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Abstract

Discontinuous Galerkin discretizations promise to become a very flexible tool in hp-adaptive space–time discreti-

zations. This is very attractive for moving interphase problems such as the free boundary between the elastic and plastic

phase in elastoplastic time evolution. The mathematical model of which involves variational inequalities and so the

distributional time derivative is not obviously generalized to discontinuous test functions. This paper motivates and

introduces a discontinuous Galerkin (dG) time discretization. Solution algorithms and examples are established which

support feasibility and accuracy of the proposed schemes dG(0) and dG(1). The methods are compared with a back-

ward Euler and Crank–Nicholson scheme.
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Keywords: Elastoplasticity; Variational inequality; Plasticity with hardening; Primal problem; Dual problem; Discontinuous Galerkin

method; Time discretization

1. Introduction

The numerical simulation of elastoplastic evolution problems is even today a challenge in the core of
computational mechanics. Backward Euler (bE), Crank–Nicholson (CN), or other (generalized) mid-point
rules yield time discretizations followed by a finite element space-discretization in each time step [12,20].
The second-order schemes appear less stable and not always superior to the robust implicit Euler method.
Hence, higher order methods are not frequently employed in practise. Moreover, it seems false to believe
that a mid-point rule generates results which are always superior to, or more accurate than, those of a bE
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scheme. The lack of higher order regularity [17,18] is only partly responsible for this. We refer, e.g., to [2]
for a counter example where one time step of the first-order scheme is exact and the CN scheme is not. Our
interpretation is that the implicit Euler scheme has additional exactness properties which make it favorable
in some examples.

A hierarchy of time discretizations is desirable, e.g., to access the time discretization and so steer the
time-step size within time adaptive algorithms. In this paper we propose discontinuous Galerkin schemes
(abbreviated dG) of order 0; 1; 2; 3; . . . and compare them with difference schemes for time discretization.
The Fig. 1 displays a stress component r11 at a point in the time interval 06 t6 1 computed with the
implicit or bE scheme, the CN scheme, and the discontinuous Galerkin schemes dG(0) and dG(1) for an
example discussed in Section 6. Therein, one observes oscillations for CN after five time steps when the
material behavior becomes inelastic. The approximations from dG(0) are drawn as horizontal line seg-
ments, those of dG(1) as piecewise affine segment. The curve is non-monotone and one might speculate
whether bE gives the best result. Although the exact solution is unknown to us, bE appears more accurate
then CN, while dG(1) seems superior to dG(0). We conjecture that the jumps of dG(1) are a proper in-
dicator for smaller time steps. Discontinuous Galerkin methods hence are very desirable for adaptive
multilevel error assessments. The main difficulty in their design is the correct interpretation of a time deri-
vative of a non-smooth function or even a discontinuous function. This is much more involved than for
time evolution equations [19,21].

The aim of this paper is to design dG(k) time discretizations for elastoplastic evolution problems and
prove that the methods dG(0) and dG(1) are feasible. We derive numerical algorithms and establish some

Fig. 1. History of discrete stress component r11ð10:2729; 0:1125; tÞ at a point A0 as a function of time in the time interval ½0; 1�.
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numerical comparisons. A forthcoming paper [3] will explore the convergence behavior of the schemes from
a theoretical and experimental point of view.

The rest of the paper is organized as follows. The strong and weak evolution problem are stated for a
model in elastoplasticity in its primal and dual formulation in Section 2. The time discretization by gen-
eralized mid-point rules is explained in Section 3. The new discontinuous Galerkin time-discretization
scheme is derived in Section 4 with emphasis on distributional time derivatives of discontinuous functions.
The discrete conditions within each time step are not easily resolved and so Section 5 is concerned with
solution algorithms for the implementation. Two quantitative examples are presented in Section 6 for a
validation and illustration of the new schemes.

2. Primal and dual formulation

This section is devoted to the strong form of a model example in elastoplasticity with hardening and the
weak primal and dual form [12]. The generalized stress and generalized plastic strains are given as

R ¼ ðr; vÞ and P ¼ ðp; nÞ;
respectively. The stress variable r and the total (linear Green) strain,

eðuÞ :¼ sym Du ¼ ðuj;k þ uk;jÞ=2 j; k ¼ 1; 2; . . . ; d;

are linked with the irreversible plastic strain p through an additive split

eðuÞ ¼ C�1rþ p

of small strain plasticity. The fourth-order elasticity tensor C acts as

Cq ¼ k trðqÞ1þ 2lq for all q 2 Rd
d
sym

with trace trðqÞ :¼ q11 þ � � � þ qdd , the d 
 d unit matrix 1, and the Lam�ee constants k, l > 0. The dis-
placement field u is supposed to satisfy Dirichlet boundary conditions in the form

u ¼ uD on CD

for a fixed closed part CD of oX ¼ C of positive d � 1 dimensional (surface) measure. Equilibrium reads in
local form

r ¼ rT and divrþ f ¼ 0 in X

plus Neumann boundary conditions

rn ¼ g on CN :¼ C n CD

on the remaining part of the boundary.
The internal energy assumes the form

F ðe; nÞ :¼ 1=2ðe : Ceþ n �HnÞ
for the fourth-order elasticity tensor C and a symmetric and positive definite hardening tensor H. Internal
(hardening) variables n are written (symbolically) as m dimensional vectors (e.g., the m components of a
symmetric d 
 d tensor for kinematic hardening or scalar, m ¼ 1, for linear isotropic hardening). Hence, n,
v 2 Rm and

H 2 Rm
m
sym

is identified with a symmetric and positive definite m
 m matrix. Then eðuÞ ¼ eþ p and

r ¼ oF ðe; nÞ=oe ¼ Ce and v ¼ �oF ðe; nÞ=on ¼ �Hn:
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The Prandtl–Reuß, flow rule reads ( _pp denotes the time derivative of p)

_pp 2 NkðRÞ :¼ fQ 2 Rd
d
sym 
 Rm : 8T 2 K;QH ðT � RÞ6 0g;

where the set of admissible generalized stresses K � Rd
d
sym 
 Rm is determined by the yield function (e.g., the

von-Mises yield function) U : Rd
d
sym 
 Rm ! R via

K :¼ fT 2 Rd
d
sym 
 Rm : UðT Þ6 0g:

Throughout this paper, we distinguish between the scalar products �, :, H, defined for vectors u, v, d 
 d
matrices p, q, and generalized stresses or strains P, Q by u � v ¼ u1v1 þ � � � þ udvd , p : q :¼

