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Summary. A residual-based a posteriori error estimate for boundary in-
tegral equations on surfaces is derived in this paper. A localisation argu-
ment involves a Lipschitz partition of unity such as nodal basis functions
known from finite element methods. The abstract estimate does not use any
property of the discrete solution, but simplifies for the Galerkin discretisa-
tion of Symm’s integral equation if piecewise constants belong to the test
space. The estimate suggests an isotropic adaptive algorithm for automatic
mesh-refinement. An alternative motivation from a two-level error estimate
is possible but then requires a saturation assumption. The efficiency of an
anisotropic version is discussed and supported by humerical experiments.

Mathematics Subject Classification (19985N38, 65N15, 65R20, 45L10

1 Introduction

The efficient numerical treatment of an integral equation of the first kind
via an adaptive mesh-refining algorithm is studied in [2-8,10,14,16,18,19]
essentially for one-dimensional closed curves. Three-dimensional problems
are considered in [5,9, 13] and the theory therein will be complemented in
this paper in the sense that we localise the estimate in [5], give different
proofs and suggest different algorithms than in [9], and justify upper bounds
of the estimate in [13] without any extra conditions such as the saturation
assumption.

Correspondence te&C. Carstensen
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To describe the main results, we consider Symm'’s integral equation
which is equivalent to interior or exterior Dirichlet problems for the Lapla-
cian in a bounded Lipschitz domaia ¢ R? with boundaryds2 or on the
open surfacd” C 92: Given f find ) with

® Vi) = [ s, = f@) e

|

A Galerkin discretisation providegy and a partitiorl7 = {I1,...,I'n}
of I"inelementd, ..., I’y with mesh-sized, ..., hy with the property
that the residuak

(2) Ry(x) = f(x) = Vyn(z) (zel),

satisfies a Poincarinequality on}, i.e., there holds
3) IRl z2(r;) < CULG) |Rlm(ry)-

Piecewise constant test functions caLf§§aRN ds = 0 and so (3) with
(1) < diam(I7).

We will prove in Sect. 4 that (3) is sufficient for an a posteriori error
estimate

N 1/2
@ =N lgag < o) (o RIVERIZ )

=1

whereV is the gradient on the 2D surfa¢e (and norms witl) < o < 1 are
described in Sect. 2). Since the upper bound consists of a sum of computable
residualsy; := h% ||V R||2(r,), those serve as error indicators in an adaptive
mesh-refining algorithm in Sect. 5. The underlying meshes are shape-regular
as supposed in (4), but partly even more general.

The remaining part of this paper is organised as follows. The necessary
notation and some preliminaries are recalled from the literature in Sect. 2.
The main tool is the localisation by multiplication with hat-functions in
Sect. 3 to prove abstract estimates which are applicable to any discretisation
scheme or anisotropic meshes. In the aforementioned case of a Galerkin
discretisation of Symm’s integral equation (1), we prove (4) in Sect. 4 and
discuss related questions. The motivated error indicators are compared and
adaptive algorithms are presented in Sect. 5. Their efficient numerical per-
formance is reported in Sect. 6 for a numerical example on an L-shaped
open surface.
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2 Preliminaries

Let 2 be a bounded Lipschitz domain ®® with (closed) boundary 2.
Then, the norm i (942) is

113100y = W17200) + V017200
whereV denotes the gradient with respect to the arc-length along the two di-
mensional surfac@(?. For0 < a < 1, let H*(012) be defined by (complex)
interpolation of H!(042) and L?(912) (cf., e.g., [1]). The scalar product in
L?(092) = HY(002) extends to the duality pairing, -) in H*(92) and
H~%(012),

H*(002) := (H *(002))* ( <0),

with x denoting the dual space. We need two fractional Sobolev spaces
H*(w)andH*"(w) on arbitrary (relatively open) subsebf 2. If [Xo, X1],
denotes (complex) interpolation of the Hilbert spaggand X; ¢ X, for

0 < s <1, wedefine

H* () = [L2@), H'(@)]s and H*(w) = [L2(w), Hy ()]s,

where ' (w) = H}(w) denotes the closure of the test functiaf® (w)
with compact support i@ with respect to thé  (w)-norm. For-1 < s < 0
we define

Hw) = (H*w))* and H*W):= (H*(w))".

