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Given a flux or stress approximation ph from a low-order finite element simulation of an elliptic boundary value problem,
averaging or (gradient-)recovery techniques aim the computation of an improved approximation Aph by a (simple) post
processing of ph. For instance, frequently named after Zienkiewicz and Zhu, Aph is the elementwise interpolation of the
nodal values (Aph)(z) obtained as the integral mean of ph on a neighbourhood of z. This paper gives an overview over old
and new arguments in the proof of reliability and efficiency of the error estimator ηA := ‖ph − Aph‖ as an approximation
of the error ‖p − ph‖ in (an energy norm) ‖ · ‖. High-lighted are the general class of meshes, averaging operators, or finite
elements (conforming, nonconforming, or mixed). Emphasis is on old and new aspects of superconvergence and arguments to
circumvent superconvergence at all within proofs of a posteriori finite element error estimates.
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1 Introduction

This section presents some main concepts in a posteriori finite element error control and their purpose. Sect. 1.1 gives a vague
but brief introduction to reliability and efficiency of (a posteriori) error estimators. Sects. 1.2 and 1.3 describe their usage in
termination criteria for error control and in adaptive mesh-refining. Some remarks on references in Sect. 1.4 and the outline of
the remaining part of this paper in Sect. 1.5 conclude this introduction.

1.1 Reliability and efficiency

Throughout the first section there is no formal need to have a boundary value problem

Lu = f (1)

at hand for an elliptic (second-order) differential operator L plus boundary conditions. In fact, it suffices to think of p (the
flux or stress) as the derivative of an unknown u which is approximated by a (known) finite element solution uh and so yields
a discrete (flux or stress) ph. It is important that ph is known as well as a right-hand side f in the underlying domain Ω and
prescribed data on the boundary ∂Ω (the domain Ω is not visible in (1) but shall arise in applications below). Given a norm
‖ · ‖, the aim is to approximate the (unknown) error ‖p− ph‖ by a computable quantity η called error estimator.

Definition 1.1. (Error Estimator). A (computable) quantity η which is thought as an approximation to ‖p − ph‖ is called
a posteriori error estimator, or estimator for brevity, if it is a function of known quantities f,Ω, ∂Ω and uh, ph etc. of the data
and the discrete solution.

This definition is very vague and not very useful on its own: The estimator η := +∞ and η := 0 is even reliable and efficient,
respectively, but certainly not interesting. The real purpose of an estimator is to provide lower and upper error bounds, in the
following sense.

Definition 1.2. (Reliability). An estimator η is called reliable if

‖p− ph‖ ≤ Crel η + h.o.t.rel . (2)

Definition 1.3. (Efficiency). An estimator η is called efficient if

η ≤ Ceff ‖p− ph‖ + h.o.t.eff . (3)
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4 C. Carstensen: Averaging techniques in a posteriori FE error analysis

Definition 1.4. (Asymptotic Exactness). An estimator is called asymptotically exact if it is reliable and efficient andCrel =
Ceff in (2)–(3).

Herein, Crel and Ceff are multiplicative constants which do not depend on the mesh-size of an underlying finite element
mesh T for the computation of ph and h.o.t. denotes higher-order terms. The latter are generically much smaller than η or
‖p− ph‖, but usually this depends on the (unknown) smoothness of the exact solution or the (known) smoothness of the given
data. At this moment we have only one finite element mesh T in mind, but could certainly think of a family (Th)h∈H of
regular triangulations with a (maximal) mesh-size h, in a parameter set H ⊂ (0,∞), which can be arbitrarily small. Then, the
higher-order terms h.o.t. can be defined by the property

lim
H�h→0

h.o.t.rel /‖p− ph‖ = 0 = lim
H�h→0

h.o.t.eff /‖p− ph‖. (4)

The constants Crel and Ceff may (mildly) depend on Th but are supposed to be bounded,

lim sup
H�h→0

Crel < ∞ and lim sup
H�h→0

Ceff < ∞. (5)

It is the mathematical task of a posteriori error analysis to provide sufficient and necessary conditions for the reliability and
efficiency estimates (2)–(3) to hold and characterise or estimate the constants Crel, Ceff and the higher-order terms h.o.t.rel,
h.o.t.eff . The properties (4)–(5) may well serve as a guideline for the design of estimators, but they are usually not sufficient
for practical purposes in error control.

1.2 A posteriori error control

There are at least two aspects where an error estimator is useful in practice: error estimation and adaptive mesh-refinement. For
the first main usage, one is given a tolerance Tol > 0 and interested in a termination (of successively adapted mesh-refinements)
based on the criterion

‖p− ph‖ ≤ Tol .

Since the error ‖p− ph‖ is unknown, this is replaced by its upper bound (2) and then reads

Crelη + h.o.t.rel ≤ Tol . (6)

For a verification of (6), it is evident that we require not only η but also Crel and h.o.t.rel. A qualitative knowledge such as
in (4)–(5) does not suffice. Notice that one may call the computable upper bound

η̃ := Crelη + h.o.t.rel

an error estimator (which then satisfies (2) with a reliability constant 1 and vanishing higher-order terms). If η̃ is not computable,
the error control is incomplete and so useless. Fortunately, in the examples below, η̃ is computable and this enables guaranteed
error control.

Notice that the error control is exclusively with respect to the norm ‖ · ‖. This paper focuses on energy norms and so ignores
goal-oriented error control. The latter is important and the reader is referred (i) to [1, 6] for arguments that reduce the more
general problem to energy-norm arguments and (ii) to [13] for a survey of the work of Rannacher et al. on a very successful
computational approach.

1.3 Adaptive mesh-refining

The second main usage of an estimator η employs its local character, e.g. in the form

η2 =
∑
T∈T

η2
T (7)

with (computable) elementwise contributions ηT . The interpretation of ηT is often that of a local indicator. The idea then is
to refine the element T if this indicator ηT is relatively large. The adaptive meshes in our work are generated by a refinement
criterion such as

1
2 max{ηK : K ∈ T } ≤ ηT . (8)

Notice that further strategies are required to avoid hanging nodes and degenerated elements. The use of ηT as a refinement
criterion is essentially based on heuristics; one should therefore speak of a refinement indicator ηT (and not of an error indicator).

Notice that Crel, Ceff do not enter in (8) while h.o.t.rel,h.o.t.eff are simply ignored therein.
The rigorous justification of adaptive mesh-refining algorithms by a proof of an error-reduction property started with

[36, 37, 43]. Therein, one deduces convergence and even a convergence rate, but the number of elements generated by the
adaptive algorithm is not under control. Hence optimal convergence rates are not guaranteed although expected and observed in
many numerical experiments. Coarsening steps may be involved to prove optimal performance of adaptive mesh-refinement [14].
However, the coarsening seems rather a theoretical concept and less likely necessary in practice.
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1.4 References

Amongst the most influential early publications on a posteriori error control are [4,5,38] followed by many others. It is not the
aim of this paper to give credit to all the authors who enlighten the field but to guide the unexperienced reader into the area.
We therefore refer to the survey articles [13,39] and the books [1,6,39,46]. However, further work in the context of averaging
techniques and contributions from the author’s group will be quoted throughout the remainder of this paper.

1.5 Outline of the paper

The abstract level of the introduction will be continued in Sect. 2 where an abstract overview concerns different classes of
explicit and implicit estimators. Sect. 3 illustrates the estimators in a numerical example for a Laplace model equation. The
focus then is on averaging techniques and their analysis. Sect. 4 discusses their asymptotic exactness based on superconvergence
for structured grids. Reliability and efficiency of averaging techniques is shown in Sects. 5 and 6, respectively. Sect. 7 gives an
overview over other applications. Finally, more global averaging techniques are addressed in Sect. 8. The paper finishes with
some conclusion in Sect. 9.

