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Abstract

Macroscopic simulations of non-convex minimisation problems with enforced microstructures
encounter oscillations on finest length scales — too fine to be fully resolved. The numerical analysis must
rely on an essentially equivalent relaxed mathematical model. The paper addresses a prototype
example, the scalar 2-well minimisation problem and its convexification and introduces a benchmark
problem with a known (generalised) solution. For this benchmark, the stress error is studied empiri-
cally to asses the performance of adaptive finite element methods for the relaxed and the original
minimisation problem. Despite the theoretical reliability-efficiency gap for the relaxed problem,
numerical evidence supports that adaptive mesh-refining algorithms generate efficient triangulations
and improve the experimental convergence rates optimally. Moreover, the averaging error estimators
perform surprisingly accurate.

Keywords: adaptive finite element method, minimisation problem, convexification, relaxation, mi-
crostructures, a posteriori error estimate.

1 Introduction and Overview

Efficient macroscopic numerical simulations of non-convex minimisation prob-
lems rely on an essentially equivalent relaxed formulation [16, 17]. Based on
Tartar’s broken extremal example, this paper introduces a prototype example (1.2)
and its relaxation (1.5). For this benchmark example, Theorem 2.1 below sum-
marises the relations of infimising sequences of (1.2) and minimising sequences of
(1.5) and gives closed formulae for the generalised solution u, the macroscopic
stress field o, and generated Young measure v [3]. Since u & W3/>*(Q) on the
rectangle Q := (0,1) x (0,3/2) we have a counter example to higher regularity
caused by the typical lack of smoothness at the interface between the region with
microstructures and the region with a classical solution. This motivates the use of
adaptive mesh-refining algorithms based on a posteriori error estimates. Since
uniform control of gradient error norms is not accessible, those a posteriori error
estimates suffer from the gap between efficiency and reliability: The efficient esti-
mates are not reliable and the reliable estimates are not efficient. It is the aim of this
paper to study the practical performance of the P, finite element method and its
upper and lower error bounds for uniform and for adapted meshes empirically.
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The model example has its origin is an anti-plane shear simplification of the
Ericksen-James energy and serves as a master example for scalar non-convex
energy densities. Given distinct Fj, /5 in R? for the non-convex 2-well energy
density W, i.e.

W(F) :=|F — Fi|*|F — B|* for F € R?, (1.1)

we consider the non-convex energy functional

E(u) := / W (Du)dx + / lu— £ dx. (1.2)
Q

Q

The low-order term |u — f| is motivated by a typical time-step discretization in
time-depending problems.

The minimisation problem for (1.2) over all u € o/ := uy + WO1 ’4(9) on a rectangle
Q=(0,1) x (0,3/2) is ill-posed and has, in general, no classical solution. The
reason for non-attainment of a minimum is that high oscillations on finer and
finer length-scales are necessary to lower the energy [4, 5, 9, 19, 27, 28]. Numerical
simulations aim for the calculation of macroscopic properties of infimising se-
quences (u;) in .«/. Examples are their weak limit € ./, interpreted as macro-
scopic displacement field, the macroscopic stress field o := DW*™(Du) €
L¥3(Q;R?), and the Young measure (v,:x € Q) which statistically describes
oscillations of (Du;) in the limit j — oo (see [3] and Theorem 2.1 below).

The non-convexity of W may cause nightmares during the difficult computation of
up = arg min{E(v;) : v, € L} for oy :=upy + 5”(1)(9‘) (1.3)

even if u;, exists (uniquely) according to the finite dimension of the P; finite
element space V(l)(ﬂ‘ ). Since the (quasi-)convexification W% = W= W** is
explicitly known, it is much more effective to calculate

up := arg min{E*(v;) : v, € oAy} (1.4)

for the relaxed energy functional

E™ (u) ::/W**(Du)dx+/\uff|2dx. (1.5)
Q

Q

The discrete relaxed solution u;, from (1.4) does not show any oscillation and
directly approximates the macroscopic displacement u. Based on the computed
uy, a simple post-processing yields approximations g, to ¢ and v, to v. Since E**
is convex, standard software provides accurate solutions u; in very short CPU
time.

The quasi-optimal convergence rate of the stress error ||a — ;|| 143(Q) is limited by
the (lack of) regularity of an exact solution u. This paper studies an example with
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a polynomial f and a solution u € W3/2~44(Q) (for any ¢ > 0) based on Tartar’s
broken extremal in one dimension: There is no local higher regularity for non-
convex minimisation problems.

In the benchmark example, we generally expect (reduced) convergence rates

||”*1“HL2(Q) o B2,
1D(u — 1)l 3y o A,

||O'—HO'||L4/3(Q> X h

in terms of the maximal mesh-size 4 in a uniform triangulation (resp. a competing
quality # = 1//N for a general 2D mesh with N degrees of freedom); / denotes
nodal interpolation in .o, and II the L? projection onto .7 -piecewise constants.
The aim of this paper is to provide clear empirical evidence that the rigorous a
priori and a posteriori analysis of [17], although based on quite sharp estimates,
predict a numerical simulation too pessimistically. For instance, the quasi-optimal
estimate

llo = onllys@) = Inf [ID(u = on)llsq) < 1D = M]3 (1.6)

predicts ||o — 4| 45q) h'/*, but we observe rather the much better convergence
rate of A%/ in the numerical experiments of Section 5.

The convexified problem of this paper is generically not even strictly convex (i.e.
W** is not strictly convex, see below). One resulting difficulty is that
|D(u — up)||ps) is mot controlled: The only rigorous error estimate reads
|D(u — up)||3(q) <1 while, and this came much as a surprise for us, we clearly
observe

1D — )]sy o< h'* (1.7)

in our numerical experiments below which, when compared with ||D(u — Iu)|| 4 )
appears optimal. In summary, numerical experiments suggests

o — ”h||L2(Q) X h3/47
1D — up)|| oy < 7%,

||O’ — O'h||L4/3(Q) X h3/4.

