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A Posteriori Error Control for Finite Element Approximations
of the Integral Equation for Thin Wire Antennas

In this paper we discuss a finite element approximation method for solving the Pocklington integro-differential equation
for the current induced on a straight, thin wire by an incident harmonic electromagnetic field. We obtain an a posteriori
error estimate for finite element approximations of the equation, and we prove the reliability of this estimate. The theoret-
ical results are then used to motivate an adaptive mesh-refining algorithm which generates very efficient meshes and
yields optimal convergence rates in numerical experiments.
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1. Introduction

The problem of electromagnetic scattering from a thin wire antenna by an incident harmonic electromagnetic field is
extremely important in electrical engineering. A standard model for this problem is the Pocklington integro-differential
equation for the current induced on the wire by the incident electromagnetic field. Once the induced current is known
the scattered field can then easily be obtained from this current by means of a standard integral representation. Sup-
pose that the wire, modeled as a thin, perfectly conducting, hollow tube lies along the z-axis in the interval
U ¼ ð�1; 1Þ. Let the radius of the wire be a > 0 and the wave number of the incident field be k > 0. Then the current
u satisfies the Pocklington equation

d2

dz2
þ k2

� � ð
U

uðzÞGðz� zÞ dz ¼ fðzÞ ; ð1:1Þ

on U and the boundary conditions uð�1Þ ¼ 0. Here G : R ! C is defined, for z 2 R, by

GðzÞ ¼ 1

2p

ð2p

0

expf�ikðz2 þ 4a2 sin2 1
2 qÞ1=2g

ðz2 þ 4a2 sin2 1
2 qÞ1=2

dq

and f : U ! C is a known function, being a constant multiple of the z-component of the incident electric field on the z-
axis, see [9].

Many numerical methods of solving Pocklington’s equation have been considered before, especially in the electrical
engineering literature (see [2] for an extensive discussion and bibliography of such methods). Generally these have been
Galerkin type methods (called the ‘method-of-moments’ in the electrical engineering literature). However, few rigorous
convergence results have been proved for these methods (see [13] for some results). In this paper we establish a residual-
based a posteriori error estimate for a finite element approximation scheme. The estimate motivates a particular adaptive
algorithm for automatic mesh-refinement which performed efficiently in numerical experiments, see [6] (numerical results
for many algorithms are described and compared in [6] so, for brevity, we simply refer to [6] for numerical results).

The operator Pu on the left-hand side of (1.1) has similar mapping properties to those of a hypersingular integral
operator [14––16]. We refer to the survey [5] for references to the literature regarding adaptive algorithms and a poster-
iori error control for hypersingular equations which is mainly concerned with closed curves; open antennas are not
boundaries of Lipschitz domains and so require mesh-adaptation, a different functional analytical setting, and the
efficiency of the a posteriori error estimate remains an open question since the arguments of [3] are not applicable.

The paper is organized as follows. The mapping properties of the operators involved in (1.1) in suitable Sobolev
spaces are recalled from recent literature in Section 2. Existence and regularity of weak solutions is explained in Section 3,
while we report in Section 4 on the finite element discretization and a priori error estimates for non-uniform meshes. The a
posteriori error estimate is proved to be reliable in Section 5 and a resulting mesh-refining algorithm is described.

2. Preliminaries

We introduce some function spaces. For s � 0, let Hs
2p denote the fractional order (Hilbert) Sobolev space of functions

on R which are 2p-periodic, with norm k � kHs
2p

, see Definition 8.1 of [10] for the specific definition that we use, and
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Chapter 8 of [10] for a general discussion of these spaces (these spaces are also discussed in Chapter I of [17], see in
particular, Exercise 4.4). We use the spaces Hs

2p in this situation since they are particularly simple to define, in terms
of Fourier series rather than Fourier transforms, and are sufficient for our present 1-dimensional setting –– the relation-
ship between the 2p-periodic Sobolev spaces and the usual Sobolev spaces is discussed in [17]. We also let H�s