The subsequent localisation property will be essential for the proofs
below.

Lemma 2.1 ([8,17,15] et fi,..., fn € HY(02),0 < a < 1, such that
fj fr = 00n 02 wheneverl < j < k < n. Letw; := interior(suppf;)
satisfyw; = suppf;. Then

©) | ijt

The constanC; depends o®{?2 but does not depend of) or onn.

oo Z 1350y

Remarks 2.1 (i) The lemma is proved by von Petersdorff in [17] and we
haveC; = 1 for complex interpolation in the sequel. The lemma is used by
Stephan and Suri in [15] with'; = C where H*(042) is defined by real
interpolation.

(i) Faermann studied the assertion in [8] in case of real interpolation in two
dimensions resp. the fractional Sobolev-Slobodeckij norm in three dimen-
sions.
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(i) Recall that H*(012) is equivalent to the trace space
H®(09) = {v|gn : ve H*T2RY}  (a>0)

of Ho+1/2(R3) with an equivalent trace norm [11]. (iv) Recall the interpo-
lation estimate: For alf € H'(9£2) and0 < a < 1,

(6) £l e 002) < Co Hf||2§(aag) 1% 002

We have(; = 1 for complex interpolation (also in case of sub-pieces).

3 Localisation

Lemma 2.1 separates the norms of functions with pairwise disjoint support.
The techniques in [4] for their design are feasible on one-dimensional curves
only. In this paper, we localise by multiplication with functions from a
partition of unity with local supports.

Definition 3.1 Let(2 be abounded Lipschitzdomainii. A finite partition
of unity ofd(2 is a finite sequence := (1, .. ., par) Of Lipschitz functions
©1,...,o0m : 02 — R such that orof?

(7) l=p14+...+@rpandep,...,on > 0.

Let the Lipschitz domaiw; be the interior ofsuppy; and suppos&; =
suppp;. The overlapK (®) is defined by ¢ardS denotes the number of
elements in a sef)

8) K(?):= axMcard{ke{l,...,M} DR F00onoNR}.

The point is that/ () may be much smaller thak/, even bounded,
while M is increasing to infinity as the mesh-size tends to zero. Hence, we
distributey, . .., ¢ into @ minimal numberK K () of groups to apply
Lemma 2.1 in the proof of Theorem 3.1 below.

Lemma 3.1 Let ® be a finite partition of unity 062 with overlap K ().
Then there exists a partition dfl,..., M} into K < K(&) non-empty
subsets\fy, ..., M,

K
UM ={1,...,M}and
j=1

9) M;NM,=0ifj#k (,k=1,...,K),
such that, forall € {1,..., K} andj, k € M, with j # k,
(10) @; pr = 00onof.
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Proof. The index sets\fy, ..., Mg are constructed by induction gn =
1,2,..., K which stops for som& < K (). To designi/y, fix ¢1 and set
M, = {1}. GivenM;, we try to findk € {1, ..., M }\ M;, with (10) for

all j € My,. If there is such & we choose one (e.g., the smallest if there
are more than one) and sef; ,; := M;, U{k}. We repeat this procedure
until we get some» such that we find né satisfying (10) for allj € M, .
Then we define\/; := M, and continue. (Note thal/; is defined after a
finite number of steps becau§g, . .., M} is finite.)

In this way we construct/; and assume now that we have constructed
pdisjoint subsetd/y, ..., M, of {1,...,M}.If MyuU...UM, ={1,...,
M} we stop and letK' := p. Otherwise we select one entky from
{1,...,M}\(U_ M) # 0 (e.g., its smallest element) and define
MM+1,1 = {k‘} Given M;Hrl,zn we seekk € {1, M}\( ptlp U
Uk _, M,) satisfying (10) for allj € M, 11,. When we f|nd such A we set
Myi1,041 := M1, U{k}. We repeat this procedure until we obtain some
v such that we find né satisfying (10) for allj € M, 11 ,. Then, we define
M, +1 := M,+1, and continue with, + 1. After a finite number of steps
this construction will stop and yield a partitidi , . .., M of {1,..., M}
which satisfies (10).

