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Abstract

For a wide class of problems in continuum mechanics like those involving phase transitions or finite elastoplasticity,

the governing potentials tend to be not quasiconvex. This leads to the occurrence of microstructures of in principle arbi-

trarily small scale, which cannot be resolved by standard discretization schemes. Their effective macroscopic properties,

however, can efficiently be recovered with relaxation theory.

The paper introduces the variational framework necessary for the implementation of relaxation algorithms with

emphasis on problems with internal variables in a time-incremental setting. The methods developed are based on

numerical approximations to notions of generalized convexification. The focus is on the thorough analysis of numerical

algorithms and their efficiency in applications to benchmark problems. An outlook to time-evolution of microstructures

within the framework of relaxation theory concludes the paper.

� 2004 Published by Elsevier B.V.
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1. Introduction and overview

The variational model of finite elasticity involves concepts such as material objectivity and invertibility

which contradicts convexity of the energy density. Rubber-like materials, for instance, lead to polyconvex

energy densities that are known to allow classical solutions in Sobolev spaces due to the work of Ball [2].
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The direct method of the calculation of variations is in fact based on growth, coercivity, and a generalized

convexity condition. This latter quasiconvexity due to Morrey [37] is essentially equivalent to the weak low-

er semicontinuity of the energy functional. It is a non-local notion and extremely difficult to analyze in the-

ory and computation. Therefore, the modern mathematical theory of generalized convexity deals with

other, easier notions depicted in the following diagram:
convexity ) polyconvexity ) quasiconvexity ) rank-1-convexity: ð1:1Þ
To illustrate the degree of difficulty, we mention that all the aforementioned inclusions are strict and count-

erexamples are known in general. The fact that rank-1-convexity is not equivalent to quasiconvexity was

found after decades in [47] and is still left as an open question in 2D! This work is forced to address the

aforementioned convexity notions in order to approximate a quasiconvex function numerically within an

inner loop over all finite elements for a macroscopic simulation.
Indeed, it appears that time-evolving nonlinear material in finite geometry and a natural time-discreti-

zation contradicts the quasiconvexity of the effective energy density [14,15]. This yields to non-existence

of solutions in terms of Sobolev functions. Within each time-step, a minimization problem arises in which

infimizing sequences (i.e. sequences of deformations which lower the energy but do not approach a mini-

mum in the strong sense) exist but develop enforced higher and higher oscillations on finer and finer

length-scales. The weak (but not strong) limit of such infimizing sequences is not a classical solution and

does not minimize the given energy at all [11].

This paper advertises the use of stabilization, i.e., the introduction of a strictly convex term scaled with a
small parameter, for the effective solution of the nonlinear highly dimensional systems of discrete equations

for a strong convergence of the macroscopic strains. This is of particular interest in finite elastoplastic prob-

lems where internal variables and their time evolution require a pointwise update via nonlinear update for-

mulae such as those needed to model hysteresis [22].

The evaluation of Wqc(Dy(x)) is considered via

(A) Mathematical analysis (provides explicit analytical formulae for Wqc)

(B) Numerical polyconvexification
(C) Finite-order lamination

For each of those approaches, the numerical treatment is investigated with respect to a proper discreti-

zation and an effective solution of the discrete problem. Benchmark examples illustrate computational pro-

gress in and difficulties with (A), (B), and (C).

Sections 2–5 are concerned with approach (A) as stated above. Section 2 concerns a scalar 2-well prob-

lem and a benchmark example with analytically known generalized solution [16] and adaptive algorithms.

A potential with a vectorial 2-well structure,which can be related to the modeling of phase-transitions, fol-
lows in Section 3. The numerical solution of the two convexified problems leads to a high-dimensional dis-

crete system of equations. Section 4 is devoted to the analysis of a damped quasi-Newton–Raphson solver

and states sufficient conditions for global convergence.

As an example the results of a numerical simulation of a model for phase-transitions in a single-

crystal are discussed in Section 5. Here the approach (A) is applicable due to explicit formulae from

[31].

Section 6 introduces the general framework associated with approaches (B) and (C) cited above. For this

purpose we discuss other notions of convexifications related but different from Wqc, which turn out to be
more suitable for the application of numerical procedures. Algorithmic issues are discussed and geometrical

and mechanical interpretations of the concepts are explained. In Section 7 an application of approach (B) to

a two-dimensional Ericksen–James potential is given.
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Starting with Section 8 the paper is devoted to inelastic problems related to history-dependent time-

evolving material behavior. In the context of inelasticity, relaxation methods have recently been studied

in [32,34,41,1,28,27,29]. In this paper, internal variables model the inelastic behavior and monitor the mate-

rial�s intrinsic state. Since relaxation theory was originally developed within the elastic context, the proper

treatment of internal variables is a priori less clear.
We put the time-incremental approach from [15] into a more concise variational framework suggested in

[35,36]. In Section 9, this concept is applied to a benchmark-problem of single-slip elastoplasticity. We re-

port on efficient procedures of global optimization which allows to calculate relaxations with respect to

higher-order laminates. Performing a two-dimensional shear-test we discover a surprising new pattern of

higher-order laminated microstructures. A comparison of approaches (B) and (C) applied to the single–slip

problem concludes Section 9.

Section 10 finally gives an outlook to the treatment of fully time-dependent evolution of micro-

structures. Here the update-problem of microstructures and thus measure-valued internal variables has
to be solved. We suggest a variational approach involving the Wasserstein-distance between two Young-

measures.
2. Non-quasiconvexity, microstructure, and effective energy density

The section addresses microscopic and macroscopic phenomena to explain the relaxation approach and

averaged quantities in a simple context; we study the effect of non-convex energy minimization with an en-
ergy density W as shown in Fig. 1.

2.1. Non-rank-1-convex minimization problems enforce microstructure

In Fig. 1, the strain F (an m · n matrix) is a convex combination of two matrices A and B, i.e. for some

volume fraction k there holds
Fig. 1.

density

convex
F ¼ kAþ ð1� kÞB for 0 < k < 1; ð2:1Þ
Non-convex energy density with microstructures depicted in Fig. 2: A hyperplane is tangential at the epigraph of the energy

W : Rm�n ! R at the points with the rank-one-connected arguments A and B and is strictly below the function at the proper

combination F.
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while, and this is the essential point, the energy W(F) is the pointwise minimum of two quadratic functions

and is above the straight line segment at k, i.e.
Fig. 2

piecew

thickn
kW ðAÞ þ ð1� kÞW ðBÞ < W ðFÞ: ð2:2Þ

The picture in Fig. 1 is essentially one-dimensional but it is meant as some section of a higher-dimen-

sional situation where F and A, B belong to Rm�n. We assume a compatibility condition
A ¼ Bþ a� b 2 Rm�n; ð2:3Þ

where a and b are vectors with their dyadic product a � b. In this case, A and B are said to be rank-1-con-

nected. (Rank-1-connectivity is trivial if either m = 1 or n = 1 because, then, any two distinct vectors are

rank-1-connected; 2.3 is a severe restriction for m,n P 2.)
The non-rank-1-convexity of W means that we can find A, B, F with (2.1)–(2.3).

According to the diagram 1.1, we observe that the present conditions are sufficient for non-quasiconvex-

ity. Hence we may have non-attainment of minimizers in the model problem
Minimize EðyÞ :¼
Z
X
W ðDyÞdx among y 2 A; where

A :¼ fy 2 W 1;pðX;RmÞ : yðxÞ ¼ Fx for a:e: x 2 oXg:
ð2:4Þ
The exact definition of the Sobolev space W1,p(X) is not important here and the reader might think of
Lipschitz continuous deformations y; in general, W1,p(X) consists of all weakly differentiable functions

whose first-order partial derivatives are Lebesgue measurable and integrable in its power p. For those func-

tions, the affine boundary condition y(x) = Fx makes sense for almost every boundary point x 2 oX.

Theorem 2.1. Suppose (2.1)–(2.4) and let jXj denote the volume of X. Then there holds
E0 :¼ inf
y2A

EðyÞ 6 ðkW ðAÞ þ ð1� kÞW ðBÞÞ jX j< W ðFÞ jX j ¼ EðFxÞ
(where Fx also denotes the affine function x # Fx in X prescribed by the boundary values).

To explore the finer structure in a simple exposition, we consider n = 2, X = (0,1)2, and b = (0,1) in Fig.

2. Given any very small positive parameter e, let ye be defined such that the gradient Dye assumes the values

A and B according to a layered pattern of Xe :¼ (e, 1 � e)2 depicted in Fig. 2 and some intermediate zone in

the small frame XnXe to match the boundary conditions to achieve ye 2 A. One can check that this is in fact
. Domain with microstructure pattern of length-scale e: The deformation y : X ! R2 is globally Lipschitz continuous and is

ise affine in the interior square Xe :¼ (e,1 � e)2 with piecewise constant gradients which equal B on the depicted dark layers of

ess (1 � k)e and A on the others. In the outer frame XnXe, y interpolates between the boundary conditions and values on oXe.
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possible and that Lip(ye) is bounded from above by an e-independent constant and that the distance of ye to

the linear function Fx tends to zero (in maximum norm) as e ! 0. It is important to observe that such a

construction would be impossible if 2.3 is violated according to Hadamard�s jump condition [5].

It is not hard to see that lime!0E(ye) equals (kW(A) + (1 � k)W(B))jXj and this concludes the proof of

Theorem 2.1.

