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Abstract

Averaging techniques are popular tools in adaptive finite element methods for numerical simulation in continuum
mechanics since they provide efficient a posteriori error control. In this paper, the reliability of any averaging estimator
is shown for low order finite element methods in one time-step of elastoplasticity with hardening. The constants and
higher-order terms are effected by the hardening and the smoothness of given right-hand sides, but are independent of
the structure of a shape-regular mesh. Since it involves a different functional analytical framework, the case of perfect
plasticity is excluded from this paper.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Within a spatial discretisation of one time-step in a finite element analysis of elastoplasticity, we en-
counter a variational inequality with a quite complicated material law determined by admissible (genera-
lised) stresses on top of the problem of linear elasticity.

It is therefore not at all clear that a simple averaging of the discrete stress field might serve as an error
estimator for reliable error control. In particular, the residual in the material law, e.g., in some Kuhn—
Tucker conditions on the plastic multiplier, might have to be involved. This paper shows that indeed, any
stress-averaging technique [32] is reliable.

The main results concern a piecewise stress approximation o, (to the exact stress o) obtained by a
standard finite element analysis of one time-step within the evolution of an elastoplastic (or viscoplastic)
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body @ with piecewise constant hardening approximations and globally continuous piecewise linear dis-
placement approximants [14,27].

A posteriori error estimates employ the information available after the computation of ¢, and determine
computable error estimators # as error bounds: The error estimator # is called reliable if the stress error e in
energy norm,

&= 1C o =l = [ (=€ - em)a (-0
Q

(where C is the constant fourth-order elasticity tensor), is bounded from above by 7,
e< Cn. (1.2)

Strictly speaking, an estimator is efficient if the converse estimate holds. In a relaxed form, we consider
an error estimator 7 as efficient if (h.o.t. replaces terms of higher order)

n< Ce+ho.t. (1.3)

The estimates (1.2) and (1.3) involve constants C; which are independent of the number N of degrees of
freedom or the mesh-size and also independent of the unknown exact solution; they may depend on the
domain, the material law and parameters, and on applied volume and surface loads /" and g, respectively.
The higher order terms in (1.3) may depend on the exact solution.

The first reliable error estimators were established in [18] even for perfect plasticity and involve terms
such as

Nrr :h?-/T|f+leJ76h|2dQ+/a hE|[0hI’lE]|2dS (14)

T

for one element 7 (of diameter /7) with edges E (of length /g) on the boundary 07; f is a given volume force
and divso;, is the piecewise divergence (which vanishes in the present case of lowest order fem) while
[o4 - ng] denotes the jump of the stress vectors across the element edge £ with normal ng (and standard
modification on parts of the boundary of Q with applied surface loads).

The residual-based estimator [18] involves other terms in the plastic region where the functional ana-
lytical setting required for perfect plasticity provides only very weak approximation properties of the
displacement field in BD(€) [15,25-29]. The resulting estimate (1.2) of [18] therefore involves a moderate
constant C; but is (probably) not efficient. Numerical experiments show a high mesh-refinement in the
plastic part of the body which appear unreasonable from the approximation property of the exact solution
(but certainly is unavoidable from the rigourous mathematical viewpoint).

The duality approach in [22-24] allows for more general error norms (or error functionals) and cures the
difficulty with a possibly non-smooth solution with a recovery of (unknown) higher derivatives of the exact
solution in computable differences of its finite element approximation. This indicates roughness of the
unknown solution, adopts the mesh-refinement to it, and performs remarkably well in their numerical
examples. The rigourousness of their estimate, however, is disputable; but it seems fair to say that their
approach leads to very accurate error guesses and is very valuable for particular error functionals.

This paper is restricted to the error norms e of (1.1) and continuous our mathematical analysis in [3,6-8]
with focus on elastoplasticity with hardening, where the functional analytical context of linear elasticity is
applicable on the price of that some constants may crucially depend on the hardening moduli. As shown in
[3,8], (1.4) yields indeed a reliable and efficient error estimator

1/2
N = <Z’72T> ‘ (1.5)

TeT
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At first glance it may surprise that this error estimator is the same as in the context of linear elasticity (of
course with a different dependence of the stress from the strain and hardening variables). The reason is that
the evolution problems in the plastic material law is (within one time-increment) are satisfied exactly on
each element whence the material law has a vanishing residual. Thus, excluding the error accumulation for
progressing time-steps, the only remaining residuals are the discrete equilibrium conditions of (1.4).