Pd
j;k¼1 pjkqjk, and

PHQ ¼ ðp; nÞH ðq; vÞ ¼ p : qþ n � v.
Then, given data uD, f, and g as functions in time ½0; T � and space, given consistent homogeneous initial

conditions (i.e., uD ¼ 0 ¼ f ¼ g for t ¼ 0) the elastoplastic time evolution determines u, r, v, p and n as
functions on ½0; T � 
 X with

r ¼ rT ¼ CðeðuÞ � pÞ; divrþ f ¼ 0; ð _pp; _nnÞ 2 NKðr; vÞ in ½0; T � 
 X

and the boundary conditions

u ¼ uD on ½0; T � 
 CD and rn ¼ g on ½0; T � 
 CN:

Following [6,12] the primal and dual formulation differ in the treatment of the elastoplastic evolution law.
Convex analysis [10,22] reveals that the above formulation allows an equivalent reformulation via

_PP 2 NKðRÞ () R 2 o suppKð _PP Þ:

The first inclusion is defined above and, given K via a yield function U, reads

UðRÞ6 0 and for all T 2 Rd
d
sym 
 Rm with UðT Þ6 0; there holds _PPH ðT � RÞ6 0:

The second inclusion involves the support function

suppKðQÞ :¼ sup
T2K

QHT ¼ sup
UðT Þ6 0

QHT

and its subdifferential o suppK , e.g.,

R 2 o suppKð _PP Þ () RðQ� _PP Þ6 suppKðQÞ � suppKð _PP Þ for all Q 2 Rd
d
sym 
 Rm:

The corresponding weak formulations are derived by a principle of virtual displacements or by testing with
a test function. The two resulting variational inequalities are summarized below; we refer to [4,12] for
further details.

Primal formulation: Seek ðu; p; nÞ : ½0; T � ! Rd 
 Rd
d
sym 
 Rm with homogeneous initial values and, for

almost every time t 2 ð0; T Þ there holdsZ
X
CðeðuðtÞÞ � pðtÞÞ : ðeðvÞ � _ppðtÞ þ qÞdx�

Z
X

nðtÞ �Hðf� _nnðtÞÞdx

6

Z
X
f ðtÞ � vdxþ

Z
CD

gðtÞ � vdsþ
Z

X
suppKðq; fÞdx�

Z
X
suppKð _ppðtÞ; _nnðtÞÞdx

for all v 2 H 1
DðXÞ :¼ fw 2 H 1ðXÞd : w ¼ 0 on CDg and all ðq; fÞ 2 L2ðX;Rd
d

sym 
 RmÞ plus the Dirichlet
boundary condition uðtÞ ¼ uDðtÞ on CD.
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The test function spaces are based on standard Lebesgue and Sobolev spaces, respectively,

L2ðXÞ :¼ v : X

�
! R : v measurable with

Z
X
jvj2 dx <1

�
;

H 1ðXÞ :¼ fv 2 L2ðXÞ : 8j ¼ 1; . . . ; d; ov=oxj 2 L2ðXÞg

and powers thereof (i.e., all components belong to the respective space); ov=oxj is a weak derivative [9,22].
Dual formulation: Seek ðu; r; vÞ : ½0; T � 
 X ! Rd 
 Rd
d

sym 
 Rm with homogeneous initial values and, for
almost every time t 2 ð0; T Þ, there holdsZ

X
rðtÞ : eðvÞdx ¼

Z
X
f ðtÞ � vdxþ

Z
CT

gðtÞ � vds

for all v 2 H 1
DðXÞ and UðrðtÞ; vðtÞÞ6 0 and, for all ðs;wÞ 2 L2ðX;Rd
d

sym 
 RmÞ with Uðs;wÞ6 0 there holdsZ
X
ðeð _uuðtÞ � C�1 _rrðtÞÞÞ : ðs� rðtÞÞdx�

Z
X
_vvðtÞHH�1ðw� vðtÞÞdx6 0

plus the Dirichlet boundary condition uðtÞ ¼ uD on CD.

Remark 2.1. Dual and primal formulation are, on the continuous level, equivalent [4,12]. The role of the
time derivative as well as the choice of the (main) variables are different.

3. Discretization

This section is devoted to generalized mid-point time discretization and finite element space discreti-
zation of the primal and dual formulation of the elastoplastic model problem. Within the framework of
Section 2 we describe a general-time difference scheme that includes the bE and the CN scheme for H ¼ 1
and H ¼ 1=2, respectively.

The time interval ð0; T � is partitioned in L subintervals Ij ¼ ðtj�1; tj� (open at the left and closed at the
right), j ¼ 1; . . . ; L, according to

t0 ¼ 0 < t1 < t2 < � � � < tL ¼ T ; I ¼ fI1; I2; . . . ; ILg:

Given discrete data x0; x1; . . . ; xL the associated piecewise affine and globally continuous interpolant ~xx is
given by

~xxðtÞ ¼ ðtj � tÞ=kjxj�1 þ ðt � tj�1Þ=kjxj for tj�1 < t6 tj ¼ tj�1 þ kj:

We write ~xx 2 S1ðI;X Þ forI piecewise affine and globally continuous X-valued functions. Notice that ~xx has
a derivative on Ij, namely _~xx~xxðtÞ ¼ ðxj � xj�1Þ=kj for t 2 Ij. (Here, we follow the convention that _~xx~xxðtjÞ equals its
left-sided time derivative.) The idea of finite difference schemes (in time) is to replace derivatives, e.g.,
ð _ppðtÞ; _nnðtÞÞ or ð _uuðtÞ; _rrðtÞ; _vvðtÞÞ, by the discrete time derivatives, e.g., ððpðtjÞ � pðtj�1ÞÞ=kj; ðnðtjÞ � nðtj�1ÞÞ=kjÞ
or ððuðtjÞ � uðtj�1ÞÞ=kj; ðrðtjÞ � rðtj�1ÞÞÞ=kj, ððvðtjÞ � vðtj�1ÞÞ=kjÞ, and replace the evaluation at time t by the
evaluation at a mid-point tj�1 þHkj for some H, 0 < H6 1. Before we state the resulting identities for the
primal and dual formulation, we will specify the space discretization.

The domain X is partitioned into triangles, parallelograms for 2D and tetrahedra for 3D. The resulting
triangulationT is supposed to be regular in the sense of Ciarlet [5,8]. For each element T, PkðT Þ denotes the
algebraic polynomials on T of total degree 6 k if T is a triangle or tetrahedron or of partial degree 6 k if T
is a parallelogram. Then, the required finite element function spaces read
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LkðTÞ :¼ fv 2 L2ðXÞ : 8T 2T; vjT 2 PkðT Þg;

S1ðTÞ :¼ ðL1ðT \ CðXÞÞd ;

S1
DðTÞ :¼ H 1

DðXÞ \S1ðTÞ;

LðTÞ :¼ fðp; nÞ 2 L2ðX;Rd
d
sym 
 RmÞ : pjk; n‘ 2L0ðTÞg ¼L0ðT;Rd
d

sym Þ 
L0ðT;RmÞ:

The finite element approximation is denoted by a subindex h (which is neglected for its continuous
counterpart) although the underlying discretization is based on a partition I in time and T in space. The
substitution of the continuous functions by their discrete approximations in the finite difference scheme
leads to the following two discrete generalized mid-point difference schemes. Set uh;0, ph;0, nh;0, rh;0, vh;0 equal
to zero.