2.2. Ill-posed problem

In the absence of exterior forces or other lower order terms, Theorem 2.1 asserts that, the energy is not

minimized by the linear function x # Fx prescribed by the affine boundary values and, in fact, has no (clas-

sical) solution at all!

Theorem 2.2. Suppose (2.1)–(2.4) and that there exists an affine function eW which assumes the values W(A)

and W(B) at A and B and is elsewhere a strict lower bound of W,
eW ðMÞ < W ðMÞ for all M 2 Rm�n n fA;Bg; whileeW ðAÞ ¼ W ðAÞ and eW ðBÞ ¼ W ðBÞ:
ð2:5Þ
Then, the minimum in (2.4) is not attained, i.e. E0 < E(y) for any y 2 A.

As a consequence of this non-attainment result, finite element approximations cannot converge strongly

(because any strong limit of an infimizing sequence would indeed be a minimizer). Instead, finite element

solutions develop oscillations on some scale of the minimal mesh-size and thereby either miss the micro-

structure (and then are completely misleading) or often become mesh-depending (and are then difficult

to compute and quite depending on the solution algorithm). We refer to [33,23,9] for a rigorous analysis
of related finite element schemes with a precise characterization of numerical oscillations.

The proof of Theorem 2.2 is by contradiction—so let us consider some y 2 A with E0 = E(y). The

boundary conditions and an integration by parts show
Z
X
DyðxÞdx ¼

Z
oX

DyðxÞmðxÞdsx ¼
Z
oX
ðFxÞ � mðxÞdsx ¼

Z
X
Fdx ¼ j X j F:
Since the application of the affine eW commutes with integration and since eW 6 W , this and Theorem 2.1

leads to
EðyÞ ¼ E0 6 kW ðAÞ þ ð1� kÞW ðBÞð Þ j X j ¼ eW ðFÞ ¼
Z
X

~W ðDyÞdx 6
Z
X
W ðDyÞdx ¼ EðyÞ
and hence equality of W(Dy) and eW ðDyÞ. Because of this and since eW ðDyðxÞÞ 6 W ðDyðxÞÞ holds for al-
most all x 2 X, we deduce
eW ðDyðxÞÞ ¼ W ðDyðxÞÞ for almost every x 2 X:
This and the assumptions 2.5 show that
DyðxÞ 2 fA;Bg for almost every x 2 X;
that is, the gradient Dy of a Sobolev function y assumes only two values A or B. By a result in [5], this is

possible only if A and B are rank-1-connected (or either Dy � A or Dy � B) and there are layers where

Dy(x) = A and those where Dy(x) = B separated by parallel straight lines with normal b. In other words,

the situation has to be as depicted in Fig. 1. However, there is a problem with the boundary conditions.

In fact, on those sides of the domain where the boundary is not perpendicular to the direction b = (1,0),

the aforementioned results of [5] show that the (piecewise) constant matrix Dy is rank-1-connected to F with

respect to the direction of the normal m = (0,±1). Since Dy allows the values A and B along such boundary,



5148 S. Bartels et al. / Comput. Methods Appl. Mech. Engrg. 193 (2004) 5143–5175
it follows that A and B equal A = F + a � (0,1) and B = F + b � (0,1). This and 2.3 for b = (1,0) lead to the

announced contradiction. Hence the infimal energy E0 is not attained.
2.3. Gradient young measures (GYM)

The infimizing sequence ye is enforced to develop oscillations which are described in terms of mathemat-

ical statistics and have a limit which is a measure. In the model example at hand, characteristic statistical

variables are A and B as well as the volume fraction k (i.e. the convex coefficient in 2.1). This defines a

(homogeneous) gradient Young measure, abbreviated GYM, which reads
m ¼ kdA þ ð1� kÞdB ð2:6Þ

with a Dirac measure dA supported at the atom A, i.e. the action of m on a continuous function
reads
hm; gi ¼ kgðAÞ þ ð1� kÞgðBÞ for all g 2 C0ðRm�nÞ:

[g 2 C0ðRm�nÞ means g : Rm�n ! R is continuous with limjMj!1g(M) = 0—this technical detail is not

important here.]

Theorem 2.3. Suppose (2.1)–(2.3) and let ye be a Lipschitz continuous function as depicted in Fig. 2 and

defined in the proof of Theorem 2.1. Then any subsequence of (ye)e > 0 generates the Gradient Young Measure

2.6 in the sense that the following holds: If x is a subdomain of X and if g 2 C0ðRm�nÞ then
lim
e!0

j xj�1

Z
x
gðDyeðxÞÞdx ¼ hm; gi:
The proof is simple as for e ! 0 the domain x is essentially inside the interior domain Xe and, since the

layers of Fig. 2 become finer and finer, leads to g(Dye(x)) 2 {g(A),g(B)} for almost every x 2 x \ Xe. More-

over, the measure of all x with g(Dye(x)) = g(A) and g(Dye(x)) = g(B) approaches kjxj and (1 � k)jxj,
respectively. This explains the name volume fraction of k and concludes the proof.

The theorem motivates the definition of a Gradient Young Measure generated by a sequence (ye)e > 0. The

reader may consult the literature [3,4,30,42,48,45,38,50] for further details, proofs and properties of GYMs.

The GYM gives rise to other quantities and relations by evaluation for the test functions g as the energy
density, each component of the identity or the derivative of the energy density: The first example yields the

macroscopic energy density
W qcðFÞ :¼ hm;W i:

The center of mass (or expected value) of the GYM leads to the macroscopic deformation gradient
F :¼ hm; Idi where Id denotes identity:
The continuous derivative DW of the energy density defines the macroscopic stress
r :¼ hm;DW i:

The deformations ye(x) are easily seen to converge strongly to the limit y(x) = Fx, the macroscopic defor-

mation, its gradient F = Dy is in fact the macroscopic deformation gradient.

In conclusion: The deformation, the macroscopic strain, the stress field, and the GYM are well-defined
macroscopic variables we can hope to compute reliably. Other aspects of the microscopic oscillations are

not well-posed and we have to expect mesh-depending finite element solutions with defects.

Remark 2.1. The GYM describes some aspects of the oscillations but not all aspects. Fig. 2 illustrates that
A, B, and k are clearly visible, but also the normal b is important and visible in the figure but not displayed
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in the GYM. (In this simple model example, however, b is implicitly visible from the calculation 2.3).

Nevertheless, the GYM is one macroscopic quantity on the microscopic oscillations.

2.4. Effective energy density and quasiconvexification

Themacroscopic energy, also called effective or relaxed energy density, is written in terms of the GYM m as
lim
e!1

j Xj�1EðyeÞ ¼ hm;W i ¼: W qcðFÞ:
Since ye is an infimizing sequence, this can be reformulated as
W qcðF Þ :¼ inf
yðxÞ¼Fx for a:e: x2oX

j Xj�1

Z
X
W ðDyðxÞÞdx ð2:7Þ
(in the infimum, y is an arbitrary Lipschitz continuous function with the linear boundary values prescribed

by Fx). The aforementioned function Wqc is called the quasiconvex envelope of W. A function is called qua-

siconvex if it coincides with its quasiconvex envelope. In general, the notion of quasiconvex functions is
subtle with various difficulties. The question of enforced microstructure is directly linked to the notion

of quasiconvexity: Problem 2.4 has a linear solution Fx if and only ifW(F) = Wqc(F) and there is attainment

of microstructure if and only if Wqc(F) < W(F).
It is an important observation that the stress fields re :¼ DW(Dye) of the infimizing sequence ye with

GYM m have a limit
r :¼ DW qcðF Þ ¼ hm;DW i:

In fact, Fig. 1 illustrates that, since W is smooth at A and B, the tangential hyperplane through (A,W(A))

and (B,W(B)) yields the same stress r = DW(A) = DW(B) = DWqc(F).
This holds true for more general situations [6] and so justifies r as the macroscopic stress field as a local

function of the averaged strain F. This also underlines the role of the quasiconvex envelope Wqc as the effec-

tive energy density.

2.5. Well-posed problem

The effective problem on the macroscopic scale reads
Minimize EqcðyÞ :¼
Z
X
W qcðDyðxÞÞdx among y 2 A ð2:8Þ
and has a classical solution, namely the linear function y(x) = Fx.

In contrast to this, given any macroscopic strain F = Dy(x) at a material point x, the microscopic prob-
lem consists in the calculation of Wqc(F) via 2.7.

In the presence of lower-order terms and more complicated boundary conditions, the rule of thumb is that

one needs to quasiconvexify only in the variable of the strain and leaves any other detail as it reads in the orig-

inal problem to define an effective problem with a classical solution which equals the generalized solution.

