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SUMMARY

Adaptive algorithms are important tools for e�cient �nite-element mesh design. In this paper, an error
controlled adaptive mesh-re�ning algorithm is proposed for a non-conforming low-order �nite-element
method for the Reissner–Mindlin plate model. The algorithm is controlled by a reliable and e�cient
residual-based a posteriori error estimate, which is robust with respect to the plate’s thickness. Numerical
evidence for this and the e�ciency of the new algorithm is provided in the sense that non-optimal
convergence rates are optimally improved in our numerical experiments. Copyright ? 2003 John Wiley
& Sons, Ltd.

KEY WORDS: Reissner–Mindlin plate; a posteriori error estimates; adaptive algorithm; mixed �nite-
element method; non-conforming �nite-element method

1. INTRODUCTION

The Reissner–Mindlin model of the plate bending problem concerns the transversal displace-
ment w and the rotations of the plate normal �=(�i)i=1;2 and reads in its weak form: Given
f∈L2(�) �nd (�;w)∈H 1

0 (�)
2×H 1

0 (�) such that, for all ( ; �)∈H 1
0 (�)

2×H 1
0 (�),

(�(�);C�( )) + t−2(�−∇w;  −∇�)=(f;�) (1)

Here (· ; ·) is the scalar product in L2(�), �(�) is the symmetric part of the gradient ∇�
and C is the elasticity tensor; detailed notation will be given in Section 2. A straightforward
discretization of Equation (1) by a �nite-element method may deteriorate as the plate thickness
t becomes small. This is well known as the shear locking phenomenon.
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2314 C. CARSTENSEN AND K. WEINBERG

Arnold and Falk analysed in Reference [1] a simpli�ed version of Equation (1). They
involved conforming and non-conforming low-order �nite-element spaces and an L2-projection
onto piecewise constants in their locking-free �nite-element discretization [1], cf. Section 2.
An a posteriori error estimate for the simpli�ed problem, with residuals �̃T for every element
T of the triangulation and of edge jumps �̃E for an edge E, is shown to be reliable and
e�cient in Reference [2].
In this paper, we extend the theoretical results of References [1, 2] to the Reissner–Mindlin

problem (Equation (1)) with non-homogeneous boundary conditions, non-smooth load func-
tions f and=or non-smooth geometry. We introduce a new adaptive mesh-re�ning algorithm
for the simple and locking-free �nite-element method for the Reissner–Mindlin plate model.
Numerical evidence for the e�ciency of the error controlled algorithm is provided by typical
examples; non-optimal convergence rates are improved optimally.
The paper is organized as follows. The precise model and non-conforming low-order �nite-

element method will be described in Section 2. The discrete problem can be decoupled further
for theoretical purposes via a discrete Helmholtz decomposition [1]. This and the generalized
error estimator �̃ for the error e will be presented in Section 3. Section 4 describes the
adaptive algorithm proposed. The robustness of the estimate is empirically veri�ed in Section 5
where �=e stays bounded no matter in which way the mesh size or the thickness tends to
zero. Section 6 concerns an example with a free (i.e. non-supported) boundary to study
the performance of the adaptive algorithm for boundary layers. A sheet metal with hole
and concentrated forces is discussed in Section 7. An example with a corner singularity
on the L-shaped domain in Section 8 concludes our set of numerical examples. The exact
solution is unknown and, owing to the non-conformity, the error cannot be extrapolated as in
Reference [3]. The equivalent error estimator, however, illustrates the improved approximation
of the adapted mesh re�nement over the uniform re�nements in all examples. The proof of
reliability is based on arguments in Reference [2] for the simpli�ed model of Equation (1).
An outline and necessary modi�cations of the mathematical analysis conclude the paper in
Section 9.
The main achievement of the adaptive algorithm and the a posteriori error control of this

paper over other attempts [4] or purely heuristic approaches is the guaranteed robustness in
the thickness t.