H-discrete-primal formulation: Given ðuh;j�1; ph;j�1; nh;j�1Þ and j ¼ 1; 2; . . . ; L� 1, seek uh;j 2 uD;h;jþ
S1

DðTÞ and ðph;j; nh;jÞ 2 LðTÞ withZ
X
Cðeðuh;j�1þHÞ � ph;j�1þHÞ : ðeðvhÞ � ðph;j � ph;j�1Þ=kj þ qhÞdx

�
Z

X
nh;j�1þH �Hðfh � ðnh;j � nh;j�1Þ=kjÞdx

6

Z
X
f ðtj�1þHÞ � vh dxþ

Z
CN

gðtj�1þHÞ � vh dsþ
Z

X
suppKðqh; fhÞdx

�
Z

X
suppKððph;j � ph;j�1Þ=kj; ðnh;j � nh;j�1Þ=kjÞdx

for all vh 2S1
DðXÞ and all ðqh; fhÞ 2 LðTÞ; here, uh;j�1þH; ph;j�1þH; nh;j�1þH abbreviate

ð1�HÞuh;j�1 þHuh;j; ð1�HÞph;j�1 þHph;j; ð1�HÞnh;j�1 þHnh;j;

i.e., ~uuhðtj�1þHÞ, ~pphðtj�1þHÞ, ~nnðtj�1þHÞ, respectively.

H-discrete dual formulation: Given ðuh;j�1; rh;j�1; vh;j�1Þ and j ¼ 1; 2; . . . ; L� 1, seek uh;j 2 uD;h;j þS1
DðTÞ

and ðrh;j; vh;jÞ 2 LðTÞ withZ
X

rh;j�1þH : eðvhÞdx ¼
Z

X
f ðtj�1þHÞ � vh dxþ

Z
CN

gðtj�1þHÞ � vh ds

for all vh 2S1
DðTÞ and Uðrh;j; vh;jÞ6 0 and, for all ðsh;whÞ 2 LðTÞ with Uðsh;whÞ6 0 there holdsZ

X
ðeððuh;j � uh;j�1Þ=kjÞ � C�1ðrh;j � rh;j�1Þ=kjÞ : ðsh � rh;j�1þHÞdx

�
Z

X
ðvh;j � vh;j�1Þ=kj �H�1ðwh � vh;j�1þHÞdx6 0:

Again, uh;j�1þH, rh;j�1þH, vh;j�1þH abbreviates

ð1�HÞuh;j�1 þHuh;j; ð1�HÞrh;j�1 þHrh;j; ð1�HÞvh;j�1 þHvh;j;

i.e., ~uuhðtj�1þHÞ, ~rrhðtj�1þHÞ, ~vvðtj�1þHÞ, respectively.

Remark 3.1. Recall that the most prominent versions are the Crank–Nicholson time discretization (CN for
short) for H ¼ 1=2 and backward Euler scheme (abbreviated bE) for H ¼ 1 [12,20].
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Remark 3.2. The above described numerical scheme is simplified in that the time-evaluation point tj�1þH is
described by one global parameter and the finite element spaces are fixed in each time step. The more
general situation for flexible time steps and different H for different time steps can be easily extrapolated
from the given descriptions. The presentation of the H-discrete finite difference scheme suffices to model the
numerical examples of Section 6.

Remark 3.3. The implementation and convergence analysis of the H-discrete finite difference schemes
may be found in [2,12–15,20]; particular attention to the mesh-design within one time step is paid in
[4,6,7,11,16].

4. Discontinuous Galerkin time discretization

This section is devoted to the motivation and design of a new class of discontinuous Galerkin time
discretizations (abbreviated dG and dG(k) for the kth-order dG scheme) of elastoplastic evolution prob-
lems. The point of departure is the concept of a distributional derivative of discontinuous I-piecewise
smooth functions.

Example 4.1 (distributional derivative of Heaviside function). A well-known result in the theory of distri-
butions D0 reads

H 0 ¼ d in D0

and means: For any u 2 DðRÞ, i.e., u is C1 and has compact support in R, there holds

�
Z
R

HðtÞu0ðtÞdx ¼ uð0Þ ¼: d;uh i

for the Heaviside function HðtÞ :¼ 0 for t6 0 and HðtÞ ¼ 1 for t > 0 and Dirac’s delta distribution d (which
acts by taking the value of the test function at zero). The proof is by integration by parts (or fundamental
theorem of calculus) on a large interval ð�‘;þ‘Þ such that u vanishes outside ð�‘;þ‘Þ. Then,

�
Z
R

HðtÞu0ðtÞdt ¼ �
Z ‘

0

u0ðtÞdt ¼ �uð‘Þ þ uð0Þ ¼ uð0Þ

(since uð‘Þ ¼ 0 for sufficient large ‘).

Example 4.2 (distributional derivative of I-piecewise smooth functions). Let I denote the partition of the
time domain ð0; T � introduced in the previous section. Let u 2 C1ðIÞ denote the set of all functions
u 2 L1ðRÞ with ujIj 2 C1½tj�1; tj� and constants ujð�1;0� :¼ uð0�Þ and ujðT ;1Þ :¼ uðTþÞ outside ð0; T �. For such
u, the one-sided limits exists,

lim
t!t�j

uðtÞ ¼: uðt�j Þ;

i.e., limt!tþj
uðtÞ ¼ limIjþ13t!tj uðtÞ and limt!t�j

uðtÞ ¼ limIj3t!tj uðtÞ and I0 :¼ ð�1; 0�, ILþ1 :¼ ðT ;1Þ, and we
may define the jumps

½u�j :¼ uðtþj Þ � uðt�j Þ for j ¼ 0; 1; 2; . . . ; L:

Finally, since ujðtj�1;tjÞ is C
1 there exists us :¼ u0 on each ðtj�1; tjÞ. The composition us is the I piecewise time

derivative of u, usjIj ¼ u0jtj�1;tj for j ¼ 0; 1; . . . ; L, which vanishes outside ð0; T Þ. Then, the distributional
derivative _uu is defined by
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Z
R

_uuðtÞvðtÞdt ¼ �
Z
R

uðtÞ _vvðtÞdt for all v 2 DðRÞ

and the point is that the right-hand side is well-understood since _vv is smooth. In abstract terms, the dis-
tributional derivative _uu is the sum of the piecewise contribution us and, owing to the preceding example, the
jump on each tj, namely,

_uu ¼ us þ
XL
j¼0

½u�jdtj in D0ðRÞ:

Here ½u�j is a scalar factor and dtj is the delta distribution supported at tj, i.e., dtj ; v
� �

¼ vðtjÞ. This means
that, for any v 2 DðRÞ,Z

R

_uuðtÞvðtÞdt ¼
Z
R

usðtÞvðtÞdt þ
XL
j¼0

½u�jvðtjÞ:

The proof follows by the linearity of the distributional derivative and the jump identity in the preceding
example. A direct proof via an integration by parts is left to the reader.