Adaptive mesh-refining algorithms are a well-established for improving the
accuracy of approximations to non-smooth exact solutions of uniformly convex
problems. At a certain point in the proof of related a posteriori error estimates for
uniformly convex ¥, the error term ||[D(u — uy)|[14(q) is absorbed. This is excluded
in the benchmark for the not even strictly-convex relaxed energy E**. The
resulting difficulty leads to an efficiency-reliability gap in a posteriori error esti-
mates. For instance, from [17],
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TeT

3/8
1/2
llo— Uh||L4/3(Q) 5’1R/ = (Z ”I?) (1.8)

for the element-oriented residual refinement indicators

=y / \divey, + f — u*dx + / held (oy - ng )| ds. (1.9)
T oT

Here the second term counts jumps J(ay, - ng) of the discrete stress field o, along
interior edges £ C 0T with normal vectors ng. The estimator 7y, is reliable (i.e. an
upper bound of the error, (1.8)) but not efficient. Indeed, from standard estimates
[30] one can only expect (a local form of) the efficiency estimate (i.e., a lower
bound of the error)

VIR S ||0_ ah||L4/3<Q) +h-o.t. (110)

Notice carefully that we have 5, in the power 1 in the efficiency estimate (1.10)
and the power 1/2 in the reliability estimate (1.8). This underlines our expectation
that b o |jo — nl|zs3(q) for some B with 1/2 < < 1. We observe the optimal
f =1 in our numerical experiments. We analyse two new error estimators,

1/2
nz = |lo —A0h||L4/3(g) and  1p, = (Z ’7T,Dz> (L.11)

TeT

where Aoy, is an averaged stress field (divy denotes the piecewise divergence) and

Nrpy = ||hr(divae, +2(f — uh))‘|L4/3(T)||hTDiuhHL4(T) (1.12)
3/4 :
+ o - nell| s oy Dl |3 7, -

The ZZ-type error estimator 7, is motivated by recent success in the a posteriori
analysis for uniformly convex problems [10, 11, 12, 18] where, up to higher order
terms and multiplicative constants, 7, is reliable and efficient. Behind the esti-
mator 7, is a (local) discrete analogue of ||D%ul| 14~ This is an heuristic ap-
proach, but the resulting meshes and accuracies for all kind of (uniformly convex)
problems perform well in goal-oriented error control and mesh-design applica-
tions [8]. Although we can merely provide the estimates

1/2
0z —h.o.t. < |lo — aull g <ny” +hot., (1.13)
the striking numerical performance indicates that

||°'*0h||L4/3(Q) Rz (1.14)
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is an excellent error guess (as in [11, 13] for linear elliptic problems). The presented
experimental results clearly support that 11,13/ and né/ % are too pessimistic while 7,
Nz, Npp correctly predict the empirical convergence rates; moreover, the averaging
estimator #, is exceptionally accurate. The final, possibly most important, issue is
the practical performance of the three presented adaptive mesh-refining algo-
rithms. We provide numerical evidence that the convergence rates for the stress

error are optimally improved to
llo = oullanq) < N~'/* = h. (1.15)

For the original non-convex problem with no theoretical foundation, the
numerical results appear inconclusive and very depending on how the discrete
non-convex global minimisation problem is approximately solved.

The remaining part of the paper is organised as follows. The mathematical models
and the explicit (generalised) solution, with the link to the equivalent relaxed
formulation, is surveyed in Section 2. Corresponding straightforward numerical
models are introduced in Section 3 with numerical algorithms for the solution
process and a comparison for uniformly refined meshes. A posteriori error esti-
mates based on residuals, averaging, or approximation of curvature, are estab-
lished in Section 4. Their efficiency-reliability gap is illustrated in Section 5 which
also reports on numerical evidence for (1.8), (1.14)—(1.15).

2 Mathematical Model

Given the two distinct wells F| := —(3,2)/+/13 and F, := —F}, we consider the
double well problem with the non-convex energy density from (1.1). Its lower
convex envelope W** [16] is the convexified energy density (with (-), := max{0,-})

o) = (17 = 1)) 44 (1FF - (3,2) B 13). 2.1)

Let Q= (0,1) x (0,3/2). Set t = (3(x — 1) 4 2y)/+/13 and define two functions f
and ¢g on Q and up on 0Q by

fx,p) = folt+1/2) = =3£/128 — £/3, (2.2)
gx,y) = filt +1/2) = /24 + 1t
up(0,y) = V13(45657 — 92286y + 63144y> — 15472y
+ 720p* — 96y°) /843648,
up(1,y) = 2/V13y(4/13y” + 1), (24)
up(x,0) = —9v/13(x — 1)*(81x% — 162x + 1745) /281216,
up(x,3/2) = 3/V13x(x*9/13 + 1).

Then, extend up to a smooth function on R? and let .«7 := up + WOI’4(Q) be the set
of all admissible deformations. The variational problem (P) reads
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ue.o/

(P) inf E(u) for E(u / (Vu) + |u — f] )
Q
The variational problem (24) reads

uc.o/

(RP) min B (u) for E*(u / W** Vi) + |u — f|)
Q

Theorem 2.1. (a) There exist infimising sequences of (P), i.e., there exists a se-
quence (u;) in </ with

lim E(u;) = inf E(/) =: Ey.

J—o0

(b) The infimal energy equals Ey = 0.10781476743659.