2 Overview

This section is devoted to four classes of the most important error estimators presented under minimal notational assumptions.
We adopt the (abstract) notation of Sect. 1 specified for model examples and particular applications in the sequel. More
explanations will follow in Sect. 3 for the Poisson problem.

2.1 Explicit error estimators

In many cases, the underlying partial differential equation (PDE) in (1) gives rise to a residual

Res := f − Luh

which, often, is a linear and bounded functional Res : X → R in a (real) Hilbert or Banach space X . Although f, L, and uh

are given, the dual norm

‖Res‖X∗ = sup
v∈X\{0}

Res(v)
‖v‖X

(9)

is usually difficult or laborious to compute. If the boundary value problem (1) is well posed and ‖ · ‖ = ‖·‖X is a norm in X ,
there holds

c1 ‖Res‖X∗ ≤ ‖p− ph‖ ≤ c2 ‖Res‖X∗

with global positive constants c1 and c2 which solely depend on the bounds of L and L−1. For the Laplace equation and the
energy norm below there holds c1 = 1 = c2 and so the error equals the norm of the residual. Moreover, the computation of the
real number (9) appears to be as expensive as the computation of the error p − ph itself and so (as ph is known) of the exact
solution p. Thus, the exact computation of (9) is not the goal of a posteriori error control, but the less expensive computation
of lower and upper bounds is.

Lower bounds of (9) are easily deduced by any particular choice of v in X as edge or element bubble functions [46]. Upper
bounds usually require weak interpolation operators in Sobolev spaces [18, 35]. The most popular residual-based explicit error
estimator reads

ηE =


∑

T∈T
hq

T ‖f − Luh‖q
Lq(T )




1/q

+


∑

E∈E
hE ‖[ph]‖q

Lq(E)




1/q

. (10)

Here, T is a triangulation into elements T of diameter hT and E is the set of edges therein; hE denotes the diameter of the edge
E ∈ E . If ‖ · ‖ is the Lebesgue norm in Lp(Ω) then, typically, q is the coefficient of the dual Lq(Ω) defined by 1/p+ 1/q = 1.
It is assumed that L can be evaluated for uh on each element and that [ph] denotes the jump of a T -piecewise uniformly
continuous ph over an interior edge E (with modifications along the boundary ∂Ω).

2.2 Implicit error estimators

Localisation is the main step towards more accurate residual-based error estimators. At least two approaches are established,
namely localisation by a partition of unity and localisation by domain decomposition with interfaces corrections. In fact, the
localisation techniques are related to overlapping and non-overlapping domain decomposition techniques.
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Given a mesh T , the hat functions ϕz for each node z form the nodal basis (ϕz : z ∈ N ) for (conforming) first-order finite
element schemes (without boundary restrictions). The partition of unity property

∑
z∈N

ϕz = 1 in Ω

yields

Res(v) =
∑
z∈N

Res(ϕzDv) and ‖Dv‖p
p =

∑
z∈N

‖ϕ1/p
z Dv‖p

p,

for a Sobolev semi-norm in (a power of) X = Wm,p(Ω) and the functional matrix Dv of all mth-order partial derivatives.
Since

Res(ϕzv) ≤ sup
wz∈X

∥
∥
∥
∥
ϕ
1/p
z Dwz

∥
∥
∥
∥
p
=1

Res(ϕzwz)
∥∥∥ϕ1/p

z Dv
∥∥∥

p
=: ηz

∥∥∥ϕ1/p
z Dv

∥∥∥
p

we infer

‖ Res ‖ ≤ sup
v∈X\{0}

∑
z∈N

ηz

∥∥∥ϕ1/p
z Dv

∥∥∥
p

≤


∑

z∈N
ηq

z




1/q

=: ηL. (11)

The local estimator ηL assumes that the patchwise interface problems behind the definition of ηz can be solved exactly. In
practice, ηz has to be approximated by a finite element method with proper accuracy. We refer to [26, 42] for details and mention
that the idea goes back to [5].

The non-overlapping domain decomposition schemes employ artifical unknowns µ∂T at the interfaces which allow a
representation of the form

Res(v) =
∑
T∈T

(∫
T

RT v dx+
∫

∂T

(ph · ν + µ∂T ) v ds
)
.

Ladeveze suggested a certain choice of the interface corrections µ∂T such that the local problem on T ∈ T satisfies

ηT := sup
v∈X

‖Dv‖Lp(T )=1

(∫
T

RT v dx+
∫

∂T

(ph · ν + µ∂T )v ds
)
< ∞. (12)

Depending on the differential operator L, several considerations are necessary to ensure ηT < ∞; for the Laplace and Lamé
equation the constants and the rigid body motions have to vanish for the equilibrated local residual, respectively. The resulting
equilibration error estimator

ηEQ =


∑

T∈T
ηq

T




1/q

(13)

seems to be very popular. Details on the implementation can be found in [1], a related correction technique in [6]. As for ηL,
it is assumed that the local problem (12) is solved with sufficient accuracy.

2.3 Multilevel estimators

While the preceding estimators evaluate or estimate the residual of one finite element solution ph, multilevel estimators concern
at least two meshes Th and Th/2 and two discrete (solutions or) fluxes ph and ph/2. The interpretation is that ph/2 is computed
on a finer mesh, say, of halved mesh-size and Th/2 is obtained by one refinement of Th or that ph/2 is computed with higher
polynomial order. The point is that one believes that the error ‖p−ph/2‖ of the solution on the finer mesh Th/2 is systematically
smaller than the error ‖p− ph‖ on the coarser mesh Th in the sense that

‖p− ph/2‖ ≤ � ‖p− ph‖ (14)

for some constant � < 1. If this saturation assumption (14) holds, one obtains (2)–(3) for

ηML = ‖ph/2 − ph‖ (15)
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and h.o.t.rel = 0 = h.o.t.eff with

Crel = (1 − �)−1 and Ceff = 1 + � (16)

by simple arguments with a triangle inequality [7]. Efficiency is robust in � → 1, but reliability is not: The reliability
constant (16)a tends to infinity as � approaches 1. The limit � = 1 in (14) reflects that ‖p − ph/2‖ is indeed smaller than or
equal to ‖p− ph‖ which is natural for Galerkin-schemes and energy norms. However, the saturation assumption (14) assumes
that � is smaller than 1 and bounded away from 1 uniformly for the reliability of the multilevel estimator ηML. This property
is observed for fine meshes in practice and can be monitored during the calculation. The precise conditions under which (14)
holds for coarse meshes lead to mild restrictions on the mesh and smooth, namely non-oscillatory, right-hand sides [37, 42].
Details are under current investigation; it should be stressed that ph/2 is not really computed (but approximated) in practice [7].

2.4 Averaging estimators

The preceding estimator used two meshes and two discrete solutions for error control. Averaging techniques focus on one
mesh and one known flux approximation ph and do not need any underlying residual or boundary value problem at all. The
procedure is simply to take a piecewise smooth ph and approximate it by some globally continuous piecewise polynomials of
higher degree Aph. A simple example, frequently named after Zienkiewicz and Zhu and sometimes even called ZZ estimator,
reads as follows: For each node z ∈ N and its patch ωz let

(Aph)(z) =
∫

ωz

ph dx
/ ∫

ωz

1 dx ∈ R
d (17)

be the integral mean of ph over ωz . Then, defineAph by interpolation with (conforming, i.e. globally continuous) hat functions
ϕz ,

Aph =
∑
z∈N

(Aph)(z)ϕz.