2. NOTATION AND FINITE-ELEMENT DISCRETIZATION

Assuming isotropic, linear elastic material behaviour the (scaled) elasticity operator C in
Equation (1) is de�ned by

C�= 1
6k

[
�+

�
1− �

tr(�)I
]

(2)

where tr(�) is the trace of �∈R2×2, I is the 2× 2 identity matrix, � is the Poisson ratio, and
k= 5

6 is Reissner’s shear correction factor. Moreover, �(�) denotes the symmetric gradient
(the linear Green strain) �(�) := symD�=(12(@�j=@xk + @�k=@xj))j; k=1;2 and ∇ is the gradient
of a scalar function. With an additional shear term �,

� := t−2(∇w − �) (3)
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and bilinear and linear forms (where �1; �2;  1;  2; w∈H 1
D(�) and �; �∈L2(�))

a(�;  ) :=
∫
�
�(�) :C�( ) dx (4)

b( ; �; �) :=
∫
�
(∇� −  )� dx (5)

c(�; �) :=
∫
�
t2�� dx (6)

F(�;w) :=
∫
�
(f��+ fww) dx +

∫
�N
(g��+ gww) ds (7)

the Continuous Problem of the Reissner–Mindlin plate model is rewritten in a mixed formula-
tion: Find (�;w; �)∈H 1

D(�)
2×H 1

D(�)×L2(�)2 that satis�es, for all ( ; �; �)∈H 1
D(�)

2×H 1
D(�)

×L2(�)2,

a(�;  ) + b( ; �; �) = F( ; �) (8)

b(�;w; �) + c(�; �) = 0 (9)

Here, L2(�) and H 1(�) denote the usual Lebesgue and Sobolev spaces [5] and H 1
D(�) is

the subspace of all functions with prescribed homogeneous boundary values at �D. On the
boundary �N (with �D ∪�N=@�, �D ∩�N=∅), forces and moments g := (gw; g�) in L2(�N)3

may apply as well as forces and moments within the domain f := (fw;f�)∈L2(�)3; g and f
are already scaled by a factor Ekt3=(2(1 + �)), where E is the Young’s modulus.
Let T be a regular triangulation of the bounded Lipschitz domain �⊆R2 with polygonal

boundary � into triangles (i.e. the domain is covered exactly and there are no hanging nodes,
cf. Reference [5]). The T-piecewise a�ne and globally continuous functions are denoted as
S1(T) while S1; NC(T) denotes the T-piecewise a�ne functions which are continuous at
the midpoints M of edges E∈E, L0(T) denotes T-piecewise constant functions with the
L2-projection P0 onto L0(T). The corresponding modi�cations with given boundary values at
�D and M∩�, respectively, are written as S1

D(T) and S1; NC
D (T). The cubic bubble functions

bT := 	1	2	3∈H 1
0 (T ), where 	j denotes the barycentric co-ordinate of the vertex j on the

triangle T , de�ne B3(T) := {f∈H 1
0 (�) :∀T ∈T; f|T=�T bT for some �T ∈R}.

The Discrete Problem reads: Find (�h; wh; �h)∈Hh := (S1
D(T)⊕B3(T))2×S1; NC

D (T)×
S0(T) that satis�es, for all ( h; �h; �h)∈Hh,

a(�h;  h) + bh( h; �h; �h) = F( h; �h) (10)

bh(�h; wh; �h)− c(�h; �h) = 0 (11)

Here bh( h; �h; �h) :=
∫
�(∇T�h −  h)�h dx replaces b according to the non-conforming �h.

The applied boundary conditions do not cover the most general possible situation. First,
the part �D may be di�erent for ’;’h and w;wh, respectively. Hence �D; ’ and �D; w are re-
quired instead of �D. Second, the boundary data may be inhomogeneous. The adaption of
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2316 C. CARSTENSEN AND K. WEINBERG

the presented situation (which essentially covers all our numerical examples below) to more
general problems is straightforward.

3. DECOMPOSED PROBLEM

Arnold and Falk employed a Helmholtz decomposition of the discrete shear term �h [1],

�h := t−2(∇Twh − P0�h)=∇Trh +Curlph (12)

to decompose the Discrete Problem: Find (rh; �h; ph; wh)∈Hs :=S1; NC
D (T)× (S1

D(T)⊕
B3(T))2×S1

N(T)×S1; NC
D (T) such that, for all (sh;  h; qh; �h)∈Hs,

(∇Trh;∇T�h) = F(0; �h) (13)

(�(�h);C�( h))− (Curlph +∇Trh;  h) = F( h; 0) (14)

(�h + t2 Curlph; Curl qh) = 0 (15)

(∇Twh − �h − t2∇Trh;∇Tsh) = 0 (16)

