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Abstract

Averaging techniques are popular tools in adaptive finite element methods for numerical simulation in continuum

mechanics since they provide efficient a posteriori error control. In this paper, the reliability of any averaging estimator

is shown for low order finite element methods in one time-step of elastoplasticity with hardening. The constants and

higher-order terms are effected by the hardening and the smoothness of given right-hand sides, but are independent of

the structure of a shape-regular mesh. Since it involves a different functional analytical framework, the case of perfect

plasticity is excluded from this paper.
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1. Introduction

Within a spatial discretisation of one time-step in a finite element analysis of elastoplasticity, we en-

counter a variational inequality with a quite complicated material law determined by admissible (genera-

lised) stresses on top of the problem of linear elasticity.

It is therefore not at all clear that a simple averaging of the discrete stress field might serve as an error

estimator for reliable error control. In particular, the residual in the material law, e.g., in some Kuhn–

Tucker conditions on the plastic multiplier, might have to be involved. This paper shows that indeed, any

stress-averaging technique [32] is reliable.

The main results concern a piecewise stress approximation rh (to the exact stress r) obtained by a
standard finite element analysis of one time-step within the evolution of an elastoplastic (or viscoplastic)
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body X with piecewise constant hardening approximations and globally continuous piecewise linear dis-
placement approximants [14,27].

A posteriori error estimates employ the information available after the computation of rh and determine

computable error estimators g as error bounds: The error estimator g is called reliable if the stress error e in
energy norm,

e2 :¼ kC�1=2ðr � rhÞk2L2ðXÞ :¼
Z

X
ðr � rhÞ : C�1ðr � rhÞdX; ð1:1Þ

(where C is the constant fourth-order elasticity tensor), is bounded from above by g,

e6C1g: ð1:2Þ
Strictly speaking, an estimator is efficient if the converse estimate holds. In a relaxed form, we consider

an error estimator g as efficient if (h.o.t. replaces terms of higher order)

g6C2eþ h:o:t: ð1:3Þ
The estimates (1.2) and (1.3) involve constants Cj which are independent of the number N of degrees of

freedom or the mesh-size and also independent of the unknown exact solution; they may depend on the

domain, the material law and parameters, and on applied volume and surface loads f and g, respectively.
The higher order terms in (1.3) may depend on the exact solution.

The first reliable error estimators were established in [18] even for perfect plasticity and involve terms
such as

gT ;R ¼ h2T

Z
T
jf þ divTrhj2 dX þ

Z
oT

hEj½rh 	 nE
j2 ds ð1:4Þ

for one element T (of diameter hT ) with edges E (of length hE) on the boundary oT ; f is a given volume force

and divTrh is the piecewise divergence (which vanishes in the present case of lowest order fem) while
½rh 	 nE
 denotes the jump of the stress vectors across the element edge E with normal nE (and standard

modification on parts of the boundary of X with applied surface loads).

The residual-based estimator [18] involves other terms in the plastic region where the functional ana-

lytical setting required for perfect plasticity provides only very weak approximation properties of the

displacement field in BDðXÞ [15,25–29]. The resulting estimate (1.2) of [18] therefore involves a moderate

constant C1 but is (probably) not efficient. Numerical experiments show a high mesh-refinement in the

plastic part of the body which appear unreasonable from the approximation property of the exact solution

(but certainly is unavoidable from the rigourous mathematical viewpoint).
The duality approach in [22–24] allows for more general error norms (or error functionals) and cures the

difficulty with a possibly non-smooth solution with a recovery of (unknown) higher derivatives of the exact

solution in computable differences of its finite element approximation. This indicates roughness of the

unknown solution, adopts the mesh-refinement to it, and performs remarkably well in their numerical

examples. The rigourousness of their estimate, however, is disputable; but it seems fair to say that their

approach leads to very accurate error guesses and is very valuable for particular error functionals.

This paper is restricted to the error norms e of (1.1) and continuous our mathematical analysis in [3,6–8]

with focus on elastoplasticity with hardening, where the functional analytical context of linear elasticity is
applicable on the price of that some constants may crucially depend on the hardening moduli. As shown in

[3,8], (1.4) yields indeed a reliable and efficient error estimator

gR ¼
X
T2T

g2
T

 !1=2

: ð1:5Þ
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At first glance it may surprise that this error estimator is the same as in the context of linear elasticity (of
course with a different dependence of the stress from the strain and hardening variables). The reason is that

the evolution problems in the plastic material law is (within one time-increment) are satisfied exactly on

each element whence the material law has a vanishing residual. Thus, excluding the error accumulation for

progressing time-steps, the only remaining residuals are the discrete equilibrium conditions of (1.4).