In the example, jumps and one-sided limits are written for real-valued functions; the notation is adopted
for Lebesgue- and Sobolev-functions as well.

The two preliminary examples describe the action of _uu for u 2 C1ðIÞ onto continuous test functions. A
dG scheme allows discontinuous test functions for which we establish a proper meaning of _uu. The starting
point focuses on one fixed interval Ij. Given v 2 C1ðIÞ with v ¼ 0 outside Ij we define a globally continuous
and piecewise C1 function ve by veðtÞ :¼ vjeðtÞvðtÞ with

vjeðtÞ :¼

ðt � tj�1Þ=eþ 1 for tj�1 � e6 t6 tj�1;
1 for tj�1 6 t6 tj � e;
ðtj � tÞ=e for tj � e6 t6 tj;
0 elsewhere:

8>><
>>:

Remark 4.1. Here we suppose that vjIj 2 C1½tj�1; tj� can be extended to the left onto v 2 C1½tj�1 � e; tj�. This
is no restriction for the polynomial test function v in the discrete scheme. The final result will be inde-
pendent of this C1 extension.

The evaluation of
R
R
_uuðtÞveðtÞdt for u 2 C1ðIÞ and the test function vE follows with the above formula

and readsZ
R

_uuðtÞveðtÞdt ¼
Z tj

tj�1�e
usðtÞveðtÞdt þ ½u�j�1veðtj�1Þ:

Here we used veðtjÞ ¼ 0 and the continuity of ve at tj�1. The right-hand side is analyzed in the limit e ! 0.
Since usve is bounded, the first term yields

lim
e!0

Z tj

tj�1�e
usðtÞveðtÞdt ¼

Z
Ij

usðtÞvðtÞdt:

Since vjeðtj�1Þ ¼ 1, the second term equals

½u�j�1veðtj�1Þ ¼ ½u�j�1vðtþj�1Þ

(the value vðt�j�1Þ is zero and we extended v onto ðtj�1 � e; tjÞ around tj�1 with this value vðtþj�1Þ).
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Up to this point we were concerned with one time interval Ij and obtained

lim
e!0

Z
R

_uuðtÞveðtÞdt ¼
Z
Ij

usðtÞvðtÞdt þ ½u�jveðtþj�1Þ:

The same procedure for a general v 2 C1ðIÞ with the test function vje :¼ ðextension of vjIjv
j
eÞ and their sum

ve results into

lim
e!0

Z
R

_uu
XL
j¼1

vje

 !
dt ¼

Z T

0

usðtÞvðtÞdt þ
XL
j¼1

½u�j�1vðtþj�1Þ:

The right-hand side makes sense for u, v 2 C1ðIÞ and shall be employed to replace the derivative _uu eval-
uated for the test function v.

Remark 4.2. Since, for a continuous test function v 2 C1ðRÞ � C1ðIÞ, the last right-hand side coincides
with the distributional derivative _uu tested with v, the last expression is one generalization of the distribu-
tional time derivative of u.

Remark 4.3. Given u 2 C1ðIÞ, there are various different ways of generalizations of the expressionR
R
_uuðtÞvðtÞdt for discontinuous v. For example, the choices

vjeðtÞ :¼

ðt � tj�1Þ=e for tj�1 6 t6 tj�1 þ e;
1 for tj�1 þ e6 t6 tj � e;
ðtj � tÞ=e for tj � e6 t6 tj;
0 elsewhere

8>><
>>: or vjeðtÞ :¼

ðt � tj�1Þ=e for tj�1 6 t6 tj�1 þ e;
1 for tj�1 þ e6 t6 tj;
ðtj � tÞ=eþ 1 for tj6 t6 tj þ e;
0 elsewhere

8>><
>>:

lead to different formulae. The first case misses the jump contributions and the second (with v extended
continuously to ðtj�1; tj þ eÞ) yields a forward formula with the jumps ½u�jvðt�j Þ. The objection against the
first choice of vje is that it yields no generalization of

R
R
_uuðtÞvðtÞdt for continuous v. The objection against the

second choice is simply that is does not lead to a single-step method in the end. (This latter outcome will
become transparent in the next section.)

We are now in the position to state the dG(k) methods, k ¼ 0; 1; 2; . . ., where the discrete solution and
the test function belong to LkðI;S1ðTÞd 
 LðTÞÞ,

LkðI;X Þ :¼ v : ½0; T �
n

! X : 8Ij 2 I; vjIj 2 PkðIj;X Þ
o
;

PkðIj;X Þ :¼ v : Ij
�

! X : 9v0; v1; . . . ; vk 2 X 8t 2 Ij; vðtÞ ¼ v0 þ v1t þ � � � þ vktk
�
:

dG(k)-discrete dual formulation: Seek ðuh;RhÞ 2LkðI;S1ðTÞd 
 LðTÞÞ, Rh ¼ ðrh; vhÞ, with ðuh; rh;
vhÞðtÞ ¼ 0 for t6 0, uhðtÞ ¼ uD;hðtÞ on CD and Uðrh; vhÞðtÞ6 0 for 06 t6 T ; furthermore there holdsZ T

0

Z
X

rh : eðvhÞdxdt ¼
Z T

0

Z
X
f � vh dxdt þ

Z T

0

Z
CN

g � vh dsdt

for all vh 2LkðI;S1
DðTÞÞ and, for all Th :¼ ðsh;whÞ 2LkðI; LðTÞÞ with Uðsh;whÞðtÞ6 0 for 06 t6 T ,

there holdsZ T

0

Z
X
Ph;sH ðTh � RhÞdxdt þ

XL
j¼1

Z
X
½Ph�j�1H ðTh � RhÞðtþj�1Þdx6 0;

where Ph :¼ ðeðuhÞ � C�1rh;�H�1vhÞ 2LkðI; LðTÞÞ.
The dG(k) discrete dual formulation is straight-forward in that a time derivative _PPhH ðTh � RhÞ is sub-

stituted by the aforementioned formula. The corresponding situation is rather more involved for the primal
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formulation where, in addition, the term suppkð _PhPhÞ requires a discrete formulation. The difficulty is that the
function suppK (think of it as a modulus function) does not commute with time derivatives and is, in
general, not even differentiable.