Two di�erential operators curl are de�ned by Curl := (−@=@x2; @=@x1) and rot  := @ 1=@x2
− @ 2=@x1,  ∈H 1(�)2. The space S1N(T) equals S1(T)=R if �D=@� and complements
S1; NC
D (T) by S1

N (T) := {qh∈S1(T) : @qh=@s=0 on each E∈EN}, EN denotes the set of edges
on �N := @�\�D.
It is shown in Reference [1] that a simpli�ed form of the decomposed discrete problem

(13)–(16) has a unique solution. With an analogous strategy this can be shown for Equations
(13)–(16) and for the equivalent discrete problem (10)–(11) as well. With a positive and
(hT; t; f; g)-independent constant C1, there holds the a priori error estimate

|�−�h|1;2+‖r−rh‖2+‖∇r−∇Trh‖2+‖∇w−∇Twh‖2+ ‖p−ph‖2+t|p−ph|1;26C1hT ‖f‖2

(17)

where ‖ · ‖2 and | · |1;2 are the L2(�)-norm and the H 1(�)-seminorm, respectively, and the
polygonal domain � is convex. In Reference [2] an a posteriori error estimate �̃2 of a sim-
pli�ed version of (13)–(16) is established as the square root of the sum of all element
contributions �̃2T ,

�̃2T :=
∫
T
|�h − P0�h|2 dx + h2T

∫
T
|�h +��h|2 dx +min

{
1;
(
hT

t

)2}∫
T
|rot�h|2 dx

and of all edge contributions �̃2E

�̃2E := hE

∫
E\�

|[D(�h)]nE |2 ds+min{t3; t2hE}
∫
E
|[�h]tE |2 ds (18)
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with gradient D; t is here a parameter with 0¡t¡1. The a posteriori error estimate �̃:=(
∑

T∈T

�̃2T+
∑

E∈E �̃2E)
1=2 is reliable and e�cient (cf. Reference [2]), i.e. it is a lower and upper bound

of the error

eN := |�− �h|1;2 + ‖∇w −∇Twh‖2 + t|p− ph|1;2 + ‖p− ph‖2 (19)

The positive constants C2 and C3 in the e�ciency and reliability estimate

C2�− h:o:t:6eN6C3�+ h:o:t: (20)

are uniform in 0¡t¡1, and hT and hE depend only on the minimal interior angle in the
triangulation T and on �. The higher-order terms (h.o.t.) in the upper and lower bound,
respectively, are terms of rh. The lower bound in (20) holds in a local (elementwise resp.
patchwise) form up to known higher-order terms such as (t+hT )hT (

∫
T |fw|2 dx)1=2. Note, that

the additional terms p resp. r and their discrete counterparts ph resp. rh in (20) do not appear
in the solution of the Reissner–Mindlin plate model (1).

4. THE ADAPTIVE FINITE-ELEMENT SCHEME

The discrete problem (13)–(16) is of particular interest because its decomposed form is
necessary for the mathematical analysis only. In the numerical implementation the additional
variables rh and ph may be avoided. With the discrete shear term (12) we will deduce an
a posteriori error estimate for the solution of (10)–(11) in Theorem 9.1. This error estimate
� can be computed elementwise,

� :=
( ∑

T∈T

�2T

)1=2
(21)

from local error contributions

�2T :=
∫
T
|�h−∇wh+t2�h|2 dx+h2T

∫
T
|f�+divC�(�h)+�h|2 dx+min{1; (hT =t)2}

∫
T
|rot�h|2 dx

+
∑

E⊂@T

(
hE

∫
E\�D

|[C�(�h)]nE |2 ds+min{t3; t2hE}
∫
E
|[�h]tE |2 ds

)
(22)

for an element T of length hT := diam(T ) with edges E of length hE := diam(E) and with
jumps [·] across and edge E and normal and tangential unit vectors nE and tE .
The numerical validation of e�ciency and reliability of error estimator (21) is presented

in Section 5 for the solution error (19) as well as for the error in natural energy norm.
A mathematical analysis based on Reference [2] is sketched in Section 9. Moreover, we
regard the elementwise contributions (22) as re�nement indicators in our adaptive mesh-
re�ning algorithm.