2p denote
the dual space, ðHs

2pÞ
0, of Hs

2p, see Definition 8.8 in [10].
We will also require spaces of functions, or distributions, defined on U . For any 2p-periodic function, or distribu-

tion, T we let T jU denote its restriction to the set U (see Section 1.4 of [17] for the definition of the restriction of a
distribution); we let supp T denote the support of T in the interval ½�p;p� (see Definition 1.3 of [17] for the definition
of the support of a distribution). Now, for s 2 R, we define the following spaces and norms:

HsðuÞ ¼ fu : u ¼ u*jU with u* 2 Hs
2pg ;

kukHsðUÞ ¼ inffku*kHs
2p

: u* 2 Hs
2p and u*jU ¼ ug ;

~HHsðUÞ ¼ fu : u ¼ ~uujU with ~uu 2 Hs
2p and supp ~uu � IUUg ;

kuk ~HHsðUÞ ¼ k~uukHs
2p

;

for any u 2 ~HHsðUÞ, we let ~uu 2 Hs
2p denote the extension, by zero, of the function u to ½�p;p�, and then to R by 2p-

periodicity.
It can be shown that, for s > 0, H�sðUÞ ¼ ~HHsðUÞ0 (in fact, H�sðUÞ can be defined to be ~HHsðUÞ0). Let h�; �i

denote the usual L2ðUÞ inner product, or its extension to the dual pair of Sobolev spaces H�1=2ðUÞ � ~HH1=2ðUÞ.
The space ~HHsðUÞ, with s > 0, can also be defined by interpolation, see (1.9) in [15], but the above definition is

equivalent to the interpolation definition, see Lemma 1.1 of [15]. We also note that ~HHsðUÞ ¼ HsðUÞ, when 0 < s < 1
2,

~HH1=2ðUÞ ¼ H
1=2
00 ðUÞ � H

1=2
0 ðUÞ, and ~HHðUÞ ¼ Hs

0ðUÞ, when 1
2 < s < 1 (where these spaces are defined in [11] and these

results are proved there, see Theorems 11.4 and 11.7).
When 1

2 < s < 1 the elements of ~HHsðUÞ are continuous, so they satisfy the boundary condition uð�1Þ ¼ 0 in the
classical sense, whereas the elements of ~HH1=2ðUÞ satisfy uð�1Þ ¼ 0 in a generalized sense.

We now define various linear operators on HsðUÞ and ~HHsðUÞ. Firstly, for any s 2 R and u 2 Hs
2p, let Du denote

the distributional derivative of u; if u 2 HsðUÞ, with u ¼ u*jU , u* 2 Hs
2p, then we defined Du ¼ ðDu*ÞjU (this defini-

tion is independent of the extension u* of u). Next, it can be shown that the kernel G may be written in the form

GðzÞ ¼ � 1

ap
logjzj þRðzÞ ; z 2 R ; ð2:1Þ

where the function R 2 C1ðR n f0gÞ, and, near z ¼ 0,

jRðzÞj þ @R

@z
ðzÞ

����
���� � c ;

@2R

@z2
ðzÞ

����
���� � jlogjzjj ; ð2:2Þ

for some constant c > 0, see Lemma 4.1 in [12]. Now, for any u 2 C1
0 ðUÞ and z 2 U, let

VuðzÞ ¼ � 1

p

ð
U

uðzÞ logjz� zj dz and LuðzÞ ¼
ð
U

uðzÞRðz� zÞ dz :

It is well-known that for each s 2 R the operator V can be extended to the space ~HHsðUÞ to yield a bounded operator
V : ~HHsðUÞ ! Hsþ1ðUÞ, while it follows from the smoothness properties (2.2) of the function R that L can be extended
to a bounded operator L : ~HHsðUÞ ! Hsþ3ðUÞ (see, for example, the discussion on pp. 368––371 of [16]). In view of these
results we can define a bounded operator P : ~HHsðUÞ ! Hs�1ðUÞ by

Pu ¼ ðD2 þ k2Þ ða�1V þ LÞ u ; u 2 ~HHsðUÞ :

The operator P represents the left hand side of eq. (1.1), together with the boundary conditions uð�1Þ ¼ 0, in the
setting of the space ~HHsðUÞ. Then, given f 2 Hs�1ðUÞ, the problem can be rewritten as the equation

Pu ¼ f : ð2:3Þ

3. Existence and regularity results

It has recently been shown that P is non-singular and satisfies a GJaarding inequality.

