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Summary. A residual-based a posteriori error estimate for boundary in-
tegral equations on surfaces is derived in this paper. A localisation argu-
ment involves a Lipschitz partition of unity such as nodal basis functions
known from finite element methods. The abstract estimate does not use any
property of the discrete solution, but simplifies for the Galerkin discretisa-
tion of Symm’s integral equation if piecewise constants belong to the test
space. The estimate suggests an isotropic adaptive algorithm for automatic
mesh-refinement. An alternative motivation from a two-level error estimate
is possible but then requires a saturation assumption. The efficiency of an
anisotropic version is discussed and supported by numerical experiments.

Mathematics Subject Classification (1991):65N38, 65N15, 65R20, 45L10

1 Introduction

The efficient numerical treatment of an integral equation of the first kind
via an adaptive mesh-refining algorithm is studied in [2–8,10,14,16,18,19]
essentially for one-dimensional closed curves. Three-dimensional problems
are considered in [5,9,13] and the theory therein will be complemented in
this paper in the sense that we localise the estimate in [5], give different
proofs and suggest different algorithms than in [9], and justify upper bounds
of the estimate in [13] without any extra conditions such as the saturation
assumption.
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To describe the main results, we consider Symm’s integral equation
which is equivalent to interior or exterior Dirichlet problems for the Lapla-
cian in a bounded Lipschitz domainΩ ⊂ R

3 with boundary∂Ω or on the
open surfaceΓ ⊂ ∂Ω: Givenf findψ with

V ψ(x) :=
1
4π

∫
Γ

ψ(y)
|x− y| dsy = f(x) (x ∈ Γ ).(1)

A Galerkin discretisation providesψN and a partitionT = {Γ1, . . . , ΓN}
of Γ in elementsΓ1, . . . , ΓN with mesh-sizesh1, . . . , hN with the property
that the residualRN ,

RN (x) := f(x) − V ψN (x) (x ∈ Γ ),(2)

satisfies a Poincaré inequality onΓj , i.e., there holds

‖R‖L2(Γj) ≤ C(Γj) |R|H1(Γj).(3)

Piecewise constant test functions cause
∫
Γj
RN ds = 0 and so (3) with

C(Γj) ≤ diam(Γj).
We will prove in Sect. 4 that (3) is sufficient for an a posteriori error

estimate

‖ψ − ψN‖H̃−α(Γ ) ≤ c(α, T )
( N∑

j=1

h2α
j ‖∇R‖2

L2(Γj)

)1/2
,(4)

where∇ is the gradient on the 2D surfaceΓ , (and normswith0 ≤ α ≤ 1 are
described in Sect. 2). Since the upper bound consists of a sumof computable
residualsηj := hα

j ‖∇R‖L2(Γj), those serve aserror indicators in anadaptive
mesh-refiningalgorithm inSect. 5. Theunderlyingmeshesare shape-regular
as supposed in (4), but partly even more general.

The remaining part of this paper is organised as follows. The necessary
notation and some preliminaries are recalled from the literature in Sect. 2.
The main tool is the localisation by multiplication with hat-functions in
Sect. 3 to prove abstract estimates which are applicable to any discretisation
scheme or anisotropic meshes. In the aforementioned case of a Galerkin
discretisation of Symm’s integral equation (1), we prove (4) in Sect. 4 and
discuss related questions. The motivated error indicators are compared and
adaptive algorithms are presented in Sect. 5. Their efficient numerical per-
formance is reported in Sect. 6 for a numerical example on an L-shaped
open surface.
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2 Preliminaries

Let Ω be a bounded Lipschitz domain inR3 with (closed) boundary∂Ω.
Then, the norm inH1(∂Ω) is

‖v‖2
H1(∂Ω) = ‖v‖2

L2(∂Ω) + ‖∇v‖2
L2(∂Ω),

where∇ denotes the gradient with respect to the arc-length along the two di-
mensional surface∂Ω. For0 ≤ α ≤ 1, letHα(∂Ω)bedefinedby (complex)
interpolation ofH1(∂Ω) andL2(∂Ω) (cf., e.g., [1]). The scalar product in
L2(∂Ω) = H0(∂Ω) extends to the duality pairing〈·, ·〉 in Hα(∂Ω) and
H−α(∂Ω),

Hα(∂Ω) := (H−α(∂Ω))∗ (α < 0),

with ∗ denoting the dual space. We need two fractional Sobolev spaces
Hα(ω)andH̃α(ω)onarbitrary (relativelyopen)subsetω of∂Ω. If [X0, X1]s
denotes (complex) interpolation of the Hilbert spaceX0 andX1 ⊂ X0 for
0 ≤ s ≤ 1, we define

Hs(ω) := [L2(ω), H1(ω)]s and H̃s(ω) := [L2(ω), H1
0 (ω)]s,

whereH̃1(ω) = H1
0 (ω) denotes the closure of the test functionsC∞

0 (ω)
with compact support inωwith respect to theH1(ω)-norm. For−1 ≤ s ≤ 0
we define

Hs(ω) := (H̃−s(ω))∗ and H̃s(ω) := (H−s(ω))∗.