More details on the concepts of relaxation theory can be found in [24,37,45]. In this work we focus on a

few examples and establish the relaxation and the numerical approximation thereof.
3. Scalar 2-well problem

An anti-plane shear model of phase transitions via the Ericksen–James energy leads to a scalar varia-

tional problem with a fourth-order growth energy density W : Rn ! R.
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3.1. 2-Well benchmark problem

Given distinct wells F1;F2 2 Rn, define the scalar 2-well energy density
W ðFÞ ¼ j F� F1j2 j F� F2j2 for F 2 Rn:
The benchmark problem on the bounded Lipschitz domain X � Rn reads: given y; f 2 L2ðXÞ and

yD 2 W1� 1/p,p(oX),
Minimize EðyÞ :¼
Z
X
W ðryÞdxþ ky � yk2L2ðXÞ þ

Z
X
fy dx among y 2 A;

where A :¼ fv 2 W 1;4ðXÞ : vj@X ¼ yDg:
ð3:1Þ
Given A = (F2 � F1)/2 and B = (F1 + F2)/2, the quasiconvex envelope ofW equals the convex hull W** of

W and is analytically computed in [20],
W ��ðFÞ ¼ maxfj F� Bj2� j Aj2; 0g2 þ 4ðj Aj2 j F� Bj2 � ½A � ðF� BÞ�2Þ for F 2 Rn:
It can be shown that the minimum is not attained and that there is a unique generalized solution y with

an associated stress field r for which analytic formulae are given in [16].
3.2. Finite element discretization

A discretization of a relaxation of 3.1 is based on a regular triangulation T of X and an approximation

yD;h 2 S1ðTÞjoX of yD to associate the lowest-order finite element space
Ah ¼ fvh 2 S1ðTÞ : vhjoX ¼ yD;hg:
Here, S1ðTÞ denotes the first-order finite element space on T (i.e. the set of all elementwise affine, glo-

bally continuous functions defined on X). The resulting discrete problem is a finite-dimensional convex

problem:
Minimize E��ðyhÞ ¼
Z
X
W ��ðryhÞdxþ kyh � yk2L2ðXÞ þ

Z
X
fyh dx among yh 2 Ah: ð3:2Þ
The numerical analysis of 3.2 given in [20,17] proves convergence yh ! y in L2 for h ! 0 and a priori and

a posteriori error estimates for the distance between the exact unique stress r = DW**($y) and the discrete

stress rh = DW**($yh),
kr� rhkL4=3ðXÞ 6 C1 inf
vh2Ah

ky � vhkW 1;4ðXÞ; and c2gM � h:o:t: 6 kr� rhkL4=3ðXÞ 6 c2g
1=2
M þ h:o:t:
The minimal averaging error estimator gM is defined by
gM ¼
X
T2T

g4=3T

 !3=4

for gT ¼ krh � r�
hkL4=3ðT Þ
with the r�
h 2 S1ðTÞn that minimizes
krh � shkL4=3ðXÞ among sh 2 S1ðTÞn:
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3.3. Stabilized finite element method

Strong convergence of finite element strain approximations is possible for smooth generalized solu-

tions (e.g. y 2 H3/2+ d(X) for some d > 0) [7]. Given a regular triangulation T of mesh-size

h ¼ maxfdiamðT Þ : T 2 Tg with a finite element space Ah the stabilized finite element method reads:
Minimize E��
h ðyhÞ :¼ hkryhk

2

L2ðXÞ þ
R
X W

��ðryhÞdxþ kyh � yk2L2ðXÞ þ
R
X fyh dx

among yh 2 Ah:
ð3:3Þ
There exist unique finite element solutions yh of 3.3 which can be calculated with a Newton–Raphson

scheme of Section 4.

3.4. Adaptive finite element method

Self-adapting mesh-refining strategies can be employed for the relaxed minimization problem 3.2 based
on the aforementioned a posteriori error control.

To approximate the macroscopic quantities in 3.1 we propose the following algorithm with adaptive

(k = 0) or uniform (H = 1/2) mesh refinement and which starts on a coarse initial triangulation T0 of X.

Algorithm 1 (Adaptive algorithm). Input is an initial triangulation T ¼ Tj for j = 0.

(a) Solve Problem 3.2 (with a Newton–Raphson or quasi-Newton method).

(b) Compute indicators gT for all T 2 T.

(c) Mark element T 2 T (for red-refinement) iffHmaxfgT : T 2 Tg 6 gT . (H = 0 for uniform andH = 1/2

for adaptive mesh refining.)

(d) Refine further elements (red–green–blue refinement) to obtain a regular triangulation Tjþ 1 as a refine-

ment of Tj.

(e) Set j = j + 1, update T and go to (a).
3.5. Benchmark example

To illustrate the performance of Algorithm 1 run for the benchmark from [16] with n = 2,

X :¼ (0,1) · (0,3/2), F1 ¼ �F2 :¼ �ð3; 2Þ=
ffiffiffiffiffi
13

p
, f � 0, yðx; yÞ ¼ f2ðsðx; yÞ þ 1=2Þ for sðx; yÞ ¼

ð3ðx� 1Þ þ 2yÞ=
ffiffiffiffiffi
13

p
, and
yðx; yÞ ¼
f1ðsðx; yÞ þ 1=2Þ for sðx; yÞ P 0;

f2ðsðx; yÞ þ 1=2Þ for sðx; yÞ 6 0;

�

for f1(s + 1/2) = �3s5/128 � s3/3, f2(s + 1/2) = s3/24 + s, and yD = yjoX. Then y is the unique solution of the

convexification of 3.1 and the unique weak limit of any infimizing sequence for 3.1.

Fig. 3 displays the numerical solution on T10 generated by Algorithm 1. The adaptive strategy refines a

region in which the exact solution has a discontinuity in the gradient. Fig. 4 shows various errors and the

error estimator gM for uniform and adaptive mesh refinement. We observe that the adaptive refinement

strategy leads to significantly reduced errors and improved experimental convergence rates.
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Fig. 4. Experimental convergence rates and error estimators gM and g1=2M plotted against degrees of freedom N with a logarithmic

scaling for uniform and adaptive mesh refinement in the scalar 2-well problem defined in Example 3.5. The efficient estimator gM serves

as a good approximate of the stress error kr � rhkL4/3(X). The reliable error estimator g1=2M shows significantly slower convergence

behavior. Adaptive mesh refinement improves the experimental convergence rate of kr � rhkL4/3(X) / h0.6 to kr � rhkL4/3(X) / h1.2.

Fig. 3. Numerical solution yh and modulus of the stress field jDW**($yh)j (in gray shading) on the adaptively refined triangulationT10

in the scalar 2-well problem defined in Example 3.5. The adaptive strategy refines the mesh toward a line along which the gradient of

the exact solution has a discontinuity.
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3.6. Conclusions and open problems

The a posteriori error control suffers from the reliability-efficiency gap: The predicted upper and lower-

error bounds (valid up to multiplicative constants and higher-order terms) are supported by the numerical

results. The two bounds, however, converge with different rates and so leave an open scissor in Fig. 3 in the

sense that the domain for the true error (i.e. the region between the lower and upper bound) becomes larger

with smaller mesh-sizes. It remains as an open question whether and how this might be improved.
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A numerical observation from [16] is supported for stabilized calculations as well: The averaging error

estimator [12] is a very accurate error guess for the true stress error.

The strong convergence of the discrete solutions of the stabilized discrete problem is established in [39,7]

for smooth solutions and (quasi-) uniform meshes. It is an open question whether and how to generalize

those results to singular solutions on highly graded (unstructured) meshes. Additional regularity holds
for the stress [19].

A numerical method with guaranteed convergence will be presented in the subsequent section. The re-

sult, however, is derived exclusively for convex minimization problems.
4. Convergence of quasi-Newton iteration

This section is devoted to the effective solution of the discrete relaxed problem utilizing a Newton– Raph-
son scheme with stabilization. The main result is global convergence for a stabilized quasi-Newton iteration

first presented in an abstract framework and then applied to a discrete convexified minimization problem.

4.1. Abstract framework

To keep notation as general as possible we start with an abstract description and analysis of the quasi-

Newton iteration.

Let V be a Hilbert space with induced norm k Æ k and with a family of scalar products aj : �V ! R,
j = 1,2,3,. . ., which define equivalent norms k Æ kaj in the sense that there exist positive constants aj and
Mj such that
ajkvk2 6 ajðv; vÞ and ð4:1Þ

ajðu; vÞ 6 Mjkukkvk for all u; v 2 V : ð4:2Þ

Suppose u : V ! R is C1 and uniformly convex and its derivative Du is Lipschitz in the sense that there

exists positive constants a and L such that
aku� vk2 þ Duðu; v� uÞ 6 uðvÞ � uðuÞ and ð4:3Þ

ðDuðuÞ � DuðvÞÞðu� vÞ 6 Lku� vk2 for all u; v 2 V : ð4:4Þ

Given an initial deformation u02V, the quasi-Newton–Raphson scheme defines a sequence (uj)j in V recur-

sively through
ajðuj � ujþ1; �Þ ¼ DuðujÞ for j ¼ 0; 1; 2; . . . ð4:5Þ
Theorem 4.1. Suppose that u0 and u are arbitrary in V such that 4.5 defines a sequence (uj)j and so defines

dj :¼ u(uj) � u(u). Suppose that one iteration index j satisfies 0 6 dj, dj + 1 and 0 < a + aj � L. Then there

holds
djþ1 6 ð1� 4aðaþ aj � LÞM�2
j Þdj and ku� ujk2 6 M2

ja
�2ðaþ aj � LÞ�1ðdj � djþ1Þ:
Remark 4.1. The side restriction L � a < a0 6 aj for some uniform a0 and all j indicates a small damping

parameter in a quasi-Newton–Raphson scheme.