Theorem 3.1 (Theorem 2.1 in [13]): For 0 < s < 1 the operator P : ~HHsðUÞ ! Hs�1ðUÞ is non-singular. Further-
more, when s ¼ 1

2 there is a compact operator C : ~HH1=2ðUÞ ! H�1=2ðUÞ and a constant g > 0 such that, for all u 2 ~HH1=2ðUÞ,

�RehðP þ CÞ u; ui � gkuk2
~HH1=2ðUÞ : ð3:1Þ
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Solutions of (2.3) typically have a square root type singular behavior at the end points �1 which precludes
Theorem 3.1 from holding for s � 1. Despite this, higher regularity results can be obtrained by augmenting the usual
Sobolev spaces with functions which describe this singular behavior.

We define the following functions: let r�ðzÞ ¼ jz� 1j, for z 2 U , and let c� be C1 functions on R such that
0 � c� � 1, c� � 1 near �1 and c� � 0 near �1. For each s 2 ½1; 2Þ we define the space z

sðUÞ, consisting of functions
w : IUU ! C of the form

w ¼ a�r1=2
� c� þ aþr

1=2
þ cþ þ v ; ð3:2Þ

where a� 2 R and v 2 ~HHsðUÞ (Lemma A.2 in [15] shows that r
1=2
� c� 2 ~HHsðUÞ for s < 1). We can identify z

sðUÞ with
R2 �HsðUÞ, and we write elements of zsðUÞ in the form fa�;aþ; vg. The norm on z

sðUÞ is defined by

kfa�;aþ; vgkzsðUÞ ¼ ja�j þ jaþj þ kvk ~HHsðUÞ :

The operator P acts on elements of zsðUÞ (see Theorem 1.8 in [16]), and solutions of (2.3) can be represented in the
form (3.2).

Theorem 3.2 (Theorem 2.2 in [13]): For 1 < s < 2 the operator P : zsðUÞ ! Hs�1ðUÞ is non-singular.

4. Discretization and a priori error estimates

The results of Section 3 can now be applied to Galerkin methods for the numerical solution of eq. (2.3). The abstract
formulation of general Galerkin methods, and the derivation of convergence results from GJaarding inequalities, is well-
known so the discussion will be brief and proofs can be omitted; we refer to [7], [8], or [14], for example, for more
details.

To apply Galerkin methods to the problem we first reformulate eq. (2.3) in an equivalent form: given
f 2 H�1=2ðUÞ, find u 2 ~HH1=2ðuÞ such that, for all x 2 ~HH1=2ðUÞ,

hPu; xi ¼ hf; xi : ð4:1Þ

Next, we define a mesh p :¼ fU1; . . . ; UNg to be a partition of the interval U into the subintervals Uj ¼ ½xj�1; xj�,
j ¼ 1; . . . ; N , where �1 ¼ x0 < x1 < . . . < xN ¼ 1 is an arbitrary collection of points in U . For each j ¼ 1; . . . ; N , let hj
denote the length of Uj and let h :¼ maxfh1; . . . ; hNg. Given a mesh p, let S1

pðUÞ be the space of continuous functions,
with support in U, which are polynomials of degree one on each element of the mesh p.

Now, a Galerkin solution of (4.1) is a function up 2 S1
pðUÞ such that, for all xp 2 S1

pðUÞ,

hPup; xpi ¼ hf; xpi : ð4:2Þ

As a consequence of the non-singularity of the operator P and the GJaarding inequality (3.1), Galerkin solutions up of
(4.2) exist and convergence quasi-optimally to the exact solution u of (4.1) as h ! 0.