The subsequent localisation property will be essential for the proofs
below.

Lemma 2.1 ([8,17,15])Let f1, . . . , fn ∈ Hα(∂Ω), 0 ≤ α ≤ 1, such that
fj fk = 0 on ∂Ω whenever1 ≤ j < k ≤ n. Letωj := interior(suppfj)
satisfyωj = suppfj . Then

∥∥∥ n∑
j=1

fj

∥∥∥2

Hα(∂Ω)
≤ C1

n∑
j=1

‖fj‖2
Hα(ωj).(5)

The constantC1 depends on∂Ω but does not depend onfj or onn.

Remarks 2.1 (i) The lemma is proved by von Petersdorff in [17] and we
haveC1 = 1 for complex interpolation in the sequel. The lemma is used by
Stephan and Suri in [15] withC1 = C whereHα(∂Ω) is defined by real
interpolation.
(ii) Faermann studied the assertion in [8] in case of real interpolation in two
dimensions resp. the fractional Sobolev-Slobodeckij norm in three dimen-
sions.



200 C. Carstensen et al.

(iii) Recall thatHα(∂Ω) is equivalent to the trace space

Hα(∂Ω) := {v|∂Ω : v ∈ Hα+1/2(R3)} (α > 0)

ofHα+1/2(R3) with an equivalent trace norm [11]. (iv) Recall the interpo-
lation estimate: For allf ∈ H1(∂Ω) and0 ≤ α ≤ 1,

‖f‖Hα(∂Ω) ≤ C2 ‖f‖1−α
L2(∂Ω) ‖f‖α

H1(∂Ω).(6)

We haveC2 = 1 for complex interpolation (also in case of sub-pieces).

3 Localisation

Lemma 2.1 separates the norms of functions with pairwise disjoint support.
The techniques in [4] for their design are feasible on one-dimensional curves
only. In this paper, we localise by multiplication with functions from a
partition of unity with local supports.

Definition 3.1 LetΩ be a bounded Lipschitz domain inR
3. A finite partition

of unity of∂Ω is a finite sequenceΦ := (ϕ1, . . . , ϕM ) of Lipschitz functions
ϕ1, . . . , ϕM : ∂Ω → R such that on∂Ω

1 = ϕ1 + . . .+ ϕM andϕ1, . . . , ϕM ≥ 0.(7)

Let the Lipschitz domainωj be the interior ofsuppϕj and supposeωj =
suppϕj . The overlapK(Φ) is defined by (cardS denotes the number of
elements in a setS)

K(Φ) := max
j=1,...,M

card{k ∈ {1, . . . ,M} : ϕk ϕj /= 0 on∂Ω}.(8)

The point is thatK(Φ) may be much smaller thanM , even bounded,
whileM is increasing to infinity as the mesh-size tends to zero. Hence, we
distributeϕ1, . . . , ϕM into a minimal number≤ K(Φ) of groups to apply
Lemma 2.1 in the proof of Theorem 3.1 below.

Lemma 3.1 LetΦ be a finite partition of unity of∂Ω with overlapK(Φ).
Then there exists a partition of{1, . . . ,M} into K ≤ K(Φ) non-empty
subsetsM1, . . . ,MK ,

K⋃
j=1

Mj = {1, . . . ,M} and

Mj ∩Mk = ∅ if j /= k (j, k = 1, . . . ,K),(9)

such that, for all$ ∈ {1, . . . ,K} andj, k ∈M� with j /= k,

ϕj ϕk = 0 on∂Ω.(10)
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Proof. The index setsM1, . . . ,MK are constructed by induction onµ =
1, 2, . . . ,K which stops for someK ≤ K(Φ). To designM1, fix ϕ1 and set
M11 := {1}. GivenM1ν we try to findk ∈ {1, . . . ,M}\M1ν with (10) for
all j ∈ M1ν . If there is such ak we choose one (e.g., the smallest if there
are more than one) and setM1,ν+1 :=M1ν ∪{k}. We repeat this procedure
until we get someν such that we find nok satisfying (10) for allj ∈M1,ν .
Then we defineM1 :=M1,ν and continue. (Note thatM1 is defined after a
finite number of steps because{1, . . . ,M} is finite.)