Adaptive Algorithm (A)

(a) Start with coarse mesh T0.
(b) Solve discrete problem with respect to Tk with N degrees of freedom.
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Figure 1. Red–green–blue re�nements of a triangle.

(c) Compute �T for all T ∈Tk .
(d) Compute error bound �N := (

∑
T∈Tk

�2T )
1=2 and terminate or go to (e).

(e) Mark element T i� �T¿ 1
2 maxT ′∈Tk �T ′ .

(f) Re�ne marked elements, generate new mesh Tk+1 and go to (b)with updated k.

We employ red–green–blue re�ning procedures [6]. Red-re�ning means to bisect the sides
of one marked triangle and re-mesh with four congruent triangles (�rst picture of Figure 1).
To avoid hanging nodes, further re�nements of neighbouring elements are possibly performed
according to one of the choices in Figure 1. In any case, one longest side is divided. In this
way we avoid hanging nodes as well as degenerated elements.

5. NUMERICAL VALIDATION

Since the solution of Reissner–Mindlin model (1) tends to the solution of Kirchho�’s theory
when t→ 0, we compare the results of error estimate (21) with the true error for the (di�erent)
reference solution

w(x; y)=(x2 − 1=4)2(y2 − 1=4)2 for (x; y)∈� := (−1=2;+1=2)2 (23)

with fw=Et3=(12(1− �2))��w, E=10:92 MPa, �=0:3 and thickness t=0:001 m.
By symmetry we calculated only one quarter [0; 0:5]2 m of the domain � with an initial

mesh T0 of two triangles with N=11 degrees of freedom. Figure 2 displays the convergence
of error estimate �N (21) with uniformly re�ned meshes (stars). Here and below the error
terms and their estimates �N from (21) are plotted versus the number of degrees of freedom N
in a log=log-scale. Owing to N ∝ h−2 in two dimensions, a slope − 1

2 in the �gures corresponds
to an experimental convergence rate 1.
To measure the error we compute the H 1-seminorm and L2-norm of the di�erence between

Kirchho�’s and the �nite-element solution for the rotation vector |�−�h|1;2 with �=∇w and
for the displacement gradient ‖∇w−∇Twh‖2, respectively. The error norm (19) is not directly
computable because the error contribution p− ph does not appear in (1) and (10)–(11).
To approximate e≈ eN we proceed as follows. With w from Equation (23) and �=∇w

(for the reference solution) we have �=0 and so p=0, r=0. To compute ph we recast (12)
multiplied with Curl�h∈S1

D (T) into

(∇ph;∇�h)= t−2(rot�h;�h) (24)

where we used (Curl�h; P0�h)=(Curl�h;�h)=(rot�h;�h) with integration by parts. By solv-
ing the Laplace problem (24) we determine ph (�h is part of the computed �nite-element
solution). Then,

t|p− ph|1;2= t−1(rot�h;ph) and ‖p− ph‖2=‖ph‖2 (25)
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Figure 2. Exact error and error estimate in the example of Section 5
with analytical solution Equation (23).

In this way, (19) is approximated by the computable reference quantity

eN := |∇w − �h|1;2 + ‖∇w −∇Twh‖2 + t−1(rot�h;ph) + ‖ph‖2≈ e (26)

and displayed in Figure 2 (circles) as a function of the number N of the degrees of freedom.
Additionally, we monitor the error convergence in natural energy norm (marked by + in

Figure 2) which is approximated by

e2E := ‖C1=2�(∇w − �h)‖2 + t−2‖�h −∇Twh‖2 (27)

In Figure 2, the convergence of all error contributions is optimal with convergence rate 1.
The a posteriori error estimate �N obviously converges with identical rate as the true solution
error, that it is (up to a constant) a bound of error (26) resp. (19) and (27).
Table I displays the values of error estimate �N divided by solution error eN (26) computed

for uniformly re�ned plates of di�erent thickness t. We observe almost constant estimate
to error ratios. That the asymptotic exactness (e�ciency and reliability) is con�rmed as in
Figure 2 (read Table I line by line for uniform mesh re�ning). The estimate �N appears also
to be robust, i.e. it does not depend on the plate thickness (read Table I column by column
for falling thickness). Estimate (21) appears very accurate in the sense that the true and the
indicated convergence rates coincide.
In conclusion, Table I provides numerical evidence for our theoretical results of Section 9.