Given Aph ∈ S1(T )d, where S1(T ) = span{ϕz : z ∈ N} denotes the (conforming) first-order finite element space, let the
averaging estimator be defined by

ηA := ‖ph −Aph‖. (18)

Notice that there is a minimal version

ηM := min
qh∈S1(T )d

‖ph − qh‖ ≤ ηA. (19)

The efficiency of ηM follows from a triangle inequality, namely

ηM ≤ ‖p− ph‖ + ‖p− qh‖ for all qh ∈ S1(T ),

and the fact that ‖p− ph‖ = O(h) while (in all the examples of this paper)

min
qh∈S1(T )d

‖p− qh‖ = h.o.t.(p) =: h.o.t.eff .

The latter is of higher order in the sense of (4)b for a smooth solution p and (3) follows for η = ηM and Ceff = 1.
It turns out that ηA and ηM are very close and accurate estimators in many numerical examples. This and the fact that the

calculation of ηA is an easy post processing made ηA extremely popular. This paper is devoted to old and new arguments for
the reliability of ηM and the efficiency of ηA in Sects. 4, 5, 6, and 7.

3 Estimator competition

This section is devoted to an elliptic model problem

1 + ∆u = 0 in Ω and u = 0 on ∂Ω (20)

for the L-shaped domain Ω = (−1,+1)2\([0, 1] × [−1, 0]) and its boundary ∂Ω. The aim is the illustration of the practical
performance of error estimators in a model situation.
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Fig. 1 Experimental results for Problem (20) with meshes T1, . . . , T6 and FE spaces (21). The relative error |e|1,2/|u|1,2

and various estimators η/|u|1,2 are plotted as functions of the number of degrees of freedom N .

3.1 Energy error

The first mesh T1 consists of 17 free nodes and 48 elements and is obtained by, first, a decomposition of Ω in 12 congruent
squares of size 1/2 and, second, a decomposition of each of the boxes along its two diagonals into 4 congruent triangles. The
subsequent meshes are successively red-refined (i.e., each triangle is partitioned into four congruent sub-triangles). Given any
mesh Tk the (conforming) P1 finite element space reads

Sk := {vh ∈ C(Ω) : ∀T ∈ Tk, vh|T affine and vh = 0 on ∂Ω} (21)

and is of dimension N = dim(Sk). The finite element solution uh is defined by uh ∈ Sk and

∫
Ω

∇uh · ∇vh dx =
∫

Ω
vh dx for all vh ∈ Sk. (22)

Given the unique (weak) solution u of (20), the error

e := u− uh

is estimated in the energy norm (the Sobolev semi-norm in H1(Ω))

|e|1,2 :=
(∫

Ω
|∇e|2 dx

)1/2

.

There is no analytic formula for an exact solution u and so |e|1,2 was computed according to

|e|21,2 =
∫

Ω
∇e · ∇(u+ uh) dx = |u|21,2 − |uh|21,2 (23)

with an extrapolated value |u|21,2 ≈ 0.21407315683398. Fig. 1 displays the values of |e|1,2 for different meshes T1, T2, . . . , T6
as a function of the number of degrees of freedom N = 17, 81, 353, 1473, 6017, 24321, 97793. It is this curve that will
be estimated by computable upper and lower bounds. Notice that the two axis in Fig. 1 scale logarithmically such that any
algebraic curve of growth α is mapped into a straight line of slope −α. The experimental convergence rate is 2/3 in agreement
with the (generic) singularity of the domain and resulting theoretical predictions.
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3.2 Explicit error estimators

The reliable estimator (10) reduces to

ηR,R :=


∑

T∈T
h2

T ‖1‖2
L2(T )




1/2

+


 ∑

E∈EΩ

hE

∫
E

[∂uh/∂νE ]2 ds




1/2

, (24)

where only the normal component [ph] · νE = [∂uh/∂νE ] of ph = ∇uh jumps across the interior edge E; EΩ denotes the
subset of E of all interior edges. Written in the form (24), the estimator ηR,R is reliable with constantCrel = 1 and h.o.t.rel = 0
for the class of meshes under consideration [26]. Fig. 1 displays ηR,R as a function of the number of unknownsN . One clearly
observes that ηR,R is an upper bound of the right convergence rate (parallel to the line for |e|1,2) and it is indeed well known
that ηR,R is efficient [46]. The efficiency constant Ceff is less established and the higher order terms h.o.t.eff usually involve
‖f − fT ‖L2(T ) for the elementwise integral mean fT of the right-hand side. Here, f ≡ 1 and so h.o.t.eff = 0. Following an
attempt in [25], Fig. 1 also displays an efficient variant ηR,E which is a guaranteed lower error bound. The constants in ηR,E

involve geometric data and are derived in [25] to where we refer for details. It is important to observe that

ηR,E ≤ |e|1,2 ≤ ηR,R

is correct but the range between the lower and the upper bound is very large. One reason is that various geometries (the shape
of the patches) lead to different constants and Crel = 1 reflects the worst possible situation in Tk. A local estimation yields an
estimator ηR,C [26] displayed in Fig. 1 as well. This reliable estimator requires the computation of local (patchwise) analytical
eigenvalues and hence is very expensive. However, the explicit estimators ηR,C and ηR,E still overestimate and underestimate
the true error by a huge factor (up to 10 and even more) in the simplest situation possible. This experimental evidence supports
the design of more elaborate estimators: Used as a termination criterion (6), the reliable estimators based on (24) may be very
cheap and easy. But the decision (6) may be too coarse and be satisfied for a mesh much finer than really necessary and so
may yield an unnecessary overkill computation. Said differently, a cheap criterion can be too expensive. It pays to invest into
a sharper error estimator.

For the model problem at hand, the volume contribution ‖hT f‖2 can be replaced by the edge contributions plus higher order
terms. Different proofs are given in [33, 44]; this fact has been noticed before in [12, 43]. We will come back to this detail in
Sect. 5.

3.3 Implicit estimators

For comparison, the two implicit estimators ηL and ηEQ are displayed in Fig. 1 as functions of N . It is stressed that both
estimators are efficient and reliable with

Crel = 1 and h.o.t.rel = 0 = h.o.t.eff .

For the class of meshes T1, T2, . . ., [26] showed Ceff = 2.37 and so

|e|1,2 ≤ ηL ≤ 2.37 |e|1,2.

The practical performance of ηL and ηEQ in Fig. 1 is comparable and in fact much sharper than that of ηR,E and ηR,R (cf. [25]
for more details).

3.4 Averaging estimator

The averaging estimators ηA and ηM of (17)–(19) are as well displayed in Fig. 1 as a function of N . Here, ηM is efficient up
to higher order terms (since the exact solution u ∈ H5/3−ε(Ω) is singular this is not really guaranteed) while its reliability is
open, i.e., the corresponding constants have not been computed. Nevertheless, the picture for ηA and ηM is exclusively seen
here from an experimental point of view. The striking numerical result is an amazing high accuracy of ηM ≈ ηA as empirical
guesses of |e|1,2. If we took Crel into account, this effect would be destroyed. We observe ηM ≤ |e|1,2 ≤ ηA except, perhaps,
for the last mesh T6 (a possible numerical artefact from the extrapolation procedure (23)).