(¢) Each infimising sequence (u;) in (P) is bounded and weakly convergent in
W'4(Q). The weak limit is unique and given by (recall t = (3(x — 1) + 2y)/v/13)

u(x,y) = {fo(t—i-%) for

1
—l<y
2

fi(t+3) for 0<t< (2:3)

The function u is displayed in Figure 2. The gradient of u reads

L 3N\t~ for —1<1<0,
D”(x’y)_\/—1—3<2>{§t2+1 for 0<r<i

(d) The infimal energy E, is not attained in (P), i.e.,

AlS+(F) = S-(F)]

L(F) - S_(F)|

Fig. 1. Geometric interpretation of the support S.(F) and the convex coefficient A(x) of

v (F) = MF)S.(F) + (1 - A(F))S_(F)
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Fig. 2. Nodal interpolation 7 u of exact (generalised) solution u from (2.5) on a uniform 32 x 32 grid
with 2048 elements

Ey < E(v) forallve .

(e) The problem (RP) has a unique solution u given by (2.5). It is characterised as
the solution of the Euler-Lagrange equation

/J.Dvdx—l—Z/(u—f) vdx =0 forall ve W, *(Q), (2.6)
Q Q

where

0 for—1/2<¢<0,
2

(1432/16+1/64) foro<t<1/2 7

o = DW*™(Du) = (3,2)/\/5{

(f) There holds
Ey=E"(u) = minE™* (/) < E™(v) forall ve o\ {u}.

() Any infimising sequence (u;) of (P) is bounded in W'*(Q) and generates a Young
measure (vy), i.e. there exists a family (v).cq of probability measures v, which
satisfies: Given any measurable «w C Q and any f € Co(Q) (ie. f:Q— R is
continuous and limy, ., f (x) = 0), there holds

tim [ £(Duy)as = / (ve, f) d.

[0)



182 C. Carstensen and K. Jochimsen
The Young measure is unique and reads
= /I(Du(x))é&(Du(x)) —+ (1 — /I(Du(x)))ésfwu(x)), (28)

where F = Du, P.=1—F, ® F», and

—_—

MF) =51+ F -F(1—|P-FP)™?) eo,1],

(2.9)

2
P Fin (1—P-FP'? for |F| <1,
for 1 < |F|.
See Figure 1 for an illustration of Sy (F) and Figure 3 for a plot of the volume
fraction A(Du).

(h) Any infimising sequence (u;) of (P) generates a sequence of stresses (a;) by
oj = DW (Du;) which is convergent in measure towards o from (2.7).

Proof. Parts of the assertions are properly-stated particular cases of more general
results in relaxation theory [2, 6, 9, 10, 16, 19, 22, 27, 28]. The necessary growth
and smoothness assumptions are directly verified for the example at hand. The
necessary detailed calculations start with the proof of (2.6) for u, f and ¢ given in

15p

0.7

-05

-0.4

0.5 % 4 - -0.3

0.2

0.1

0 ! d 0
0 0.2 0.4 0.6 0.8 1

Fig. 3. Volume fractions 1 computed with (2.9) for F = DIu and the nodal interpolation /u of the exact
solution u from Figure 2
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(2.5), (2.2), and (2.7), respectively. The derivative Du of u is directly established
and so is

dive=2(u—f) in Z:=conv{(1,0),(1,3/2),(0,3/2)}

while ¢ =0 and u = f in the remaining part .# := con {(0,0), (1,0),(0,3/2)}.
Note that J(¢ - n) = 0 along the antidiagonal .# N %. This and an integration by
parts verify (2.6). It follows from the quadratic lower-order term that the solution
is unique [16]. Therefore, any infimising sequence (not just a subsequence) con-
verges weakly towards u. This proves (a) and (c), while (b) results from a direct
integration of W**(Du) in # (W**(Du) = 0 in .#). The assertions (d), (e), and (f)
follow from general relaxation theorems and (2.6) combined with the uniqueness
of a solution u. The assertion (g) is a particular version of the fundamental
theorem of Young measures [2, 19, 27, 28]; Formula (2.9) is known from [16]. The
assertion (h) can be deduced from [23]. O

Remark 2.1 (More general situation). The presented formulae are special cases of
a 2-well problem in [16] with general wells /] and F>. Therein, one finds general
expressions for the related relaxed energy density (1.1) or the formula (2.9) to
recover the Young measure. The description here focuses on a benchmark situ-
ation under minimal notation with an explicit solution u based on Tartar’s one-
dimensional broken extremal [26, 29].

Remark 2.2 (Counterexample for higher regularity). The only regularity result on
the gradients known to us is due to Chipot & Evans [21]. Under quadratic
growth conditions, the minimiser in (RP) is Lipschitz continuous. Here, qua-
dratic growth is not important (as ||Vu||,, is bounded) and u is even globally
Lipschitz continuous. The generalised solution is depicted in Figure 2 through
a plot of the nodal interpolant /u with respect to a uniform mesh. Higher
regularity does not hold although the function f is smooth and Q is convex.
Hence, u is a counterexample to H? regularity for degenerately convex mini-
misation problems.

Remark 2.3 (Stress regularity). Owing to [15], o € W%(Q) and, here, 0 € W'2(Q)
holds even globally.