It strongly supports that �N =eN is bounded from above and below (t; N )-independently.
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Table I. Error estimate �N divided by error eN for varying thickness in the example of Section 5.

T2 T3 T4 T5 T6

�N =eN N =200 N =816 N =3296 N =13248 N =58120

t=10−2 11.8501 11.7278 11.9273 11.9814 11.8388
t=10−3 11.9023 11.7229 11.6782 11.6748 11.7192
t=10−4 11.9110 11.7375 11.6986 11.6873 11.7330

6. PLATE WITH FREE BOUNDARY

The exact solution of the Reissner–Mindlin plate model (1) typically exhibits edge e�ects.
More precisely, depending on boundary conditions and geometry the derivatives of the normal-
rotation vector �=(�i)i=1;2 may vary rapidly in a narrow layer around the boundary. Boundary
layers are weak in the case of clamped plates (�;w)∈H 1

0 (�)
2×H 1

0 (�), where discretization
(10)–(11) as well as error estimate (21) were analysed for, but they are relatively strong for
free, i.e. not supported, boundaries. Therefore, we investigate here numerically whether our
error estimate (21) measures the error due to boundary e�ects in an appropriate way.
Edge e�ects can be analysed by substituting the unknown rotations of the plate normal �

with a new variable rot(�)∈L2(�), rot(�)=@�1=@x2 − @�2=@x1. In this way, the Reissner–
Mindlin equations decouple into a boundary-layer equation for rot(�) and an interior equation
for the transversal displacement w (cf. Reference [7] for details and further references). In
a simple model problem with known analytical solution for the boundary layer equation
(obtained as in Reference [7] by series expansion) we monitor here edge e�ects on a free
curved boundary. We consider a quarter of a circular plate with radius r=1 m and plate
thickness t=0:001 m, the material parameters are constant as above. The plate is loaded
uniformly and simply supported along the shanks (as indicated in Figure 3). We employ hard
simply support, i.e. not only the displacement w but also the tangential component of the
rotation �t is forced to zero.
Figure 4 displays the normalized value of the boundary layer function rot(�) versus the

distance from the boundary r. Clearly the boundary-layer equation contributes to the solution
only in a very localized region near the plate boundary which has approximately the width
of the plate thickness. Note that in the tangential direction the distribution of the boundary

support

support

f=1000 N

r=1 m

free

Figure 3. Model and initial mesh of the circular plate of Section 6.
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Figure 4. Analytically computed boundary layer function vs. distance for the example of Section 6.

layer is not uniform but symmetric, in particular in the symmetry plane (45 grd) its value is
zero.
Our �nite-element computation starts with a coarse mesh of four elements and obeys Al-

gorithm (A); Figure 5 displays the generated meshes. The adaptive algorithm clearly resolves
the boundary layer. We observe strong mesh-re�nement along the free boundary because of
high error contributions there. The generated meshes follow the distribution of the boundary-
layer function, we get highly re�ned meshes at the outer sides and almost no re�nement in
the symmetry axis where rot(�)=0.
Because the solution is almost smooth the adaptive mesh re�ning is not expected to improve

the solution quality substantially. But as displayed in Figure 6, the non-uniform meshes yield
from the third re�ning step onwards the standard convergence rate of 1 whereas the uniform
re�nement converges only with a rate of 1=2. This agrees well with the theoretical results of
Pitk�aranta and Suri [8], where because of boundary layers a reduced convergence rate of 1=2
for uniform meshes (and very thin plates t→ 0) is predicted. Note that by adaptive re�ning
techniques the error contribution of boundary layers may be reduced without the introduction
of additional unknowns as proposed in Reference [8].
In conclusion, this example shows that the adaptive Algorithm (A) can overcome boundary

layers and so signi�cantly improves the accuracy of the �nite-element approximations.