In this way we constructM1 and assume now that we have constructed
µ disjoint subsetsM1, . . . ,Mµ of {1, . . . ,M}. IfM1 ∪ . . .∪Mµ = {1, . . . ,
M} we stop and letK := µ. Otherwise we select one entryk from
{1, . . . ,M}\(∪µ

κ=1Mκ) /= ∅ (e.g., its smallest element) and define
Mµ+1,1 := {k}. GivenMµ+1,ν , we seekk ∈ {1, . . . ,M}\(Mµ+1,ν ∪
∪µ

κ=1Mκ) satisfying (10) for allj ∈Mµ+1,ν . When we find such ak we set
Mµ+1,ν+1 :=Mµ+1,ν ∪{k}. We repeat this procedure until we obtain some
ν such that we find nok satisfying (10) for allj ∈Mµ+1,ν . Then, we define
Mµ+1 := Mµ+1,ν and continue withµ + 1. After a finite number of steps
this construction will stop and yield a partitionM1, . . . ,MK of {1, . . . ,M}
which satisfies (10).

It remains to prove the bound ofK. Considerk ∈ MK . Then,k �∈ Mµ

for eachµ ∈ {1, . . . ,K − 1} and so (10) is not satisfied for at least one
jµ ∈Mµ. Sinceϕk ϕjµ /= 0 for eachµ ∈ {1, . . . ,K − 1}, there are at least
K−1 functions amongst{ϕj : j = 1, . . . ,M ; j /= k}whose supports have
a non-void intersectionwith the support ofϕk. This provesK ≤ K(Φ). ��

Theorem 3.1 Let Γ be a connected sub-piece of∂Ω as in Sect. 2 and let
Φ be a finite partition of unity of∂Ω with overlapK(Φ). Then, for any
f ∈ Hα(∂Ω) and0 ≤ α ≤ 1, we have

‖f‖2
Hα(Γ ) ≤ K(Φ)

M∑
j=1

‖f ϕj‖2
Hα(ωj).(11)

Proof. Bydensity, it is enough to prove the assertion for a Lipschitz function
f . We consider a partitionM1, . . . ,MK of {1, . . . ,M} as in Lemma 3.1.
According to (7),f =

∑M
j=1 ϕj f and we obtain

‖f‖2
Hα(Γ ) ≤ ‖f‖2

Hα(∂Ω) =
∥∥∥ M∑

j=1

ϕj f
∥∥∥2

Hα(∂Ω)

=
∥∥∥ K∑

k=1

∑
j∈Mk

ϕj f
∥∥∥2

Hα(∂Ω)
≤ K

K∑
k=1

∥∥∥ ∑
j∈Mk

ϕj f
∥∥∥2

Hα(∂Ω)
,
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where we use that(
∑n

j=1 aj)2 ≤ n(∑n
j=1 a

2
j ). Next we apply Lemma 2.1

to {f ϕj : j ∈Mk} and infer
∥∥∥ ∑

j∈Mk

ϕj f
∥∥∥2

Hα(∂Ω)
≤
∑

j∈Mk

‖ϕj f‖2
Hα(ωj).

Using this in the above estimate we deduce

‖f‖2
Hα(Γ ) ≤ K

K∑
k=1

∑
j∈Mk

‖ϕj f‖2
Hα(ωj) = K

M∑
j=1

‖ϕj f‖2
Hα(ωj). ��

We need some notation to define the geometry in the abstract estimate
below.

Definition 3.2 The widthwidth(ω) ofω ⊂ ∂Ω is the smallest numberd ≥ 0
such that the following is true. There existsd > 0and some directionn ∈ R

3,
|n| = 1, such that, for eachx ∈ R

3 and for each planeH(x, n) := {y =
x+m ∈ R

3 : m · n = 0} throughx perpendicular ton, ω ∩H(x, n) is a
Lipschitz curve of arc-length≤ d. If there exists no suchn, letwidth(ω) :=
∞.