Fortunately, suppKðPhÞ is not an arbitrary function, but related to the set of admissible generalized
stresses K via a dual pairing. We employ

suppKð _PPhÞ ¼ sup
R2K

RH _PPh

in the time-domain integralZ T

0

Z
X
suppKð _PPhÞdxdt ¼

Z T

0

Z
X
sup
R2K

RH _PPh dxdt: ð4:1Þ

In the discrete setting, we replace the last integral by

sup
Rh2LkðI;LðTÞÞ

Z T

0

Z
X
RhH _PPh dxdt ð4:2Þ

and evaluate the aforementioned formula _PPh ¼ Ph;s þ
PL

j¼1 dtþj�1 ½Ph�j�1 for Rh. This motivates the interpre-
tation of

R T
0

R
X suppKð _PPhÞdxdt in the discretization as

sup
Rh2LkðI;LðTÞÞ

Z T

0

Z
X
RhHPh;s dxdt

 
þ
XL
j¼1

Z
X
Rhðtþj�1ÞH ½Ph�j�1 dx

!

and results in the following discrete scheme.
dG(k)-discrete-primal formulation: Seek ðuh; PhÞ 2LkðI;S1ðTÞd 
 LðTÞÞ, Ph ¼ ðph; nhÞ, with

ðuh; ph; nhÞðtÞ ¼ 0 for t6 0, uhðtÞ ¼ uD;hðtÞ on CD for 06 t6 T , andZ T

0

Z
X
CðeðuhÞ � phÞ : ðeðvhÞ � ph;s þ qhÞdxdt �

Z T

0

Z
X

nh �Hðfh � nh;sÞdxdt

�
XL
j¼1

Z
X
CðeðuhÞ � phÞðtþj�1Þ : ½ph�j�1 dxþ

XL
j¼1

Z
X

nhðtþj�1Þ �H½fh�j�1 dx

6

Z T

0

Z
X
f � vh dxdt þ

Z
CN

g � vh dsdt þ sup
Rh2LkðT;LðTÞÞ

Z T

0

Z
X
Rh H ðqh; fhÞdxdt

� sup
Rh2LkðI;LðTÞÞ

Z T

0

Z
X
Rh H Ph;sdxdt

 
þ
XL
j¼1

Z
X
Rhðtþj�1Þ H ½Ph�j�1 dx

!

for all ðvh; ðqh; fhÞÞ 2LkðI;S1
DðTÞ 
 LðTÞÞ.

Remark 4.4. On the continuous level one can prove

sup
UðRÞ6 0

Z T

0

Z
X
RðtÞHQðtÞdxdt ¼

Z T

0

sup
UðRÞ6 0

Z
X
RHQðtÞdx

 !
dt ¼

Z T

0

Z
X

sup
UðRÞ6 0

R

 

 Qðx; tÞ

!
dxdt:

This justifies the replacement of (4.1) by (4.2).

The two discrete dG schemes are written in integral form and will be recast into single-step methods in
the subsequent section.
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Remark 4.5. The derivation of the two dG schemes appears heuristic. At some points, various different
choices would have resulted in other methods. The mathematical justification of the schemes introduced in
this section is two-fold. Firstly, this Part I will show that the methods are feasible, i.e., they lead to single-
step methods and there are algorithms to solve the discrete problems. Moreover, the schemes lead to
reasonable results in two applications in Section 6. Secondly, the forthcoming paper [3] will provide an a
priori error analysis with asymptotic convergence rates. Moreover, the theoretical results are verified ex-
perimentally in a test example. Then, after the analysis is established, the fact that the schemes are practical
and convergent, finally justifies our particular choices made in this section.

5. Numerical algorithms

This section is devoted to single-step descriptions of the discrete dG(k) primal and dual formulation for
k ¼ 0 and k ¼ 1. The situation for k ¼ 0 is very similar to the bE scheme.

dG(0) single-step primal formulation: Given ðuh;j�1; ph;j�1; nh;j�1Þ and j ¼ 1; 2; . . ., L� 1, seek uh;j 2 uD;h;jþ
S1

DðTÞ and ðph;j; nh;jÞ 2 LðTÞ withZ
X
Cðeðuh;jÞ � ph;jÞ : ðeðvhÞ � ðph;j � ph;j�1Þ þ qhÞdx�

Z
X

nh;j �Hðfh � ðnh;j � nh;j�1ÞÞdx

6

Z tj

tj�1

Z
X
f ðtÞ � vh dxdt þ

Z tj

tj�1

Z
CN

gðtÞ � vh dsdt þ
Z

X
suppKðqh; fhÞdx

�
Z

X
suppKðph;j � ph;j�1; nh;j � nh;j�1Þdx

for all vh 2 S1
DðXÞ and all ðqh; fhÞ 2 LðTÞ.

dG(0) single-step dual formulation: Given ðuh;j�1; rh;j�1; vh;j�1Þ and j ¼ 1; 2; . . ., L� 1, seek uh;j 2 uD;h;jþ
S1

DðTÞ and ðrh;j; vh;jÞ 2 LðTÞ with

kj

Z
X

rh;j : eðvhÞdx ¼
Z tj

tj�1

Z
X
f ðtÞ � vh dxdt þ

Z tj

tj�1

Z
CN

gðtÞ � vh dsdt

for all vh 2 S1
DðTÞ and Uðrh;j; vh;jÞ6 0 and, for all ðsh;whÞ 2 LðTÞ with Uðsh;whÞ6 0, there holdsZ

X
ðeðuh;j � uh;j�1Þ � C�1ðrh;j � rh;j�1ÞÞ : ðsh � rh;jÞdx�

Z
X
ðvh;j � vh;j�1Þ �H�1ðwh � vh;jÞdx6 0:

Theorem 5.1. The discrete problems dG(0) for the single-step primal and dual formulation have unique dis-
crete solutions. The resulting piecewise constant approximation

ðuh; PhÞ 2L0ðI;S1ðTÞ 
 LðTÞÞ
and ðuh;RhÞ 2L0ðI;S1ðTÞ 
 LðTÞÞ solves the dG(0)-discrete-primal and dual formulation, respectively.