It remains to prove the bound & . Considerk € Mg. Then,k & M,
for eachp € {1,..., K — 1} and so (10) is not satisfied for at least one
Ju € M,,. Sincepy, p;, # 0foreachu € {1,..., K — 1}, there are at least
K —1functionsamongsty; : j =1,...,M;j # k}whose supports have
a non-void intersection with the supportef. This provedd < K(®). O

Theorem 3.1 Let I" be a connected sub-piece@f? as in Sect. 2 and let

& be a finite partition of unity obf2 with overlap K (®). Then, for any
fe H*02)and0 < « < 1, we have

M
(11) 1oy < K@) 3 1F @illfracey

Proof. By density, itis enough to prove the assertion for a Lipschitz function
f. We consider a partitiod/y, ..., Mk of {1,..., M} as in Lemma 3.1.
According to (7),f = ij‘il v, f and we obtain

1 Wrary < 1 1m0y = HZmH

He(892)

_HZZSOJfHHQ(‘)Q ZHZ%fHHaGQ
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where we use thafy 7 2 < n(>27 j) Next we apply Lemma 2.1
to{fy; :je M} and |nfer

H Z ©j f‘
JEMy,

Using this in the above estimate we deduce

2
< .
Haon) = Z 15 f I e ()
JjeMy

K M
1 ey S KD D e Fliray = KD 105 flirew,) o

k=1 jEM; j=1
We need some notation to define the geometry in the abstract estimate
below.

Definition 3.2 The widthwidth(w) ofw C 0f2isthe smallestnumber> 0
suchthatthe following is true. There exigts- 0 and some direction € R3,
In| = 1, such that, for eaclr € R? and for each plané (z,n) := {y =
r+m €R3 : m-n = 0} throughz perpendicular tor, w N H(z,n) is a
Lipschitz curve of arc-lengtk d. If there exists no such, letwidth(w) :=
Q.

Theorem 3.2 Let® be a finite partition of unity o@(2 with overlapK (®)
and letw; the interior of suppp; and d; := width(w;) for eachj e
{1,...,M}. Then, for0 < a < 1, I’ C 92, and f € H'(902), we
have

M
(12) ey < K@) D d5" Y (14 d2) V(g5 )32,
j=1

Proof. By Theorem 3.1 and according to the interpolation estimate (6) we
obtain

2(l—«
(13) ey < K(®) anso]r\;w 1f 23l1% o0

Finally, Friedrichs’ inequality yields (even with a smaller constant)

1f 23125 o 1 2311383 02y < 37 (1 + a2 1905 )2

We conclude this section with a modification of a recent result [8,9]
obtained so far by direct calculations with Sobolev-Slobodeckij norms.
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Theorem 3.3 Let® be a finite partition of unity o2 with overlapK ()
and let0 < o < 1 and I’ C 952. Suppose thaf € H'(912) satisfies
fwj fds=0forall j =1,..., M. Then we have

M
(14) 1 13y < C Z ||f||%{a(wj)'
=1

The constan€ > 0 in (14) depends od’, 012, K (®), d; Lip(y;), and the
shape (but neither size nor number) of the patehes

Proof. The proofwill follow from interpolation of the operatdr; | denotes
the area ofv; andj is fixed in{1,..., M})

Ty : HY(09) > H*(w)), [+ @(f - / £ ds/lw;)).

Wi

It is obvious thatl}, is bounded with an operator norfh 1. Fors = 1 we
argue as in the proof of Theorem 3.2 (this time with Poiatainequality)
and deduce

‘ v (wj (f - /w]_ fds/rwj|>>

L2(w;)
< <f—/ fd8/|wj|> V; + e VFllL2w;))
“i L2 (wy)
< Lip(p;) |f—/ fds/|wjl + IVl
i L2 (wj)

< (L+Lip(9)C(wi)) IV fllz2wy)-

This shows thafl} is bounded with an operator norfh C. Then, interpo-
lation theory shows thdf,, is bounded as well [1]. This and Theorem 3.1
prove the assertion. a

Remarks 3.1 The estimate (14)is shownin[8,9]for Sobolev-Slobodeckij
norms. Then, without any restrictions on the mesh, the converse inequality
to (14) is true. We refer to [8, 9] for details.