7. SHEET METAL WITH A HOLE

A rectangular sheet metal of Figure 7 loaded by two stamps of 0:2m× 0:2m serves as a more
practical example. The load of fw=106 N vanishes outside the marked region. On three sides
(indicated with dashed lines in Figure 7) the steel plate is simply supported by hard support,
E=2:1× 1012 N=m2, �=0:3, t=0:1 m.
By symmetry the coarse initial mesh consists of 17 �nite elements with N=126 degrees of

freedom. Figure 8 displays the meshes generated by Algorithm (A). Since the load function

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2003; 56:2313–2330
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1. step 2. step 3. step 4. step

5. step 6. step 7. step 8. step

9. step 10. step 11. step 12. step

Figure 5. Adaptively generated meshes in the example of Section 6.

fw is evaluated at the three Gauss points within T , fw is re�ected correctly only for meshes
which are su�ciently �ne around the load. If the mesh size is small compared to the stamp
load (or at least decreased to a comparable size) the singularity is expected to be of minor
in�uence.
The error estimate �N is plotted in Figure 9 versus the number of degrees of freedom N

in a log = log-scale and compared with uniform re�nement technique. The vanishing in�uence
of the load singularity is seen here by a high error-reduction in the beginning of the adaptive
mesh re�ning and the standard convergence rate 1 for �ner meshes (the geometry does not
cause a non-smooth solution here).
Thus we deduced from Figure 9 that Algorithm (A) enables a signi�cant reduction of

computational e�ort, particularly, if it starts with very coarse initial meshes.

8. SINGULAR SOLUTION ON DOMAIN WITH RE-ENTERING CORNER

In our last example, an L-shaped plate (−1; 1)2\[0; 1]2 is clamped along the two edges of
the domain which form the re-entering corner and is free at the remaining boundary. The
(unknown) exact solution is expected to be singular near the origin at the re-entering corner
even though the load is uniformly distributed; t=0:01m, the material parameters are constant
as in Section 3.1.
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Figure 6. Convergence of error estimator (21) with uniform and adaptive re�ned meshes in the
example of Section 6.
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1.
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Figure 7. Sheet metal with hole and concentrated forces of Section 7.

We start our �nite-element computation with a coarse mesh (Figure 10(a)) and re�ne
uniformly but presumably sub-optimal. The convergence rate of error estimate �N (Figure 11,
dashed lines) is smaller than one.
This example typically illustrates the e�ect of adaptive designed, non-uniform meshes near

singular points (typical meshes T4, T7 after four and seven re�nement steps, respectively,
are shown in Figure 10). Employing the adaptive mesh-re�ning Algorithm (A) we obtain a
signi�cant reduction of error �N up to the optimal convergence rate 1 (Figure 11, solid lines).
This clearly supports that Algorithm (A) can overcome a loss of accuracy caused by corner
singularities.
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initial mesh

1. refining step

2. refining step

3. refining step

4. refining step

5. refining step

6. refining step

7. refining step

8. refining step

9. refining step

10. refining step

Figure 8. Adaptively generated meshes in the example of Section 7.

9. MATHEMATICAL JUSTIFICATION

The problem of Section 2, considered throughout the paper, di�ers from the formulation in
References [1, 2] because of the bending energy term (�(·);C�(·)) instead of (· ; ·) and because
of more general boundary conditions. This section is devoted to a brief review of the proof in
Reference [2] and necessary modi�cations on the boundary. Hence, we suppose that neither
�D nor �N := @�\�D are empty in this section.
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Figure 9. Convergence of error estimator (21) with uniform and adaptive re�ned meshes in the
example of Section 7.

(a) (b) (c)

Figure 10. Finite-element meshes in the example of Section 8: (a) initial mesh T0; N = 84; (b) adapted
mesh T4; N = 1017; and (c) adapted mesh T7; N = 4293.

In Step 1 we prove for � given in (21)–(22)

‖p− ph‖2. ‖C�(�− �h)‖2 + ‖∇r −∇Trh‖H−1
D (�) + � (28)

where . abbreviates an inequality up to a generic constant factor (which does not depend
on C; hT; hE or t but may depend on the shape of the elements). The norm in H−1

D (�), the
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Figure 11. Convergence of error estimator (21) with uniform and adaptive re�ned meshes in the
example of Section 8.

dual of H 1
D(�) := {v∈H 1(�): v=0 on �D}, is given by

‖∇r −∇Trh‖H−1
D (�) := sup

s∈H 1
D(�)\{0}

(s;∇r −∇Trh)
‖s‖1;2 (29)

An integration by parts as in Reference [2, Lemma 3.1] shows

‖∇r −∇Trh‖H−1
D (�). ‖r − rh‖2 + ‖h1=2E [rh]‖L2(∪E) (30)

which is of higher order (if � is convex, it is of quadratic order). The discrete rh was
introduced in (12) and r is its continuous counterpart. Thus