Proof. Since the dG(0) single-step versions can be regarded as bE scheme with a modified right-hand side
(f and g), there exist solutions for the same reasons that guarantee the feasibility of the bE scheme. Then, it
is not hard to see that the resulting respective I piecewise constant vectors solve the (total-step) discrete
formulations. (Recall for the primal problem that suppK is homogeneous of degree 1 and so may be
multiplied with the time-step kj followed by a change of test-functions.) �
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More notation is required to present more details on dG(1). In the time step for Ij ¼ ðtA; tBÞ, we are given
u0, P0, R0 as the left-sided limits at tA and seek an affine function ðuh; Ph;RhÞ in time,

ðu; P ;RÞðtÞ ¼ ðuA; PA;RAÞ þ ðt � tAÞ=kðuB � uA; PB � PA;RB � RAÞ for tA < t6 tB:

Let ðu1; . . . ;unÞ be a (standard) nodal basis of S1
DðTÞd � H 1

DðXÞ and define the discrete right-hand sides
F ¼ ðF 1

j ; F
2
j Þ 2 Rn
2 by

F 1
‘ :¼

Z tj

tj�1

Z
X
ðt � tAÞ=ku‘ � f ðtÞdxdt þ

Z tj

tj�1

Z
CN

ðt � tAÞ=ku‘ � gðtÞdsdt;

F 2
‘ :¼

Z tj

tj�1

Z
X
ðtB � tÞ=ku‘ � f ðtÞdxdt þ

Z tj

tj�1

Z
CN

ðtB � tÞ=ku‘ � gðtÞdsdt

for all ‘ ¼ 1; . . . ; n. The scalar product in time is described by the fourth-order tensor M and the corre-
sponding bilinear form

ðA;BÞMðC;DÞ :¼ k=6ðA : Bþ 2B : C þ 2A : Dþ B : DÞ for A;B;C;D 2 Rd
d
sym ;

ðA;BÞMðC;DÞ :¼ k=6ðAHBþ 2BHC þ 2AHDþ BHDÞ for A;B;C;D 2 Rd
d
sym 
 Rm:

Then, the time step in the dG(k)-discrete dual formulation reads, in the above notation as follows.
One time step in dG(1)-dual formulation: Seek uA, uB 2S1ðTÞd with uA ¼ uD;hðtAÞ, uB ¼ uD;hðtBÞ on CD

and RA, RB 2 LðTÞ with

UðRAÞ6 0; UðRBÞ6 0; RA ¼ ðrA; vAÞ; RB ¼ ðrB; vBÞ

such thatZ
X
ðrA; rBÞMðeðujÞ; eðukÞÞdx ¼ ðF 1

j þ F 2
k Þ ðj; k ¼ 1; . . . ; nÞ

and, for each T 2T and all TA ¼ ðsA;wAÞ, TB ¼ ðsB;wBÞ 2 Rd
d
sym 
 Rm with UðTAÞ6 0, UðTBÞ6 0 and for

P0 :¼ðeðu0Þ �C�1r0;�H�1v0ÞjT , PA ¼ ðeðuAÞ �C�1rA, �H�1vAÞjT , PB :¼ ðeðuBÞ �C�1rB;�H�1vBÞjT 2 Rd
d
sym 


Rm, there holds

1=2ðPB � PAÞH ðTA � RA þ TB � RBÞ þ ðPA � P0ÞH ðTA � RAÞ6 0:

The time integration of the supp term is slightly more involved and discussed below.
One time step in dG(1) primal formulation: Seek uA, uB 2S1ðTÞd with uA ¼ uD;hðtAÞ, uB ¼ uD;hðtBÞ on CD

and PA ¼ ðpA; nAÞ, PB ¼ ðpB; nBÞ 2 LðTÞ such that

rA :¼ ðCeðuAÞ � pAÞ; rB :¼ ðCeðuBÞ � pBÞ;
RA :¼ ðrA;�HnAÞjT ; RB :¼ ðrB;�HnBÞjT 2 Rd
d

sym 
 Rm

satisfyZ
X
ðrA; rBÞMðeðujÞ; eðukÞÞdx ¼ ðF 1

j þ F 2
k Þ ðj; k ¼ 1; . . . ; nÞ

and, for each T 2T and all QA;QB 2 Rd
d
sym 
 Rm,

ðRA;RBÞMðQA;QBÞ � 1=2ðRA þ RBÞH ðPB � PAÞ � RAH ðPA � P0Þ
6 sup

UðRAÞ6 0

UðRBÞ6 0

ðQA;QBÞMðRA;RBÞ � sup
UðRAÞ6 0

UðRBÞ6 0

ð1=2ðPB � PAÞH ðRA þ RBÞ þ ðPA � P0ÞHRAÞ:
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Example 5.1 (linear kinematic hardening). The von-Mises yield function

U : Rd
d
sym 
 Rm ! R

is written for Rm � Rd
d
sym (i.e., the m ¼ dðd þ 1Þ=2 entries of Rm are ordered canonically to define a sym-

metric d 
 d matrix),

Uðr; vÞ ¼ jdevðrþ vÞj �
ffiffiffiffiffiffiffiffi
2=3

p
ry :

Then

suppKðp; nÞ ¼
ffiffiffiffiffiffiffiffi
2=3

p
ry jpj if trðpÞ ¼ 0 and p ¼ n;

þ1 else:

�

Furthermore, for any SA ¼ ðpA; nAÞ, SB ¼ ðpB; nBÞ 2 Rd
d
sym 
 Rm,

sup
UðRAÞ6 0

UðRBÞ6 0

ðRAHSA þ RBHSBÞ ¼

ffiffiffiffiffiffiffiffi
2=3

p
ðjpAj þ jpBjÞ if trðpAÞ ¼ trðpBÞ ¼ 0;

and pA ¼ nA; pB ¼ nB;
þ1 else:

8<
:

This enables a direct evaluation of the inequality in one time step in the primal formulation.
In order to simplify the variational inequality further, observe that MðQA;QBÞ is an arbitrary test

functional (i.e., the linear operator M behind the bilinear form associated with M is bijective). Hence
MðQA;QBÞ may be substituted by ðQA;QBÞ. This and direct calculations show

RAH ðQA � ðPB þ PAÞ=2þ P0Þ þ RBH ðQB � ðPB � PAÞ=2Þ
6 suppKðQAÞ � suppKððPB þ PAÞ=2� P0Þ þ suppKðQBÞ � suppKððPB � PAÞ=2Þ

for all QA, QB 2 Rd
d
sym 
 Rm. This system is equivalent to two separate variational inequalities which, in

terms of subgradients in convex analysis, read

RA 2 o suppKððPA þ PBÞ=2� P0Þ and RB 2 o suppKððPB � PAÞ=2Þ:

Example 5.2 (linear kinematic hardening). In continuation of Example 5.1, we assume that H is H times the
identity and remark that the inclusions for