This paper addresses the question of reliable and efficient estimators which are based on averaging

techniques for unstructured grids in the presence of hardening. The accumulating error of the time-dis-

cretisation attracted experimentalists to estimate the error with averaging techniques [20,21]. In Hencky

elastoplasticity under question, this accounts for a substitution of the (unknown) exact stress r in (1.2) by
some computed average r�

h,

gZ :¼
X
T2T

g2
T ;Z

 !1=2

ð1:6Þ

with the elementwise contributions

g2
T ;Z :¼ kC�1=2ðr�

h � rhÞk2L2ðT Þ :¼
Z
T
ðr�

h � rhÞ : C�1ðr�
h � rhÞdX: ð1:7Þ

Note that (1.7) and so gZ involves the stresses (without hardening parameters) while [20] treats gener-

alised stress fields (where the hardening parameters are averaged as well). Without a mathematical justi-

fication, it is not at all clear which variables should enter the averaging process: Besides the discrete stress

variables there are other internal variables, the discrete strain field (whose curvature is certainly important

for mesh-refinements), and possibly approximations to plastic multipliers.

The classical justification of averaging techniques advertised by Zienkiewicz and Zhu is based on su-
perconvergence phenomena which are available for structured grids and smooth solutions only and have

not been verified in elastoplasticity at all.

Following our technique for the justification of the ZZ-estimator in [4,10,11] based on a special ap-

proximation operator [5,12], we prove in this paper the reliability and efficiency of gZ for an arbitrary

globally continuous and piecewise polynomial approximation r�
h which is supposed to satisfy static

boundary conditions at nodal points N there. To state the main results for a piecewise smooth applied

surface load g on CN with edges EN , let

QðT; gÞ :¼ fr�
h 2 S1ðTÞd�d

: r�
hðzÞ 	 nE ¼ gðzÞ for all z 2 N \ E with E 2 ENg: ð1:8Þ

Then, any average r�
h 2 QðT; gÞ leads in (1.7) to a reliable estimate. In particular the minimal choice

gðoptÞ
Z :¼ min

r�h2QðT;gÞ
kC�1=2ðr�

h � rhÞkL2ðXÞ ð1:9Þ

is reliable but costly to compute. However, g ¼ gðoptÞ
Z yields a reliable and efficient estimate with C2 ¼ 1, i.e.,

we have

e� h:o:t:6C1g
ðoptÞ
Z 6C1eþ h:o:t: ð1:10Þ

Note that the second inequality of (1.10) follows from a triangle inequality for a nodal interpolant

Ir 2 QðT; gÞ of r; indeed,

gðoptÞ
Z 6 kC�1=2ðrh � IrÞkL2ðXÞ 6 kC�1=2ðr � IrÞkL2ðXÞ þ kC�1=2ðr � rhÞkL2ðXÞ ¼ eþ h:o:t:;

as then kC�1=2ðr � IrÞkL2ðXÞ is of higher order. It is worth mentioning that, even for perfect plasticity, the

exact stress r is smooth (in contrast to the displacement field) [25,26]; hence there holds efficiency with a

constant 1.
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This paper concerns the remaining crucial reliability estimate of (1.10), studies the dependencies of the
constants Cj and the higher-order terms h.o.t., and proposes a related adaptive algorithm for efficient

automatic mesh-refining.

The rest of this paper is organised as follows. Hencky plasticity reads as a variational inequality and so

we address the problem accordingly from an abstract point of view in Section 2. It turns out that this

abstract frame covers a large class of material laws in the dual (i.e., stress-oriented) and primal (i.e., strain-

oriented) formulation. Both models are introduced and analysed in Section 3 for an abstract material law.

Von Mises yield functions with isotropic and/or kinematic hardening or viscoplasticity are covered as

particular cases in Section 4. The numerical examples of Section 5 are striking in the sense that a com-
parison with an exact solution shows that our realisation of the ZZ-estimator (1.6) is amazingly close to the

exact stress error e. The proposed adaptive Algorithm 1 improved the spatial discretisation significantly.

Throughout the paper, we employ standard notation for Lebesgue and Sobolev spaces, and ð	; 	Þ denotes
the inner product of (any power of) L2ðXÞ.

2. Abstract frame

One time-step of an elastoplastic evolution problem with hardening or viscoplastic regularisation yields

the following task: Find a solution x in a convex, closed set K to the variational inequality

‘ðy � xÞ6 aðx; y � xÞ þ wðyÞ � wðxÞ for all y 2 K: ð2:1Þ
With a Hilbert space X , a : X � X ! R is a continuous symmetric bilinear form, ‘ : X ! R a continuous

and linear functional and w : X ! ½0;1
 is a convex, lower semicontinuous mapping which is not identi-

cally equal to 1. Ellipticity of a is sufficient for the existence of a solution which minimises the energy
functional 1

2
aðx; xÞ � ‘ðxÞ þ wðxÞ on K [31].

A finite element discretisation of X yields a discrete setKh � K � X ; sinceKh � K the discretisation is

conforming. Suppose that �xx 2 Kh exists with wð�xxÞ6wðxÞ.
Similar ellipticity conditions on a and on the convexity and closedness of Kh (as in the aforementioned

continuous case) show the existence of a solution xh 2 Kh to the discrete variational inequality

‘ðyh � xhÞ6 aðxh; yh � xhÞ þ wðyhÞ � wðxhÞ for all yh 2 Kh: ð2:2Þ
In the next theorem, ellipticity of a is not explicitly required.