Remark 2.4 (Microstructure domain). The lower left triangle .# := conv{(0,0)},
{(1,0)}, {(0,3/2)} is the microstructure domain with a nontrivial Young mea-
sure v,. In the remaining regular part # := conv{(1,0), (3/2,1),(0,3/2)}, the
Young measure is trivial (a Dirac measure almost everywhere). The interpretation
is that we expect finer and finer oscillations in .# with gradients that oscillate
between two phases S, and S_. The volume fraction A gives the probability for S
and (1 — 2) the probability for S_; the volume fraction A is computed for F = DIu
({u from Figure 2) via (2.9) and displayed in Figure 3.
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3 Numerical Model

The Galerkin discretization with a discrete space () is based on a regular
triangulation 7 into triangles; i.e., 7 is a set of closed triangles and two distinct
triangles 77 and 75 satisfy that 77N 75 is either empty, a single vertex z,
Ty NT, = {z}, or a common edge E, T} N T, = E. The set of all edges and vertices
(also called nodes) is & and A", respectively. Then,

ST ) = {v, € C(Q) : VT € T ,vy|, is affine}, (3.1)
FNT) :={v, € (T) :v4 =0 on OQ}. (3.2)
Let # := 4" N Q denote the set of free nodes and (¢, : z € ") be the nodal basis
of (T ); ¢, is the hat function of the node z € ¥, ie., @, € ¥ (7) with

¢.(z) =1 and ¢.(x) =0 for all x € 4"\ {z}. The Dirichlet conditions up are
discretised by nodal interpolation, i.e., up, € ¢'(7) with

T
T

upp =up(z) ifzeA and up, =0 ifze S\ A, (3.3)

and /), :=upy + y(l)(f ) replaces ./ in (RP). The resulting discrete problem
(RP,) reads
(RP)) min E**(uy).

up€Ady

Theorem 3.1. (a) There exists a unique solution u, of (RPy,); the functional E** is
uniformly convex on .</y,.

(b) The discrete solution uy, is characterised by the discrete Euler-Lagrange equations

/Dw**(Duh) Vo dx + 2/(uh —f)p.dx=0 forallze A, (3.4)
Q Q

(¢) Let u denote the (generalised) solution of (P) defined in Theorem 2.1 and
abbreviate o = DW**(Du) and o, :== DW**(Duy,). Then,

llo — UhHLm(Q) + |Ju — ”hHLz(Q) < Clu *[”|W1-4(Q)

with a mesh-independent constant C.

Proof. Since the affine space o7, is of finite dimension, the uniform convexity of
the L? contribution ||u; — f Hiz@ yields a uniform convex energy functional
E* oy — R, ie.,

||Uh — WhHil(Q) § DE**(Uh,Uh — Wh) 7DE**(W;,,U}, — Wh) for all Up, Wy, € &/h.

Although the L? norm is weaker then the #'# norm, this estimate and obvious
growth conditions prove (a) for a fixed discrete space .«7;.
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Owing to uniform convexity, each stationary point is a global minimiser. The
identity (b) then follows from a straightforward derivation. The a priori error
estimate (c) is verified in [16]. O

Remarks 3.1. (a) The numerical solution of (3.4) is performed with a simple
Newton-Raphson scheme which reads: Given x") € R”, find x("t) € R" with

ME,VH) — Zye%' x,(le)(Py such that

AW (x0HD — X0y = p0), (3.5)

Here, (xﬁw :y € ") denotes the coefficient vector, n := card# = dim.e/;, and,
for any y,z € A,

AY = / D*W*(Du)\Dp,Dg. dx +2 | ¢,¢. dx, (3.6)
Q Q

bl = / DW*(Du Do, dx + 2 / () = f)op, d. (3.7)
Q Q

(b) The implementation of (3.5) in the spirit of [1] directly solves the sparse linear
system of equations (3.5). Therein, for G,H € R? and the Heavyside function
H:R—{0,1}, H(x) =0 for x <0 and H(x) = 1 for x > 0,

DW*™(F)(G) = 4(|F|2 - 1>+F G+8(F-G— (B -F)(F-G)),

D>W*(F)(G)(H) = (4(|F2 - 1)++8)(H .G)

+ 8H <|F\2 - 1)(F -G)(F-H) —8(F, - H)(F - G).

(c) In our numerical examples repeated below, the initial vector x(¥) was chosen by
zero; hence up j, from (3.3) was the initial displacement. Then a few numbers by of
iterations are necessary to compute an accurate coefficient vector.

(d) Throughout the error analysis in [16] the fact .o/, ¢ .o/ according to the
interpolation error up, # up on 0Q was ignored. This error is of higher order and
hence of minor influence in the analysis. The a priori estimates of Theorem 3.1,
however, are not affected.

The numerical result of a Newton-Raphson scheme is displayed in Figure 4 and 7.
The underlying uniform mesh is the same as in Figure 2. At first glance the results
are comparable, but a closer look shows that the antidiagonal interface .# N %
leads to a sharp edge in u but not in the deformed mesh from u;. The discrete
approximation u;, appears too smooth and develops no sharp interface. Generi-
cally, the mesh 7 cannot resolve the interface I' = .# N # between the region
with and without microstructure. Here, the geometry Q = (0,1) x (0,3/2) is
chosen such that any uniform mesh (based on a grid aligned to Q) does not resolve
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Fig. 4. Deformation of Q in problem (P;) on a uniform 32 x 32 grid with 2048 elements
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Fig. 5. Volume Fractions in problem (P;) on a uniform grid based on the deformation from Figure 4

A N R. As a consequence, the generalised solution u is not

the antidiagonal I
well resolved near T".

For comparison, we aimed to calculate an approximate minimiser of (Py),
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Fig. 6. Tension || in Q in problem (P;) on a uniform 32 x 32 grid with 2048 elements

(Py) min E(up),

up€A

with respect to the same mesh . After 416 iterations of Newton-Raphson’s
method we obtained the approximation displayed in Figure 4. In this picture we
observe oscillations, at least, on a very coarse scale, we see a bubble in .# which
might be the 2D analogue of a sea-saw microstructure. Beside this bubble, the
overall picture looks similar to the generalised and relaxed discrete solution /u and
u;, of Figure 2 and 4, respectively. From Figure 2 and 4 it is hard to say where
exactly we have oscillations.