Theorem 3.2 LetΦ be a finite partition of unity on∂Ω with overlapK(Φ)
and let ωj the interior of suppϕj and dj := width(ωj) for each j ∈
{1, . . . ,M}. Then, for0 < α < 1, Γ ⊂ ∂Ω, and f ∈ H1(∂Ω), we
have

‖f‖2
Hα(Γ ) ≤ K(Φ)

M∑
j=1

d
2(1−α)
j (1 + d2j )

α ‖∇(ϕj f)‖2
L2(ωj).(12)

Proof. By Theorem 3.1 and according to the interpolation estimate (6) we
obtain

‖f‖2
Hα(Γ ) ≤ K(Φ)

M∑
j=1

‖f ϕj‖2(1−α)
L2(∂Ω) ‖f ϕj‖2α

H1(∂Ω).(13)

Finally, Friedrichs’ inequality yields (even with a smaller constant)

‖f ϕj‖2(1−α)
L2(∂Ω) ‖f ϕj‖2α

H1(∂Ω) ≤ d2(1−α)
j (1 + d2j )

α ‖∇(ϕj f)‖2
L2(ωj). ��

We conclude this section with a modification of a recent result [8,9]
obtained so far by direct calculations with Sobolev-Slobodeckij norms.
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Theorem 3.3 LetΦ be a finite partition of unity on∂Ω with overlapK(Φ)
and let0 ≤ α ≤ 1 and Γ ⊂ ∂Ω. Suppose thatf ∈ H1(∂Ω) satisfies∫
ωj
f ds = 0 for all j = 1, . . . ,M . Then we have

‖f‖2
Hα(Γ ) ≤ C

M∑
j=1

‖f‖2
Hα(ωj).(14)

The constantC > 0 in (14) depends onΓ , ∂Ω,K(Φ), dj Lip(ϕj), and the
shape (but neither size nor number) of the patchesωj .

Proof. Theproofwill follow from interpolation of the operator (|ωj |denotes
the area ofωj andj is fixed in{1, . . . ,M})

Ts : Hs(∂Ω) → Hs(ωj), f �→ ϕj(f −
∫

ωj

f ds/|ωj |).

It is obvious thatT0 is bounded with an operator norm≤ 1. Fors = 1 we
argue as in the proof of Theorem 3.2 (this time with Poincaré’s inequality)
and deduce∥∥∥∥∥∇

(
ϕj

(
f −

∫
ωj

f ds/|ωj |
))∥∥∥∥∥

L2(ωj)

≤
∥∥∥∥∥
(
f −

∫
ωj

f ds/|ωj |
)

∇ϕj

∥∥∥∥∥
L2(ωj)

+ ‖ϕj ∇f‖L2(ωj)

≤ Lip(ϕj)

∥∥∥∥∥f −
∫

ωj

f ds/|ωj |
∥∥∥∥∥

L2(ωj)

+ ‖∇f‖L2(ωj)

≤ (1 + Lip(ϕj)C(ωj)) ‖∇f‖L2(ωj).

This shows thatT1 is bounded with an operator norm≤ C. Then, interpo-
lation theory shows thatTα is bounded as well [1]. This and Theorem 3.1
prove the assertion. ��
Remarks 3.1 Theestimate (14) is shown in [8,9] forSobolev-Slobodeckij
norms. Then, without any restrictions on the mesh, the converse inequality
to (14) is true. We refer to [8,9] for details.

4 Symm’s integral equation

Let Ω be a bounded polyhedron with boundary∂Ω with (open) faces and
let Γ ⊂ ∂Ω with a Lipschitz curve∂Γ . Givenf ∈ H1(Γ ) we seekψ ∈
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H̃−1/2(Γ ) satisfying (1) with the linear, bounded and bijective single-layer
potential operatorV : H̃α−1(Γ ) → Hα(Γ ) (defined in (1)) for0 < α < 1.

In the first case letψN ∈ L2(Γ ) denote an arbitrary approximation to
the unique solutionψ with a residualRN := f − V ψN . It is stressed that
no assumption relatesRN and the Lipschitz partition of unityϕ1, . . . , ϕM .
Recall that the patchωj is the interior of supp(ϕj) = ωj and letδj :=
diam(ωj) denote its diameter.