Remark 4.2. Assuming L � a < aj for all j, the minimizer u of u in V satisfies dj P 0 and the theorem guar-

antees limj!1dj = 0 and limj!1ku � ujk = 0.
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Remark 4.3. At first glance it may irritate in the theorem that u is not supposed to be the solution of

Du(u) = 0. In fact, the theorem provides some stability of the solution u as well: Any u 2 V with

u(u) 6 u(uj), u(uj+1) satisfies ku� ujk2 6 M2
ja

�2ðaþ aj � LÞ�1ðuðujÞ � uðujþ1ÞÞ.
4.2. Proof of theorem 4.1

With (4.3) and u(u) 6 u(uj),u(uj + 1) there holds
aku� ujk2 � Duðuj; u� ujÞ 6 uðuÞ � uðujÞ ¼ �dj:
This and (4.5) followed by (4.2) and Young�s inequality show
aku� ujk2 þ dj 6 Duðuj; uj � uÞ ¼ ajðuj � ujþ1; uj � uÞ 6 Mjku� ujkkuj � ujþ1k

6 M2
j=ð4aÞkuj � ujþ1k2 þ aku� ujk2;
whence
dj 6 M2
j=ð4aÞ

� �
kujþ1 � ujk2: ð4:6Þ
A similar argument with (4.3) yields
akujþ1 � ujk2 þ Duðujþ1; uj � ujþ1Þ 6 uðujÞ � uðujþ1Þ ¼ dj � djþ1:
This and (4.4) and (4.5) followed by (4.1) leads to
djþ1 � dj þ akujþ1 � ujk2 6 ðDuðujÞ � Duðujþ1ÞÞðuj � ujþ1Þ þ Duðuj; ujþ1 � ujÞ
6 Lkujþ1 � ujk2 � ajðujþ1 � uj; ujþ1 � ujÞ
6 ðL� ajÞkujþ1 � ujk2;
whence
ðaþ aj � LÞkujþ1 � ujk2 6 dj � djþ1: ð4:7Þ

The combination of (4.6) and (4.7) proves the first assertion. The second assertion follows from a mod-

ification of the aforementioned proof of (4.6) by utilizing (4.7) and Young�s inequality:
aku� ujk2 þ dj 6 Mjku� ujkkuj � ujþ1k 6 Mj=ðaþ aj � LÞ1=2
h i

ku� ujkðdj � djþ1Þ1=2

6 a=2ku� ujk2 þM2
j ðaþ aj � LÞ�1

=ð2aÞðdj � djþ1Þ: �
4.3. Application

The following algorithm realizes the quasi-Newton–Raphson scheme and aims to minimize a functional

u : Ah ! R, where for simplicity we assume that Ah involves Dirichlet boundary conditions on the whole

boundary oX. We suppose that u satisfies the assumptions of Theorem 4.1 with V ¼ S1
0ðTÞ and the norm

k Æ k induced by the scalar product
ðu; vÞ ¼
Z
X
ru � rvdx
and define
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ajðu; vÞ ¼ aj

Z
X
ru � rv dx ð4:8Þ
with a parameter aj that satisfies L � a < aj.

Algorithm 2 (Quasi-Newton–Raphson iteration). Input: tolerance TOL > 0, triangulation T, initial value

y0 2 Ah, j :¼ 0.

(a) Compute aj and solve for yj þ 1 2 Ah:
ajðyj � yjþ1; vÞ ¼ Duðyj; vÞ for all v 2 S1
0ðTÞ:
(b) Stop if ð
P

z2K j Duðyjþ1;uzÞj
2Þ1=2 6 TOL, where uz are the nodal basis functions associated to the free

nodes z 2 K.
(c) Set j = j + 1 and go to (a).

If we replace aj(yj � yj+1,v) by D2u(yj;yj � yj+1,v) in Step (a) of the preceding algorithm we recover the

classical Newton–Raphson scheme.

Algorithm 3 (Classical Newton–Raphson iteration). Input: tolerance TOL > 0, triangulation T, initial

value yj 2 Ah for j = 0.

(a) Solve for yj þ 1 2 Ah:
D2ðuj; yj � yjþ1; vÞ ¼ Duðyj; vÞ for all v 2 S1
0ðTÞ:
(b) Stop if
P

z2K j Duðyjþ1;uzÞj
2

� �1=2
6 TOL.

(c) Set j = j + 1 and go to (a).
4.4. Numerical experiment

Theorem 4.1 proves convergence for the quasi Newton–Raphson scheme to the minimizer of u under

general assumptions, i.e. uniform convexity of u and uniform Lipschitz continuity of Du as well as an

appropriate choice of the parameters aj. In the stabilized scalar 2-well problem 3.3, where
uðyÞ ¼
Z
X
W ��ðryÞdxþ ky � yk2L2ðXÞ þ hkryk2L2ðXÞ �

Z
X
fy dx;
assumption 4.3 is satisfied with a = h. Uniform Lipschitz continuity 4.4 of Du does not hold in this example

but u is continuously differentiable and Lipschitz continuous on every bounded subset ofAh. We employed
aj ¼ 50
in 4.8. The parameter a in 4.1 is proportional to the (small) mesh-size h so that the error after the jth iter-

ation is krðy � yjÞk
2
L2ðXÞ 6 Ch�2hj where y is the minimizer of u ¼ E��

h inAh and h 2 (0,1). The functional u
is uniformly convex but not twice continuously differentiable so that (quadratic) convergence of classical

Newton–Raphson schemes is unclear. The following numerical comparison shows however that nested

Newton–Raphson schemes are most efficient in the case of Example 3.3.

Table 1 displays the number of iterations needed to achieve a residual less than 3% of the initial residual

on the respective triangulation, i.e. we chose



Table 1

Iteration numbers for the (nested) quasi-Newton–Raphson and the (nested) classical Newton–Raphson scheme in the stabilized 2-well

problem 3.3 for different mesh-sizes and uniform meshes

h Quasi-Newton–Raphson Classical Newton–Raphson

1/4 4 2

1/8 4 2

1/16 5 2

1/32 6 2

The number of iteration steps remains bounded for the classical Newton–Raphson scheme and grows slowly in the quasi-Newton–

Raphson scheme.
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TOL :¼ 0:3
X
z2K

jDuðyjþ1;uzÞj
2

 !1=2
in Algorithms 2 and 3.

We used uniform meshes with mesh-sizes h = 1/4,1/8,1/16,1/32 and we employed a nested iteration tech-

nique which means that given an approximate solution Y on a mesh Tk the starting value y0 for the iter-

ation in Algorithms 2 and 3 on a finer mesh Tkþ1 was obtained from a linear prolongation of Y onto Tkþ1.
5. Elastic 2-well problem

This section is devoted to the numerical approximation of a two-dimensional model which is motivated

by the mathematical description of phase transitions for crystalline solids, namely for the high-temperature

super-conducting TB2Cu3O6+x material which undergoes an austenite-to-martensite phase-change.
5.1. Non-convex energy density and its quasiconvexification

We model the phase-transition in two dimensions as being cubic-to-tetragonal, which constitutes a sim-

plification compared to the behavior of the actual material. The non-convex minimization problem then

involves eigenstrains
E1 ¼ �0:0113m�m� 0:0102n� n and E2 ¼ �0:0102m�m� 0:0113n� n
for m ¼ ðcosðp=3Þ; sinðp=3ÞÞ and n ¼ ð� sinðp=3Þ; cosðp=3ÞÞ, and the material tensor C defined for cubic
anisotropy by
CE ¼ ktrðEÞIdþ 2lEþ a n� ðEnÞ þ ðEnÞ � nð Þ
with material parameters k = �67, l = 137, and a = 40. In a geometrically linearized setting, the energy den-

sity W is modeled as the infimum of two elastic energies
W jðEÞ ¼ 1
2
CðE� EjÞ : ðE� EjÞ for j ¼ 1; 2;
corresponding to the two energy minima E1;E2 2 Rn � n and with the scalar product A :B in Rn � n,
W ðEÞ :¼ minfW 1ðEÞ;W 2ðEÞg:

The quasiconvex envelope is explicitly known [31]
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W qcðEÞ ¼
W 1ðEÞ for W 2ðEÞ þ a 6 W 1ðEÞ;
1
2
ðW 2ðEÞ þ W 1ðEÞÞ � 1

4c ðW 2ðEÞ � W 1ðEÞÞ2 � 4
a for jW 1ðEÞ � W 2ðEÞ j6 a;

W 2ðEÞ for W 1ðEÞ þ a 6 W 2ðEÞ

8><>:

for some a > 0 defined in terms of C, E1, and E2. The aforementioned Green strains E1 and E2 are compat-

ible in the sense that
E1 � E2 ¼ ða� bþ b� aÞ=2 holds for some a; b 2 Rn:
Then, a ¼ 1
2
ðE1 � E2Þ : CðE1 � E2Þ and the quasiconvex hull is convex: Wqc = W**.

It is stressed that this might not be the case for other materials.

5.2. Relaxed minimization problem and its discretization

Given a displacement y, the linear Green strain tensor is the symmetric part of the displacement gradient,
eðyÞ ¼ Dyþ ðDyÞT
� �

=2:
Then, given f 2 L2ðX;R2Þ, g 2 L2ðCN ;R2Þ where X :¼ (0,1)2, CD = [0,1] · {0}, CN = oXnCD, and the

admissible displacements
A ¼ fv 2 W 1;2ðX;R2Þ : vjCD
¼ 0g;
the relaxed minimization problem reads:
Minimize EqcðyÞ ¼
Z
X
W qcðeðyÞÞdxþ

Z
X
f � ydxþ

Z
CN

g � yds among y 2 A: ð5:1Þ
With the finite element approximation space
Ah :¼ fvh 2 S1ðTÞ2 : vhjCD
¼ 0g;
the discrete problem reads:
Minimize EqcðuhÞ ¼
Z
X
W qcðeðyhÞÞdxþ

Z
X
f � ydxþ

Z
CN

g � yds among yh 2 Ah: ð5:2Þ
5.3. A priori and a posteriori error control

In the compatible case, it has been shown in [21] that the discrete stresses rh = DW**(e(yh)) converge
strongly in L2ðX;R2�2) to the exact unique stress r = DW**(e(y)) in L2 for h ! 0,
krh � rkL2ðXÞ 6 C inf
vh2Ah

ky� vhkL2ðXÞ:
Moreover, a posteriori error estimates similar to 3.3 can be established and used for adaptive mesh

refinement
gM :¼
X
T2T

g2T

 !1=2

and gT ¼ krh � r�
hkL2ðT Þ;
where r�
h minimizes krh � shkL2(X) among sh 2 S1ðTÞ2.