3.5 Further results and remarks

a. Adaptive meshes. Fig. 1 displays numerical results from [25] for a sequence of uniformly refined meshes. The local
refinement indicators ηT from (7) yield the basis for refinement rules (8) and resulting automatic mesh-refinement. In the
example at hand, the corresponding convergence rates are improved from 2/3 to the [optimal] value 1. This is true for all
refinement indicators motivated by the estimators of Sects. 3.1–3.4. For the purpose of adaptive mesh-refining, the cheapest,
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10 C. Carstensen: Averaging techniques in a posteriori FE error analysis

namely the residual-based explicit estimator, yields the best results. The refinement indicators based on averaging are slightly
less effective, at least for the examples reported in [25].

Apart from the optimal convergence rate 1, the pictures in [25] that correspond to Fig. 1 for adapted meshes are similar; the
factors of over- and underestimation are quite the same. It is interesting to observe that the three lines for the error |e|1,2 and its
estimators ηM and ηA are narrow in Fig. 1 but even closer (almost identical) for the adaptive meshes. One might speculate that the
adapted meshes compensate the singularity at the origin and so lead to even higher accuracy, possibly to asymptotic exactness.
(Here, the latter property is expected to be based on higher regularity.) Although not published, collaborators observed similar
effects for 3D problems.

b. Nonconforming finite element methods. The error analysis of nonconforming finite element methods is more delicate
than for conforming schemes ([15,16,34]). The Crouzeix-Raviart P nc

1 finite element method has been analysed in [11,18] and
empirically studied in [24]. Given the discrete space

Snc
k :=

{
vh ∈ L∞(Ω) : ∀T ∈ Tk, vh|T affine, vh continuous at midpoints of interior edges (25)

and zero on midpoints of boundary edges
}

and the Tk-piecewise gradient ∇Tk
based on the regular triangulation Tk, the discrete solution uh is defined by uh ∈ Snc

k and
∫

Ω
∇Tk

uh · ∇Tk
vh dx =

∫
Ω
f vh dx for all vh ∈ Snc

k .

The discrete flux (i.e. the elementwise gradient) reads

ph := ∇Tk
uh

and leads to estimators ηE in (10), ηL in (11), ηEQ in (13), ηML in (15), ηA in (18), and ηM in (19).
Numerical experiments in [24] support a high accuracy of the averaging estimators ηA ≈ ‖p − ph‖ ≈ ηM for adaptively

refined meshes.
c. Mixed finite element methods. The error analysis of mixed finite element methods is even more delicate than for

conforming and nonconforming finite element schemes ([15,16,34]). The Raviart Thomas RT0 finite element method involves
the flux ph as the main variable in

RT0(Tk) := {qh ∈ H(div,Ω) : ∀T ∈ T ∃aT ∈ R
d ∃bT ∈ R, qh(x) = aT + bTx for x ∈ T}

while the discrete displacements uh are Tk-piecewise constant, denoted uh ∈ L0(Tk). The discrete solution (ph, uh) is a pair
in RT0(Tk) × L0(Tk) with

∫
Ω
ph · qh dx+

∫
Ω
uh div qh dx = 0 for all qh ∈ RT0(Tk),

∫
Ω
vh div ph dx = −

∫
Ω
f vh dx for all vh ∈ L0(Tk).

(26)

The Sobolev spaceH(div,Ω) is defined as the vector space of all L2 functions whose distributional divergence is in L2. Hence
the terms div qh and div ph make sense in (26) while no derivative of uh is included. The relation p = ∇u has only a very
weak counterpart in (26)a by an integration by parts [irreversible in the discrete situation]. This gives rise to further residuals
analysed in [18,24]. The reliability of the averaging estimators ηA and ηM of (18) and (19), respectively, can be found in [24].
The numerical results of that paper show similar effects and support the high accuracy of ηA ≈ ‖p− ph‖ ≈ ηM for adaptively
refined meshes.

d. Higher order finite element methods. A local version of averaging schemes is suggested in [10]. For each interior edge
E with patch ωE , ωE = T+ ∪ T− for T± ∈ Tk with E = T+ ∩ T−, one considers

min
qE

‖ph − qE‖L2(ωE) .

Here, qE is a global polynomial (on ωE) of degree higher than that of ph|T+ or ph|T− . This leads to ηN , with

η2
N := 1

3

∑
E∈EΩ

min
qE

‖ph − qE‖2
L2(ωE). (27)

This reliable and efficient estimator has been tested empirically for the p-version and polynomial degrees 1, 2, . . . , 6. The
numerical results underline that (27) is, particularly for higher degrees, an accurate estimator. Although the reliability and
efficiency constants depend on the polynomial degrees, this dependency appears to be very mild (in the examples considered)
and even an hp-version seems to work [10].
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4 Superconvergence and asymptotic exactness

This section is devoted to review the first justifications of averaging error estimators and to discuss their strong assumptions.
Given a regular triangulation Tk and the discrete space Sk of (21) the nodal interpolation operator is defined by (Ihf)(z) = f(z),
i.e.

Ih : C(Ω) ∩H1
0 (Ω) → Sk, f �→

∑
z∈N

f(z)ϕz.

Superconvergence means that uh − Ihu is much smaller than uh − u = −e; for instance, if

‖D(uh − Ihu)‖L2(Ω) ≤ c(u)h1+τ

for the maximal mesh-size h in Th and some τ > 0. One can read in [1, p. 96] that the precise assumptions used to obtain such
estimator differ according to the type of finite element approximation being used and it should be stressed that superconvergence
only occurs in very special circumstances. One old positive result due to M. Wheeler and J. Whiteman illustrates the difficulties.

Theorem 1. ([48]) Let Ω0 ⊂ Ω1 ⊂ Ω be compactly included for d = 2 let Tk be parallel in Ω1 (i.e., each edge-patch ωE

is a parallelogram) and let u|Ω1 ∈ H3(Ω1). Then there holds

‖∇(uh − Ihu)‖L2(Ω0) ≤ C
(
h2 ‖u‖H3(Ω1) + ‖e‖L2(Ω1)

)
. (28)

The assumptions are extremely strong: No boundary conditions can be involved, very high regularity is required, and the
grid is the affine image of a uniform standard triangulation. All this contradicts adaptive mesh-refinement as this a) yields
unstructured grids, b) is performed to compensate for singularities of the exact solutions, and, of course, c) aims global error
control and aims to reflect the effects of boundary approximation errors. The state of the art of superconvergence results
cannot completely overcome those problems [6, 47]. There is, however, the vision that local symmetry in patches plus some
regularity yields superconvergence phenomena and the bad influence of singularities, in the solution etc. is observed, but partly
compensated by good meshes and so not dominant globally.

The following result provides one example of how superconvergence and (local) symmetry leads to asymptotically exact
averaging estimators. To be realistic, we adapt the notation of Theorem 1 and define

η := ‖∇uh −A(∇uh)‖L2(Ω0)

as the local version of ηM .

Theorem 2. ([44]) Under the assumptions of Theorem 1 and if ‖e‖L2(Ω1) = h.o.t. there holds

η = ‖∇e‖L2(Ω0) + h.o.t.

P r o o f. It is understood that h is sufficiently small such that A(∇uh)|Ω0 , computed on ∪{ωz : z ∈ N ∩ Ω0} ⊂ Ω, is
based on the structured grid in Ω1. Given any element T ∈ Tk in Ω0 let ωT denote the patch of T , i.e.

ωT = ∪{K ∈ Tk : K ∩ T �= ∅} ⊂ Ω1.