RA ¼ ðCðeðuAÞ � pAÞ;�HnAÞ and RB ¼ ðCðeðuBÞ � pBÞ;�HnBÞ:

lead to explicit representations. Indeed, the conditions on pA, pB, nA, nB 2 Rd
d
sym read

pA ¼ nA; pB ¼ nB; trðpAÞ ¼ trðpBÞ ¼ 0;

devCeðuAÞ � ð2lþ HÞpA 2
ffiffiffiffiffiffiffiffi
2=3

p
ryoj � jððpB þ pAÞ=2� p0Þ;

devCeðuBÞ � ð2lþ HÞpB 2
ffiffiffiffiffiffiffiffi
2=3

p
ryoj � jððpB � pAÞ=2Þ:

The subgradient oj � j of the modulus function in Rd
d
sym reads oj � jð0Þ ¼ fq 2 Rd
d

sym : jqj6 1g and oj � jðqÞ ¼
fq=jqjg for q 2 Rd
d

sym n f0g, i.e.,
q 2 oj � jðpÞ () ðp ¼ 0 and jqj6 1Þ or ðp 6¼ 0 and q ¼ p=jpjÞ:

The example illustrates, that, given uA and uB, the variational inequalities can be solved elementwise very
directly for particular hardening laws. In the example we failed to give explicit formulae for pA and pB as a
function of eðuAÞ, eðuBÞ, and p0. There is, however, the following algorithm to compute them.
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Algorithm 5.1 (computing ðpB; pAÞ in terms of eðuAÞ, eðuBÞ, p0). In the notation of the example we are given
material parameters C, H > 0, ry > 0 and eðuAÞ, eðuBÞ, p0.

(a) Set c :¼
ffiffiffiffiffiffiffiffi
2=3

p
ry , A1 :¼ devCeðuBÞ � ð2lþ HÞp0, A2 :¼ devCeðuAÞ � ð2lþ HÞp0, and set a :¼ jA1j=c.

(b) If jA1j ¼ jA2j ¼ 0 then set l1 ¼ 0 ¼ l2 and goto (k).
(c) If jA1j ¼ 0 < jA2j ¼: b then set

l1 ¼ ðb� 2cÞþ=b and l2 ¼ ðb2=c� bÞ=ððb� 2cÞþ þ b2=cÞ
and goto (k).

(d) If 0 < jA1j then set b :¼ A1 : A2=ðcjA1jÞ and c :¼ jA2 � b=aA1j=c.
(e) If c ¼ 0 then follow exactly one of the following cases (e1)–(e4)

(e1) If ða� 1Þþ < jb� 1þ ð1� aÞþj � 2 set l1 ¼ ðjb� aj � 2Þ=jb� aj and l2 ¼ ðjb� aj þ 2aÞ=
ðjb� aj þ 2aþ 2Þ;

(e2) If jb� 1þ ð1� aÞþj � 26 ða� 1Þþ < jbj � 1 set l1 ¼ 0, l2 ¼ ðjbj � 1Þ=jbj;
(e3) If jbj � 16 ða� 1Þþ < jb� 1j set l1 ¼ ða� 1Þþ=a, l2 ¼ 0;
(e4) If jb� 1j6 ða� 1Þþ set l1 ¼ ða� bÞ=ða� bþ 2Þ, l2 ¼ ðaþ b� 2Þ=ðaþ bÞ,

and goto (k).
(f) If c 6¼ 0 set l1 :¼ ða� 1Þþ=a.
(g) If ðl1aþ bÞ2 þ c2 6 1 set l2 :¼ 0 and goto (k).
(h) If ðl1aþ bÞ2 þ c2 > 1 set l2 :¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
� 1Þþ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ c2

p
.

(i) If ða� l2bÞ
2 þ ðl2cÞ

2
6 1 set l1 :¼ 0 and goto (k).

(j) If ða� l2bÞ
2 þ ðl2cÞ

2
> 1 solve

ðaðx
h

þ f ðxÞÞ � bgðxÞÞ2 þ c2gðxÞ2
i1=2

x ¼ max 0; ðaðx
h�

þ f ðxÞÞ � bgðxÞÞ2 þ c2gðxÞ2
i1=2

� ðxþ f ðxÞ þ xgðxÞÞ
�

for x in ð0; 1Þ. Here, f ðxÞ :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðaxþ bÞ2 þ c2

q
and gðxÞ :¼ maxf0; f ðxÞ � 1g. Set l1 :¼ x for the solution

x and l2 :¼ gðl1Þ=ðl1 þ f ðl1ÞÞ.
(k) Given l1, l2 in ½0; 1Þ, let

pA :¼ ððA1 þ A2Þl1l2 � l1A1 þ l2A2Þ=ðð1þ l1l2Þð2lþ HÞÞ þ p0;

pB :¼ ððA1 � A2Þl1l2 þ l1A1 þ l2A2Þ=ðð1þ l1l2Þð2lþ HÞÞ þ p0:

Theorem 5.2. Given eðuAÞ, eðuBÞ; p0 in Example 5.2, the Algorithm 5.1 computes pA and pB. Then, RA and RB

which are the unique solutions of

RA 2 o suppKððPA þ PBÞ=2� P0Þ and RB 2 o suppKððPB � PAÞ=2Þ:

Proof. The proof consists of laborious but essentially direct analytical considerations on the solution l1 and
l2 of

l1jA1 � l2A2j ¼ ðjA1 � l2A2j � cð1þ l1l2ÞÞþ;
l2jl1A1 þ A2j ¼ ðjl1A1 þ A2j � cð1þ l1l2ÞÞþ:

We mention that 06l1, l2 < 1 is always guaranteed and refer to [1] for further details. �

The two time-step formulations for dG(1) have unique solutions. The computation of which employs an
alternating algorithm.
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Algorithm 5.2 (computing the discrete solution). In the notation of Example 5.1 and of the dG(1)-Primal
Formulation, initialize ðpA; pBÞ :¼ ðp0; p0Þ on each T 2T.

(a) Given ðpA; pBÞ solve the linear system of equationsZ
X
ðCeðuAÞ;CeðuBÞÞMðeðujÞ; eðukÞÞdx ¼ ðF 1

j þ F 2
k Þ þ

Z
X
ðpA; pBÞMðeðujÞ; eðukÞÞdx

for j; k ¼ 1; . . . ; n and ðuA; uBÞ 2 ðuD;hðtAÞ; uD;hðtBÞÞ þS1
DðTÞ2.

(b) Given ðuA; uBÞ and T 2T compute ðpAjT ; pBjT Þ from eðuAÞjT , eðuBÞjT , p0jT with Algorithm 5.1.
(c) Check convergence and terminate with (d) or continue with (a).
(d) Output is uA, uB, PA, PB and RA;RB.