Corollary 4.1 There exists a constantC > 0 that depends only on0 <
α < 1, Γ , and∂Ω such that for anyψN ∈ L2(Γ ) andRN := f − V ψN

we have

‖Ψ − ΨN‖2
H̃−α(Γ ) ≤ C

N∑
j=1

δ2α
j ‖∇(ϕjRN )‖2

L2(ωj).(15)

Proof. The proof follows fromψ − ψN = V −1RN , the boundedness of
V −1, and Theorem 3.2. ��

In the second case letψN ∈ L2(Γ ) denote some approximation such
that the residualRN := f − V ψN has an integral

∫
Γk
RN ds = 0 over

each elementΓk with diameterhk of a partitionT = {Γ1, . . . , ΓN} of
Γ as in the introduction. Suppose that the supports of hat functionsϕj

are matched exactly by a finite number of elements. Then, the Galerkin
condition

∫
Γk
RN ds = 0 (for all k = 1, . . . , N ) implies

∫
ωj
RN ds = 0

(for all j = 1, . . . ,M ).

Corollary 4.2 There exists a constantC > 0 that depends only on0 <
α < 1,Γ , ∂Ω, and the shape (not the size) of the elements and patches such
that for anyψN ∈ L2(Γ ) andRN := f −V ψN with

∫
ωj
RN ds = 0 for all

j = 1, . . . ,M , we have

‖Ψ − ΨN‖2
H̃−α(Γ ) ≤ C

N∑
j=1

h2α
j ‖∇RN‖2

L2(Γj).(16)

Proof. The proof follows from the previous Corollary plus a Poincaré in-
equality which shows (cf. (3))

‖RN‖2
L2(ωj) ≤ C(ωj)‖∇RN‖2

L2(ωj)

and so verifies (recall0 ≤ ϕj ≤ 1 and Lip(ϕj)C(ωj) ≤ C for a locally
uniform mesh)

‖∇(ϕjRN )‖2
L2(ωj) ≤ ‖RN ∇ϕj‖2

L2(ωj) + ‖ϕj ∇RN‖2
L2(ωj)

≤ Lip(ϕj)‖RN‖2
L2(ωj) + ‖∇RN‖2

L2(ωj)

≤ C‖∇RN‖2
L2(ωj). ��
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The following corollary is shown in [8,9] forSobolev-Slobodeckij norms
and assumes the same conditions as Corollary (4.2) in the second case.

Corollary 4.3 There exists a constantC > 0 that depends only on0 <
α < 1, Γ , ∂Ω, and the shape (not the size) of the elements such that for
any ψN ∈ L2(Γ ) and RN := f − V ψN with

∫
ωj
RN ds = 0 for all

j = 1, . . . ,M , we have

‖Ψ − ΨN‖2
H̃−α(Γ ) ≤ C

M∑
j=1

‖RN‖2
Hα(ωj).(17)

Proof. The proof follows from Theorem 3.3 if we argue as before. ��
Remarks 4.1 (i) It isemphasised thatCorollary4.1 is valid foranyapprox-
imation obtained onanymesh (or even with a mesh-less method) without
any shape-regularity.
(ii) Corollary 4.2 motivates the isotropic error indicator

µj := h1/2
j ‖∇RN‖L2(Γj)(18)

sinceC(
∑N

j=1 µ
2
j )

1/2 is a computable upper error bound with respect to the
energy norm.
(iii) Open surfaces yield edge singularities near the edgewhich limit the reg-
ularity of the exact solutionψ, in general,ψ /∈ L2(Γ ). It is well-established
that edge singularities require anisotropic elements and in our numerical
experiments below, the aspect ratio of rectangles is increasing. In those sit-
uations, an anisotropic error indicator such as

µj,k := h1/2
j,k ‖∂RN/∂xk‖L2(Γj) (k = 1, 2)(19)

is expected to reflect the singular behaviour in a more appropriate way than
(18). In (19),Γj is an axes-parallel rectangle with edge-lengtheshj,1 and
hj,2.
(iv) The authors failed to prove thatC(

∑N
j=1(µ

2
j,1 + µ2

j,2))
1/2 is an upper

error bound.
(v) Corollary 4.3 motivates the (rather theoretical) error indicator

νj := ‖RN‖Hα(ωj),(20)

where the norm inHα(ωj) is to be evaluated for complex interpolation.
Besides the interpolation estimate (6) the authors do not know of another
upper bound that is easy to compute.