If u is a quadratic polynomial on ωT , ∇u is affine and so is A(∇Iu). The value of ∇u − A(∇Ihu) at any vertex z of T
is zero and so ∇u − A(∇Ihu) ≡ 0 on T . For a proof let ωref

z = conv{(1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0,−1)} be
a standard patch of the node z = (0, 0). Owing to symmetry one checks for u(x) = x2

1, u(x) = x1x2, and u(x) = x2
2 by

direct calculations that the gradients of Ihu are asymmetric with respect to z = 0. Hence A(∇Ihu) = 0. This means that
∇u − A(∇Ihu) vanishes at z = 0 for all polynomials u of degree 2. Since Ih is exact for affine functions and A is exact for
constant functions, A(∇u− A(∇Ihu))(z) = 0 for all polynomials u of degree ≤ 2. Finally, an affine transformation of ωref

z

onto ωz yields the assertion on the mesh at hand. Since z is any vertex, ∇u−A(∇Ihu) ≡ 0 on T ∈ Tk.
Since ∇v − A(∇Ihv) vanishes on T for a quadratic polynomial v and since A and Ih are linear operators, we deduce for

u ∈ H3(ωT ) that

‖∇u−A(∇Ihu)‖L2(T ) ≤ ‖∇(u− v) −A(∇Ih(u− v))‖L2(T ) ≤ ‖u− v‖H1(T ) + ‖A(∇Ih(u− v))‖L2(T ) .

Let v be the nodal piecewise quadratic interpolation of u. Then u − v vanishes at each node (and at the midpoints of edges)
and so Ih(u− v) = 0. Hence

‖∇u−A(∇Iu)‖L2(T ) ≤ c3h
2 ‖u‖H3(T )
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from standard approximation estimates. Since T has been arbitrary in Ω0, we infer

‖∇u−A(∇Ihu)‖L2(Ω0) = h.o.t. (29)

From the L2 continuity of A and from (28) there holds

‖A(∇uh − ∇Ihu)‖L2(Ω0) = h.o.t. (30)

The assertion follows from (29)–(30) and a triangle inequality (twice), namely

|η − ‖∇e‖L2(Ω) | ≤ ‖∇u−A(∇uh)‖L2(Ω0)

≤ ‖∇u−A(∇Ihu)‖L2(Ω0) + ‖A(∇uh − ∇Ihu)‖L2(Ω0)

= h.o.t.+ h.o.t.

Historically, the result goes back to Duran, Muschietti, and Rodriguez (1992), Duran and Rodriguez (1992), and Rodriguez
(1994) and is reported in [46].

5 Reliability on unstructured grids

An old argument for P1 finite elements on regular (unstructured) triangulations and the Laplace equation L = −∆ compares
the edge contributions hE ‖[ph]‖q

Lq(E) and the volume contributions hq
T ‖f‖q

Lq(T ) of the explicit error estimator (10) (with
p = 2 = q). In the sequel, hT and hE denote the piecewise constant mesh-sizes on Ω and ∪E , respectively; ∪E is the skeleton
of all edges and νE is the unit normal along ∪E . Let us assume that each element has at least one vertex inside the domain.

Theorem 3. There is an h-independent constant c4 > 0 such that there holds

‖hT f‖Lq(Ω) ≤ c4

∥∥∥h1/q
E [ph]

∥∥∥
Lq(∪EΩ)

+ c4


 ∑

z∈N∩Ω

min
fz∈R

hq
z ‖f − fz‖q

Lq(ωz)




1/q

.

Remark 1. The point is that, for P1 finite element schemes, the volume contribution is dominated by the edge contribution
and higher order terms.

Remark 2. The theorem holds for conforming and nonconforming finite element schemes. In the first case, only the jump
of the normal components enter the upper bound.

Remark 3. The theorem is found in [45] but the arguments have been employed [independently], e.g., in [12, 43].

P r o o f of Theorem 3. Since each element has at least one vertex inside the domain, each boundary node a has at least
one neighbouring node b (i.e., a and b belong to the same element) inside the domain. Fix one selection I of such pairs (a, b)
and add (z, z) for all interior nodes. Then let

ψz :=
∑
x∈N

(x,z)∈I

ϕx for z ∈ K := N ∩ Ω. (31)

For interior nodes z without any link to a neighbouring node on the boundary, (z, z) is the only chosen pair in (31) and
ψz = ϕz . The purpose of (31) is simply not to enlarge the patches (suppψz = ωz) too much but to have a partition of unity
(with parameter se K of free nodes)

∑
z∈K

ψz ≡ 1 in Ω.

Because of this and since hT ≤ hz on ωz , there holds

‖hT f‖q
Lq(Ω) =

∑
z∈K

∥∥∥ψ1/q
z hT f

∥∥∥q

Lq(ωz)
≤

∑
z∈K

hz

∥∥∥ψ1/q
z f

∥∥∥q

Lq(ωz)
. (32)

For some fixed fz ∈ R there holds
∥∥∥ψ1/q

z f
∥∥∥

Lq(ωz)
≤

∥∥∥ψ1/q
z fz

∥∥∥
Lq(ωz)

+
∥∥∥ψ1/q

z (f − fz)
∥∥∥

L2(ωz)
. (33)
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With c5 := max{‖ψz‖Lq(ωz) / ‖ϕz‖Lq(ωz) : z ∈ K} ≤ (d+ 1)! it remains to estimate

∥∥∥ψ1/q
z fz

∥∥∥
Lq(ωz)

≤ c5

∥∥∥ϕ1/q
z fz

∥∥∥
Lq(ωz)

= c5|fz|1/p ‖ϕzfz‖1/q
L1(ωz) . (34)

The main argument for the estimation of

‖ϕzfz‖L1(ωz) =
∣∣∣∣
∫

Ω
f ϕz dx+

∫
Ω
ϕz (fz − f) dx

∣∣∣∣ (35)

is the discrete equation with ϕz as a test function followed by an integration by parts in the model problem, i.e.∫
Ω
f ϕz dx =

∫
Ω
ph · ∇ϕz dx =

∫
∪E
ϕz [ph] · νE ds (36)

for the Th-piecewise constant discrete flux ph = ∇Th
uh. The combination of (35)–(36) with Hölder’s inequality yields

‖ϕzfz‖L1(ωz) ≤ ‖ϕz [ph] · νE‖L1(∪E) + ‖ϕz(f − fz)‖L1(ωz)

≤
∥∥∥h1/q

E ϕ1/q
z [ph] · νE

∥∥∥
Lq(∪E)

∥∥∥h−1/q
E ϕ1/p

z

∥∥∥
Lp(∪E)

+
∥∥∥ϕ1/q

z (f − fz)
∥∥∥

Lq(ωz)

∥∥∥ϕ1/p
z

∥∥∥
Lp(ωz)

(37)

≤
∥∥∥ϕ1/p

z

∥∥∥
Lp(ωz)

(∥∥∥ϕ1/q
z (f − fz)

∥∥∥
Lq(ωz)

+ c6h
−1
z

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥
Lq(ωz)

)
.

Here we considered the mesh-size independent constant

c6 := max
z∈K

hz

∥∥∥h−1/q
E ϕ1/p

z

∥∥∥
Lp(∪Ez)

/ ∥∥∥ϕ1/q
z

∥∥∥
Lp(ωz)

.

The combination of (34) and (37) plus Young’s inequality show
∥∥∥ψ1/q

z fz

∥∥∥q

Lq(ωz)

≤ cq5 |fz|q/p ‖ϕzfz‖L1(ωz)

≤
∥∥∥ϕ1/p

z

∥∥∥
Lp(ωz)

|fz|q/p

(
cq5

∥∥∥ϕ1/q
z (f − fz)

∥∥∥
Lq(ωz)

+ cq5c6h
−1
z

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥
Lq(∪E)

)

≤ 1
p

|fz|q ‖ϕz‖L1(ωz) +
1
q

(
cq5

∥∥∥ϕ1/q
z (f − fz)

∥∥∥
Lq(ωz)

+ cq5c6h
−1
z

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥
Lq(∪E)

)q

.