Remark 5.1 (computing the discrete solution for dual formulation). An Uzawa-type algorithm is suggested
for the dG(1) single-step dual formulation where Step (b) of Algorithm 5.2 is replaced by a regularized
version of the equilibrium equations, namely, for j ¼ 1; . . . ; n,Z

X
ðeðuAÞ; eðuBÞÞMðeðujÞ; eðukÞÞdx ¼ ðF 1

j þ F 2
k Þ �

Z
X
ðrA; rBÞMðeðujÞ; eðukÞÞdx

is solved for ðuA; uBÞ and ðrA; rBÞ is then computed elementwise by direct solutions of the variational in-
equalities in the particular situation.

Remark 5.2 (convergence of Algorithm 5.2). A convergence proof of Algorithm 5.2 might be possible along
the arguments from [6]. In the numerical examples of Section 6 we obtained global convergence with up to a
few hundred iterations even for the finest meshes to achieve a residual vector smaller than 10�3. More
efficient multilevel or domain decomposition techniques are desirable in the future.

Remark 5.3 (dGðkÞ for kP 2). The main obstacle for dG(k) for kP 2 consists in the side restriction
UðRðtÞÞ6 0 for all t 2 Ij. If k6 1, this is a simple consequence of UðRAÞ6 0, UðRBÞ6 0, and the convexity of
U. For kP 2 this is no longer as simple as this.

6. Numerical examples

This section is devoted to two applications, Cook’s membrane and a perforated tension strip. The el-
astoplastic material is adopted from Example 5.1 and Algorithm 5.2 is used for the computations.

Fig. 2. System and initial mesh T0 for Cook’s membrane.
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Fig. 3. Calculated deformed configuration for t ¼ 1=2 and t ¼ 1 in Example 6.1 with von-Mises stresses in color: (a) bE, t ¼ 1=2;
(b) CN, t ¼ 1=2; (c) dG(0), t ¼ 1=2; (d) dG(1), t ¼ 1=2; (e) bE, t ¼ 1; (f) CN, t ¼ 1; (g) dG(0), t ¼ 1; (h) dG(1), t ¼ 1.
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6.1. Cook membrane

The 2D elastoplastic quadrilateral body X ¼ convfA;B;C;Dg is defined for A ¼ ð0; 44Þ, B ¼ ð0; 0Þ,
C ¼ ð48; 44Þ, D ¼ ð48; 60Þ. The system, its Dirichlet boundary CD ¼ convfA;Bg, and its loading gðtÞ in
vertical direction along convfC;Dg while g � 0 along convfB;Cg [ convfD;Ag, is depicted in Fig. 2 to-
gether with the initial triangulation T0 and the material parameter. There is no volume force (f � 0 in X)

Fig. 4. History of discrete stress component r11ð0:5000; 43:9740; tÞ at a point A0 as a function of time in the time interval ½0; 1�.

Fig. 5. System and initial mesh T0 in Example 6.2.
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Fig. 6. Calculated deformed configuration for t ¼ 1=2 and t ¼ 1 in Example 6.2 with von-Mises stresses in color: (a) bE, t ¼ 1=2;
(b) CN, t ¼ 1=2; (c) dG(0), t ¼ 1=2; (d) dG(1), t ¼ 1=2; (e) bE, t ¼ 1; (f) CN, t ¼ 1; (g) dG(0), t ¼ 1; (h) dG(1), t ¼ 1.
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and the applied surface load gðtÞ is considered for a process time t in the time domain ð0; 1Þ with homo-
geneous initial and boundary conditions (uD ¼ 0).

The time discretization employed eight uniform time steps with constant time increment 0.125 with a
mesh T3 obtained by successive red-refinements starting with T0 from Fig. 2. (A red-refinement of a
triangle T is the division of T into four congruent sub-triangles derived from lines through the edges’ mid-
points.) Fig. 3 displays the eight numerical results obtained with bE, CN, dG(0), dG(1) for t ¼ 1=2 and
t ¼ 1. The displacements are magnified by a factor 20 to show the deformed configuration. The grey tones
inside display the von-Mises stress

rref :¼ jdevðrh þ vhÞj:

The results for t ¼ 1=2 are comparable while, for t ¼ 1, we observe differences. The von-Mises stresses of bE
and dG(1) are comparable and similar to that of dG(0). The values for CN appear different. To explore the
reasons for this behavior and to illustrate the respective time approximation properties of the four schemes,
Fig. 4 displays the discrete stress component ðrhÞ11 at the point A0 ¼ ð0:5; 43:974Þ, center of inertia of a finite
element close to A, as a function of time t for 06 t6 1. The material behavior near A seems to be elastic for
06 t6 0:4. Since the plastic behavior starts near A, we deduce that the overall material behavior is rather
elastic for t ¼ 1=2 which explains the similar von-Mises stress fields computed by all four schemes for
t ¼ 1=2. In contrast, for t ¼ 1, we have large parts of the body in the plastic state and the values for r11 near
A are almost constant. While bE, dG(0), dG(1) are almost constant, the CN approximations oscillate
around the constant value. As mean value is met at the mid-point of the time interval I8, we have a per-
turbation for t ¼ T ¼ 1. Our interpretation is that Fig. 4 shows oscillations for t ¼ 1 in the CN approxi-
mation which vanish in time and vanish in time averages.

6.2. Perforated tension strip

The second example corresponds to a benchmark [11] shown in Fig. 5. A squared domain ð100;þ100Þ2
without a centered circular hole of radius 10, i.e., X ¼ ð�100;þ100Þ2 n Bð0; 10Þ, is pulled at the upper and
lower ends by an applied surface load g; f � 0. Because of symmetry, only one quarter of the domain is
discretized with an initial mesh T0 shown in Fig. 5. The time discretization in 8 uniform time steps
with k ¼ 1=8 is as in the previous example, while the finite element mesh T4 with N ¼ 8048 degrees of
freedom is generated by four successive red-refinements of T0. The eight approximations for t ¼ 1=2
and t ¼ 1 computed by bE, CN, dG(0), dG(1) are shown in Fig. 6 in the same way as in the previous
example. Again we observe that the von-Mises stress approximations of bE and dG(k) are similar while
those from CN appear different. The time history of the (11) stress component is plotted in Fig. 1 which
was discussed in the introduction. The oscillations for CN are even stronger as in the Cook’s membrane
problem.

6.3. Conclusions

The numerical examples clearly show that Algorithm 5.2 is feasible and dG(0) and dG(1) lead to rea-
sonable finite element approximations. In contrast to the CN scheme, the higher order dG(1) does not show
oscillations. This is important if one wants a hierarchy of schemes for the use of multilevel refinement
indicators. The examples might suggest that dG(1) is the best amongst all four bE, CN, dG(0), and dG(1)
schemes in the two examples. All four time discretizations appear to converge in time. This is proven in
[2,12,14] in time and in [4,7,12] in space for bE and CN. A corresponding analysis with a corresponding
academic numerical example for dG(0) and dG(1) will be found in [3].
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