Instead, Faermann first proves that Theorem 3.3 is true when replacing
the complex interpolated norm by the Sobolev-Slobodeckij norm [9] and
then suggests to evaluate the local Sobolev-Slobodeckij norm in (20)with an
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Fig. 1. Refinement ofΓj into four new elements and the basis functionsξj,1, ξj,2, ξj,3

accuratequadrature rule. Thestrikingadvantageof herapproach isefficiency
for arbitrary meshes (cf. Remark 3.1).
(vi) A two-level ansatz and a saturation assumption are used in [13] to see,
for quasi-uniformmeshes, that, up tomultiplicative constants,(

∑N
j=1(η

2
j,1+

η2j,2 + η2j,3))
1/2 is a lower and upper error bound, where

ηj,k :=
〈RN , ξj,k〉

〈V ξj,k, ξj,k〉1/2 (k = 1, 2, 3)(21)

and the ansatz functionsξj,k are defined for one rectangle by dividing it into
four congruent rectangles in Fig. 1.
(vii) Another interpretation for (21) and a motivation for the decision for an
anisotropic mesh-refinement along either thex1- or thex2-axis is possible
by a line search in the directionξj,k, i.e., a separate energy minimisation
along the one-dimensional affine spaceψN + R ξj,k. Direct calculations for
the energyE(ϕ) = 1

2〈V ϕ, ϕ〉 − 〈f, ϕ〉 show

min
s∈R

E(ψN + s ξj,k) = − 〈RN , ξj,k〉2
〈V ξj,k, ξj,k〉 − 1

2
〈V ψN , ψN 〉,

which, up to aψN -dependent additive constant, equals−η2j,k. Hence, moti-
vated by a minimal energy in a separate line search, we prefer a refinement
along thexk-axes for thatk that maximises the termηj,k amongstk = 1 or
k = 2.
(viii) Thequestionof efficiencyof theaposteriori error estimate (16) remains
open in general. Arguing as in [3] one could prove that(

∑N
j=1 µ

2
j )

1/2 is,
up to a multiplicative constant and higher order terms, a lower bound of the
error as well. The severe assumptions for this are a quasi-uniform mesh (to
guarantee inverse estimates and asymptotic convergence properties) and a
closed boundary (to ensureψ ∈ L2(Γ )).

5 Error indicators and adaptive algorithms

The error indicatorsµj , µj,k, νj , andηj,k in (18)-(21) from the a posteriori
error estimates of the previous section can be ordered and employed for
steering automatic mesh-refinements.
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Theorem 5.1 There exist constantsc1, c2, c3 > 0 which depend on the
aspect ratio of the elementsΓ1, . . . , ΓN in T and onΓ , Ω but not onf ,
RN := f − V ψN , or ψ = V −1f and neither on the sizes nor numbers of
elements inT such that we have

ηj,k ≤ c1µj,k ≤ c1µj (k = 1, 2; j = 1, . . . , N),(22)


 ∑

Γ�⊂ωj

(
η21,� + η22,�

)
1/2

≤ c2 νj ≤ c3

 ∑

Γ�⊂ωj

µ2
�




1/2

(j = 1, . . . ,M).(23)

(The inequalities that involveηj,k requireα = 1/2 while the other inequal-
ities are valid for allα.)

Proof. The functionξj,k can be written as the derivative of a hat-function
φj,k with heighthj,k/2. Integration by parts and Cauchy’s inequality show

〈RN , ξj,k〉 = −〈∂xk
RN , φj,k〉 ≤ ‖φj,k‖L2(Γj)‖∂xk

RN‖L2(Γj).(24)

The functionξj,1 can be also written as the difference of two characteristic
functionsξj,1 = χ1 − χ2 (see Fig. 1).χ1 andχ2 are rectangles with side
lengthshj,1/2 andhj,2. From

V (χ1 − χ2, χ1 − χ2) = V (χ1, χ1) + V (χ2, χ2) − 2V (χ1, χ2)
= 2V (χ1, χ1) − 2V (χ1, χ2)

and the following formulae (obtained with direct integration)

4π V (χ1, χ1)

=
2
3

(hj,1/2)3 +
2
3
h3

j,2 − 1
6
((hj,1/2)2 + h2

j,2)
3/2

+
hj,1hj,2

2

(
hj,1

2
arsinh

(
2hj,2

hj,1

)
+ hj,2arsinh

(
hj,1

2hj,2

))
,

4π V (χ1, χ2)

= 2(hj,1/2)3 − 1
3
h3

j,2 +
2
3
((hj,1/2)2 + h2

j,2)
3/2 − 1

3
(h2

j,1 + h2
j,2)

3/2

−2hj,1hj,2

(
hj,1

2
arsinh

(
2hj,2

hj,1

)
+ hj,2arsinh

(
hj,1

2hj,2

))

+2hj,1hj,2

(
hj,1arsinh

(
hj,2

hj,1

)
+ hj,2arsinh

(
hj,1

hj,2

))
,
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we eventually deduce that (writinghj,3 := hj,1)

2π〈V ξj,k, ξj,k〉

= −h
3
j,k

6
+ h3

j,k+1 − 1
6
(h2

j,k + 4h2
j,k+1)

3/2 +
1
3
(h2

j,1 + h2
j,2)

3/2

+4hj,1hj,2

(
hj,k

2
arsinh

(
2hj,k+1

hj,k

)
+ hj,k+1arsinh

(
hj,k

2hj,k+1

))

−2hj,1hj,2

(
hj,karsinh

(
hj,k+1

hj,k

)
+ hj,k+1arsinh

(
hj,k

hj,k+1

))
.