This paper addresses the question of reliable and efficient estimators which are based on averaging
techniques for unstructured grids in the presence of hardening. The accumulating error of the time-dis-
cretisation attracted experimentalists to estimate the error with averaging techniques [20,21]. In Hencky
elastoplasticity under question, this accounts for a substitution of the (unknown) exact stress ¢ in (1.2) by
some computed average o7},

1/2
Nz = (Z ”lzrz) (1.6)

TeT

with the elementwise contributions
., = C (0} = on)lf2py = / (6, —04) : C (0} — o) dQ. (1.7)
T

Note that (1.7) and so #, involves the stresses (without hardening parameters) while [20] treats gener-
alised stress fields (where the hardening parameters are averaged as well). Without a mathematical justi-
fication, it is not at all clear which variables should enter the averaging process: Besides the discrete stress
variables there are other internal variables, the discrete strain field (whose curvature is certainly important
for mesh-refinements), and possibly approximations to plastic multipliers.

The classical justification of averaging techniques advertised by Zienkiewicz and Zhu is based on su-
perconvergence phenomena which are available for structured grids and smooth solutions only and have
not been verified in elastoplasticity at all.

Following our technique for the justification of the ZZ-estimator in [4,10,11] based on a special ap-
proximation operator [5,12], we prove in this paper the reliability and efficiency of 7, for an arbitrary
globally continuous and piecewise polynomial approximation ¢, which is supposed to satisfy static
boundary conditions at nodal points ./" there. To state the main results for a piecewise smooth applied
surface load g on I'y with edges &y, let

2T, g) = {0, € SNT)* :6:(2) - ng = g(z) for all ze N NE with E € &y}. (1.8)
Then, any average o, € 2(7 ,g) leads in (1.7) to a reliable estimate. In particular the minimal choice
™ = min €70} = 04)]2(q (1.9)
rrhe%(.’/ .2)

is reliable but costly to compute. However, n = n(ZOPt) yields a reliable and efficient estimate with C, = 1, i.e.,

we have
e—h.ot.<C™ < Cre+hot. (1.10)
Note that the second inequality of (1.10) follows from a triangle inequality for a nodal interpolant
Io € 2(7 ,g) of o; indeed,
ng™ <NC(on = 10)ll 20y < 1€ (0 = 10)l| ey + €72 (0 = 04) | 2(0) = € + hu0L,

as then ||C"*(c — I0)| 12() 18 of higher order. It is worth mentioning that, even for perfect plasticity, the
exact stress ¢ is smooth (in contrast to the displacement field) [25,26]; hence there holds efficiency with a
constant 1.



1438 C. Carstensen, J. Alberty | Comput. Methods Appl. Mech. Engrg. 192 (2003) 1435-1450

This paper concerns the remaining crucial reliability estimate of (1.10), studies the dependencies of the
constants C; and the higher-order terms h.o.t., and proposes a related adaptive algorithm for efficient
automatic mesh-refining.

The rest of this paper is organised as follows. Hencky plasticity reads as a variational inequality and so
we address the problem accordingly from an abstract point of view in Section 2. It turns out that this
abstract frame covers a large class of material laws in the dual (i.e., stress-oriented) and primal (i.e., strain-
oriented) formulation. Both models are introduced and analysed in Section 3 for an abstract material law.
Von Mises yield functions with isotropic and/or kinematic hardening or viscoplasticity are covered as
particular cases in Section 4. The numerical examples of Section 5 are striking in the sense that a com-
parison with an exact solution shows that our realisation of the ZZ-estimator (1.6) is amazingly close to the
exact stress error e. The proposed adaptive Algorithm 1 improved the spatial discretisation significantly.

Throughout the paper, we employ standard notation for Lebesgue and Sobolev spaces, and (+; -) denotes
the inner product of (any power of) L*(Q).

2. Abstract frame

One time-step of an elastoplastic evolution problem with hardening or viscoplastic regularisation yields
the following task: Find a solution x in a convex, closed set ¢ to the variational inequality

Uy—x)<alxy—x)+y() —y(x) forallye x. (2.1)

With a Hilbert space X, a : X x X — R is a continuous symmetric bilinear form, ¢ : X — R a continuous
and linear functional and  : X — [0, 00] is a convex, lower semicontinuous mapping which is not identi-
cally equal to oco. Ellipticity of a is sufficient for the existence of a solution which minimises the energy
functional a(x,x) — £(x) +/(x) on 4 [31].

A finite element discretisation of X yields a discrete set 4", C #" C X; since 4, C . the discretisation is
conforming. Suppose that x € %', exists with y(x) <y (x).