�= t−2(∇w − �)=∇r +Curlp (31)

for unique r∈H 1
D(�) and p∈H 1

N(�):={q∈H 1(�): q is constant on each connectivity com-
ponent of �N}.
Sketch of the proof of (28)
We precede as in Reference [2, Lemma 3.3] and consider  ∈H 1

D(�)
2 with p − ph=rot  

and ‖ ‖1;2. ‖p−ph‖2. (The existence of the solution and the bound follow from a solution
of the Stokes equations with interchanged coe�cients.) A T-piecewise integration by parts
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and a substitution of Curl(p− ph)=�− �h −∇r +∇Trh yields

‖p− ph‖22=(rot  ;p− ph)=( ; Curl(p− ph))=( ; �− �h −∇r +∇Trh) (32)

where we carefully notice that the boundary integrals vanish according to  =0 on �D and
@(p− ph)=@s=0 and �N. With (8), (14), and direct calculations, (32) is rewritten as

‖p− ph‖22 = (C�(�h); �( −  h))− (f� + �h;  −  h)−
∫
�N

g�( −  h) ds

+(C�(�− �h); �( ))− ( ;∇r −∇Trh) (33)

Notice that C�(�h) is symmetric and so (C�(�h); �( −  h))=(C�(�h);D − D h). Thus, an
elementwise integration by parts and the use of the Cl 	ement interpolation operator J for
 h=J with

‖h−1T ( −  h)‖2 + ‖h−1=2E ( −  h)‖2;∪E + | −  h|1;2. | |1;2 (34)

in (33) eventually leads to (28). Notice that the arising boundary terms vanish on �D according
to  =0 there; on �N we obtain

∫
�N
(g� − C�(�h)n)( −  h) ds, while there arise the standard

jump terms
∫
E[C�(�h)]nE( −  h) ds for each interior edge E. We omit the remaining details.

In Step 2 we prove

‖C1=2�(�− �h)‖2 + t‖∇(p− ph)‖2 + ‖p− ph‖2
. �+ ‖∇r −∇Trh‖H−1

D (�) + ‖min{t3=2; th1=2E }[@rh=@s]‖L2(∪E) (35)

Well-established a priori and a posteriori error analysis of the �nite-element discretiza-
tion of the Laplace operator shows that ‖∇r − ∇Trh‖2 and ‖h1=2E [∇rh]‖L2(∪E) are of lin-
ear convergence order [1, 2]. Hence ‖min{t3=2; th1=2E }[@rh=@s]‖L2(∪E) is of higher order. Then
we make use of [�h]tE=[@p=@nE] + [@r=@tE] and may regard ‖min{t3=2; th1=2E }[�htE]‖L2(∪E) as
equal to ‖min{t3=2; th1=2E }[@ph=@nE]‖L2(∪E) up to higher-order terms. The advantage of having
‖min{t3=2; th1=2E }[�htE]‖L2(∪E) in (22) is its direct computability (the computation of ph requires
little extra e�orts).

Sketch of the proof of (35)
Since @(p− ph)=@s=0 (almost everywhere) on �N and w − t2r=0 on �D,

(Curl(p− ph);�+ t2 Curlp)=(Curl(p− ph);∇w − t2∇r)=0

Similarly (since CurlS1
N(T) is L2-orthogonal to ∇TS1; NC

D (T)), for any qh∈S1
N(T),

(Curl qh;�h + t2 Curlph)=(Curl qh;P0�h + t2 Curlph)=(Curl qh;∇Twh − t2∇Trh)=0

The preceding two identities yield

t2‖Curl(p− ph)‖22= − (Curl(p− ph);�− �h)− (Curl(p− ph − qh);�h + t2 Curlph)
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Adding ‖C1=2�(�− �h)‖22=a(�− �h;�− �h) and rewriting the term

(�− �h;�− �h)=(Curl(p− ph);�− �h) + (∇r −∇Trh;�− �h)

with (5) we deduce

‖C1=2�(�− �h)‖22 + t2‖Curl(p− ph)‖22=a(�− �h;�− �h)

+ b(�− �h; 0; �− �h) + (�− �h;∇r −∇Trh)− (Curl(p− ph − qh);�h + t2 Curlph)