These refinement indicators lead to the same strategy as described in Algorithm 1.



Fig. 5. Numerical solution yh and modulus of the induced stress field for adaptive mesh refinement in Example 5.2. The deformation is

amplified by a factor 10.

Fig. 6. Numerical solution yh and modulus of the induced stress field for uniform mesh refinement in Example 5.2. The deformation is

amplified by a factor 10.
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5.4. Numerical experiment

We consider the following mechanical example: set f = 0 and
gðsÞ ¼
ð0;�10Þ for s 2 ½1=4; 3=4� � f1g;
ð0; 0Þ for s 2 CN n ½1=4; 3=4� � f1gð Þ:

�
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Fig. 8 below illustrates the physical problem and Fig. 5 displays the numerical solution onT10 generated

by Algorithm 1 for H = 1/2. Fig. 6 shows the numerical solution on the uniformly refined mesh T2. Notice

that owing to the anisotropy in C the solution is not symmetric though the loads and the boundary con-

ditions are symmetric.

5.5. Conclusions

The relaxation of the mechanical problem described in this section leads to a convex minimization prob-

lem which can be approximated very efficiently. Nested Newton–Raphson schemes (without stabilization)

perform very well in practice and adapted meshes lead to significantly reduced energies. We stress however,

that in this example the (convex) relaxed energy admits a regular second derivative almost everywhere in

R2�2 which is not the case in general and then stabilization is a must. Moreover, the remarks on the reli-

ability-efficiency gap and the open question of a more effective solution algorithm from Section 3.6 apply
here as well. More difficult open problems include the efficient numerical treatment of 5.2 in case of incom-

patible zero strains, in which case there holds W** 5 Wqc.
6. Numerical approximation of effective energy densities

For all problems we considered so far the quasiconvex envelope Wqc has been available in analytical

form. For most practical problems, however, this will not be the case and one has to resort to numerical
approximations. But a direct approximation of Wqc is still very hard to do because its definition involves

minimization over a large class of functions. More suitable for numerical schemes are either the polyconvex

or the rank-1-convex envelope.

6.1. Numerical polyconvexification

The polyconvex envelope Wpc of the energy density function W : Rm�n ! R is given by the formula
W pcðFÞ ¼ min
XT dþ1

j¼1

kjW ðFjÞ : kj P 0;Fj 2 Rd�d ;
XT dþ1

j¼1

kj ¼ 1;
XT dþ1

j¼1

kj MinorsðFjÞ ¼ MinorsðFÞ
( )

:

Here Minors(F) denotes the set of all Minors of F, i.e Minors(F) = (F,detF) for n = 2 and Min-

ors(F) = (F,CofF,detF) for n = 3, and Tn = dimMinors(F). The polyconvex envelope is polyconvex and

hence quasiconvex as desired. In some situations, however, Wpc(F) and Wqc(F) can differ significantly.

The definition of Wpc(F) involves the solution of a global optimization problem, which may turn out to

be difficult. It can be transformed into a linear optimization problem by the following approximation:
W pc
d;rðFÞ ¼ min

X
A2Nd;r

kAW ðAÞ : kA 	 0;
X

A2Nd;r

kA ¼ 1;
X

A2Nd;r

kA MinorsðAÞ ¼ MinorsðFÞ
( )

:

Here, for parameters 0 6 d 6 r we define
Nd;r :¼ fA 2 Rn�n \ dZn�n : max
j;k

j Ajk j6 rg
where Z denotes the set of all integers. The direct calculation of W pc
d ;rðFÞ is however difficult as it involves a

large number of degrees of freedom, approximately (r/d)n
2

. Employing optimality conditions, one may de-

sign multilevel schemes with adaptive grid refinement and coarsening that iteratively compute the minimum
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(typically within less than a second of CPU-time for n = 2 and an accuracy of 10�4). Moreover, the com-

bination of the optimality conditions with growth conditions on W allows for an a posteriori estimate

which indicates whether the ‘‘diameter’’ r is chosen large enough to lead to an accurate approximation

of Wpc(F). For details on the algorithm, error estimates, and related numerical experiments we refer to [8].

6.2. Finite lamination

The relaxation with respect to first-order laminates of an energy density W reads (where frequently and

without loss of generality jbj = 1 is assumed)
Fig. 7

nodes

(Gj) ar
R1W ðFÞ ¼ min
06k61a;b2Rn

ð1� kÞW ðF� ka� b|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
F1

Þ þ kW ðFþ ð1� kÞa� b|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}Þ
F2

8><>:
9>=>;: ð6:1Þ
The vectors a and b form the rank-one matrix a � b and the scalar k describes the volume fraction of the

two phases with deformation gradients F1 and F2, respectively. This means that we minimize with respect to

all microstructure patterns as depicted in Fig. 2. Thus obviously, if W is rank-one-convex we have
R1W = W.

It is well established that, in general R1W is not rank-one-convex [47]. The situation improves by iterat-

ing the procedure, R1R1W for example denoting the envelope with respect to second-order laminates. The

limit R1W ¼ lim‘!1R‘
1W is the rank-one-convex envelope. Although R1W is still not quasiconvex it is rank-

one-convex or elliptic, i.e. satisfies the Cauchy–Hadamard-conditions. For many cases R1W yields a close

approximation to Wqc, see [33,45,28].

The relaxations R‘
1W offer instructive information concerning the underlying microstructure, which we

are going to describe now in detail. Following [24,45,25] we consider sets of pairs {kj,Fj}, j = 1, . . .,N,
2 6 N 6 2‘ of probabilities kj and deformation gradients Fj, with N accounting for the number of different

gradients present.

Definition 6.1 (rank-one connectivity, HN ). The pairs {kj,Fj} are called rank-one connected (written

fkj;Fjg 2 HN ) if kj P 0;
PN

j¼1kj ¼ 1 and the following holds.

(i) if N = 2, then rank (F2 � F1) 6 1;

(ii) if N > 2, then, up to a permutation, rank (F2 � F1) 6 1 and if
F1

G1 G2

F2

F3

λ1

λ2

µ1µ2

F1

G1

G2

F2

F3

(a) (b)

. Representations of rank-one connected deformation gradients fkj;Fjg 2 H3. The graph representation (a) consists of leaf

(deformation gradients Fj) which are connected by edges (solid lines) representing rank-one families of matrices. The inner nodes

e placed on the barycenter of the edges corresponding to the probabilities kj. (a) Graph representation (b) tree representation.
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l1 ¼ k1 þ k2; GN�1
1 ¼ 1

k1þk2
k1F1 þ k2F2ð Þ;

lj ¼ kjþ1; GN�1
j ¼ Fjþ1; j ¼ 2; . . . ;N � 1;
then ðlj;G
N�1
j Þ 2 HN�1.

The geometric interpretation of the definition above is given by a graph Gðkj;FjÞ with leaves Fj, inner

nodes Gj and edges that are rank-one lines as in Fig. 7(a). For computational purposes the graph is often

represented as a binary tree as in Fig. 7(b).

The relaxation R‘
1W is now given by
R‘
1W ðFÞ ¼ min

XN
j¼1

kjW ðFjÞ : N 6 2‘; ðkj;FjÞ 2 HN ; F ¼
XN
j¼1

kjFj

( )
: ð6:2Þ
We refer to Subsection 9.7 for a numerical comparison of these notions of convexity.
7. Numerical approximation of the polyconvexification of an energy density

There exists no general technique to find a closed formula for the quasiconvex envelope of a given energy

density. The direct approximation is of the form discussed in Section 2 and hence extremely difficult. In-

stead of an inaccurate approximation of Wqc this section addresses the accurate approximation of the
polyconvex envelope Wpc of the energy density function W : Rn � n ! R described in Section 6.1 which

leads to a lower bound of Wqc. The approximate polyconvex envelope can be employed for effective

simulations:
Minimize Epc
d ðyhÞ ¼

Z
X
W pc

d ðDyhÞdxþ
Z
X
f � yh dxþ

Z
CN

g � yh ds among yh 2 Ah: ð7:1Þ
Error estimates can only be expected for the convergence of the energies, i.e. for jminv2AEpcðvÞ�
minvh2AhE

pc
d ðvhÞ j, but require additional regularity of the exact solution.

Since it would be inefficient to compute W pc
d in the whole (or a large subset of) R2�2 we employ the

following iterative algorithm which realizes a steepest descent method to approximate a local minimizer

of Epc
d .

Algorithm 4 (Outer loop in numerical polyconvexification). Input: initial y
ð0Þ
h 2 S1

DðTÞ2, tolerance d > 0,

parameter d > 0, and j :¼ 0.

(a) Run Algorithm 5 to compute rh :¼ DW pc
d ðDy

ðjÞ
h Þ.