Similar ellipticity conditions on @ and on the convexity and closedness of .7, (as in the aforementioned
continuous case) show the existence of a solution x;, € 7, to the discrete variational inequality

é(yh th) ga(xh;yh *X},) + l//(yh) — l,b(xh) for all /RS H . (22)

In the next theorem, ellipticity of a is not explicitly required.

Theorem 1. Suppose x € A~ solves (2.1) and x;, € A", solves (2.2). Then we have
alx = xp;x = x;) < min (a(xns yn — x) = €y — x) + ¥ () — Y(x)). (23)
h</ h

Proof. Set y =x;, € 4, CK in (2.1) and set y, € #;, in (2.2). Adding the resulting inequalities we infer
Ly —x) <alx;xy —x) 4+ alep; v — xi) + (i) — Y(x) from which we deduce (2.3) even for a non-symmetric
non-elliptic bilinear form a. O

The theorem will be evaluated for some y, € #7, which simultaneously satisfies y, ~ x and ¥/(y,) < ¥ (x).
The point is that without the latter property we have no argument to see that |y(y,) — ¥(x)| is small since
is not smooth. The essential idea of [8] is to use Jensen’s inequality and choose parts of y, as the (ele-
mentwise) integral means of x.

Theorem 2 (Jensen’s inequality for integrals). Suppose j: R™ — [0,00) is convex, o C R is an open and
bounded set with d-dimensional measure |w|. For p € L'(w)" with mean p == [, pdQ/|w| € R" we have
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[iwees [ e (24)
w w

Proof. The proof is to stress the difference to the point-version
N

J Z Ak | <
k=1

for 0<4y,..., Av<l with 4; +---+ Ay =1 and py,...,py € R"™. The estimate (2.5) is occasionally called
Jensen inequality: it is directly related to the convexity of j. Indeed, if p is a simple function, i.e.,
p= Zﬁ:’zl DX, TOr pr,... . py € R" and a partition 4, U--- U4y = o of o, with characteristic functions
L, (x) = 1if x € 4; and = 0 otherwise, we have convex coefficients 4; := |4;|/|w| and deduce from (2.5) that
(2.4) holds. It remains to verify (2.4) for an arbitrary function p in L!(w)" by density of simple functions.
The limit process in L!(w) is technical and hence omitted; we refer to [19] for a proof. [

j(Px) (2.5)

N
k=1

3. Reliability of stress-averaging techniques in elastoplasticity

This section is devoted to the primal and dual formulation of elastoplasticity and to put the abstract
frame in a precise setting. We start with the dual formulation (in the notation of [14]) which is stress-related
and more frequently found in the engineering literature. The equilibrium conditions read

dive+f=0 in Q, (3.1)

on=g only (3.2)
for the stress tensor ¢ € L*(Q;R?*?) in a body @, a bounded Lipschitz domain in R with boundary

sym

I' =T'pUTIy. On some closed part I'p of I with positive surface measure we suppose homogeneous geo-
metric boundary conditions for the displacement field u,

ueH:=H\Q):={ve H(Q)":v=0on I'y}.

On the remaining part I'y := I' \ I'p, the traction is prescribed by a given g € L2(I'y)? and the outer unit
normal n. With the fourth-order elasticity tensor C, Ct = 2ut + trtld, we suppose an additive split
e(u) = C'a + p of the (linear) Green strain

e(u) =symDu = ((ujp +ur;)/2 : jk=1,...,d).

With further internal (hardening) variables o« € L*(©2)" and the hardening tensor H € [Rif;fn’” we suppose a
material law

() = C 7o) : (1= 0) + - H™' (B — o) < j(7, B) — j(0,) (3-3)

for all (7, ) € Rfyfr‘f x R". The plastic potential ; : [Rfyff x R" — [0, oo] takes the value +oco for generalised
stresses (o, a) which are not admissible. Examples will be listed at the end of this section and indeed, it will
be shown that our results are quite independent of the choice of j. It is merely supposed that j is convex,
lower semi-continuous, and proper (i.e., not j = +o00) and that hardening parameters guarantee definiteness
of the bilinear form.