Since 1 − 1
p = 1

q and
∥∥∥ϕ1/q

z fz

∥∥∥
Lq(ωz)

≤
∥∥∥ψ1/q

z fz

∥∥∥
Lq(ωz)

this (after taking the q-th root) leads to

∥∥∥ψ1/q
z fz

∥∥∥
Lq(ωz)

≤ cq5

∥∥∥ϕ1/q
z (f − fz)

∥∥∥
Lq(ωz)

+ cq5c6h
−1
z

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥
Lq(∪E)

. (38)

The combination of (33) and (38) plus another Hölder inequality (in R
2) shows∥∥∥ψ1/q

z f
∥∥∥

Lq(ωz)
≤ (1 + cq4)

∥∥∥ψ1/q
z (f − fz)

∥∥∥
Lq(ωz)

+ cq5c6h
−1
z

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥
Lq(∪E)

≤ c4

(∥∥∥ψ1/q
z (f − fz)

∥∥∥q

Lq(ωz)
+ h−q

z

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥q

Lq(∪E)

)1/q

for c4 :=
(
(1 + cq5)

p + (cq5c6)p
)1/p

. This and (32) yield

‖hT f‖q
Lq(Ω) ≤ cq4

∑
z∈K

hq
z

∥∥∥ψ1/q
z (f − fz)

∥∥∥q

Lq(ωz)
+ cq4

∑
z∈K

∥∥∥h1/q
E ϕ1/q

z [ph] · νE

∥∥∥q

Lq(∪E)
.

With
∑

z∈K

∥∥∥h1/q
E ψ

1/q
z [ph] · νE

∥∥∥q

Lq(∪E)
=

∥∥∥h1/q
E [ph] · νE

∥∥∥q

Lq(∪E)
, this concludes the proof of Theorem 3.

Theorem 4. There exists a mesh-size independent constant c7 > 0 such that there holds

ηE :=
∥∥∥h1/q

E [ph]
∥∥∥

L2(∪EΩ)
≤ c7 min

qh∈S1(T )d
‖ph − qh‖Lq(Ω) for all ph ∈ L0(T )d.
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Remark 4. The combination of Theorem 3 and 4 shows reliability of ηM and ηA, in terms of ηR, namely

ηR ≤ c4c7 min
qh∈S1(T )d

‖ph − qh‖Lq(Ω) + h.o.t.

Remark 5. Theorem 4 is mentioned in [24] and possibly expected by some experts since [44]. A proof of the corollary

ηE ≤ c8 ηA

can be found in [46].

P r o o f of Theorem 4. The main argument is an equivalence of (semi-)norms on finite-dimensional spaces which leads to
inverse estimates, here,

hE

∫
E

|[ph]|q ds ≤ c8 min
qh∈S1(Tz)d

‖ph − qh‖q
Lq(ωz) . (39)

This estimate involves an arbitrary edge or face E ∈ EΩ with one fixed vertex z ∈ E ∩ N and its patch ωz . The estimate
holds for all ph ∈ L0(Tz)d where Tz := {T ∈ T : z ∈ T ∩ N} is the sub-grid of T on ωz . The q-th root of the left- and
right-hand side of (39), respectively, defines a seminorm on L0(Tz)d (where ph belongs to). If the right-hand side vanishes for
some ph ∈ L0(Tz)d then ph is Tz-piecewise constant and (equal to some qh ∈ S1(Tz)d and so) continuous on ωz . Thus ph is
constant on ωz and so [ph] vanishes on E as well. Hence the left-hand side of (39) is associated with a seminorm on L0(Tz)d

stronger than the right-hand side. Since dim L0(Tz)d is bounded by d card(Tz) and hence uniformly in h, there follows an
estimate (39) with some constant c8 that may depend on the geometry Tz . A scaling argument (make ωz � 0 bigger by a
constant factor and compute the left- and right-hand side of (39) for a proof) shows that c8 does not depend on the diameter
of ωz . This proves (39).

The sum over all edges in (39) with some choice of related vertices z = zE leads to

∑
E∈EΩ

hE

∫
E

|[ph]|q ds ≤ c8

∑
E∈EΩ

min
qh∈S1(TzE

)d
‖ph − qh‖q

Lq(ωzE
) ≤ c8 min

qh∈S1(T )d

∑
E∈EΩ

‖ph − qh‖q
Lq(ωzE

). (40)

(Notice that qh plays a different role in the last two terms and qh|ωzE
gives less flexibility in the latter term and so leads to the

inequality.) The patches (ωzE
: E ∈ EΩ) have a finite overlap bounded by maxT∈T card{E ∈ E : T ∩ E �= ∅} ≤ c9. Hence

the upper bound in (40) is smaller than or equal to the q-th power of the right-hand side of Theorem 4 with c7 = (c8c9)1/q.

An alternative proof of reliability of ηM follows [24, 25] with an argument of [33].

6 Efficiency on unstructured grids

The converse to Theorem 4 holds on unstructured grids for the residual estimators ηE . The next theorem therefore implies
efficiency for ηA as well.

Theorem 5. There exists a mesh-size-independent constant c10 such that for any ph ∈ L0(T ) andAph from (17) there holds

min
qh∈S1(T )d

‖ph − qh‖Lq(Ω) ≤ ‖ph −Aph‖Lq(Ω) ≤ c10

∥∥∥h1/q
E [ph]

∥∥∥
Lq(∪EΩ)

.

Remark 6. Theorem 5 is shown in the context of mixed boundary conditions in [20] and, furthermore, provides a quantitative
bound on c10.

Remark 7. Similar estimates have been observed before [10] and have certainly been known to the experts.

P r o o f of Theorem 5. The first inequality of the assertion is obvious (since Aph ∈ S1(T )d) and the proof concentrates
on the second. An inverse estimate

‖ph − −
∫

ωz

ph dx‖q
Lq(ωz) ≤ c11

∑
E∈Ez

hE

∫
E

|[ph]|q ds (41)

is the main argument similar to the first step in the proof of Theorem 4. In (41), z is an arbitrary node with patch ωz and
−
∫

ωz
ph dx denotes the average of any ph ∈ L0(Tz)d over ωz . Finally, Ez = {E ∈ EΩ : z ∈ E∩N} denotes the set of all edges

with vertex z. The main point is to see in (41) that any ph with right-hand side zero has no jumps on ωz and is therefore constant.
Thus, ph annulates the left-hand side of (41) as well. The remaining arguments are the same as in the proof of Theorem 4 and
hence neglected.
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The assertion of Theorem 5 follows with Hölder inequalities from (41): Let pz := (Aph)(z) and calculate

‖ph −Aph‖q
Lq(Ω) =

∫
Ω

∣∣∣∣∣
∑
z∈N

(ph − pz)ϕz

∣∣∣∣∣
q

dx

≤
∫

Ω


∑

z∈N
ϕz




q/p 
∑

z∈N
|ph − pz|qϕz


 dx

=
∑
z∈N

∫
ωz

ϕz |ph − pz|q dx

≤
∑
z∈N

∥∥∥∥ph − −
∫

ωz

ph dx

∥∥∥∥
q

Lq(ωz)

≤ c11

∑
z∈N

∑
E∈Ez

hE

∫
E

|[ph]|q ds

= c11

∑
E∈EΩ

∑
z∈E∩N

hE

∫
E

|[ph]|q ds

≤ c11 max
E∈E

card(E ∩ N )
∑
E∈E

hE

∫
E

|[ph]|q ds.

