we bound [|Dz]|, with Korn’s inequality by [2ue(e) || 2q) + 10/l ,2(q) + 1p (up to a constant
factor) and finish the proof as in [11]. O

Then, let 4™ denote the set of all nodes which are either free or belong to two aligned edges in £p. In
case z € /™ is a free node, Q. = w, := interior(| {7 € 7: z € T}) denotes the patch of z and otherwise
Q. =w,Jw: is the union of two neighboring patches where ( is a neighboring node such that
conv{z C} E € & and either ( is an interior node or E is not parallel to the x,-axis. For each z € 4™, let
T =T g ={T€T:TC Q.} denote the (local) triangulation on the extended patch Q..

We need the following lemma with v, =0 € &L (7.) ;== {V € #'(7.)*: ¥ =0 on y,} from [9] (where

= {E\,E,} if E|, E; € &p are two distinct ahgned edges (cf. the definition of /™ ifz € I'p) and y, := () if z
is a free node). Let &, :={E € & z € E}.

Lemma 4.7 (Carstensen and Funken [9]). For any z € A" there exists a h-independent constant cig > 0 such
that, for all w, € W =W X W >,
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1/2
> hellEwa /O]y | <ens| 1770 (up — Fup) /352 oo,

Ecé.

+ min \
(0T WS KT )x N (T2)>?

Syj(Wh — Uh) - ThHLZ(QZ) . (431)

Proof of Theorem 2.4. We start as in the Proof of Theorem 2.1 and consider (4.23) where we employ
Lemma 4.5 to estimate 5. The remaining terms are estimated as in the previous proof and so we obtain

12087 (u — up)lly + | Adivr (u — up)|l, < cro (772 + ||l’l(1§/2[aguh/aS]H2‘Ug + |0 Gun /o5
+ 11805 /sl + 112-DS ). (4.32)
Hence, if suffices to prove
12 /01 o < 20l + 1020 /057 2 1y )- (4.33)

By construction of .4/ and the assumptions of the mesh, each edge E belongs to &, for at least one z € A,
Lemma 4.7 then shows (with w;, = u;,, v, =0, and 7, := C’lazh)

i b1 [Qus 35]|[5. < 1320 (up — Fup) /05 | e, + e (1) = T}l (4.34)

The material law (2.5) shows e/ (u;) — C ;| = |C ' () — 0})| <caloy — o] for some J-independent
constant ¢,; (assuming 4 — oo and so that A is greater than a fixed positive constant) that depends on
> 0. Utilizing this in (4.34) and summing over all £ we obtain (4.33) since the patches €, have a finite
overlap only and the number of edges that are related to one z € 4™ is bounded. [
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