Inspection of the last term shows that it is indeed equivalent tohj,k|Γj |.
Using this and equivalence of‖φj,k‖L2(Γj) tohj,k(|Γj |)1/2 we deduce from
(24) that

〈RN , ξj,k〉
〈V ξj,k, ξj,k〉1/2 ≤ c1

‖φj,k‖L2(Γj)

(hj,k|Γj |)1/2 ‖∂xk
RN‖L2(Γj) ≤ c1µj,k.

This proves the first estimate in (22), the second is obvious.
To verify (23), recall that in (20),Hα(Γj) is defined by complex inter-

polation and so, withC2 = 1 in (6), we deduce

νj ≤ ‖RN‖1−α
L2(ωj)

‖RN‖α
H1(ωj).

This and Poincaŕe’s inequality‖RN‖L2(ωj) ≤ C(ωj)‖∇RN‖L2(ωj) con-
clude the proof of the second inequality in (23). To prove the first inequality
by complex interpolation, define

Tα : Hα(ωj) → R, f �→ 〈f, ξ�,k〉.
It is obvious that the operator norm ofT0 is bounded‖ξ�,k‖L2(Γ�). Fors = 1
we notice thatξ�,k has integral mean zero and so, with the integral meanf̄
of f overΓ�, we have

|T1f | = |〈f, ξ�,k〉| = |〈f − f̄ , ξ�,k〉|.
A Cauchy and a Poincaré inequality guarantee

|T1f | ≤ ‖f − f̄‖L2(Γ�)‖ξ�,k‖L2(Γ�) ≤ C(Γ�)‖f‖H1(ωj)‖ξ�,k‖L2(Γ�).

Interpolation of the two bounds forTα for α = 0, 1 shows

|〈f, ξ�,k〉| ≤ ‖Tα‖ ‖f‖Hα(ωj) ≤ C(Γ�)α ‖ξ�,k‖L2(Γ�) ‖f‖Hα(ωj).

This estimate and the above computation of〈V ξ�,k, ξ�,k〉 verify the first
inequality in (23) (since the sum is finite). ��

The numerical experiments reported in Sect. 6 are run with the three
algorithms (A)–(C) which differ in the use of the error indicator and the
refinement procedure in step (4). Therein,0 ≤ Θ ≤ 1 is a parameter for
uniform (Θ = 0) or adaptive mesh-generation.
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Fig. 2. MeshT10 generated by Algorithm (B)

Algorithm (A), (B), (C) (i) Startwith an intimalmeshT0 andsetm = 0.
(ii) Compute Galerkin solutionψN for current meshTm = {Γ1, . . . , ΓN}.
(iii) Compute error indicators indicatorsµj , µj,k, andηj,k from (18)-(21).
(iv) For Algorithm (A), refineΓj into four congruent rectangles provided

µj ≥ Θmax{µ1, . . . , µN}.
For Algorithm (B), halveΓj along thexk-axis fork = 1 andk = 2 provided

µj,k ≥ Θmax{µ1,k, . . . , µN,k}.
For Algorithm (C), halveΓj along thexk-axis fork = 1 andk = 2 provided

ηj,k ≥ Θmax{η1,k, . . . , ηN,k}.
(v) Generate the newmeshTm+1 according to (4) and updatem. Stop or go
to (ii).

6 Numerical example

The algorithms (A), (B), and (C) were run to solve Symm’s integral equa-
tion (1) with a right-hand sidef = 1 and an initial meshT0 that contained
12 congruent squares to cover the L-ShapeΓ . The computations were per-
formed using the programmaiprogs[12]. The error indicatorsµj , µj,k were
approximated by numerical integration of the analytical computed gradient
of the residual by a4×4-Gaussian quadrature rule, whileηj,k was calculated
exactly using the algorithms of the computation of the Galerkin matrix.