4 Symm’s integral equation

Let (2 be a bounded polyhedron with boundars2 with (open) faces and
let I C 942 with a Lipschitz curvedI'. Given f € H'(I") we seek) €
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H~'/2(I") satisfying (1) with the linear, bounded and bijective single-layer
potential operatoV : H*~1(I") — H(I") (defined in (1)) foi0 < a < 1.

In the first case let)y € L?(I") denote an arbitrary approximation to
the unique solution) with a residualRy := f — V. It is stressed that
no assumption relate®, and the Lipschitz partition of unity, ..., pay.
Recall that the patchy; is the interior of supfy;) = @W; and letd; :=
diam(w;) denote its diameter.

Corollary 4.1 There exists a constaiit > 0 that depends only ofi <
a < 1, I', and9f2 such that for anyy € L*(I') andRy := f — Vi
we have

N

(15) ¥ = nlF ey < OGNV RN (o))

j=1
Proof. The proof follows fromy) — ¢yy = V 'Ry, the boundedness of
V—1, and Theorem 3.2. 0

In the second case lety € L?(I") denote some approximation such
that the residuaRy := f — Viun has an integraypk Ry ds = 0 over
each elemenf}, with diameterh;, of a partition7 = {Iy,...,I'n} of
I' as in the introduction. Suppose that the supports of hat functigns
are matched exactly by a finite number of elements. Then, the Galerkin
conditionfﬂc Ryds =0 (forallk = 1,...,N) impliesfwj Ryds =0
(forallj =1,...,M).

Corollary 4.2 There exists a constaiit > 0 that depends only ofi <
a < 1, ', 012, and the shape (not the size) of the elements and patches such
that for anyyy € L?(I") andRy := f — Vi with fwj Ry ds = 0forall
j=1,...,M,we have

N
(16) 10— ON Gy < O REIVRNI 2y

7j=1
Proof. The proof follows from the previous Corollary plus a Poirecar-
equality which shows (cf. (3))

IR,y < CHIVRNZ2 W,

and so verifies (recall < ¢; < 1 and Lip(¢;) C(w;) < C for a locally
uniform mesh)

IV (@i B2,y < IBN V5llTa(,) + 107 VRN 2,
< Lip(@)IRN 32, + IVENIZ ()
< C|\VR|Ex.,,
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The following corollary is shown in [8, 9] for Sobolev-Slobodeckij norms
and assumes the same conditions as Corollary (4.2) in the second case.

Corollary 4.3 There exists a constaiit > 0 that depends only ofi <

a < 1, I', 912, and the shape (not the size) of the elements such that for
any Yy € L*(I') and Ry := f — Vi with fwj Ry ds = 0 for all
j=1,...,M,we have

M

(17) 1 =N py < O D BN e
j=1

Proof. The proof follows from Theorem 3.3 if we argue as before. O

Remarks 4.1 (i) Itisemphasisedthat Corollary 4.1 is valid Boryapprox-
imation obtained omny mesh (or even with a mesh-less method) without
any shape-regularity.

(i) Corollary 4.2 motivates the isotropic error indicator

(18) pj = h]l‘/2||VRN”L2(Fj)

sinceC(Z;\’:1 12)1/? is a computable upper error bound with respect to the
energy norm.

(iif) Open surfaces yield edge singularities near the edge which limit the reg-
ularity of the exact solutio, in generaly ¢ L?(I'). Itis well-established

that edge singularities require anisotropic elements and in our numerical
experiments below, the aspect ratio of rectangles is increasing. In those sit-
uations, an anisotropic error indicator such as

(19) ik = hIORN Ol iy (k= 1,2)

is expected to reflect the singular behaviour in a more appropriate way than
(18). In (19),17 is an axes-parallel rectangle with edge-lengthes and

hj72.