7 Applications

This section gives an overview of some applications to Stokes and Lamé equations or to elastoplastic, obstacle, and degenerated
problems in which averaging techniques are known to work. The arguments for the reliability and efficiency proof are partly
those from the previous Sects. 5 and 6 plus particular techniques.

7.1 Stokes’ equations

The stationary viscous flow inside a bounded volume Ω ⊂ R
2 of viscosity µ > 0 is described by the velocity field u : Ω → R

2

and the pressure variable p : Ω → R. Since it appears to be the more complicated situation, mixed boundary conditions are
assumed, i.e. Γ := ∂Ω = ΓN ∪ ΓD for the closed Dirichlet boundary ΓD and the relatively open Neumann (or traction)
boundary ΓN . Suppose that both, ΓD and ΓN , are of positive surface measure. Let ν denote the exterior unit normal vector
along the Lipschitz boundary Γ. Then the Stokes problem reads: Given f ∈ L2(Ω)2, uD ∈ H1(Ω)2, and g ∈ L2(ΓN )2, find
(u, p) ∈ H1(Ω)2 × L2(Ω) with

div σ + f = 0 in Ω,

σ := 2µ ε(u) − pI,

ε(u) := (∇u+ ∇uT )/2,

div u = 0 in Ω,

u = uD on ΓD,

σν = g on ΓN .

(Here, I denotes the 2 × 2-identity matrix and uD, f , and g are smoother for the results below.)

Remark 8. In case ΓN = ∅ and ΓD = Γ one requires an additional constraint such as
∫
Ω p(x) dx = 0 to fix a global

additive constant in the pressure variable.

Remark 9. The above formulation is based on the symmetric strain rate ε(u) and leads to the correct model from the
physical point of view. This is important since traction boundary conditions σν = g are present. In the literature, one often
finds the non-symmetric form with σ = 2µ∇u− pI . It is known that the two models are equivalent if ΓN = ∅, Γ = ΓD; but
it is emphasised that this is untrue in the present situation.

The weak form of the (above symmetric) Stokes problem is straightforward and leads to a mixed FEM with unknown uh

and ph. The proper choice of finite spaces for the discrete velocities uh and the discrete pressures ph is less trivial; particularly
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for piecewise polynomials of low-order. For instance, Kouhia and Stenberg considered uh in Sk × Snc
k (cf. (21) and (25) for

Tk) and piecewise constant ph.
It is known that, for sufficiently fine meshes, there exist unique exact and discrete solutions (u, p) and (uh, ph), respectively,

with quasioptimal a priori error bounds [41]. A posteriori error estimates are studied in [9,27]. In particular, for a discrete stress
field

σh := 2µεT (uh) − phI,

there holds reliability and efficiency of

ηA := ‖σh −Aσh‖L2(Ω) ≤ ηM := min ‖σh − τh‖L2(Ω) for τh ∈ S1
N (T ).

Here S1
N (T ) is the subspace of symmetric matrices in S1(T )d×d which satisfy the traction boundary conditions at each node

on ΓN and Aσh ∈ S1
N (T ). For proofs and details see [27]. It is surprising, but is a result of the mathematical analysis, that the

averaging concerns the stress field σh only and not the variables εT (uh) and ph separately. The numerical examples in [27]
underline the high accuracy of ηA in this application.

7.2 Linear elasticity

The small deformations u : Ω → R
2 of a 2D elastic body are modelled by the Navier-Lamé equations: Given f ∈ L2(Ω)2,

uD ∈ H1(Ω)2, g ∈ L2(ΓN )2, find u ∈ H1(Ω)2 with

div σ + f = 0 in Ω,

σ := C ε(u) := λ tr(ε(u))I + 2µ ε(u),

ε(u) := (∇u+ ∇uT )/2,

u = uD on ΓD,

σν = g on ΓN .

The setting Γ = ΓD ∪ ΓN is the same as in the preceding application. The new aspect is compressibility with the material
constant λ which tends to infinity as the Poisson ratio tends to 1/2 for rubber-like materials. It is known in the incompressible
limit for λ → ∞, that the elastic problem turns into the Stokes problem as λ tr(ε(u)) → p and tr ε(u) = div(u) → 0. In
principle, the linear elastic problem can be discretized by uh in S1 × S1. This leads to quasioptimal convergence in the energy
norm ∥∥∥C

−1/2(σ − σh)
∥∥∥ ≤ C(λ)hmax

∥∥D2u
∥∥

L2(Ω)

for a smooth exact solution u. Therein, the multiplicative constantC(λ) may deteriorate if λ → ∞. Fig. 2 displays a numerical
example from [28] for three different materials with Poisson ratios nu = 0.3, 0.49, and 0.499. For a uniform sequence of
meshes on an L-shaped domain Ω with known singular exact solution u, we computed discrete solutions uh ∈ S1 × S1 within
a standard P1 FE. The error of the corresponding discrete stress σh := C ε(uh), with the fourth-order material tensor C in
σ = C ε(u), reads, in its energy norm

∥∥∥C
−1/2(σ − σh)

∥∥∥2
:=

∫
Ω
(σ − σh) : ε(u− uh) dx.

The quantity ‖ C
−1/2(σ − σh)‖ is plotted as a function of the number of degrees of freedom in Fig. 2. For uniform meshes

we observe a suboptimal convergence rate caused by the singularity of u. The experimental convergence rate appears to be
independent of the Poisson ratio nu (i.e. of λ) in contrast to the multiplicative constant C(λ). This phenomenon is called
locking [15]: In Fig. 2, the numerical result for a uniform mesh with N = 10000 degrees of freedom and nu = 0.499 is worse
than that for the coarsest mesh with N = 16 degrees of freedom for nu = 0.3. The situation is even more dramatic for larger
and larger λ → ∞.

Fig. 2 displays three sequences of adaptively refined meshes for nu = 0.3, 0.49, and 0.499 as well. The coarse meshes
coincide with the results for the uniformly refined ones but then adaptivity improves with a convergence rate larger than 1 until
the error is much smaller. Said differently, the effect of the multiplicative constant C(λ) is seen in the beginning for N ≤ 100
and decreases for larger N . Does this indicate the conjecture that adaptivity overcomes locking?

The error control by averaging schemes via

ηM := min
τh∈S1

N (T )

∥∥∥ C
−1/2(σh − τh)

∥∥∥
L2(Ω)

≤ ηA :=
∥∥∥ C

−1/2(σh −Aσh)
∥∥∥

L2(Ω)
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Fig. 2 Locking in compressible linear elasticity: The energy norm
∥
∥C

−1/2(σ − σh)
∥
∥ and estimators ηA are plotted versus

the number of unknowns N for uniform and adapted meshes in the P1 × P1 conforming FEM.

is displayed in Fig. 2 as well. It is proved in [28] that ηM ≤ ηA is reliable up to λ-depending constants and, clearly, ηM is
efficient with respect to λ-independent constants. As observed in Fig. 2, even a very poor finite element solution is estimated
very accurately.

The preceding discussion focused on conforming FEM and large errors caused by locking in the incompressible limit
λ → ∞. More appropriate FEMs can overcome this locking. The first hint is to use ansatz and test functions which lead to
stable FEM for the Stokes problem regarded as the limit problem for incompressibility. The choice of Sk × Snc

k due to Kouhia
and Stenberg [41] is appropriate for that and led in [28] to robust and accurate estimates. Therein, the finite element schemes
as well as their error estimators are highly accurate and λ-independent.