Remarks 3.2 (Solving (P;)). (a) The formulae for the Newton-Raphson method
for (P;) read as (3.5) where DWW and D> substitutes DW** and D*>W**, respec-
tively. This, eventually, corresponds to neglecting the positive parts in the
respective formula; (-), is replaced by (-).

(b) Our numerical experience strongly suggests that the Newton-Raphson scheme
is not at all an appropriate numerical algorithm for the computation of discrete
solutions of (Py). It seems unavoidable to involve energy control, e.g., within some
line search algorithm. We found a natural simplified example in 1D where the
scheme computed rather a local maximiser of E|,, than a local minimiser [7,
Figure 7.3] (see [10] for Matlab programs).
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F

g. 7. Deformation of Q in problem (RP) on a uniform 32 x 32 grid with 2048 elements

(c) The numerical solution of (P,) causes, in general, nightmares. We refer to [7,
Section 9] for theoretical evidence for cluster of local minimisers around discrete
solutions of (P,) in a related 1D example. Typically, any descent method even-
tually is trapped near a local minimiser. The probability to find the correct dis-
crete solution in practise is very very small.

(d) It should be emphasised that the main advantage and motivation for the
numerical treatment of relaxed formulations is that oscillations on a microscopic
scale disappear. As a consequence for the model example in this paper, the
numerical computation of (RP;) is much cheaper and easier compared to that of
(Py). In particular, adaptive algorithms and nested iteration work well for (RP}),
but fail for (P).

(e) The geometry is chosen such that (uniform) meshes are not aligned with the
antidiagonal I' = .# N %. Parallel to which we expect the layers of a lamination
microstructure. Since those layers cannot be resolved on the scale of the mesh-size
h=+/13/128 = 0.02817, we observe the larger microstructure of Figure 4 on a
scale H =4/(3v13)3 = 0.1233 (if we assume that there are 3/2 layers in Fig-
ure 4). Then, H = h* for o = 0.586 = 2/3; the latter is suggested by the theoretical
investigations in [7, 20, 19] (with p = 2 for the growth near the wells).

The generalised solution u and the stress ¢ are known form Theorem 2.1 and
hence the errors ||u — uy||;2(q), [u — tn|yr14(q). and ||o — 64| 43(q) can be computed.
Figure 8 shows various errors for a sequence of uniform meshes. The six curves
represent the errors for (RP,) and (P,). The outcome is summarised in the fol-
lowing comments.

Remarks 3.3 (Discussion on experimental convergence from Figure 8). (a) The
numerical results for (P,) show no convergence. This is theoretically expected for
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the gradients as [u — uy|;14(q) = O(1) but possibly disappointing for |[u — u|2(q)-
Looking at Figure 4 which shows oscillations of an amplitude of size H ~ 0.1233,
this explains the large L? error even for a very fine mesh. The stress error
|lo — onlls/3 for (Py) seems to converge at a very small convergence rate. This
behaviour underlines well the overall theoretical observation that the stress field in
(P) is indeed a macroscopic quantity [6].

(b) The poor convergence rates for (P,) observed in (a) might be a consequence
of (1) a poor numerical approximation u, or (ii) a coarse mesh even for a
32 x 32 grid resolution. Arguments for conjecture (i) include our difficulties
reported in Remarks 3.2(a)—(c) as well as the poor resolution of volume
fraction or stress fields in Figure 6. A counter argument is the reasonable
microstructure on the expected length scale H which, clearly, supports con-
jecture (ii). Indeed, the mesh seems to be still too coarse to allow a fine
resolution with the correct asymptotic behaviour. At least, the microstructure
of Figure 4 is affected by boundary conditions and appears very coarse. Hence
we cannot really expect to be in an asymptotic range # — 0 and H — 0.

(c) The convergence rates in (RPj) for [[u —ul|, and [|o — oyl4/; coincide in
agreement with the theoretical prediction of Theorem 3.1.c. From there and with
standard interpolation error estimates we would expect
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|t — unl| 2(q) o [0 = Onl| @) < |1 — unlyraq
x h* for u € W4(Q).

The regularity of u is limited to a = 1/4 and hence the (lower bound of the)
convergence rate 4'/* might be expected. Instead, we observe the better conver-
gence rate i3/4.

(d) There is no guaranteed convergence rate for the strain error
[u — up|yraiq) = O(1) for (RPy). In the benchmark example we observe

|u — uh|Wl.4(Q) X h1/4.
This improvement clearly leads to non-efficiency of conservative, reliable a pos-

teriori error estimates.

(e) The convergence rates in (RP;) are non-optimal according to the uniform
meshes which do not resolve the jumps in Du across the interface I' = .# N %.
Since, in practise, location of the free boundary is unknown, we need automatic
tools for adaptive mesh-design which steer the refinement effectively. For this
purpose, three algorithms are studied in the sequel.

4 A posteriori Error Control and adaptive mesh design

Motivated by a lack of regularity of the generalised solution u and resulting sub-
optimal convergence of uniform mesh-refinement, this section is devoted to three
mesh-refining algorithms for improved convergence rates. We first present the
three refinement indicators and the adaptive algorithm and then prove an
a posteriori error estimate for their justification.