The problem in the dual formulation (D) reads for one time-step: Seek (u,0,0) € H XL, L:=
L*(Q; Rfyﬁ;’ x R™) satisfying (3.1)-(3.3). We refer to [15-17,25,26,28,29] for details on existence, uniqueness,

and regularity of solutions to (D).
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The discrete problem (D) involves a regular triangulation 7 (in triangles if d = 2 or tetrahedrons if
d = 3 etc.) of the domain Q (no hanging nodes, U matches Q exactly). Let £*(.7") denote the (in general
discontinuous) 7 -piecewise polynomials of degree <k and set
Hy:= ST = {v, e H(Q) : v, € (7)),
Ly = LT ;R x R") :={(1,p) € L : V1 € T, (1, )|, € R x R"}.

sym sym

Discrete problem (Dy): Seek (uy, 04,05) € Hy X Ly, satisfying, for all (v, ty, B,) € Hy X Ly,

(onsofwn)) = (i) + [ g+ uads, (3.4)

I'p

(e(un) — Caps Ty — an) + (o B (o, — ) < /Q

j(Th,ﬂh)dQ— /j(O'h,OCh)dQ. (35)

Q

We refer to [7,15,16] for details, e.g., on existence and uniqueness of discrete solutions and mention only
that (3.4) is the discrete weak form of (3.1), (3.2) and (3.5) is the discrete (equivalent) integral form of (3.3).

Theorem 3. The problem (D) (resp. (D)) is equivalent to (2.1) (resp. (2.2)) provided # =X = H x L
(resp. Ay = Hy x L, C A") and, for x = (u,0,0),y = (v,7, ) € X,

a(x,y) = (6;C7"'1) + (1 H™'B) — (03 6(v)),
Z(y)Z—(f;v)—/r g - vds,

W) = / j(z, pyde.

Proof. Standard arguments (such as integration by parts) verify the assertion. [

A consequence of Theorems 1 and 2 is that the nonlinear problem (D) resp. (D,) can be treated as the
linear case of [11]; 05g/0s is the &-piecewise derivative along I'y.

Theorem 4. Let (u,0,a) solve (D) and (uy, o4, ;) solve (Dy,). Then
1t = 1y — 31, — o) s < 1+ 1002 /05 oy + 1 V) (3.6)

The constant ¢, > 0 depends on the shape of the elements (minimum angle condition), on the material pa-
rameters and on the type of hardening or viscoplastic regularisation.

Proof. With the definitions of Theorem 3, Theorem 1 and the ellipticity of C and H yield
e2ll(o = o — o) 7 < alx = x5 x = x4) alonsyn = x) = € = x) + () = Y(x) (3.7)
for all y;, = (v, 71, f,) € A'),. Given (o, a), let (1, f,) be its T -piecewise integral mean,
sym

(thy By := / (0,0)dQ/|T| € R x R" forall T € 7
T

and employ Theorem 2 for w := T and p := (0, 2)|,. A summation of the resulting inequality (2.4) over all
T € J shows
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bon) o) = |

Q

J(zn, B,)dQ — /j(a,oc)dQéO. (3.8)

Q

In the remaining terms of a(x;,y, — x) the difference ¢ — 7, (and similarly o — f8,) has integral mean zero
over each element. Hence, e.g., the product (g,;C '(¢ —7,)) =0 as C is constant in space and a;|, is
constant on each T € .7 . These arguments show in (3.7) and (3.8)

er|(0 = on, 00— o) |7 < (f3 00 — u) +/ g (vy —u)ds — (o4; 6(vy — u))

I'v

z(ah;s(e—eh))—(f;e—eh)—/ g-(e—e)ds=—(0—op;¢e(e —ep)) (3.9)

I'n

for e := u — u;, and v, := u;, + e, with arbitrary ¢, € 5”})(7 ). The Section 5 in [11] studies exclusively the
linear case (o — oy;¢(e — e;)) and proves with a certain choice of e, = Je from [4,5,12] that

(0 — a3 6le — en)| < callelln oy (nz + 17058 /35|21y + 117 VSl 2())- (3.10)

For the proof, we refer to [11] and mention only that ¢; depends on the shape of the elements and
patches. The final argument essentially utilises the hardening to derive the estimate

lle(e)ll20) < call (6 = an, o —ou), (3.11)

with a hardening-depending constant ¢4 > 0 as in [7, Lemma 5.4], [8, Theorem 4.2], [3, Remark 5.5], or in
earlier work [16,17] of Johnson for isotropic or kinematic hardening or viscoplastic regularisation. Com-
bining (3.9)-(3.11) with Korn’s inequality, |le[|;; o) < ¢s|e(e)]];2(q). We conclude the proof of (3.6). T

The primal formulation of elastoplasticity is equivalently obtained from (D) by the duality principle in
convex analysis: x € 0j(y) is equivalent to y € 0;*(x) which leads to

g:(¢—p)t+a-(b—-a)<j(q,0)=Jpa) (3.12)
Here p:=¢&(u) — C'o, a:= —H ', and j* is the dual, also called Fenchel transform or conjugate
functional,
J&) = sup (xx y—j).
yERgfm‘ixR"’