Theorem 4.1 (Theorem 3.1 in [13]): If f 2 H�1=2ðUÞ, then there exist constants h0 2 ð0; 1Þ, C > 0, such that for
h 2 ð0; h0Þ the problem ð4:2Þ has a unique solution up 2 S1

pðUÞ and

ku� upk ~HH1=2ðUÞ � C inf
fp 2S1

pðUÞ
ku� fpk ~HH1=2ðUÞ ; ð4:3Þ

where u 2 ~HH1=2ðUÞ is the unique solution of (4.1).

It follows from Theorems 11.5––7 in [11] that S1
pðUÞ � ~HHsðUÞ for s < 3=2. The approximation properties of the

spaces S1
pðUÞ are well-known and can be summarized as follows, see Ch. 4 of [1] or p. 677 of [7].

Theorem 4.2: If 0 � t � s � 2, t < 3=2, then there exists a constant C ¼ Cðs; tÞ > 0 such that, for h > 0 and
any v 2 ~HHsðUÞ,

inf
fp 2S1

pðUÞ
kv� fk ~HHtðUÞ � Chs�tkvk ~HHsðUÞ : ð4:4Þ

Convergence properties of the scheme can now be derived from Theorems 4.1 and 4.2 (note that by Theorem 3.1,
if f 2 L2ðUÞ then the solution u 2 ~HH1�EðUÞ for all E > 0, and kuk ~HH1�EðUÞ � gEkfkL2ðUÞ, for some constant gE > 0).

Theorem 4.3 (Theorem 3.3 in [13]): If f 2 L2ðUÞ, then for each E > 0 there exist constants h1 2 ð0; h0Þ, CE > 0
such that, for h 2 ð0; h1Þ;

ku� upk ~HH1=2ðUÞ � CEh
1=2�EkfkL2ðUÞ ð4:5Þ

(up exists by Theorem 4.1).
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The rate of convergence of the Galerkin scheme can be improved by augmenting the approximation spaces
S1

pðUÞ with the singular functions r
1=2
� c� of Section 3, that is, by defining the space

z
1
pðuÞ ¼ fr1=2

� c�; r
1=2
þ cþg � S1

pðUÞ :

It follows from Theorems 11.5––7 in [11] that z
1
pðUÞ � z

sðUÞ, for s < 3=2. Theorem 4.1 also holds for the spaces
z

1
pðUÞ and we have the following analogue of Theorem 4.2, see Lemma 4.1 in [7].

Theorem 4.4: If 1 < s < 2, then there exists a constant C ¼ CðsÞ > 0 such that, for each h > 0 and any
w 2 z

sðUÞ,

inf
fp 2z

1
pðUÞ

kw� fpk ~HH1=2ðUÞ � Chs�1=2kwk
z

sðUÞ : ð4:6Þ

The convergence properties of the augmented Galerkin scheme now follow from Theorems 4.1 and 4.4, see Theo-
rems 4.4, 4.5 in [7] for details of the proof.

Theorem 4.5 (Theorem 3.5 in [13]): If 1 < s < 2, 1 � t � 3=2, t � s, and f 2 Hs�1ðUÞ, then there exist con-
stants h2 2 ð0; h0Þ, C > 0 such that, for h 2 ð0; h2Þ;

ku� upk ~HH1=2ðUÞ � Chs�1=2kfkHs�1ðUÞ and ku� upkztðUÞ � Chs�tkfkHs�1ðUÞ : ð4:7Þ

5. A posteriori error estimate

In this section a residual-based a posteriori error estimate is derived for arbitrary meshes. Given a mesh p, define
j :¼ maxfhj=hk : jj� kj ¼ 1g.