(iv) The authors failed to prove thél‘(Z;V:l(M?J + 1i2,))'/? is an upper
error bound.

(v) Corollary 4.3 motivates the (rather theoretical) error indicator

(20) vj = IRl me (),

where the norm inH*(w;) is to be evaluated for complex interpolation.
Besides the interpolation estimate (6) the authors do not know of another
upper bound that is easy to compute.

Instead, Faermann first proves that Theorem 3.3 is true when replacing
the complex interpolated norm by the Sobolev-Slobodeckij norm [9] and
then suggests to evaluate the local Sobolev-Slobodeckij norm in (20) with an
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F1|—1 —1/-1 —1|+1
&in +1|—-1 &in +1+1 &ia +1|—-1

Fig. 1. Refinement of; into four new elements and the basis functigns, &2, &;,3

accurate quadrature rule. The striking advantage of her approachis efficiency
for arbitrary meshes (cf. Remark 3.1).

(vi) A two-level ansatz and a saturation assumption are used in [13] to see,
for quasi-uniform meshes, that, up to multiplicative constait,_, (12, +

12, +n25))/? is alower and upper error bound, where

(VEjks &)/
and the ansatz functiogs,. are defined for one rectangle by dividing it into
four congruent rectangles in Fig. 1.

(vii) Another interpretation for (21) and a motivation for the decision for an
anisotropic mesh-refinement along either the or thexzs-axis is possible
by a line search in the directiafy ., i.e., a separate energy minimisation
along the one-dimensional affine spagce + R §; ;.. Direct calculations for

the energyE(¢) = 3(V, ) — (f,¢) show

min E(Yn + s&;x) = AR G }<V¢N UN)

seR I <V§j k7§j, > 2 ’ ’
which, up to ayn-dependent additive constant, equab$2k Hence, moti-
vated by a minimal energy in a separate line search, we prefer a refinement
along ther;-axes for thak that maximises the term, , amongst = 1 or
k=2.
(viii) The question of efficiency of the a posteriori error estimate (16) remains
open in general. Arguing as in [3] one could prove th@ - u])l/Q is,
up to a multiplicative constant and higher order terms, a Iower bound of the
error as well. The severe assumptions for this are a quasi-uniform mesh (to
guarantee inverse estimates and asymptotic convergence properties) and a
closed boundary (to ensurec L?(I)).

(21) Njk = (k=1,2,3)

5 Error indicators and adaptive algorithms

The error indicatorg.;, 115 , v;, andn; i in (18)-(21) from the a posteriori
error estimates of the previous section can be ordered and employed for
steering automatic mesh-refinements.
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Theorem 5.1 There exist constants, co,c3 > 0 which depend on the
aspect ratio of the elemenfs, ..., I'y in 7 and onI, {2 but not onf,
Ry = f — Vay, oryp = V1 f and neither on the sizes nor numbers of
elements iy such that we have

(22) Njk < Clitjr < CLiL (k=1,2,j=1,...,N),

1/2 1/2

Y mie+me) | <cvi<el| Y u

I'yCw; I'yCwj

(23) (G=1,...,M).

(The inequalities that involve; ;. requirea = 1/2 while the other inequal-
ities are valid for alla.)

Proof. The function¢; ; can be written as the derivative of a hat-function
¢;.1 With heighth; ;. /2. Integration by parts and Cauchy’s inequality show

(24) (RN, &ik) = — (0, BN- 0jk) < 95kl L2 |0z BN | 22(ry)

The function; ; can be also written as the difference of two characteristic
functions&; 1 = x1 — x2 (see Fig. 1)x; and x> are rectangles with side
lengthsh; 1 /2 andh; 2. From

Vixt—x2,x1 — x2) = V(x1, x1) + V(xa, x2) — 2V (x1, x2)
=2V (x1,x1) — 2V (x1, Xx2)

and the following formulae (obtained with direct integration)

4 V(X1>X1)

=2 (hia /2 + Sh, ((nﬂ)+@ﬁw

1
6
hjihja (hja hji
: : h hj h
+ - 5 ( arsin + 7, carsin Qh] 5

A7V (x1, X2)
1 2 1
= 20 /2)7 — S+ 2 (g 207 4 K — (B2 4 )