According to (8) and (10) we obtain, for each  h∈S1
D (T),

a(�− �h;  h) + b( h; 0; �− �h)=0

Hence, with further rewriting in terms of the bilinear forms, we obtain

‖C1=2�(�− �h)‖22 + t2‖Curl(p− ph)‖22
=a(�− �h;�− �h −  h) + b(�− �h −  h; 0; �− �h)

+ (�− �h;∇r −∇Trh)− (Curl(p− ph − qh);�h + t2 Curlph)

=F(�− �h −  h; 0)− (C�(�h); �(�− �h −  h)) + (�h;�− �h −  h)

− (Curl(p− ph − qh);�h + t2 Curlph) + (�− �h;∇r −∇Trh)

An elementwise integration by parts in (C�(�h);D(�− �h −  h)) and in (Curl(p− ph − qh);
�+ t2 Curlph) results in

‖C1=2�(�− �h)‖22 + t2‖Curl(p− ph)‖22
=(�h + divT C�(�h) + f�;�− �h −  h)

−
∫
∪E

[C�(�h)nE](�− �h −  h) ds− (rot�h;p− ph − qh)

+
∫
∪E

t2[@ph=@nE](p− ph − qh) ds+ (�− �h;∇r −∇Trh)

where [C�(�h)nE] denotes the jump of C�(�h) over an interior edge E in its normal direction,
[C�(�h)nE] := 0 for E on �D (as �−�h−  h=0 there), and [C�(�h)nE] := g�−C�(�)n on �N;
similarly, p−ph − qh vanishes on �D (as p−ph is constant on each connectivity component
of �D and qh can eliminate this constant) and so [@ph=@nE] := 0 on �D, equals @ph=@n on �N,
and denotes the jump of the piecewise constants ∇ph across interior element edges in their
normal components.
The proof is �nished with standard approximation arguments (cf. (34)) as in Step 1.

Estimate (35) involves the minimum of t3=2 and th1=2E . The �rst option follows with the above
arguments, the second follows with Step 1. Indeed, a closer look at the trace inequalities
reveals that we can use the estimates for ‖p − ph‖2 + t‖Curl(p − ph)‖2 (even locally) to
absorb t1=2‖p − ph − qh‖2. We refer to Reference [2, Lemma 3.3] for the rather technical
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details and omit them here as they are not a�ected by di�erent boundary conditions or the
modi�cation on the operator C�.

In Step 3 we recall an argument from Reference [2] that shows that ‖�h − P0�h‖2=
‖�h −∇wh+ t2�h‖2 dominates the error ‖∇w−∇Twh‖2 in the vertical displacements, namely,
|‖∇w −∇Twh‖2 − ‖�h − P0�h‖2|6‖�− �h‖2 + r2‖Curl(p− ph)‖2 + t2‖∇r −∇Trh‖2 (36)

Sketch of the proof of (36)
The proof of (36) is by the triangle inequality for the identity

(∇w −∇Twh)− (�h − P0�h)=�− �h + t2(∇r −∇Trh +Curlp− Curlph)

The dominance of ‖�h − P0
h‖2 from (36) gives the resulting estimate

‖∇w −∇Twh‖26�+ ‖�− �h‖2 + t2‖∇r −∇Trh‖2 (37)

which follows from an L2-estimate (cf. References [1] and [2, Proposition 3.6]) as
‖�− �h‖2� ‖C1=2�(�− �h)‖2 and t2‖∇r −∇Trh‖2=O(t2h) is of higher order.
In summary, we have sketched the proof of the reliability of �.

Theorem 9.1
Estimator (21)–(22) is reliable in the sense that

‖C1=2�(�− �h)‖2 + t‖∇(p− ph)‖2 + ‖p− ph‖2 + ‖∇w −∇Twh‖2
. �+ ‖∇r −∇Trh‖H−1

D (�) + t2‖∇r −∇Trh‖2 + ‖�− �h‖2 (38)

Remark 9.1
The interpretation is that, besides �, the upper bound consists of higher-order terms.The point
is that (38) involves exclusively (h; t)-independent constants behind the notation ..

Remark 9.2
Estimate (38) is e�cient in the sense that the converse inequality holds even in a local form
up to higher-order terms which depend on the smoothness of the given data. We refer to
Reference [2, Theorem 4.8] for details in a simpli�ed context.
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