Theorem 1. Suppose x 2 K solves (2.1) and xh 2 Kh solves (2.2). Then we have

aðx� xh; x� xhÞ6 min
yh2Kh

ðaðxh; yh � xÞ � ‘ðyh � xÞ þ wðyhÞ � wðxÞÞ: ð2:3Þ

Proof. Set y ¼ xh 2 Kh � K in (2.1) and set yh 2 Kh in (2.2). Adding the resulting inequalities we infer

‘ðyh � xÞ6 aðx; xh � xÞ þ aðxh; yh � xhÞ þ wðyhÞ � wðxÞ from which we deduce (2.3) even for a non-symmetric

non-elliptic bilinear form a. �

The theorem will be evaluated for some yh 2 Kh which simultaneously satisfies yh � x and wðyhÞ6wðxÞ.
The point is that without the latter property we have no argument to see that jwðyhÞ � wðxÞj is small since w
is not smooth. The essential idea of [8] is to use Jensen�s inequality and choose parts of yh as the (ele-

mentwise) integral means of x.

Theorem 2 (Jensen�s inequality for integrals). Suppose j : Rm ! ½0;1Þ is convex, x � Rd is an open and
bounded set with d-dimensional measure jxj. For p 2 L1ðxÞm with mean �pp :¼

R
x pdX=jxj 2 Rm we have
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Z
x
jð�ppÞdX6

Z
x
jðpÞdX: ð2:4Þ

Proof. The proof is to stress the difference to the point-version

j
XN
k¼1

kkpk

 !
6

XN
k¼1

kkjðpkÞ ð2:5Þ

for 06 k1; . . . ; kN 6 1 with k1 þ 	 	 	 þ kN ¼ 1 and p1; . . . ; pN 2 Rm. The estimate (2.5) is occasionally called

Jensen inequality: it is directly related to the convexity of j. Indeed, if p is a simple function, i.e.,
p ¼

PN
k¼1 pkvAk

for p1; . . . ; pN 2 Rm and a partition A1 [ 	 	 	 [ AN ¼ x of x, with characteristic functions

vAk
ðxÞ ¼ 1 if x 2 Ak and ¼ 0 otherwise, we have convex coefficients kk :¼ jAkj=jxj and deduce from (2.5) that

(2.4) holds. It remains to verify (2.4) for an arbitrary function p in L1ðxÞm by density of simple functions.

The limit process in L1ðxÞ is technical and hence omitted; we refer to [19] for a proof. �

3. Reliability of stress-averaging techniques in elastoplasticity

This section is devoted to the primal and dual formulation of elastoplasticity and to put the abstract

frame in a precise setting. We start with the dual formulation (in the notation of [14]) which is stress-related

and more frequently found in the engineering literature. The equilibrium conditions read

divr þ f ¼ 0 in X; ð3:1Þ

rn ¼ g on CN ð3:2Þ
for the stress tensor r 2 L2ðX;Rd�d

sym Þ in a body X, a bounded Lipschitz domain in Rd with boundary

C ¼ CD [ CN . On some closed part CD of C with positive surface measure we suppose homogeneous geo-

metric boundary conditions for the displacement field u,

u 2 H :¼ H 1
DðXÞ :¼ fv 2 H 1ðXÞd : v ¼ 0 on CDg:

On the remaining part CN :¼ C n CD, the traction is prescribed by a given g 2 L2ðCNÞd and the outer unit

normal n. With the fourth-order elasticity tensor C, Cs ¼ 2ls þ trsId, we suppose an additive split

eðuÞ ¼ C�1r þ p of the (linear) Green strain

eðuÞ ¼ symDu ¼ ððuj;k þ uk;jÞ=2 : j; k ¼ 1; . . . ; dÞ:

With further internal (hardening) variables a 2 L2ðXÞm and the hardening tensor H 2 Rm�m
sym we suppose a

material law

ðeðuÞ � C�1rÞ : ðs � rÞ þ a 	H�1ðb � aÞ6 jðs; bÞ � jðr; aÞ ð3:3Þ

for all ðs; bÞ 2 Rd�d
sym � Rm. The plastic potential j : Rd�d

sym � Rm ! ½0;1
 takes the value þ1 for generalised

stresses ðr; aÞ which are not admissible. Examples will be listed at the end of this section and indeed, it will

be shown that our results are quite independent of the choice of j. It is merely supposed that j is convex,
lower semi-continuous, and proper (i.e., not j � þ1) and that hardening parameters guarantee definiteness

of the bilinear form.
The problem in the dual formulation ðDÞ reads for one time-step: Seek ðu; r; aÞ 2 H � L, L :¼

L2ðX;Rd�d
sym � RmÞ satisfying (3.1)–(3.3). We refer to [15–17,25,26,28,29] for details on existence, uniqueness,

and regularity of solutions to ðDÞ.
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The discrete problem ðDhÞ involves a regular triangulation T (in triangles if d ¼ 2 or tetrahedrons if
d ¼ 3 etc.) of the domain X (no hanging nodes, [T matches X exactly). Let LkðTÞ denote the (in general

discontinuous) T-piecewise polynomials of degree 6 k and set

Hh :¼ S1
DðTÞ :¼ fvh 2 H 1

DðXÞ : vh 2 L1ðTÞdg;
Lh :¼ L0ðT;Rd�d

sym � RmÞ :¼ fðs; bÞ 2 L : 8s 2 T; ðs; bÞjT 2 Rd�d
sym � Rmg:

Discrete problem ðDhÞ: Seek ðuh; rh; ahÞ 2 Hh � Lh satisfying, for all ðvh; sh; bhÞ 2 Hh � Lh,

ðrh; eðvhÞÞ ¼ ðf ; vhÞ þ
Z

CD

g 	 vh ds; ð3:4Þ

ðeðuhÞ � C�1rh; sh � rhÞ þ ðah;H
�1ðah � bhÞÞ6

Z
X
jðsh; bhÞdX �

Z
X
jðrh; ahÞdX: ð3:5Þ

We refer to [7,15,16] for details, e.g., on existence and uniqueness of discrete solutions and mention only

that (3.4) is the discrete weak form of (3.1), (3.2) and (3.5) is the discrete (equivalent) integral form of (3.3).

Theorem 3. The problem ðDÞ ðresp: ðDhÞÞ is equivalent to (2.1) (resp. (2.2)) provided K ¼ X ¼ H � L
ðresp: Kh ¼ Hh � Lh � KÞ and, for x ¼ ðu; r; aÞ; y ¼ ðv; s; bÞ 2 X ,

aðx; yÞ ¼ ðr;C�1sÞ þ ða;H�1bÞ � ðr; eðvÞÞ;

‘ðyÞ ¼ �ðf ; vÞ �
Z

CN

g 	 vds;

wðyÞ ¼
Z

X
jðs; bÞdX:

Proof. Standard arguments (such as integration by parts) verify the assertion. �

A consequence of Theorems 1 and 2 is that the nonlinear problem ðDÞ resp. ðDhÞ can be treated as the

linear case of [11]; oEg=os is the E-piecewise derivative along CN .

Theorem 4. Let ðu; r; aÞ solve ðDÞ and ðuh; rh; ahÞ solve ðDhÞ. Then

kðu� uh; r � rh; a � ahÞkH�L 6 c1ðgZ þ k½h3=2E oEg=os
kL2ðCN Þ þ khTrf kL2ðXÞÞ: ð3:6Þ

The constant c1 > 0 depends on the shape of the elements (minimum angle condition), on the material pa-
rameters and on the type of hardening or viscoplastic regularisation.

Proof. With the definitions of Theorem 3, Theorem 1 and the ellipticity of C and H yield

c2kðr � rh; a � ahÞk2L 6 aðx� xh; x� xhÞ6 aðxh; yh � xÞ � ‘ðyh � xÞ þ wðyhÞ � wðxÞ ð3:7Þ

for all yh ¼ ðv; sh; bhÞ 2 Kh. Given ðr; aÞ, let ðsh; bhÞ be its T-piecewise integral mean,

ðsh; bhÞjT :¼
Z
T
ðr; aÞdX=jT j 2 Rd�d

sym � Rm for all T 2 T

and employ Theorem 2 for x :¼ T and p :¼ ðr; aÞjT . A summation of the resulting inequality (2.4) over all

T 2 T shows
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wðyhÞ � wðxÞ ¼
Z

X
jðsh;bhÞdX �

Z
X
jðr; aÞdX6 0: ð3:8Þ

In the remaining terms of aðxh; yh � xÞ the difference r � sh (and similarly a � bh) has integral mean zero

over each element. Hence, e.g., the product ðrh;C
�1ðr � shÞÞ ¼ 0 as C is constant in space and rhjT is

constant on each T 2 T. These arguments show in (3.7) and (3.8)

c2kðr � rh; a � ahÞk2L 6 ðf ; vh � uÞ þ
Z

CN

g 	 ðvh � uÞds� ðrh; eðvh � uÞÞ

¼ ðrh; eðe� ehÞÞ � ðf ; e� ehÞ �
Z

CN

g 	 ðe� ehÞds ¼ �ðr � rh; eðe� ehÞÞ ð3:9Þ

for e :¼ u� uh and vh :¼ uh þ eh with arbitrary eh 2 S1
DðTÞ. The Section 5 in [11] studies exclusively the

linear case ðr � rh; eðe� ehÞÞ and proves with a certain choice of eh ¼ Je from [4,5,12] that

jðr � rh; eðe� ehÞÞj6 c3kekH1ðXÞðgZ þ k½h3=2E oEg=os
kL2ðCN Þ þ khTrf kL2ðXÞÞ: ð3:10Þ

For the proof, we refer to [11] and mention only that c3 depends on the shape of the elements and
patches. The final argument essentially utilises the hardening to derive the estimate

keðeÞkL2ðXÞ 6 c4kðr � rh; a � ahÞkL ð3:11Þ

with a hardening-depending constant c4 > 0 as in [7, Lemma 5.4], [8, Theorem 4.2], [3, Remark 5.5], or in

earlier work [16,17] of Johnson for isotropic or kinematic hardening or viscoplastic regularisation. Com-

bining (3.9)–(3.11) with Korn�s inequality, kekH1ðXÞ 6 c5keðeÞkL2ðXÞ, we conclude the proof of (3.6). �

The primal formulation of elastoplasticity is equivalently obtained from ðDÞ by the duality principle in

convex analysis: x 2 ojðyÞ is equivalent to y 2 oj�ðxÞ which leads to

r : ðq� pÞ þ a 	 ðb� aÞ6 j�ðq; bÞ � j�ðp; aÞ: ð3:12Þ
Here p :¼ eðuÞ � C�1r, a :¼ �H�1a, and j� is the dual, also called Fenchel transform or conjugate

functional,

j�ðxÞ ¼ sup
y2Rd�d

sym�Rm
ðx � y � jðyÞÞ:

For the proof of the equivalence of (3.3) and (3.12) we refer to textbooks about convex analysis [13,31]

and the literature on the primal formulation [2,5,14]. The primal formulation ðPÞ reads: Seek

ðu; p; aÞ 2 H � L satisfying (3.1), (3.2) and (3.12) for r :¼ CðeðuÞ � pÞ. The discrete version ðPhÞ reads: Seek
ðuh; ph; ahÞ 2 Hh � Lh satisfying (3.4) for rh :¼ CðeðuhÞ � phÞ and, for all ðqh; bhÞ 2 Lh,

ðrh; qh � phÞ þ ðah; bh � ahÞ6
Z

X
j�ðqh; bhÞdX �

Z
X
j�ðph; ahÞdX: ð3:13Þ

Theorem 5. The problem ðPÞ ðresp: ðPhÞÞ is equivalent to (2.1) (resp. (2.2)) provided K ¼ X ¼ H � L
ðresp: Kh ¼ Hh � Lh � KÞ and, for x ¼ ðu; p; aÞ; y ¼ ðv; q; bÞ 2 X

aðx; yÞ ¼ ðp � eðuÞ;Cðq� eðvÞÞÞ þ ða;HbÞ;

‘ðyÞ ¼ ðf ; vÞ þ
Z

CN

g 	 vds;

wðyÞ ¼
Z

X
j�ðq; bÞdX:
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Proof. Standard arguments (such as integration by parts) verify the assertion. �

A second conclusion of Theorems 1 and 2 reads analogous to Theorem 4.

Theorem 6. Let ðu; p; aÞ solve ðP Þ and ðuh; ph; ahÞ solve ðPhÞ. Then,

kðu� uh; p � ph; a� ahÞkH�L 6 c6ðgZ þ k½h3=2E oEg=os
kL2ðCN Þ þ khTrf kL2ðXÞÞ: ð3:14Þ

The constant c6 > 0 depends on the shape of the elements ðminimum angle conditionÞ, on the material pa-
rameters and on the type of hardening or viscoplastic regularisation.

Proof. The beginning follows the arguments of the proof of Theorem 4 and the definition of ðqh; bhÞ as

integrals means of ðp; aÞ. Theorem 2 and the remaining arguments for the proof (3.9) yield in the present

case that

c7kðr � rh; a� ahÞk2L 6 ðph � eðvhÞ;Ceðu� uhÞÞ þ ðf ; u� vhÞ þ
Z

CN

g 	 ðu� vhÞds

¼ �ðrh; eðe� ehÞÞ þ ðf ; e� ehÞ þ
Z

CN

g 	 ðe� ehÞds ð3:15Þ

for rh ¼ CðeðuhÞ � phÞ and e; eh as in the proof of Theorem 4. The arguments which led to (3.10) and (3.11)

apply to (3.15) as well and eventually conclude the proof of (3.14). �

4. Examples in elastoplasticity with hardening and viscoplastic regularisation

This section is devoted to list a few material functions j and j� which arise in (3.3) and (3.12), respec-

tively. It is discussed whether (i.e., for hardening or viscoplasticity) or not (i.e., for perfect plasticity) the
conditions of Theorems 4 and 6 are satisfied.

In all the following cases, the functional j is defined as the characteristic functional of the (varying)

admissible set K, i.e.,

jðs; bÞ ¼ 0 if ðs; bÞ 2 K;
1 if ðs; bÞ 62 K:

�
ð4:1Þ

The set K is described by a yield function U as K ¼ fðs; bÞ 2 Rd�d
sym � RmjUðs; bÞ6 0g.

4.1. Isotropic hardening

Let m ¼ 1, i.e., a is a (non-negative) scalar, and define

Uðr; aÞ :¼ jdevrj � ryð1þ HaÞ ð4:2Þ
in case aP 0 (and Uðr; aÞ ¼ 1 if a < 0 which, thereby, is not allowed). With the trace trA :¼

Pd
j¼1 Ajj and

the d � d-unit matrix Id , the deviatoric part of a matrix A 2 Rd�d is

devA :¼ A� 1

d
ðtrAÞId :

The material constant ry > 0 is the yield stress and the constant H > 0 is the modulus of hardening.