(b) Let rh 2 S1
DðTÞ2 be such that, for all vh 2 S1

DðTÞ2,
Z
X
Drh:Dvh dx ¼ �

Z
X
rh � rvh dx�

Z
X
f � vh dx�

Z
CN

g � vh ds:
(c) Compute an approximation t�d of a local minimizer t* 2 [0,1] of e(t),
eðtÞ ¼
Z
X
shðtÞdxþ

Z
X
f � ðyðjÞh þ trhÞdxþ

Z
CN

g � ðyðjÞh þ trhÞds:
Therein, Algorithm 5 is run to compute for given t, shðtÞ ¼ W pc
d DðyðjÞh þ trhÞ
� �

.

(d) Stop if t�d 6 d :¼ 0:01.

(e) Set y
ðjþ1Þ
h :¼ y

ðjÞ
h þ t�drh, j :¼ j + 1, and go to (a).

Output: an approximation of a local minimizer of Epc
d;h.
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Remark 7.1. The numerical minimization of e(t) in (c) was realized with a simple search routine which

starts with t1 = 0 and t4 = 1:

(i) Choose t2, t3 such that t1 < t2 < t3 < t4 and compute sj = e(tj).

(ii) If s3 6 s2 set t1 = t2. Otherwise, set t4 = t3.

(iii) Stop if t4 � t1 6 d and go to (i) otherwise.

A good choice of the values t2 and t3 in (c) may lead to very efficient numerical schemes.

The computation of W pc
d and DW pc

d is done in a loop over all finite elements and employs the following

algorithm.

Algorithm 5 (Inner loop in numerical polyconvexification). Input: function W : R2�2 ! R, F 2 R2�2,

parameters d, r > 0.

(a) Solve the linear optimization problem
a :¼ min
X

A2Nd;r

kAW ðAÞ:kA P 0;
X

A2Nd;r

kA ¼ 1;
X

A2Nd;r

kATðAÞ ¼ TðFÞ
( )

;

where T(A) = (A,detA) and Nd;r ¼ fA 2 R2�2 \ dZ2�2 : maxj; k j Ajk j6 rg. This gives a and a La-

grange multiplier k 2 R5 for the constraint
P

A2Nd;r
kATðAÞ ¼ TðFÞ. (The numerical solution of the lin-

ear optimization problem was realized in an adaptive multilevel scheme employing interior point

solvers.)

(b) Check if r was large enough using optimality conditions and growth conditions of W (see [8] for
details). Set r :¼ 2r and go to (a) if not and stop otherwise.

Output: s :¼ a ¼ W pc
d ðFÞ and r :¼ k � DTðFÞ ¼ DW pc

d ðFÞ.

Remark 7.2. To avoid deformation gradients with negative determinant, the numerical experiments in Sec-

tion 7.1 employed a nonlinear stabilization by adding
0:001

Z
X

~logðdetð1þ DðyðjÞh þ trhÞÞÞ2dx
Fig. 8. Schematic description of the physical problem (left) and initial triangulation of X with 256 elements (right).



Fig. 9. Discrete deformation yh of X (the displacement field is amplified by a factor 100 for illustrative purposes) together with the

modulus of the induced discrete stress field DW pc
d ðDy

ð6Þ
h Þ.
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where ~logðsÞ ¼ logðsÞ if s > 0 and ~logðsÞ :¼ 1 if s 6 0.
7.1. Numerical polyconvexification of a 2D Ericksen–James energy

Algorithm 4 ran for a 2D version of the Ericksen–James energy [40]. Here, given any deformation gra-

dient F 2 R2�2 with Cauchy strain tensor C ¼ C11 C12;
C21 C22

� 	
:¼ FTF, the frame-indifferent energy density

reads
W ðFÞ :¼ ðC11 þ C22 � 2Þ2 þ 0:3C2
12 þ ðC11 � 1:1Þ2ðC22 � 1:1Þ2:
A phase transition is considered in a quadratic body X :¼ (0,1)2 with homogeneous displacements along

the Dirichlet boundary CD :¼ [0, 1] · {0}, no volume forces (f � 0, but loaded by a symmetric applied sur-
face pressure g 2 L2(CN)

2 defined by g(s,1) = �(0,1/25) for 1/4
 s < 3/4 along one half on top and g � 0

elsewhere as indicated in Fig. 8.

For a uniform triangulation of X with 256 elements shown in the right plot of Fig. 8, the initial choice

y
ð0Þ
h � 0, the algorithm terminated for j = 6. We thereby obtained the numerical approximation

yh ¼ y
ð6Þ
h 2 S1

DðTÞ2 of 7.1 displayed in Fig. 9 together with its induced discrete stress field DW pc
d ðDuhÞ.

Quantitatively, the discrete deformation appears reasonable although we still assume a relatively large

approximation error.
8. Time-evolution for inelastic materials

In this section we will discuss a variational setting for inelastic materials which allows to discuss the

occurrence of microstructures in a rational way. We would like to do this in a finite-deformation

setting.
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8.1. Variational formulation

For inelastic materials the (specific Helmholtz free) energy W(F,K) on the deformation gradient F = $y
and on a set of internal variables K. The latter measure the intrinsic state of the material produced by plas-

tic deformation, hardening, damage or phase-transformations [35,36], cf. this work for more details.
In elasticity theory the deformation y constitutes the independent variable of the boundary value prob-

lem at hand and is determined via balance of momentum and appropriate boundary conditions. Now there

is an additional set of independent variables K and we need an additional set of equations for our problem

to be well-posed. Since the internal variables K describe the history of the material; their evolution equa-

tions are of the type (with _x :¼ dx=dt)
f ðF; _F;K; _KÞ ¼ 0: ð8:1Þ

Any inelastic material is characterized by dissipation, which is non-recoverable energy expended via

change of the internal variables, as described by the rate _K. We capture this effect by introducing a dissi-

pation–functional DðK; _KÞ. As shown in [35,36] the time-evolution of the material body X under consider-
ation is now governed by the Lagrange-functional
Lðt; yðtÞ;KðtÞ; _KðtÞÞ ¼
Z
X

d

dt
W ðry;KÞ þ DðK; _KÞ


 �
dV � d

dt
‘ðt; yÞ: ð8:2Þ
Here ‘(t,y) is the potential of external forces. Moreover y has to satisfy boundary conditions
yðtÞ ¼ y0ðtÞ on C0 � @X: ð8:3Þ

Static equilibrium and boundary conditions as well as evolution–equations for K can now be obtained

via the least-action principle
fyðsÞ � yðtÞ;KðsÞ � KðtÞg ¼ argmin

Z 1

0

Lðs; yðsÞ;KðsÞ; _KðsÞÞds : yðsÞ;KðsÞ; yðsÞ
�

¼ y0ðtÞ on C0; yð0Þ ¼ yðtÞ;Kð0Þ ¼ KðtÞ
�
: ð8:4Þ
This means the ‘‘constant’’ solutions (in s) {y(s) � y(t), K(s) � K(t)} are minimizers of the action-integral

above, or, otherwise stated, it is not possible to lower the sum of stored and dissipated energy by any (vir-

tual) perturbation of the state {y(t),K(t)}. The principle (2) especially yields the evolution law
Q 2 oD

o _K
; ð8:5Þ
which constitutes an implicit relation of the form 8.1 for _K (subdifferentials are required for example in the

case of plasticity, see [15]). Here Q ¼ � oW
oK

is the conjugate quantity to K and the differential inclusion ac-

counts for law of inequality-type as encountered for example in plasticity.

8.2. Reduction to the elastic case

The advantage of the formulation above is, that in a time-incremental setting it reduces to a pure min-

imization problem which can be analyzed by variational calculus. To this end we introduce the dissipation-
distance
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DðK0;K1Þ ¼ inf

Z 1

0

DðKðsÞ; _KðsÞÞds : Kð0Þ ¼ K0;Kð1Þ ¼ K1

� �
; ð8:6Þ
which gives the energy dissipated if the internal variables are changed from a state K0 to K1. Note that the

minimization performed in the definition of D(K0,K1) follows from the principle (2).

Let us consider a finite time-increment [t0, t1] and let the values of the internal variables K0 = K(t0) be

known at the beginning of the increment. Then with the notion given above we obtain deformation
y1 = y(t1) and internal variables K1 = K(t1) at the end of the increment from the following minimum-

principle:
fy1;K1g ¼ argmin

Z
X

W ðry;KÞ þ DðK0;KÞf gdV � ‘ðt1; yÞ : y;K; y ¼ y0ðt1Þ on C0

� �
: ð8:7Þ
This principle gives the exact equilibrium and boundary conditions at the end of the increment as well as

an approximation of the evolution-equation for K depending on the size of the increment. Minimization

over K can now be performed independently giving a reduced potential
W red
K0
ðFÞ ¼ min W ðF;KÞ þ DðK0;KÞ : Kf g; ð8:8Þ
along with the update formula
K1 ¼ argmin W ðF;KÞ þ DðK0;KÞ : Kf g: ð8:9Þ

This reduced potential, however, depends on K0 only as a parameter and can otherwise considered to be

a purely elastic energy. We obtain the usual principle of minimum of energy:
y1 ¼ argmin

Z
X
W red

K0
ðryÞdV � ‘ðt1; yÞ: y; y ¼ y0ðt1Þ on C0

� �
: ð8:10Þ
Thus any inelastic problem can be decomposed into a sequence of elastic by solving (8.10), updating K

via (8.9) and continuing with the next time-increment.