4.1 The Residual Error Indicator

The analysis in [16] suggests the estimator
3/8
= () - )
TeT

where, for each T € 7 of size hr with edges &(T), ng the normal and Ag the length
of E€é,

k= ni / 12(F = up)|Yax + / helJ (o - ng)[* 3 ds. (4.2)
T (0T)NQ

(Recall that J(oy, - ng) denotes the jump of the piecewise constant stresses o
across interior element boundaries while J (o}, - ng) := 0 on 9Q.)
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4.2 The ZZ-Error Indicator
Given oy, := DW**(Du;,) we define an averaging estimator
3/4
Nz = (Z ”I?) ) (4.3)
Ter
where, for each T € 7,
= llow — Aal[;1)

(1)

is based on the averaging operator 4,

AGh:Z

zeN | @z |

/ a(V)dy | ¢,

on

(o, := T € 7 :z € T} denotes the patch with area |w.| of a node z € ¥').

4.3 The D2-Error Indicator
Given g, = DW**(Duy,) we define

Ny i= Z hzTHdinah +2(f - ”h)||L4/3(T)||D2”||L4(T)

TeT
7/4
+ "m0 - 1) | s e 1Dl (4.5).
Eeé&

Here, T is some element Tx € J with E C 0Tg. In the numerical examples, the
term ||D%ul| 14(r) 1s approximated by weighted jumps [Vuy] - np of the piecewise
constant gradients Vuy, over neighbouring edges U&(T), i.e.,

1/4
IIDZMIILA(T)%< > hEZI[Vuh]%E“) ~ (4.6)
)

E€é(T
The heuristic (4.6) is adapted from (iii) of page 41 in [8] and verified in some easier

model examples by numerical experiments. With this heuristic we define the
refinement indicator #,, for each element 7 € 7, by

np? = || (divron + 2(f — un))ll )

3/4 1/4
+< > hE|J<ah-nE>|jﬁi(E)> ( > hE'wuh]-nEr‘) @)

E€é(T) Eed(T)

The following algorithm generates a sequence of refining triangulations with re-
spect to the refinement indicators 5, from n%, n%, and 52>,
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Algorithm 4.1 (Adaptive Algorithm).

(1) Start with a coarse initial mesh T, set k = 0.
(2) Solve the discrete problem uy, on the mesh I
(3) Compute ny for each T in Ty,

(4) Compute the upper error bound (ZTeTh 17T) and decide to stop (then terminate
computation) or to refine (then go to (5)).

(5) Mark T € T, for red-refinement provided

1/21?612/1)( k-

(6) Refine further triangles to avoid hanging nodes and thereby create a new mesh

T ., by red-green-blue refinement. Update k to k + 1 and go to (2).

The three error estimators satisfy the following error estimates.

Theorem 4.2. Let u and uj, solve (RP) and (RP,) with o := DW**(Du) and
n := DW**(Duy,), respectively. Then there hold the following a posteriori error

estimates.

(@) ||o — GhHLA/z + [Ju — “h||L2 < cing + hot.

(b) ||0'*‘7h‘|L4/3<Q)+||”*”h”L2 < camny+hod.

©) If u € W*4(Q) then ||o — a,,||w +lu = unll2q) < 3fipn + oot

The constants cy, ¢, c3 depend on E**(u) + E**(uy,) and the shape of the elements
in .

Remark 4.1. Notice carefully that the error terms on the left-hand side in (a)—(c)
are raised in full power 4/3 (resp. 2) while this is not the case for the terms on the
right-hand side.

Remark 4.2. Details on red-green-blue refinement may be found in [30].

Sketch of the proof. Except from proper treatment of up —upj; # 0 on 0Q, the
proof of the estimate for the residual error estimate (a) is contained in [16]. We
therefore give a sketch of the proof with focus on the new aspects. The point of
departure is an elementary estimate for the function £ := DW** : R> — R* which
satisfies [30]

[2(4) = Z(B) < 8(¢(4) + £(B) +2)(E(4) — £(B)) - (4 — B) (4.8)

for all 4,B € R? and ¢ : R* — R, 4—(|4]* — 1),. Let A = Du and B = Duj, raise
the resulting inequality to the power 2/3 and integrate over Q to obtain
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llo = anll}hq) < 4 /(5(13”) + (D) + 2 (6 = 02) - Dl — ) ek,
Q

Holder’s inequality with respect to exponents 3 and 3/2 shows, after raising the
result to the power 3/2,

llo = aull7aaq) < 8IIE(Du) + E(Duy) + 2

s / (6 — 04) - D(u — up)dx.  (4.9)
Q

(Notice carefully that (¢ — o) - D(u — ;) is non-negative (owing to (4.8)) and so
the integral over Q equals its L'-norm where it came from.)

For any v, € o/, we have u, —v, =0 on I'p, and hence u, — v, € le(ﬁ‘) is a
linear combination of (¢, :z € #7). The discrete Euler-Lagrange equations of
(3.3) therefore lead to

/Gh 'D(uh — Uh)dx+2/(uh 7f)(uh — vh)dx =0.
Q Q
The continuous version of (2.6) reads
/J~D(uh - vh)dx+2/(u — ) (up — vp)dx = 0.
Q Q
The combination of the two identities shows
/(0 — o) - D(up — vp)dx = /(a — o) - D(up — vp)dx + 2/(u — o) (uy — vy)dx.
Q Q Q

This can be re-arranged to

/(‘7 —0n) - D(u — up) 22(9)
@ (4.10)
— [ (@ = D= whde+ [ = vl + [l =l
Q

We remark that the combination of (4.9)—(4.10), namely

_ 2
¢yl — 0h||L4/z + || — unll72(q)

4.11
< / (0= 1) - D — o) + [l — vnl oy + [l — w3y = RS, 1)

Q
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is the basis of a proof of Theorem 3.1.c, where v, =Iu and ch‘1 =

8||¢(Du) + &(Duy) + 2||12(q- For an a posteriori error estimation, we employ the
Euler-Lagrange equations (2.6). Given any function w e W'#4(Q) with
w = up — upy on 99, there holds

/G-D(u—uh—w)dx+2/(u—f)(u—uh—w)dx:0.