Then, there exists a unique solution of (P ) provided the exterior load f is slightly more regular (and then

there holds Johnson�s safe-load assumption) [15,16]. The dual functional is known (see, e.g., [6] for a proof);

for all A 2 Rd�d
sym and B 2 R,
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j�ðA;BÞ ¼ ry jAj if trA ¼ 0 ^ Bþ Hry jAj6 0;
1 if trA 6¼ 0 _ Bþ Hry jAj > 0:

�
ð4:3Þ

4.2. Kinematic hardening

Let m ¼ dðd þ 1Þ=2 and identify Rm � Rd�d
sym :¼ fA 2 Rd�d : A ¼ ATg. Like the stress r we consider a

(pointwise) as a Rd�d
sym -matrix and define

Uðr; aÞ :¼ jdevr � devaj � ry : ð4:4Þ

Then, there exists a unique solution of (P ) provided the exterior load f is slightly more regular (and then

there holds Johnson�s safe-load assumption) [14–16]. The dual functional equals (see, e.g., [6] for a proof),

for all A;B 2 Rd�d
sym ,

j�ðA;BÞ ¼ ry jAj if trA ¼ 0 ^ B ¼ �A;
1 if trA 6¼ 0 _ B 6¼ �A:

�
ð4:5Þ

4.3. Combined isotropic and kinematic hardening

Let m ¼ 1þ dðd þ 1Þ=2, identify Rm � R� Rd�d
sym , and write a ¼ ða; bÞ. Define

Uðr; a; bÞ :¼ jdevr � devbj � ryð1þ HaÞ ð4:6Þ

in case aP 0 (and Uðr; aÞ ¼ 1 if a < 0 which, thereby, is not allowed). Then there exists a unique solution

of (P ) provided the exterior load f is slightly more regular (and then there holds Johnson�s safe-load as-

sumption) [14]. The dual functional equals (see, e.g., [8] for a proof), for all A 2 Rd�d
sym and

B ¼ ða; bÞ 2 R� Rd�d
sym

j�ðA;BÞ ¼ ry jAj if trA ¼ 0 ^ b ¼ �A ^ aþ ryH jAj6 0;
1 if trA 6¼ 0 _ b 6¼ �A _ aþ ryH jAj > 0:

�
ð4:7Þ

Furthermore, if ðr; vÞ 2 oj�ðp; nÞ and v ¼ ða; bÞ, n ¼ ða; bÞ 2 R� Rd�d
sym such that p 6¼ 0, then

devðr � bÞ
rY ð1þ HaÞ ¼ p=jpj and a ¼ �ryH jpj: ð4:8Þ

4.4. Perfect plasticity

In the case m ¼ 0 of no hardening, i.e., the internal variables are absent, the yield function reads

UðrÞ :¼ jdevrj � ry : ð4:9Þ

The resulting problem is covered in this section, but the missing hardening leads to a different functional
analytic frame. There exist solutions of (P ) in a much weaker sense (space of bounded deformation BDðXÞ)
if Johnson�s safe-load assumption holds [28,29]. For any A 2 Rd�d

sym , let j
�ðAÞ ¼ ry jAj if trA ¼ 0 and other-

wise j�ðAÞ ¼ 1.
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4.5. Viscoplasticity

In Examples 4.1, 4.2, and 4.4 the functional (4.1) is non-smooth, but may be approximated by a

smoother functional. The Yosida regularisation leads to a viscoplastic material description in the sense of

Perzyna where, given a viscosity l > 0, for all preceding examples of U we define

jðr; aÞ :¼ 1

2l
inffjðr � s; a � bÞj2 : ðs; bÞ 2 Rd�d

sym � Rm with Uðs; bÞ6 0g: ð4:10Þ

For l > 0 there exists a unique solution of Problem (P ) [28]. The dissipation functional (4.10) is, in some

sense, converging towards (4.1) as l ! 0 [28]. Some calculations verify formulae for the dual functional,

e.g., in perfect plasticity of Example 4.4, we obtain

j�ðAÞ ¼ ry jAj þ l
2
jAj2 if trA ¼ 0;

1 if trA 6¼ 0:

�
ð4:11Þ

According to l > 0, the functional analytical frame of this paper is applicable (but not for l ¼ 0).

5. Numerical examples

This section reports on numerical experiments on a posteriori error control and adaptive mesh-refining

in practice. All the discretisations are generated by Algorithm 1 where H ¼ 0 for uniform meshes (as all

elements in step (e) are marked) and h ¼ 1=2 for adaptive mesh-refining (related strategies and a different

choice for 0 < H < 1 are disputable).

Algorithm 1
(a) Start with a coarse mesh T0, set k ¼ 0.

(b) Solve the discrete problem with respect to the actual mesh Tk for N degrees of freedom.

(c) Compute gT ¼ gT ;Z (resp. gT ¼ gT ;R) for all T 2 Tk.

(d) Compute gN :¼ ð
P

T2T g2
T Þ

1=2
as an estimate for the stress error eN :¼ kC�1=2ðr � rhÞkL2ðXÞ.