For the proof of the equivalence of (3.3) and (3.12) we refer to textbooks about convex analysis [13,31]
and the literature on the primal formulation [2,5,14]. The primal formulation (P) reads: Seek
(u,p,a) € H x L satisfying (3.1), (3.2) and (3.12) for o := C(e(u) — p). The discrete version (P,) reads: Seek
(un, pn,an) € Hy X Ly, satisfying (3.4) for oy, := C(e(up) — pn) and, for all (q;,b;) € Ly,

mmrmﬁ+mwrwn</fmeM—/ﬁwmmm. (3.13)
Q

Q
Theorem 5. The problem (P) (resp. (B)) is equivalent to (2.1) (resp. (2.2)) provided # =X =H x L
(resp. Ay, = H, x L, C A") and, for x = (u,p,a),y = (v,q,b) € X

a(x;y) = (p — &(u); C(g — &(v))) + (a; Hb),

()= (fi0)+ [ g-vds

I'y

wwzéf@maz
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Proof. Standard arguments (such as integration by parts) verify the assertion. [J
A second conclusion of Theorems 1 and 2 reads analogous to Theorem 4.

Theorem 6. Let (u,p,a) solve (P) and (uy, py,ay) solve (B,). Then,

1 = s p = Py @ = @) .0, < 6 (0 + 13052 /38) 2y + 117 VS N 200)- (3.14)

The constant ¢ > 0 depends on the shape of the elements (minimum angle condition), on the material pa-
rameters and on the type of hardening or viscoplastic regularisation.

Proof. The beginning follows the arguments of the proof of Theorem 4 and the definition of (g;,b;) as
integrals means of (p,a). Theorem 2 and the remaining arguments for the proof (3.9) yield in the present
case that

cll(o = on,a —an)lly < (pr — o(04); Celu —ws)) + (f3u = v3) +/ g (u—wvy)ds

I'y

:—(ah;s(e—eh))—i—(f;e—eh)—i—/ g (e—e)ds (3.15)
I'y

for o, = C(e(u;) — py) and e, e, as in the proof of Theorem 4. The arguments which led to (3.10) and (3.11)
apply to (3.15) as well and eventually conclude the proof of (3.14). O

4. Examples in elastoplasticity with hardening and viscoplastic regularisation

This section is devoted to list a few material functions j and j* which arise in (3.3) and (3.12), respec-
tively. It is discussed whether (i.e., for hardening or viscoplasticity) or not (i.e., for perfect plasticity) the
conditions of Theorems 4 and 6 are satisfied.

In all the following cases, the functional j is defined as the characteristic functional of the (varying)
admissible set ¢, i.e.,

(0 i (up e,
Jwh) = {oo if (. 5) & .
The set " is described by a yield function ® as #" = {(, f) € RY? x R"|®(z, f) <0}.

sym

(4.1

4.1. Isotropic hardening

Let m =1, i.e., o is a (non-negative) scalar, and define
P(0,a) :=|deve| —o,(1 + Ha) (4.2)

in case o = 0 (and @(o, ) = oo if o < 0 which, thereby, is not allowed). With the trace tr4 := Z;’:l 4;; and
the d x d-unit matrix /;, the deviatoric part of a matrix 4 € R s '

1
devd :=4 — p (trd)i,.

The material constant o, > 0 is the yield stress and the constant 4 > 0 is the modulus of hardening.
Then, there exists a unique solution of (P) provided the exterior load f is slightly more regular (and then
there holds Johnson’s safe-load assumption) [15,16]. The dual functional is known (see, e.g., [6] for a proof);
for all 4 € R”? and B € R,

sym
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o,l4| if trd =0AB+ Ho,|4|<0,

j(A’B):{oo if trd # 0V B+ Ho,|d| > 0. (4.3)

4.2. Kinematic hardening

Let m =d(d +1)/2 and identify R" = Rg’;j :={4 € R : 4 =A4"}. Like the stress ¢ we consider o
: : dxd :
(pointwise) as a R{-matrix and define

@(0,0) = |deve — deva| — o,. (4.4)