Theorem 5.1 (Theorem 2 in [4]): For 0 � a � 1, there exists a constant Ca such that for any f 2 L2ðUÞ which
is L2ðUÞ-orthogonal to S1

pðUÞ we have

kfkH�aðUÞ � cða;pÞ
PN
j¼1

h2a
j kfk2

L2ðUjÞ

 !1=2

; ð5:1Þ

where cða;pÞ is given by

cða;pÞ :¼
Ca if a 6¼ 1

2 ;

C1=2ðlogð1 þ jÞÞ1=2 if a ¼ 1
2 :

(
ð5:2Þ

Now suppose that f 2 L2ðUÞ and h 2 ð0; h1Þ, so that Theorem 4.3 holds, and let Rp be the residual of the
Galerkin solution up, that is,

Rp :¼ f � Pup ¼ P ðu� upÞ ; ð5:3Þ

where u and up are the solutions of (4.1) and (4.2), respectively. We note that Rp 2 L2ðUÞ because f 2 L2ðUÞ and
f0; 0; upg 2 z

tðUÞ for 1 < t < 3=2, whence Pup 2 Ht�1ðUÞ � L2ðUÞ by Theorem 3.2. Thus, for 0 < s < 1 we may de-
fine the error indicators

hj :¼ h1�s
j kRpkL2ðUjÞ ; j ¼ 1; . . . ; N : ð5:4Þ

As a consequence of the Galerkin conditions and Theorem 5.1 we obtain the following a posteriori error estimate for
these error indicators (note that, by Theorem 3.1, the inverse operator P�1 : Hs�1ðUÞ ! ~HHsðUÞ is bounded, that is, the
operator norm kP�1kLðHs�1ðUÞ; ~HHsðUÞÞ is bounded).

Theorem 5.2: If 0 < s < 1 and f 2 L2ðUÞ then

ku� upk ~HHsðUÞ � cð1 � s;pÞ kP�1kLðHs�1ðUÞ; ~HHsðUÞÞ
PN
j¼1

h2
j

 !1=2

: ð5:5Þ

Pr oo f : The essential observation is that the residual Rp is L2ðUÞ-orthogonal to S1
pðUÞ because of (4.1)––(4.2).

Indeed, for all xp 2 S1
pðUÞ,

hRp; xpi ¼ hf � Pup; xpi ¼ 0 : ð5:6Þ

Therefore, Theorem 5.1 shows that

kRpkHs�1ðUÞ � cð1 � s;pÞ
PN
j¼1

h2
j

 !1=2

: ð5:7Þ
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Now, u� up ¼ P�1Rp so

ku� upk ~HHsðUÞ ¼ kP�1Rpk ~HHsðUÞ � kP�1kLðHs�1ðUÞ; ~HHsðUÞÞ kRpkHs�1ðUÞ : ð5:8Þ

Combining (5.7)––(5.8) concludes the proof.
The question of the sharpness of the estimate (5.5) is clarified only for quasi-uniform meshes on closed curves,

see [3] for details. The question is unresolved for open arcs such as U.
We conclude this paper by describing and adaptive algorithm for automatic mesh-refinement.
Algorithm (A). Given a coarse mesh, refine it successively by halving some of its elements as follows: For any

mesh p compute h; . . . ; hN as defined in (5.4) and refine Uj if and only if

hj � q max
k¼1;...; N

hk : ð5:9Þ

The parameter q is chosen between 0 (uniform refinement; every element is refined) and 1 (very selective refine-
ment; only very few elements are refined); q ¼ 1

2 is expected to generate reasonable meshes.
If s ¼ 1

2, the Algorithm (A) ignores the mesh-dependence in cð12 ;pÞ for simplicity. Since the dependence on j is
very weak, this is reasonable if we deal with a moderate number of refinement steps only.