For many inelastic materials W(F,K) is taken to be quasiconvex in F whereas DðK; _KÞ is even convex in
_K. Still W red

K0
ðFÞ very often turns out not to be quasiconvex, leading to the evolution of microstructures as

for example explained in [15]. Within a single time-increment we are now able to apply all the methods

developed before to the reduced potential W red
K0
ðFÞ.
9. An application to single-slip elastoplasticity

In this section we will closely investigate a model of finite-strain elastoplasticity with a single slip-system

which was introduced in [15] and proving to lead to a non-quasiconvex reduced potential.

9.1. Constitutive model and reduced potential

We start with assuming the well-established multiplicative split of the deformation gradient into an elas-

tic and a plastic part: F = FeFp. The set of internal variables K = {c,p} consists of the scalar plastic slip c and
a hardening variable p. The plastic deformation Fp is entirely determined by c, i.e.
Fp ¼ Iþ cs0 � n0; ð9:1Þ
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where s0 and n0 denote the referential tangent and normal vector to the slip plane, respectively. We choose a

free energy density function of a compressible neo-Hookean type, which in accordance with plastic indif-

ference depends on F only via Fe:
Fig. 1

examp
W ðF; c; pÞ ¼ UðjÞ þ l
2
trðFT

e FeÞ þ
a
2
p2; UðjÞ ¼ K

4
ðjÞ2 � Kþ 2l

2
lnðjÞ;
in which the symbols l, K and a denote material parameters. The set of forces conjugated to K is T = {s,q},
with s denoting the resolved shear stress. The yield function U and its corresponding characteristic function

J read
Uðs; qÞ ¼j s j �r � q; Jðc; p;Ts; qÞ ¼
0 for Uðs; qÞ 6 0;

1 else:

�
ð9:2Þ
By Legendre transform (for details we refer to [15]) we obtain the dissipation-function
Dðc; p; _c; _pÞ ¼
r j _c j if j _c j þ _p 6 0;

1 else

�
ð9:3Þ
for which the dissipation-distance D can be constructed explicitly as
Dðc0; p0; c1; p1Þ ¼
r j c1 � c0 j if j c1 � c0 j þp1 � p0 6 0;

1 else:

�
ð9:4Þ
Moreover, the minimization with respect to the internal variables can be carried out explicitly in this

example and results in a closed expression for the reduced potential
W red
c0;p0

ðFÞ ¼ UðdetFÞ þ l
2

trFTF� 2c0 s � nþ c20s � s�
ðmaxf0; j s � n� c0s � s j � scrit�ap0

l gÞ2

s � sþ a=l

" #
; ð9:5Þ
where s = Fs0 and n = Fn0 are the slip-system vectors in the deformed configuration. Energy density func-

tions in finite elasticity and will be analyzed for its convexity properties.
0. FE simulation, contour: plastic slip c, deformation = F12 = 0.1, results are mesh-dependent but effective properties, for

le volume ratios, are not. (a) 6400 elements, (b) 10,000 elements.
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9.2. Direct finite element simulation

The occurrence of microstructures can be demonstrated by finite element analysis. We consider a plane

shear deformation of a representative volume element (RVE) consisting of standard 4-node plane strain

elements subjected to periodic boundary conditions. The RVE models the micro-scale behavior of a single
material point for a given macro-deformation F. The material parameters (K = 15000 MPa, l = 10000

MPa, scrit = 10 MPa, / = �45.0�, a = 1000 MPa) are chosen to obtain significant microstructure formation.

The loss of quasiconvexity is a global phenomenon. Hence microstructures will already be possible as a

global minimizer at a point where the potential is locally still elliptic and thus has the homogeneous solution

as local minimizer. Therefore we have to stimulate the formation of microstructures. Two different methods

have been applied for this purpose:

(A) Static perturbation: A randomly oriented field of distributed forces of a small magnitude is applied to

the structure in order to perturb the initial stable state of the material. With an appropriate choice of the
perturbation load, microstructures will form up and the initial perturbation load can be released. The

macro deformation gradient F is kept fixed during the perturbation process, which forces the structure

to accommodate solely by internal fluctuations.

(B) Dynamic perturbation: A randomly oriented velocity field is used to initiate internal fluctuations while

the macro deformation gradient F is kept fixed. Then the magnitude of the velocity is reduced continuously

by structural damping. With an appropriate choice of the intensity, orientation and damping of the velocity

field the material will find a new rest state of lower energy and microstructures will show up.

Essentially, both methods lead to the same results. Fig. 10 shows contour plots of the plastic slip c for FE
simulations with different mesh sizes. The equilibrium state exhibits a laminar structure composed of oppo-

site plastic slip. The number of oscillations (laminates) is mesh-depended. Macroscopic quantities like vol-

ume ratios or orientation of the laminates, however, are preserved for different meshes. Those are the

quantities which enter into relaxation theory.
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Fig. 11. Multiple minima (white) in contour plots of the objective function (9.6) projected on the a–b-plane. Parameters k = 0.1,

q = 0.6 (left) and q = 2.1 (right).
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9.3. Finite lamination

We will calculate the relaxations R1W
red and R2

1W
red for the reduced potential as introduced in Section

6.2. The computation can be formulated as a restricted optimization problem. For the two-dimensional

case and n = 1 the objective function
Fig. 12

simula
eW redðx;FÞ :¼ ð1� kÞW redðF� ka� b|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
F1

Þ þ kW redðFþ ð1� kÞa� b|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
F2

Þ ð9:6Þ
depends on four optimization variables
x ¼ ðk; q; a; bÞ; a ¼ q
cosðaÞ
sinðaÞ

� 	
; b ¼

cosðbÞ
sinðbÞ

:

� 	
ð9:7Þ
The vectors a and b form the rank-one matrix a � b and the scalar k describes the volume fraction of the

two phases with deformation gradients F1 and F2, respectively. The relaxed energy is obtained by solving

the minimization problem
R1W redðFÞ ¼ min
x2B

eW redðx;FÞ ð9:8Þ
for a given F, where the domain B of x is
B ¼ fx 2 R4 j 0 6 k 6 1; 0 6 q; 0 6 a 6 p; 0 6 b 6 2p; detðFiÞ > 0g: ð9:9Þ
9.4. Global minimization algorithms

The task of global optimization is to find a solution in the solution set B for which the objective function

(9.6) obtains its smallest value, the global minimum. The contour plots Fig. 11 show that the objective func-

tion (9.6) has several local extrema and the domain B may be bounded non-simply, [43,49], because of the

constraints detFi > 0.
. First-order laminar microstructure, contour: plastic slip c, macroscopic properties are recovered by relaxation method. (a) FE

tion using 6400 elements, (b) numerical relaxation using R1W.
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order laminate.
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We have used different methods (e.g. branch and bound, clustering, interval, see [43]) to solve the opti-

mization problem (9.8). Probabilistic global search procedures like multi-start and clustering algorithms

have shown to be efficient and sufficiently robust. The basic idea of the family of multi-start methods is

to apply a local search procedure several times and evaluate the function (9.6) at each of those points. A

drawback of this method is that when many starting points are used the same local minimum may be iden-

tified several times. This leads to an inefficient global search. Clustering methods attempt to avoid this inef-

ficiency by carefully selecting points at which the local search is initiated.

Algorithm 6 (Global optimization). Input: F, initial population xi 2 B of n points (n � 100 � � �10,000) in a

feasible domain B, tolerance d > 0.

(a) Sampling and reduction: Sample eW redðxi; F Þ for xi 2 B and reduce the population by choosing the m

best points.
(b) Clustering: Identify clusters, such that the points inside a cluster are ‘‘close’’ to each other, and the clus-

ters are ‘‘far’’ from each other. If the clusters do not separate sufficiently, repeat step 1 with a bigger

population in the whole domain or in specific regions.

(c) Center of attraction: Identify a center of attraction in each cluster: This could be the best point or the

centroid of the subset of best points.

(d) Local search: Start a local search from the center of attraction, stop when minimum min is achieved

with tolerance d.

Output: Rl
1ðFÞ ¼ min.

Clustering algorithms are effective for low-dimensional problems, where the evaluation of the objective

function is inexpensive. Constraints can be taken into account by removing sampling points which lie out-

side of the feasible domain. The final local search step is done by a quasi-Newton algorithm (unconstrained)
or a sequential quadratic programming algorithm [46]. The latter was used to handle nonlinear constraints

near the boundary of the feasible domain.



Fig. 14. Second-order laminar microstructure, relaxation theory recovers macroscopic properties, first-order laminates give too high

energy and stresses. (a) Stress–deformation plot, (b) FE simulation using 6400 elements, contour: plastic slip c, (c) numerical relaxation

using R2
1W .
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9.5. Recovery of macroscopic properties

Fig. 12b shows the result of a numerical relaxation for the simple shear problem described above. The

corresponding finite element solution is given in Fig. 12a. Note that Fig. 12a was computed with a finite

element mesh consisting of 6400 quadrilateral elements consisting of altogether 4 · 6400 material points,

whereas Fig. 12b is obtained at a single material point. The direction and distribution of the laminates

can be computed from the optimization variables k, q, a, and b. We like to point out that the relaxed energy

approach predicts the volume fractions and the interface orientation but does not predict the number of
laminates unless a phase boundary energy is included.
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red
c0 ;p0

. Both plots

show good agreement of the two relaxation methods.
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9.6. Evolution of higher-order laminates

Fig. 13a shows the evolution of the volume fraction k for the first-order laminate. At each timestep the

initial internal parameters c0 = p0 = 0 had been used, what corresponds to an algorithm with a single-step

update of the internal variables. Initially, the material is in a homogeneous elastic state. Then a plastic

phase shows up and grows until it reaches 50% volume fraction. At that state the remaining elastic phase

becomes plastic, too, but with an opposite plastic slip. Both plastic phases then progress with slowly varying

volume fractions. A detailed inspection of the corresponding stress–strain diagram (Fig. 14a) reveals that
the stress curve has a slightly negative slope for shear deformations between 0.0 and 0.1. This indicates an

unstable behavior and may be caused by an unsatisfying result of the relaxation algorithm using first-order

laminates. Indeed, solving the problem with second-order laminates being enabled removes the unsatisfac-

tory negative stress slope: Now, a N = 3-type laminate shows up in the first stage of the deformation, com-

prising an elastic state and a mixture of two opposite-slip plastic states (Fig. 13b). The volume fraction of

the elastic phase starts at 100% and then decreases continuously until it vanishes at a deformation of 0.13.