3
hja 2hj o hja
—9h: 1 Js h h
31 15,2 ( 5 ( hj71 ) + hj2arsin <2hj2>>
hjo hj1
+2hj1hjo | hjaarsinh + hjsarsinh :
hJ,l th
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we eventually deduce that (writirfgj 3 :== h; 1)

21V & ks &)
h3

h
+4hj71hj72 < jz’k

1 1
(h kT 4h’] k+1)3/2 + g(h?J + h?,z)s/Q

6
hjk+1> . ( hj k. ))
—2"= | + h; arsinh| —2~—
( hj g Pkt 2h k1

. h; _ h.
_2hj71hj72 (hj,karsmh(]’kﬂ) + hj,kHarsmh(J”“)) )
GE hjk+1

Inspection of the last term shows that it is indeed equivalerit;id ;.
Using this and equivalence & x|l .2(r;) 10 2j (|1 |)'/2 we deduce from
(24) that

(BN, &jik) <. 5kl z2(r;)

e e San s

(V& &p)t? —  (hyrl )12

This proves the first estimate in (22), the second is obvious.

To verify (23), recall that in (20)[7“(I) is defined by complex inter-
polation and so, witl’s = 1 in (6), we deduce

”8$kRN”L2 ) S Cliik-

vi < IRN 150 1B I

This and Poinc&’s inequality || Rx | z2.,) < C(w;)|IVEN|12(s,) cON-
clude the proof of the second inequality in (23). To prove the first inequality
by complex interpolation, define

Ta:Ha(wj)%Ra f'_> <f7€€,k>'
Itis obvious that the operator norm’sf is bounded| k| 2 (r,)- FOrs = 1

we notice that, ;, has integral mean zero and so, with the integral mgan
of f overI}, we have

|T1f| = ‘<fa€f,k>| = |<f - f_vgﬂ,kH'
A Cauchy and a Poincainequality guarantee
T fI < Wf = Fllzecny ) < CUD N wplleell 2 my)-
Interpolation of the two bounds fdr, for « = 0,1 shows
[(F o)l S N Tall 1 f ey < CUTD) N€ekllzzcry) 1l e w,)-

This estimate and the above computation(B&, , &, ;) verify the first
inequality in (23) (since the sum is finite). a

The numerical experiments reported in Sect. 6 are run with the three
algorithms (A)—(C) which differ in the use of the error indicator and the
refinement procedure in step (4). Therdin< © < 1 is a parameter for
uniform (© = 0) or adaptive mesh-generation.
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Fig. 2. MeshTi generated by Algorithm (B)

Algorithm (A), (B), (C) (i) Startwith an intimal mesff; and sein = 0.
(i) Compute Galerkin solutiory for current mesty,, = {I1,...,I'n}.
(iif) Compute error indicators indicatoys;, 1.; x, andn; ;. from (18)-(21).
(iv) For Algorithm (A), refinel’; into four congruent rectangles provided

pj > Omax{ui,...,un}t.
For Algorithm (B), halvel'; along ther;-axis fork = 1 andk = 2 provided

ik > O max{piyf, .., UNk}-
For Algorithm (C), halvel; along ther;-axis fork = 1 andk = 2 provided

M.k > @max{nl,ka e 777N,k’}'

(v) Generate the new meS§h, ., according to (4) and update. Stop or go
to (ii).