Algorithm (B) generated a sequence of meshes(Tm)m=1,2,3,... for Θ =
0.5. The meshesT10, T15, resp.T20 are plotted in Fig. 2, 3, resp. 4. We
observe strong anisotropic refinements parallel and towards all edges which
reflects expected edge-singularities.



210 C. Carstensen et al.

Fig. 3. MeshT15 generated by Algorithm (B)

Fig. 4. MeshT20 generated by Algorithm (B)

The energy normof the solutionΨ ofV ψ = 1 is known to be〈V ψ, ψ〉1/2

= 2.878293 and this is employed to compute the energy error norms through

e2N := 〈V (ψ − ψN ), ψ − ψN 〉 = 〈V ψN , ψN 〉 − 〈V ψ, ψ〉
(by Galerkin-orthogonality). Table 1 gives the results for the meshes gener-
ated by Algorithm (B) whereN is the degree of freedoms,eN is the error
in the energy norm, andηN = (

∑N
j=1 µ

2
j )

1/2 is the computed upper error
bound (forα = 1/2 without taking the constant factor into account). The
experimental convergence rateαN is computed as

αN =
log(eN ′/eN )
log(N/N ′)

,(25)

whereN ′ andeN ′ are the corresponding values of the previous row. The
convergence ratesobserved inTable1aremuchhigher than1/4 (expected for
a uniform mesh-refinement) and so indicate an efficient mesh-refining. The
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Table 1. Error indicators and efficiency forθ = 0.5

N ηN eN eN/ηN αN

12 0.9558277 0.6646427 1.438108
33 0.7157455 0.4917142 1.455613 0.29789
64 0.5231094 0.3603837 1.451534 0.46911
105 0.3791923 0.2621146 1.446666 0.64310
148 0.2857298 0.1968658 1.451394 0.83396
184 0.2220168 0.1548582 1.433678 1.10237
245 0.1641732 0.1158337 1.417319 1.01408
306 0.1275614 0.0909866 1.401980 1.08598
371 0.0984725 0.0707287 1.392257 1.30757
450 0.0789983 0.0579766 1.362589 1.02987
540 0.0638628 0.0465304 1.372496 1.20629
656 0.0509174 0.0376706 1.351647 1.08548
805 0.0411453 0.0308533 1.333580 0.97535
968 0.0340271 0.0260617 1.305636 0.91532
1243 0.0266476 0.0207189 1.286148 0.91749
1543 0.0217106 0.0173712 1.249805 0.81513
1902 0.0179114 0.0144254 1.241652 0.88835
2418 0.0145247 0.0118803 1.222581 0.80867
3127 0.0116897 0.0097656 1.197027 0.76231
3926 0.0096766 0.0081669 1.184856 0.78566
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Fig. 5. Dirichlet problem on the L-shape inR3

quotientseN/ηN stay about1.1 till 1.5which indicates a reasonable overall
error estimation (although the bound ofV −1 is not included in Table 1).

To report on several related experiments in a more compact form, we
plotted the entries(N, eN ) for varies numbers ofN from the output of Al-
gorithm (A), (B), (C), resp. a sequence of graded meshes(Tm)m=0,1,2,... in
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one diagramwhere the horizontalN - and the verticaleN -axis are scaled log-
arithmically. Related entries are plottedwith the same symbol (e.g.,◦,+,×)
and linked by (e.g., full, dashed, dotted) straight lines in Fig. 5. We refer to
the legend for further details and conclude this section with a few observa-
tions from Fig. 5 and similar experiments.

Remarks 6.1 (i) For uniform and graded meshes, the superiority of a
grading with a parameter(j/J)4 for j = 0, . . . , J gives the best results
(overgrading leads to larger condition numbers without sufficient improve-
ment).
(ii) Algorithm (A) is not competitive, there is a need for anisotropic mesh-
refinement.
(iii) The change of the parameterΘ (in the range0.5 ≤ Θ ≤ 1) does not
necessarily improve the meshes.
(iv) Algorithm (B) and (C) yield very similar results and can compete for
higher degrees of freedom with optimally graded meshes.
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laritäten und Approximation mit Randelementmethoden. PhD thesis, Darmstadt, 1989
18. W. L. Wendland, De-hao Yu: Adaptive boundary element methods for strongly elliptic

integral equations. Numer. Math.53, 539–558 (1988)
19. W. L. Wendland, De-hao Yu: A posteriori local error estimates of boundary element

methods with some pseudo-differential equations on closed curves. Journal for Com-
putational Mathematics10, 273–289 (1992)