The further process coincides with the results of the first-order laminate relaxation. Fig. 14b and c compares

the result of the second-order rank-one relaxation with the FE simulation. We observe that both results
coincide obviously. It is one of the advantages of the rank-one relaxation that not only an approximate

quasiconvex energy, but also information about the volume fraction and shape of the microstructures is

obtained.
9.7. Application of two numerical relaxation schemes to W red
c0;p0

ðF Þ

For comparison we apply both numerical approximations introduced in Section 6 to the reduced poten-

tial given in 9.5.
Using the algorithm of [8] we iteratively computed the approximation W pc

d;rðFnÞ (for d = 1/16 and r = 4) of

Wpc(Fn) and the approximation R2
1W ðFnÞ of Wrc(Fn) for W ¼ W red

c0;p0
and
Fn ¼
1:0 n

0:0 1:0

� 	
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with x = j0.05 and j = 0,1, . . ., 50. Fig. 15(a) displays the the unrelaxed energy density W(Fn) and the

approximations of the relaxed energies. We observe that W pc
d;rðFnÞ and R1

2W(Fn) almost coincide and sig-

nificantly lower the energy. Therefore, we are tempted to conclude that Wpc(Fn) = Wrc(Fn) and hence

Wqc(Fn) = Wpc(Fn) = Wrc(Fn) for n 2 [0, 2.5]. Fig. 15(b) also indicates good agreement of the first Piola–

Kirchhoff shear stress obtained from the two numerical relaxations.
It seems surprising that R2

1W ðFnÞ leads to slightly smaller values than W pc
d;rðFnÞ since there holds

Wpc(Fn) 6 Wrc(Fn). The relative difference is however less than 0.01% so that we may assume that this dis-

crepancy is only caused by discretization errors. Notice that the error estimate given in [8] proves that

j W pc
d;rðFnÞ � W pcðFnÞ j6 Cd2kD2W kL1ðBrð0ÞÞ and that the discrete polyconvex envelope is a reliable upper

bound for the exact polyconvex envelope, i.e. W pc
d;rðFnÞ P W pcðFnÞ.

Although the approximate values of the relaxed energies almost coincide, the related Young measures

may differ significantly: For n = 0.1 we obtained the value
W pc
d;rðF0:1Þ ¼

X
A2Nd;r

kAW ðAÞ ¼ 13; 791:19
with convex coefficients (which are larger than 1.0E�05) and gradients
kA1
¼ 0:1000; A1 ¼

1:1250 �0:0625

0:1875 0:8750

� 	
;

kA2
¼ 0:1250; A2 ¼

0:8125 0:3750

�0:1250 1:1875

� 	
;

kA3
¼ 0:0250; A3 ¼

0:7500 0:5000

�0:1250 1:2500

� 	
;

kA4
¼ 0:2750; A4 ¼

1:0625 0:0625

0:0000 0:9375

� 	
;

kA5
¼ 0:4750; A5 ¼

1:0000 0:0625

0:0000 1:0000

� 	
;

while the computation of R2
1W ðF0:1Þ led to the approximation
R2
1W ðF0:1Þ ¼ 13; 790:53;
where the volume fractions and gradients are given by
kA1
¼ 0:4789; A1 ¼

0:9853 0:1031

�0:0458 1:0096

� 	
;

kA21
¼ 0:2451; A21 ¼

0:8536 0:2570

�0:1066 1:1399

� 	
;

kA22
¼ 0:2760; A22 ¼

1:1554 �0:0447

0:1741 0:8591

� 	
;

which constitutes a second-order laminate. Notice that the value of the unrelaxed energy is
W ðF0:1Þ ¼ 13; 799:88;
so that the difference between W pc
d;rðF0:1Þ and R2

1W ðF0:1Þ is much smaller than the reduction of the energy

obtained by relaxation.
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10. Outlook

This paper presents effective algorithms in relaxation theory for the modeling of microstructure evolu-

tion. For specific (convex) relaxed potentials a full error control is achieved for numerical solutions of

the associated boundary value problems. In more general situations numerical approximations of specific
envelopes are calculated using different algorithms. These are demonstrated to be accurate and efficient en-

ough in order to solve realistic problems in continuum mechanics.

The field of numerical relaxation, however, is still in its infancy. This section reports here on a a few

pressing questions for future experimental and theoretical investigations.

10.1. Error control in FEM for non-convex minimization problems

The error control mentioned in this paper relies on the convex situation. In fact, for general polyconvex
materials, only weak convergence is known (and follows almost immediately from the direct method of the

calculus of variations). The only convergence estimate for global solutions is for uniformly convex energy

densities [13]—far too restrictive to model a relaxed energy density. This is a wide open and important field

for further research.

10.2. Guaranteed convergence of effective solution algorithms

The positive result of Theorem 4.1 on the convergence of a damped or stabilized Newton–Raphson
scheme of Section 4 is limited to the convex case as well. It is in fact essential to have sufficient conditions

for global convergence of an outer loop (e.g. from Algorithm 4).

10.3. Existence of solutions in time-evolution problems

A natural implicit time-step discretization is known to allow for generalized solutions. The convergence

for smaller and smaller time-steps is less clear. Positive results for Young-measure-valued solutions are re-

ported in [44,18]; the question of Sobolev-valued solutions remains open for non-monotone hyperbolic
systems.

10.4. Update of microstructured internal variables

In Sections 8 and 9 we have studied relaxations of the reduced potential W red
K0
ðFÞ, being able to predict

the onset and morphology of microstructures by the algorithms introduced. This, procedure, however,

makes sense only for a given single time-increment. At the beginning of the subsequent increment, the inter-

nal variables K0 are now results of the relaxation performed in the preceding time-increment. Thus they are
given in the form Young-measures now, and it is not clear how they should be updated. Let us now look

into this problem a little more closely, see also [36] for mathematical details. Let the internal variables K be

elements of a measurable spaceK 2 RM and let a probability-distribution of internal variables at the begin-

ning of the time-increment be given by a Young-measure l0 2 YMðX;KÞ, where YMðX;KÞ denotes the
set of all Young-measures on the domain X with values in K.

If l1 2 YMðX;KÞ represents the probability-distribution at the end of the time-increment, then (8.4) re-

quires the total dissipation to be minimized by the transition from the first distribution into the second one.

This is mathematically expressed by the so-called Wasserstein-distance
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Dwassðl0; l1Þ ¼ inf

Z
K�K

DðK0;K1ÞrðdK0; dK1Þ: r 2 YMðX;K�KÞ;
�

�
Z
K

rð�; dK1Þ ¼ l0;

Z
K

rðdK0; �Þ ¼ l1

�
: ð10:1Þ
For a given l 2 YMðX;KÞ we define the cross-quasiconvex envelope by
W qcðF; lÞ ¼ inf

Z
GLþðdÞ�K

W ðF;KÞcðd�F; dKÞ: c 2 YMðX;GLþðdÞ �KÞ;
(

Z
K

cð�; dKÞ 2 GYMðX;GLþðdÞÞ;
Z
GLþðdÞ

cðd�F; �Þ ¼ l;
Z
GLþðdÞ�K

�Fcðd�F; dKÞ ¼ F

)
; ð10:2Þ
GYM(X,GL+(d)) denoting the set of all Gradient-Young-Measures on the domain X with values in GL+(d).

With this notation it is now possible to generalize the definition of reduced potential given in 8.8 and the

update-formula 8.9 in a canonical way to the measure-valued case. We obtain
W red
l0
ðFÞ ¼ inf W qcðF; lÞ þ Dwassðl0; lÞ: l 2 YMðX;KÞf g ð10:3Þ
and
l1 ¼ arg inf W qcðF; lÞ þ Dwassðl0; lÞ: l 2 YMðX;KÞf g: ð10:4Þ

By construction W red

l0
ðFÞ is quasiconvex. Hence, we are once again in the well-posed regime concerning

the associated boundary value problems. For the purpose of numerical implementation, of course, the gen-

eral Young-measures above have to be replace by discrete constructions which mostly will have to rely

on point-measures. One possible procedure could involve the approximation of Wqc(F,l) by a cross-
polyconvex envelope.
10.5. Beyond young-measures

Even the approach outlined above has its limitations. Young-measures essentially model probability-dis-

tributions, i.e. volume-ratios between different components. Some microstructures, however, require more

information to be appropriately described, an example being evolving microcrack-fields in damage-

mechanics, where orientation plays a crucial role. A concept to capture such properties would be so-called
H-measures [48], defined by Fourier-expansions of deformation-fields; this is restricted to quadratic

potentials.
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