(e) Mark the element T for (red) refinement provided

Hmax
K2Tk

gK 6 gT :

(f) Mark further elements (within a red-green-blue refinement) to avoid hanging nodes. Define the resulting

mesh as the actual mesh Tkþ1, update k and go to (b).

Details on the so-called red-green-blue refinement strategies may be found in [30]. We employed the ZZ-

type average operator A to define r�
h :¼ Arh for which ArhðzÞ is the integral mean of (all components of)

rh over the patch of z plus interpolation properties according to (1.8) [11].

Three different subsections include the three examples presented with focus on the performance of the
error eN and the two error estimators gN (from (1.6) and (1.7) resp. (1.4) and (1.5)) as a function of the

degrees of freedom N .

5.1. Elastoplastic ring with known solution

The first example involves kinematic hardening for the geometry shown in Fig. 1 which represents a ring

with inner radius 1 and an outer radius of 2. We have no volume force (f ¼ 0) but radially applied surface

forces g1ðr;/; tÞ ¼ ter and g2ðr;/; tÞ ¼ �t=4er, er ¼ ðcos/; sin/Þ.
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The analytical solution for a body centred at the origin with no rotation reads

uðr;/; tÞ ¼ urðr; tÞer; ð5:1Þ

rðr;/; tÞ ¼ rrðr; tÞer � er þ r/ðr; tÞe/ � e/; ð5:2Þ

pðr;/; tÞ ¼ prðr; tÞðer � er � e/ � e/Þ; ð5:3Þ

(see [1] for details) with e/ ¼ ð� sin/; cos/Þ and

urðr; tÞ ¼
t

2lr
� 2

3
jðr þ 4a=ðlrÞÞIð1Þ � 2jrIðrÞ;

rrðr; tÞ ¼ � t
r2

� 2

3
ajð1� 4=r2ÞIð1Þ � 2ajIðrÞ;

r/ðr; tÞ ¼ oðr 	 rrÞ=or;

prðr; tÞ ¼ � ryffiffiffi
2

p
ðaj þHÞ

ðR2=r2 � 1Þþ;

IðrÞ ¼ � ryffiffiffi
2

p
ðaj þHÞ

1

2
ðR2=r2

	
� 1Þþ � ðlnðR=rÞÞþ



:

The radius of the circular plastic boundary RðtÞ is determined by a lnR2 ¼ ða � 1ÞR2 � a þ ð
ffiffiffi
2

p
=ryÞt. For

material parameters from Fig. 1, the inner part of the body becomes plastic at t ¼ 171:8269. We realised the

time-increment from t0 ¼ 0 to t1 ¼ 310. (cf. [2, Example 1] for a justification of this huge time-step.)

According to symmetry, only a quarter of the domain is discretised with symmetric boundary conditions
and the coarse mesh T0 consisting of three triangles as shown in Fig. 1. Within each refinement step (f) of

Algorithm 1, new nodes on the boundary are projected onto the curved boundary.

Fig. 2 shows the true error eN (marked by continuous lines) and the estimated errors gZ (marked by

dashed lines) and gR (marked by dotted lines) from (1.6) to (1.7) and (1.4) to (1.5), respectively, versus the

number N of degrees of freedom.

Fig. 1. Mechanical system and coarse mesh T0 in Example 5.1.
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The lines marked with circles result from uniform mesh-refinements (i.e., H ¼ 0 in Algorithm 1), the lines

with the diamond-shaped markers are the results for an adaptive mesh-refinement (where H ¼ 1=2 in
Algorithm 1) based on (1.4).

It is remarkable that, after some minor preasymptotic differences, the true error and the ZZ-estimator

are practically identical while the residual-based estimate overestimates the true error by nearly constant

factor 3. It should be mentioned that the estimators gZ and gR are reliable up to a constant C, i.e.,

kr � rhkL2 6CgZ . The constant C depends on the shape of the elements as well as on the hardening pa-

rameters and so the use of C ¼ 1 lacks a rigourous justification. (The use of C ¼ 1 is justified as in [4,10,11]

etc. by the efficiency estimate (1.10).)

The lacking improvement in the convergence-rate for the adaptive mesh refinement is not surprising
because of the smoothness of the solution. The adaptively refined meshes show a slightly higher refinement

at the curved boundary (cf., e.g., [3]).

5.2. L-shape

The second example is the L-shaped problem as shown in Fig. 3 with vanishing volume force f and

Dirichlet boundary condition u ¼ uD on CD where uD :¼ ður; uhÞ is defined in polar coordinates by

urðr; hÞ ¼
1

2l
ra½�ða þ 1Þ cosðða þ 1ÞhÞ þ ðC2 � ða þ 1ÞÞC1 cosðða � 1ÞhÞ
;

uhðr; hÞ ¼
1

2l
ra½ða þ 1Þ sinðða þ 1ÞhÞ þ ðC2 þ a � 1ÞC1 sinðða � 1ÞhÞ
:

For ry ¼ 1, i.e., for elastic material, ður; uhÞ is the analytical solution with a typical corner singularity in
the stress variable at ð0; 0Þ. In the elastoplastic case ry ¼ 2:2, the exact solution is unknown but shows

possibly a similar singularity at the origin. Hence adaptive algorithms should lead to a better convergence.