Q Q

Subtract this from the upper bound RHS of (4.11) to see

RHS:/(a—oh)~D(W—vh+uh)dx—2/(u—f)(u—uh—w)dx
Q Q

—/?wa—w—mm+w—mmmu4w—m%®. (4.12)
Q

The choice v, = u;, and the identity

—2/(u—f)(u—uh—w)dx:—2/(uh—f)(u—uh—w)dx
Q

Q

+2 [ (= w)wr — |l = w2 g

.’O\

lead in (4.12) to

RHS:/(J—U;,)-Dwdx+2/(u—uh)wdx
Q Q

—2/(uh—f)(u—uh—w)dx—/ah-D(u—uh—w)dx.

Q Q

Let us abbreviate the last two terms with the functional by
Res(v) ::2/(f—uh)dx—/ah - Dvdkx.
Q Q

Then, with Holder’s and Young’s inequality (ab < a”/p + b?/q), we have

RHS = {6 — o[ 430 [Wlw14i0) + 2Mlu — unl| 20| W] 12 () + Res(u — up —w)

3. 3 4/3
< (e, Mo = anllss)

| 1 P 2
<2 T2 |W|W1-4(Q)Cf, T3 o = unll72) + (w720 -
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This and (4.11) verify our first new result

- 4/3 2
Ch1||0'—0'h||L£/3<Q)+2||M—uh”L2<Q) (4 13)
S CZ|W|?/V1‘4(Q) + 4||WH§2(Q) + 4 RCS(M — up — W)

The terms with w can be minimised with respect to w = up — upj; on 9Q. Given an
element 7 € J with 7N 9Q = () we define w|; = 0; else we extend w := up — fup
from (9T) N (0Q) by zero to OT. Then we extend w from T to T with midpoint z
of the largest interior circle by a convex combination: w(x) = Aw(y) for
x =2y + (1 — A)z. Then,

|VW|1.00,T S ||W/hT||oo,aT‘|‘||86”W/8S||oo.ar5hTH8§"”D/8S2||oc,rDv

Wl S Wl or Sh7l105un/05% || -
Here and below, 4 <B abbreviates 4 < ¢B with a generic constant ¢ which de-
pends on the shape of the elements but not on their sizes. (Recall that w is zero at
the vertices of OT and hence ||w||,, o7 <||03up/0s*|| ., for the edgewise deriva-
tive dg etc.) Since only a boundary layer of elements leads to w £ 0, this shows
|w\§V|,4(Q> + |Wll;2() = o(h) = h.o.t. Notice that E(A)* < W (A) for any 4 € R
Hence

ch §24(4+/W**(Du)dx+/W**(Duh)dx)
Q Q

< 24(4 + E* (u) + E™ (uy)) < 480

for E**(uy,) < E**(u) + 0.89, i.e., for sufficiently small mesh sizes. (Recall that we
have convergence of the energy according to a density argument and even con-
vergence rates in terms of 4 by convexity).

It therefore remains to estimate Res(u —u; —w). One major property of the
functional Res is

Res(v;) =0 for all v, € 7(7), (4.14)

a direct consequence of the discrete characterisation in (3.3). Set
vVi=u—u,—we WOIA(Q). The first estimation of Res(v — vy) essentially follows
[16] in an elementwise integration by parts, a trace estimate, a Clément-type
approximation, and, finally, Cauchy estimates to deduce

Res(v) Slu — wlprsir < (¢ +h.o.t)ng. (4.15)

This proves (a); more details (with w = 0) may be found in [16].

As it was known to the experts before, the edge contributions dominate in 7 [18].
Following [11, 13] we consider an approximation operator J : Wol’p Q) — LHT)
with the following first-order approximation and W !'”-stability property
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||h;r1 (v— JU)”U’(Q) + v — JU|W‘-I’(Q) S |U|W‘)P(Q)7 (4.16)

plus an extra local orthogonality property,

/w—hmwswkmmmwwwm (4.17)
Q

for all v e Wo ?(Q) and g € W'*(Q). We follow [6] and consider an arbitrary
1, € #(7)? and integrate frh - D(v — Jv)dx by parts. Then,

Res(v — Jv) = 2/(f —up) (v —Jv)dx — /rh -D(v—Jv)dx

+ [ (zh — op) - D(v — Jv)dx
/

/(2f 2uy, + div 1;)( vavdx+/ T, — ay) - D(v — Jv)dx.
Q Q

With (4.16)—(4.17) we deduce

Res(v — Jv) < ( E,TDf||L4/3(Q) E7Duh||L4/3(Q)

@ +llon = Bllaeg ) s (418)
An inverse estimate (employed separately for each element) yields
A7 divrtal |50y = Ilhrdivien — )l an ) Sllon — Thll )

(divsty is the piecewise divergence, hence divso;, = 0.) Since Duy, is bounded in
L*, the first two terms in (4.18) are O(h?). Hence we deduce

Res(v —Jo) Slu — up — w4 (h.o.t. + ||lon — Th||L4/3(Q)). (4.19)

This and (4.13) prove (b).

The verification of (c) follows the proof of (a) to the estimation of Res(v — vy) for
v=u—u, —w and v, = lu — u;,. An elementwise integration by parts (as in the
proof of (a)) leads to

Res(v —v;) = /(div;ah + (f —wn))(v—vp)dx + / J(oy - ng)(v — vy)dx.