The Algorithm (A) is implemented in [6, Section 2.6] and compared with various other schemes. The numerical
evaluation of the error indicators hj is somewhat complicated (it involves elliptic integrals) so is not described here; see
[6, Section 3.5]. Fig. 8 in [6] shows that the experimentally observed convergence rate of the error, with respect to the
L2-norm rather than the H1=2-norm, is 1 for uniform meshes and 2 for the adaptive meshes generated by Algorithm
(A). These observations are in agreement with (4.5) (which, with the usual Aubin-Nitsche argument, yields a conver-
gence rate of 1 for uniform meshes, with respect to the L2-norm) and the convergence rate of 3/2 in the H1=2-norm
which is usually observed for adaptive algorithms. From this numerical evidence we conclude that the adaptive algo-
rithm significantly improves the performance of the discretization.

Acknowledgement

We are grateful to the British Council and the German Academic Exchange Service (DAAD) for supporting this work through the
ARC program.

References

1 Aziz, A. K. (ed.): The mathematical foundations of the finite element method with applications to partial differential equations.
Academic Press 1972.

2 Burke, G. J.: Numerical Electromagnetics Code (NEC-4) –– Method of moments, Part II –– Theory, UCRL-MA-109338, Pt. II.
Lawrence Livermore National Laboratory, CA 1992.

3 Carstensen, C.: Efficiency of a posteriosi BEM error estimates for first kind integral equations on quasiuniform meshes. Math.
Comp. 65 (1996), 69––84.

4 Carstensen, C.: An a posteriori error estimate for a first kind integral equation. Math. Comp. 66 (1997), 139––155.
5 Carstensen, C.; Faermann, B.: Mathematical foundation of adaptive mesh-refining algorithms for boundary integral equations

of the first kind. Eng. Analysis Boundary Elem. 25 (2001), 497––509.
6 Davies, P. J.; Duncan, D. B.; Funken, S. A.: Accurate and efficient algorithms for frequency domain scattering from a thin

wire. J. Comp. Phys. 168 (2001), 155––183.
7 Feistauer, M.; Hsiao, G. C.; Kleinman, R. E.: Asymptotic and a posteriori error estimates for boundary element solutions of

hypersingular integral equations. SIAM J. Numer. Anal. 33 (1996), 666––685.
8 Gohberg, I. C.; Feldman, J. A.: Convolution equations and projection methods for their solution. American Mathematical

Society 1974.
9 Jones, D. S.: Note on the integral equation for a straight wire antenna. IEE Proc. 128 (1981), 114––116.

10 Kress, R.: Linear integral equations. Springer 1989.
11 Lions, J. L.; Magenes, E.: Non-homogeneous boundary value problems and applications. Vol. I. Springer 1972.
12 Rynne, B. P.: The well-posedness of the integral equations for thin wire antennas. IMA J. Appl. Math. 49 (1992), 35––44.
13 Rynne, B. P.: Convergence of Galerkin method solutions of the integral equation for thin wire antennas. Adv. Comp. Math. 12

(2000), 251––259.
14 Stephan, E.; Wendland, W. L.: Remarks to Galerkin and least squares methods with finite elements for general elliptic prob-

lems. Manuscripta Geod. 1 (1976), 93––123.
15 Wendland, W. L.; Stephan, E.; Hsiao, G. C.: On the integral equations method for the plane mixed boundary value problem

of the Laplacian. Math. Meth. Appl. Sci. 1 (1979), 265––321.
16 Wendland, W. L.; Stephan, E.: A hypersingular boundary integral method for two dimensional screen and crack problems.

Arch. Rat. Mech. Anal. 122 (1990), 363––390.
17 Wloka, J.: Partial differential equations. Cambridge University Press, Cambridge 1992.

Received February 11, 2000, revised March 2, 2001, accepted April 4, 2001

Addresses: Prof. Dr. Carsten Carstensen, Technische Universit€aat Wien, Institut f€uur Angewandte und Numerische Mathematik,
Wiedner Hauptstr. 8––10/115, A-1040 Wien, €OOsterreich; Dr. Bryan P. Rynne, Department of Mathematics, Heriot-Watt
University, Edinburgh EH14 4AS, Scotland, e-mail: bryan@ma.hw.ac.uk

&

288 ZAMM � Z. Angew. Math. Mech. 82 (2002) 4