6 Numerical example

The algorithms (A), (B), and (C) were run to solve Symm'’s integral equa-
tion (1) with a right-hand sid¢ = 1 and an initial meslyy that contained
12 congruent squares to cover the L-Shap& he computations were per-
formed using the programaiprogg12]. The error indicatorg,;, j1; ;, were
approximated by numerical integration of the analytical computed gradient
ofthe residual by @ x 4-Gaussian quadrature rule, whilg;, was calculated
exactly using the algorithms of the computation of the Galerkin matrix.
Algorithm (B) generated a sequence of mes{igs),,—1,2.3,.. for © =
0.5. The meshegig, 715, resp.7zo are plotted in Fig. 2, 3, resp. 4. We
observe strong anisotropic refinements parallel and towards all edges which
reflects expected edge-singularities.
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Fig. 4. MeshTzo generated by Algorithm (B)

The energy norm of the solutiahof V¢ = 1 is known to bg V1), 1) /2
= 2.878293 and this is employed to compute the energy error norms through

ek = (V) —¥n), ¥ — ¥n) = (Vi on) — (Vp, )

(by Galerkin-orthogonality). Table 1 gives the results for the meshes gener-
ated by Algorithm (B) whereV is the degree of freedomsyy is the error

in the energy norm, angly = (Zj.vzl u2)'/% is the computed upper error
bound (forae = 1/2 without taking the constant factor into account). The
experimental convergence ratg; is computed as

_ log(ent/en)

(29) = Tog(N/N')

where N’ andey are the corresponding values of the previous row. The
convergence rates observed in Table 1 are much highet ftHgaxpected for
a uniform mesh-refinement) and so indicate an efficient mesh-refining. The
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Table 1. Error indicators and efficiency fa@r= 0.5

N N en en/nn an
12 0.9558277 0.6646427 1.438108
33 0.7157455 0.4917142 1.455613 0.29789
64 05231094 0.3603837 1.451534 0.46911
105 0.3791923 0.2621146 1.446666 0.64310
148 0.2857298 0.1968658 1.451394 0.83396
184 0.2220168 0.1548582 1.433678 1.10237
245 0.1641732 0.1158337 1.417319 1.01408
306 0.1275614 0.0909866 1.401980 1.08598
371 0.0984725 0.0707287 1.392257 1.30757
450 0.0789983 0.0579766 1.362589 1.02987
540 0.0638628 0.0465304 1.372496 1.20629
656 0.0509174 0.0376706 1.351647 1.08548
805 0.0411453 0.0308533 1.333580 0.97535
968 0.0340271 0.0260617 1.305636 0.91532
1243 0.0266476 0.0207189 1.286148 0.91749
1543 0.0217106 0.0173712 1.249805 0.81513
1902 0.0179114 0.0144254 1.241652 0.88835
2418 0.0145247 0.0118803 1.222581 0.80867
3127 0.0116897 0.0097656 1.197027 0.76231
3926 0.0096766 0.0081669 1.184856 0.78566

h-version, p=0 —+—

graded mesh(5), beta=2.0 ---x---

graded mesh(5), beta=3.0 ------
graded mesh(5), beta=4.0 &

graded mesh(8), beta=4.0 --m--

-

Error in Energy norm

Algorithm B (theta=0.5) ----&---
Algorithm C (theta=0.5) - &---

0.01 [

1 1 1
10 100 1000
Number of Unknowns

Fig. 5. Dirichlet problem on the L-shape ik®

quotientsey /nx stay about.1 till 1.5 which indicates a reasonable overall
error estimation (although the boundif! is not included in Table 1).

To report on several related experiments in a more compact form, we
plotted the entrie$N, eyy) for varies numbers oV from the output of Al-

gorithm (A), (B), (C), resp. a sequence of graded mes$figs,,—o.12.... in

sy Ly
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one diagram where the horizonfs} and the verticat -axis are scaled log-
arithmically. Related entries are plotted with the same symbol (e g.,x)

and linked by (e.g., full, dashed, dotted) straight lines in Fig. 5. We refer to
the legend for further details and conclude this section with a few observa-
tions from Fig. 5 and similar experiments.

Remarks 6.1 (i) For uniform and graded meshes, the superiority of a
grading with a parametefj/.J)* for j = 0,...,.J gives the best results
(overgrading leads to larger condition numbers without sufficient improve-
ment).

(ii) Algorithm (A) is not competitive, there is a need for anisotropic mesh-
refinement.

(iif) The change of the parametér (in the range).5 < © < 1) does not
necessarily improve the meshes.

(iv) Algorithm (B) and (C) yield very similar results and can compete for
higher degrees of freedom with optimally graded meshes.
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