Q UUI
(4.20)
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With Cauchy inequalities, this leads to

Res(v —vs) < ) |ldivey + (f = un)ll ol — Tu = wll )

TeT

(4.21)
+ Z I (on - np )| oyl |t — T — Wl o
Ecéo
Notice that u — Ju —w = 0 on 9Q and w = 0 on (| &) N Q by the above choice of

w € H'(Q); &q denotes the interior edges in &. Recall that W20 <0(hz)hl/2 A
trace inequality from [12], namely

e — = Wil S | = B = wllfagpy + BIDGe— T = w) [y, (4.22)
leads to

Res(v — v;) Z [divron + (f = un)|| o (| lu — T — Wl a7

TeT

B 4 1/4
> W (o ey (7 N = Bl + DG = 1)) )
Eecé&

<> ildivron + (f = wi)llosry (D20l + 0(1))

Tres

1/4

- 4 4

+ Z |1/ (o - nE)HL4/3(E) (hTIhE}HDZMHL“(T) + hEHDz“HH(E))
E€é

< Y mlldivaen + (F =)l (11Dl sy + 0(1)

TeT
hY AN (o - D?
+Z £ | (o nE)||L4/3(E)|| ”HU(TE)- 0
Ee&

5 Numerical Experiments

This section is devoted to answer several questions empirically for the benchmark
proposed in the previous sections.

5.1 Resolution of Free-Boundary

Although there is no free boundary formulation in the strict sense (of free
boundary problems), the interface I' = .# N % between the regions with and
without enforced microstructures in unknown a priori and gives, at least in our
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benchmark example, rise to discontinuous gradients. For the uniform mesh-
refinements of Figure 4 (for (P)) and Figure 7 (for (RP)), the deformation near
that straight line is not clearly resolved as for fu of Figure 3. The three adaptive
mesh-refining algorithms, namely the ng, n,, and np, indicated versions of
Algorithm 4.1, generate sequences J ¢, 7 |, ... of meshes. The mesh 7 5 is dis-
played in its deformed configuration in Figure 9-11 with N = 2462, N = 2485,
and N = 1188 degrees of freedom for (RP)).

Figure 9-11 illustrate the generalised solution and resolve the discontinuity along
I' quite clearly. This is achieved by local refinements along I'.

5.2 Approximation of Young Measures

The formation of microstructure is parallel to I" and this is not aligned with the
original mesh 7. Discrete approximations of Young measure based on the
discrete displacements from (RP,) can be computed from (2.9). The corre-
sponding figures are very similar to Figure 5 and hence not displayed. Our
interpretation is that the adaptive refinement along I resolves the Young measure
more appropriate than uniform refinements. Similar remarks apply to stress fields
as well and, therefore, we do not show corresponding figures.

5.3 Stress Improvements

The error ||o — opl|4; can be computed and Figures 12-15 show [|o — axl|4/3
versus the number of degrees of freedom. For uniform meshes and ny, #,, or 1y,
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adapted meshes we further computed the three estimators 7, 15, 11y, as in (1.8)

in each of Figure 12, 13, and 14. A

uniform mesh results in an experimental convergence rate 3/8 for the error
|lo — oall4/3 and the estimators n, and 1, while we see half of that convergence

and (1.11). This yields sequences of meshes

The adaptive meshes show an improved convergence rate 1

1z, and np, while 5, converges with rate 3/8.

rate for the reliable #5,.

for [|o — 0h||4/3a
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Fig. 12. The error estimates 1, 1z, 11p; compared with the stress error || — a4/ for uniform and ng
adapted meshes

5.4 Effective Mesh-Refinement

Figure 12 and 13 give empirical evidence that all three adaptive algorithms yield
optimal stress convergence. To answer the question which method is the best,
the stress error is displayed in Figure 14 for uniform 5y, n,, np, adapted meshes.
The convergence rates are optimal as explained, but, in absolute terms, 1, and
Npa give comparable accuracy slightly less sharp than n,. Our overall interpre-
tation is that any reasonable adaptive algorithm improves the situation.

5.5 Accurate Error Estimation

It is obvious from the previous discussion on Figures 12-14 that 5, (although
reliable) is too conservative. The reliable ignorance of ||D(u — up)||, in (1.9) is not
efficient. The progressive estimation with ||4,D?ul|, requires the heuristic evalu-
ation through ||hgl/ 2[Vuh] “ngl (o) This step lacks a theoretical justification
and so we address this question empirically. From the reliable and effective per-
formance of 7, in all our experiments we can agree with [8] that this replacement
leads in our benchmark to reasonable numerical results. The overestimation by a
factor could be improved by a different scaling, i.e., by a substitution of 7, by
0.17p,, as suggested in [8].
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Fig. 13. The error estimates 1y, 17, 11p, compared with the stress error ||o — a,|4/5 for uniform and 1,
adapted meshes
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Fig. 14. The error estimates #g, 11z, 11p, compared with the stress error ||¢ — ;|43 for uniform and #,
adapted meshes
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Fig. 15. The stress error ||o — <7;,||4/3 for uniform and ny, 1, 1y, adapted meshes

The most striking aspect, however, is the amazing accuracy of the averaging
estimator, 1, ~ ||6 — 6;||4 /5. This is in agreement with numerical experiments on
uniformly convex experiments in [11, 13, 14].

5.6 Adaptive Mesh Refinements for (Py)

In contrast to a general warning in [10] (i.e. ‘Do not use adaptive algorithms for
non-convex minimisation problems!”) our corresponding numerical experience
(not displayed) indicates that, partly, the adapted meshes show a slightly improved
stress error. For finer meshes, however, numerical difficulties (indicated in Re-
marks 3.2 b—d) prevent us from giving a clear evidence. Nevertheless, at the mo-
ment, adaptive algorithms for (P;) lack any theoretical justification.
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