Then, there exists a unique solution of (P) provided the exterior load 1 is slightly more regular (and then
there holds Johnson’s safe-load assumption) [14-16]. The dual functional equals (see, e.g., [6] for a proof),
for all 4,B € R

sym >

., _fo,d| ftrA=0AB=—4,
](A’B)_{oo if trd £0VB+—A. (4.5)
4.3. Combined isotropic and kinematic hardening
Let m =1+4d(d + 1)/2, identify R” = R x Rfyff, and write o = (a,b). Define
P(0,a,b) := |deve — devb| — g,(1 + Ha) (4.6)

in case a = 0 (and @(0, o) = o if a < 0 which, thereby, is not allowed). Then there exists a unique solution
of (P) provided the exterior load f is slightly more regular (and then there holds Johnson’s safe-load as-

sumption) [14]. The dual functional equals (see, e.g., [8] for a proof), for all 4 ¢ [R;’yff and
B =(a,b) € Rx R
N _fold] ftrd=0Ab=-ANa+0,H|4<0,
](A’B)_{oo iftrA £ 0V b+ —AVataoHlAl> 0. (4.7)
Furthermore, if (a,7) € 0j*(p, &) and y = (a,b), & = (2, ) € R x RYw! such that p # 0, then
dev(e — b)
—_— = d o= —0gH|p| 4.8
ool =P/l and 2= o, (48)
4.4. Perfect plasticity
In the case m = 0 of no hardening, i.e., the internal variables are absent, the yield function reads
P(0) := |deva| — oy. (4.9)

The resulting problem is covered in this section, but the missing hardening leads to a different functional
analytic frame. There exist solutions of (P) in a much weaker sense (space of bounded deformation BD(Q))
if Johnson’s safe-load assumption holds [28,29]. For any 4 € Rfyff, let j*(4) = g,|4] if tr4 = 0 and other-
wise j*(4) = oo.
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4.5. Viscoplasticity

In Examples 4.1, 4.2, and 4.4 the functional (4.1) is non-smooth, but may be approximated by a
smoother functional. The Yosida regularisation leads to a viscoplastic material description in the sense of
Perzyna where, given a viscosity u > 0, for all preceding examples of ¢ we define

1. .
jlo,0) = o inf{|(c —t,a— B)*: (1, ) € R’:yxr;’ x R™ with &(z, ) <0}. (4.10)
u
For p > 0 there exists a unique solution of Problem (P) [28]. The dissipation functional (4.10) is, in some

sense, converging towards (4.1) as u — 0 [28]. Some calculations verify formulae for the dual functional,
e.g., in perfect plasticity of Example 4.4, we obtain

2 .
() — o,ld| + 514" if trd =0, 411
J ) {oo if trd # 0. (4.11)

According to u > 0, the functional analytical frame of this paper is applicable (but not for u = 0).

5. Numerical examples

This section reports on numerical experiments on a posteriori error control and adaptive mesh-refining
in practice. All the discretisations are generated by Algorithm 1 where ® = 0 for uniform meshes (as all
elements in step (e) are marked) and 6 = 1/2 for adaptive mesh-refining (related strategies and a different
choice for 0 < ® < 1 are disputable).

Algorithm 1

(a) Start with a coarse mesh 7, set k = 0.

(b) Solve the discrete problem with respect to the actual mesh 7 for N degrees of freedom.
(c) Compute n; = 1y, (resp. ny = npp) forall T € 7.

(d) Compute ny = (> s n2)"? as an estimate for the stress error ey := ||C™"/*(¢ — i)l 20
(e) Mark the element 7 for (red) refinement provided

O max ng <np.
KeTy
(f) Mark further elements (within a red-green-blue refinement) to avoid hanging nodes. Define the resulting
mesh as the actual mesh 7, update k£ and go to (b).

Details on the so-called red-green-blue refinement strategies may be found in [30]. We employed the ZZ-
type average operator .o/ to define o} := </, for which .«70,(z) is the integral mean of (all components of)
a;, over the patch of z plus interpolation properties according to (1.8) [11].

Three different subsections include the three examples presented with focus on the performance of the
error ey and the two error estimators #, (from (1.6) and (1.7) resp. (1.4) and (1.5)) as a function of the
degrees of freedom N.

5.1. Elastoplastic ring with known solution
The first example involves kinematic hardening for the geometry shown in Fig. 1 which represents a ring

with inner radius 1 and an outer radius of 2. We have no volume force (f = 0) but radially applied surface
forces gi(r, ¢, ) = te, and g2(r, ¢, 1) = —t/4e,, e, = (cos ¢, sin ).
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The analytical solution for a body centred at the origin with no rotation reads
u(r, ¢, t) = u,(r,t)e,,
o(r,d,t) = o.(r,t)e, @ e, + ay(r,t)ey @ ey,
plrig.t) = pi(r,1)(e, @ e, — ey D ey),

(see [1] for details) with e, = (—sin ¢,cos ¢) and

u.(r,t) = L_ 2K(r +da/(w)I(1) = 2xrl(r),

~30 3
0,(r 1) = *72 _ %a;c(l — 4/ (1) = 2ax(r),
oy(r,t) =0(r-a,)/or,
pe(rit) = —m(R [rr—=1),

% g P — — (In(R/r
I(F)Z—m 2(R/ 1), = (In(R/r)), |
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The radius of the circular plastic boundary R(z) is determined by «In R? = (a — 1)R*> — o+ (v/2/a,)t. For
material parameters from Fig. 1, the inner part of the body becomes plastic at t = 171.8269. We realised the

time-increment from ¢ = 0 to #, = 310. (cf. [2, Example 1] for a justification of this huge time-step.)