The coarse mesh T0 consisted of six triangular elements as shown in Fig. 3 and we considered linear

isotropic hardening.

In Fig. 4 the error estimates gR and gZ are compared with markers from Example 5.1.

The residual-based estimate gR overestimates the ZZ-estimate gZ by nearly a constant factor 4. The

comparison with Example 5.1 led us to the conjecture that, in the present example, gZ might be very close to

the true (but unknown) error eN . Fig. 4 further shows that the uniform mesh-refinement converges only

Fig. 2. True and estimated errors eN , gZ , gR vs. N for Example 5.1.
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sub-optimally due to the singularity while the adaptive mesh-refinement yields optimal order of conver-

gence. For the adaptively refined meshes, the algorithm of [3] showed problems in finding a solution beyond

N plotted in Fig. 4. A possible explanation is that for the Newton–Raphson scheme global convergence is

not guaranteed without damping [3].

5.3. Cooks membrane

Cook�s membrane problem serves as a third example visualised in Fig. 5, where a panel is clamped at one

end and subjected to a shear load g ¼ ð0; 1Þ along the opposite end (and vanishing volume force f ¼ 0).

Linear isotropic hardening moduli and the coarse mesh T0 are given in Fig. 5.

Fig. 6 compares the error estimates for the ZZ-estimator gZ and for the residual-based estimator gR. The

estimate gR is greater than gZ by a constant factor 4 which suggests, when compared with the results from
Example 5.1, that gZ � e.

Fig. 3. Mechanical system and coarse mesh T0 in Example 5.2.

Fig. 4. Estimated errors gZ and gR vs. N for Example 5.2.
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The proposed Algorithm 1 leads to a slightly better order of experimental convergence (at least of the
upper bounds). The mesh is refined towards the point A in Fig. 5 where a change of the type of boundary

conditions causes a singularity.

6. Conclusion

The mathematical justification of stress-averaging techniques for a posteriori error control is established

for the primal and dual formulation of one time-increment in elastoplastic evolution by showing reliability
and efficiency, i.e., we prove

gðoptÞ
Z � h:o:t:6 e6C1g

ðoptÞ
Z þ h:o:t:

for the minimal averaging estimate

Fig. 5. Mechanical System and coarse mesh T0 in Example 5.3.

Fig. 6. Estimated errors gZ and piecewise gR vs. N for Example 5.3.
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gðoptÞ
Z :¼ min

r�
h
2QðT;gÞ

kC�1=2ðr�
h � rhÞkL2ðXÞ

on a continuous polynomial stress space QðT; gÞ that involves stress boundary conditions. Effective

modifications of gðoptÞ
Z are characterized (for a simpler model situation) in [9].

Conclusions from the theoretical results of this paper include:

(i) Any stress-averaging estimator, such as any realisation of the ZZ-estimator is reliable.

(ii) The estimator is the same as in linear elasticity although a different material law determines the stress

approximation in elastoplasticity.

(iii) The constant C1 does neither depend on the number of degrees of freedom, the mesh-size, nor on the

smoothness of the exact solution.

(iv) The constant C1 does depend on the domain, the shape of the elements (through their minimal angle).
(v) The higher order terms in the upper bound (for reliability) depend on known data (such as rf and

og=os), but not on (the questionable) higher regularity of the exact displacements.

(vi) The higher order terms in the lower bound (for efficiency) depend on the smoothness of the stress field

which is partly shown [25,26].

(vii) The drawback of the reliability estimate is that C1 depends crucially on the hardening moduli or vis-

cosity. If corresponding parameters tend to zero, C1 is expected to tend to infinity. In particular, the

estimate is not justified in perfect plasticity.

(viii) The estimate is true for constant material parameters such as C and constant hardening moduli. For
spatial-depending material laws, additional terms shall arise (cf., e.g., [8] for a corresponding involved

analysis).

Conclusions from our experimental results include:

(ix) The choice of the constant C1 ¼ 1 for practical error guess in the residual-based error estimator gR

overestimated the true stress error eN by a factor between 3 and 4. This could be different (even worse)

for different (e.g., smaller) hardening parameters.
(x) The choice of the constant C1 ¼ 1 for practical error guess in the stress-average error estimator gZ

(motivated by C2 ¼ 1 in the efficiency estimate) leads to very good error predictions.

(xi) It is conjectured that gZ is a quite accurate error estimator which performs more accurate than our

present mathematical analysis predicts.

(xii) It seems not necessary to calculate the L2-projection of the finite element stress approximation rh to

the space QðT; gÞ of feasible stress averages to compute gðoptÞ
Z . A simple local averaging to postprocess

Arh suffices.

(xiii) The adaptive mesh-refining Algorithm 1 proposed improves the quality of the spatial discretisation in
case of non-optimal quasiuniform meshes. At least the related estimator gZ but also the other gR

showed a significantly improved experimental convergence rate in those cases.
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