According to symmetry, only a quarter of the domain is discretised with symmetric boundary conditions
and the coarse mesh 7 consisting of three triangles as shown in Fig. 1. Within each refinement step (f) of

Algorithm 1, new nodes on the boundary are projected onto the curved boundary.

Fig. 2 shows the true error ey (marked by continuous lines) and the estimated errors #, (marked by
dashed lines) and 7, (marked by dotted lines) from (1.6) to (1.7) and (1.4) to (1.5), respectively, versus the

number N of degrees of freedom.

E = 170,000
v = 033
E
R TC )
\ = vE
T Q+v)(1-2)
a = p+A
1 2 2[‘4
ko= 2u+ A
o = 4ak
Q T 3(as+H)
oy = 243
H =1

Fig. 1. Mechanical system and coarse mesh 7, in Example 5.1.
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10’

0O g (uniform)
-o- M, (uniform)
—©— error (uniform)
[ & - M (Z-adapt)

$ 0. —O— 1 (Z-adapt)
. —— error (Z-adapt)

o
°

A Posteriori Error Estimate

degrees of freedom

Fig. 2. True and estimated errors ey, #,, 1z vs. N for Example 5.1.

The lines marked with circles result from uniform mesh-refinements (i.e., ® = 0 in Algorithm 1), the lines
with the diamond-shaped markers are the results for an adaptive mesh-refinement (where ® = 1/2 in
Algorithm 1) based on (1.4).

It is remarkable that, after some minor preasymptotic differences, the true error and the ZZ-estimator
are practically identical while the residual-based estimate overestimates the true error by nearly constant
factor 3. It should be mentioned that the estimators #, and #, are reliable up to a constant C, i.e.,
llo — a4ll,2 < Cn,. The constant C depends on the shape of the elements as well as on the hardening pa-
rameters and so the use of C = 1 lacks a rigourous justification. (The use of C = 1 is justified as in [4,10,11]
etc. by the efficiency estimate (1.10).)

The lacking improvement in the convergence-rate for the adaptive mesh refinement is not surprising
because of the smoothness of the solution. The adaptively refined meshes show a slightly higher refinement
at the curved boundary (cf., e.g., [3]).

5.2. L-shape

The second example is the L-shaped problem as shown in Fig. 3 with vanishing volume force f and
Dirichlet boundary condition u = up on I'p where up := (u,,uy) is defined in polar coordinates by

u.(r,0) = ﬁr“[—(a + Dcos((ax+ 1)) + (C, — (a+ 1))Cy cos((o — 1)0)],
up(r, 0) = Z—l'ur‘“[(oc + D)sin((e+ 1)0) + (Cy + o — 1)Cy sin((a — 1)0)].

For 6, = o0, i.e., for elastic material, (u,, uy) is the analytical solution with a typical corner singularity in
the stress variable at (0,0). In the elastoplastic case g, = 2.2, the exact solution is unknown but shows
possibly a similar singularity at the origin. Hence adaptive algorithms should lead to a better convergence.
The coarse mesh 7 consisted of six triangular elements as shown in Fig. 3 and we considered linear
isotropic hardening.

In Fig. 4 the error estimates n, and #, are compared with markers from Example 5.1.

The residual-based estimate 1, overestimates the ZZ-estimate 1, by nearly a constant factor 4. The
comparison with Example 5.1 led us to the conjecture that, in the present example, 1, might be very close to
the true (but unknown) error ey. Fig. 4 further shows that the uniform mesh-refinement converges only
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= 100,000
0.3
E
2(1+v)
vE

T+ -2v)
= 2.2
= 0.01
=1
= 0.544483737

cos((a+1)3x)
_cos((a —1)3m)
2(X +2p)

Atp

Fig. 3. Mechanical system and coarse mesh 7, in Example 5.2.

A Posteriori Error Estimate

10"

0. o- Mg (uniform)

‘ 1 oMy (uniform)

) o Mg (Z-adapt)

8 025 o M (Z-adapt)

Q. 1o}
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Sso "o

2

10 ‘0\\\\ N LN °

N 0
~ N S o ° N
Y S
0.5 N el
N ~
& S s
© R ~e
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-3
107 7 t 4
10 10 10 10 10

degrees of freedom

Fig. 4. Estimated errors 7, and n, vs. N for Example 5.2.
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sub-optimally due to the singularity while the adaptive mesh-refinement yields optimal order of conver-
gence. For the adaptively refined meshes, the algorithm of [3] showed problems in finding a solution beyond
N plotted in Fig. 4. A possible explanation is that for the Newton—Raphson scheme global convergence is
not guaranteed without damping [3].

5.3. Cooks membrane

Cook’s membrane problem serves as a third example visualised in Fig. 5, where a panel is clamped at one
end and subjected to a shear load g = (0, 1) along the opposite end (and vanishing volume force f = 0).
Linear isotropic hardening moduli and the coarse mesh 7 are given in Fig. 5.

Fig. 6 compares the error estimates for the ZZ-estimator #, and for the residual-based estimator #,. The
estimate 1, is greater than 7, by a constant factor 4 which suggests, when compared with the results from

Example 5.1, that , ~ e.
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100, 000
0.3
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21+v)
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2.2
0.01

1

Fig. 5. Mechanical System and coarse mesh .77, in Example 5.3.

A Posteriori Error Estimate

10° :
.0 I]H(un.lform)
oM (uniform)
(% 1 & -1n(Z-adapI]
LN 0.33333 L=e= 1 Zadeny
1 ° 000
107+ o "o
® o O g
S 6. S
R 0y °
N \\&0:0\‘ %o o
10° RN
05 e \‘;o;e
1 o
-3
10 ) . )
1 2 3 )
10 10 10 10

degrees of freedom

5

Fig. 6. Estimated errors 7, and piecewise 7, vs. N for Example 5.3.

The proposed Algorithm 1 leads to a slightly better order of experimental convergence (at least of the
upper bounds). The mesh is refined towards the point 4 in Fig. 5 where a change of the type of boundary

conditions causes a singularity.

6. Conclusion

The mathematical justification of stress-averaging techniques for a posteriori error control is established
for the primal and dual formulation of one time-increment in elastoplastic evolution by showing reliability

and efficiency, i.e., we prove

1 —hot. <e< ™ +ho.t.

for the minimal averaging estimate
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(opt) . _

: —1/2/ «
= _min 16700} - 0l

07€2(7 g
on a continuous polynomial stress space 2(7,g) that involves stress boundary conditions. Effective
modifications of 1720‘“) are characterized (for a simpler model situation) in [9].
Conclusions from the theoretical results of this paper include:

(i) Any stress-averaging estimator, such as any realisation of the ZZ-estimator is reliable.
(i1) The estimator is the same as in linear elasticity although a different material law determines the stress
approximation in elastoplasticity.

(iii) The constant C; does neither depend on the number of degrees of freedom, the mesh-size, nor on the
smoothness of the exact solution.

(iv) The constant C; does depend on the domain, the shape of the elements (through their minimal angle).

(v) The higher order terms in the upper bound (for reliability) depend on known data (such as Vf and
0g/0s), but not on (the questionable) higher regularity of the exact displacements.

(vi) The higher order terms in the lower bound (for efficiency) depend on the smoothness of the stress field
which is partly shown [25,26].

(vii) The drawback of the reliability estimate is that C; depends crucially on the hardening moduli or vis-
cosity. If corresponding parameters tend to zero, C; is expected to tend to infinity. In particular, the
estimate is not justified in perfect plasticity.

(viii) The estimate is true for constant material parameters such as C and constant hardening moduli. For
spatial-depending material laws, additional terms shall arise (cf., e.g., [8] for a corresponding involved
analysis).

Conclusions from our experimental results include:

(ix) The choice of the constant C; = 1 for practical error guess in the residual-based error estimator 7,
overestimated the true stress error ey by a factor between 3 and 4. This could be different (even worse)
for different (e.g., smaller) hardening parameters.

(x) The choice of the constant C; = 1 for practical error guess in the stress-average error estimator 7,
(motivated by C, = 1 in the efficiency estimate) leads to very good error predictions.

(xi) It is conjectured that 7, is a quite accurate error estimator which performs more accurate than our
present mathematical analysis predicts.

(xii) It seems not necessary to calculate the L?>-projection of the finite element stress approximation g, to
the space 2(7, g) of feasible stress averages to compute 17<Z°p VA simple local averaging to postprocess
/o), suffices.

(xiii) The adaptive mesh-refining Algorithm 1 proposed improves the quality of the spatial discretisation in
case of non-optimal quasiuniform meshes. At least the related estimator 5, but also the other #,
showed a significantly improved experimental convergence rate in those cases.
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