7.3 Elastoplasticity

This section briefly describes the perspectives and limitations of averaging techniques in elastoplastic evolution problems.
Therein, a time-discretisation is performed followed by a spatial discretisation in each time-step. Averaging error estimators
ηM ≤ ηA for the exact and discrete stress field σ and σh, respectively, have the same definition as in Sect. 7.2 for each time
step. It can be proved for an implicit time-discretisation that

∥∥∥C
−1/2(σ − σh)

∥∥∥2
≤

∫
Ω
(σ− σh) : ε(u− uh) dx =

∫
Ω
(σ− σh) : ε(u− uh − vh) dx for all vh ∈ Sh × Sh.

This term is an upper bound for error terms such as the stress error in the energy norm. Moreover, if hardening is present, the
stress error controls the displacement error ‖u− uh‖H1(Ω) up to hardening-depending multiplicative constants. For details and
proofs we refer to [2, 3, 17]. Therefore, one can proceed as in linear elasticity to derive reliability and efficiency of ηM ≤ ηA.
The constant Crel, however, depends crucially on the hardening; the estimates are not valid (in this form) for perfect plasticity.

It should be emphasised that reliability holds solely for the spatial discretisation; the accumulated error in time is not
controlled by ηM ≤ ηA; the result holds for Hencky materials only. The control of the time-discretisation error appears to be
an important open question. However, the numerical results in [3] provide numerical evidence that ηA is indeed a very accurate
(spatial) error estimator.

7.4 Obstacle problems

This section briefly reports on the surprising result that, for a nonlinear variational inequality (in a simple situation) the same
averaging estimator

ηM := min
qh∈Sh(T )d

‖ph − qh‖ ≤ ηA := ‖ph −Aph‖
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as for the variational equation is reliable and efficient: An affine obstacle has no further influence! To be more precise, let K
denote the set of admissible deformations,

K := {v ∈ H1
0 (Ω) : 0 ≤ v almost everywhere in Ω} with H1

0 (Ω) := {v ∈ H1(Ω) : v = 0 on ∂Ω}.

Then the weak form of the obstacle problem reads: Given f ∈ L2(Ω) find u ∈ K with

∫
Ω

∇u · ∇(u− v) dx ≤
∫

Ω
f(u− v) dx for all v ∈ K.

The FE discretisation replaces K by the discrete version

Kh := K ∩ S1

and hence determines uh ∈ Kh with
∫

Ω
∇uh · ∇(uh − vh) dx ≤

∫
Ω
f(uh − vh) dx for all vh ∈ Kh.

The main difference of the variational inequality and the model example of Sect. 3 can be expressed in the residuals � ∈ H−1(Ω)
and �h ∈ S1,

�(v) :=
∫

Ω
v f dx−

∫
Ω

∇u · ∇v dx for all v ∈ H1(Ω),

�h :=
∑
z∈K

(∫
Ω
f ϕz dx−

∫
Ω

∇uh · ∇ϕz dx

)
ψz

/ ∫
Ω
ϕz dx ∈ S1.

It is elementary to verify that the error e := u− uh in the energy norm reads

|e|21,2 =
∫

Ω
f(e− eh) dx−

∫
Ω

∇uh · ∇(e− eh) dx+
∫

Ω
�h e dx− �(e)

for some eh :=
∑

z∈K
(∫

Ω eψz dx
)
ϕz

/ ∫
Ω ϕz dx ∈ S1. The approximation error e − eh can be analysed as in Sect. 5. The

additional terms with �h and � reflect the variational inequality. Indeed, one can show that 0 ≤ �(e) and

�h(z) ≤ 0 = �h(z)uh(z) ≤ uh(z) for all z ∈ K.

Hence the arguments of Sect. 5 lead to the a posteriori error estimate [23]

|e|21,2 ≤ Cη2
M + h.o.t.(f) −

∫
Ω
�h uh dx.

The last term can be analysed further. Indeed, �huh vanishes on an element T ∈ T or, at least, �h(a) < 0 = uh(a) = �h(b) <
uh(b) for two nodes a and b of T . Inverse inequalities based on �h ≤ 0 ≤ uh yield a bound of ‖�huh‖L1(T ) in terms of the
mesh-size, |�h|1,2, and ‖∇uh −A(∇uh)‖2. The details and proofs can be found in [23]. The final result reads

|e|1,2 ≤ CrelηM + h.o.t.(f).

For non-affine obstacles and nonconforming discretisations (i.e. Kh �⊂ K) some consistency terms arise and may dominate
the upper bound, cf. [23]. Numerical results in [23] provide empirical evidence for a surprisingly high accuracy of ηA.

7.5 Degenerate problems

The preceding examples concerned uniformly convex minimisation problems on affine or convex subsets. The p-Laplacian
is a first nonlinear equation with less strong convexity which requires a particular analysis. This is based on an appropriate
quasi-norm, a metric that depends on the exact or discrete solution. The techniques of Sects. 5 and 6, however, can be adopted
to this setting and then yield reliable and efficient error estimators [31].

The situation is even more difficult and essentially open for convexified problems where the energy minimisation func-
tional is not strictly convex. Very much as a surprise came numerical evidence in a 2-well benchmark example allowing for
microstructures that ηA yields an accurate stress error estimation [30].
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8 Averaging on large patches

This section aims to sketch future prospectives of averaging techniques based on an old argument that, the author learned from
L.B. Wahlbin, goes back to an Oberwolfach conference in the eighties and is known to the experts since then. The technique is
employed in [40] for a posteriori L∞ estimates. In this section we sketch only one (much) simpler result for the energy norm.
Suppose that we are given two meshes TH and Th such that Th is a uniform refinement of TH such that typical mesh-sizes H
and h of TH and Th, respectively, satisfy

H2 � h � H.

Suppose the notation of Sect. 3 for T = Th with exact solution u and discrete (fine) solution uh. Let S2(TH) denote the
TH -piecewise quadratic polynomial subspace of C(Ω). Let uH and uhH denote the finite element approximations in S2(TH)
of u and uh, respectively.

Theorem 6. (Essentially known to the experts). There exists a constant c12 such that for smooth u

η := ‖∇uh − ∇uhH‖ is computable

and reliable for small h/H in the sense that

‖∇u− ∇uh‖ ≤ η + h.o.t.(u)
1 − c12h/H

and always efficient

η ≤ ‖u− uh‖ + h.o.t.(u).

Here, h.o.t.(u) means of higher order when compared with ‖∇u − ∇uh‖. For an unstructured grid TH , H denotes the
minimal mesh-size in TH and h denotes the maximal mesh-size in Th. The constant c12 depends on the shape of the elements
through an interpolation estimate, inverse inequality, and a stability estimate as seen in the proof.

P r o o f of Theorem 6. For e := u − uh and v := uH − uhH with interpolant vh in S1(Th), the Galerkin orthogonality
implies

‖∇e‖2 =
∫

Ω
∇e · ∇(e− v) dx+

∫
Ω

∇e · ∇(v − vh) dx.

Since e− v = (uhH − uh) + (u− uH), a Cauchy inequality gives

|e|21,2 ≤ ‖∇e‖ (‖∇uh − ∇uhH‖ + ‖∇u− ∇uH‖) + ‖h/H ∇e‖ ‖H/h∇(v − vh)‖.

The quadratic approximation of the smooth function u leads to a higher order term,

‖uh − uhH‖ + ‖u− uH‖ = η + h.o.t.(u).

An interpolation inequality for the nodal interpolation vh of v, an inverse inequality (as v− vh is a polynomial on each T ∈ Th

and D2
hv denotes the piecewise second derivatives), and a stability estimate of the Galerkin-scheme Cstab = 1 read

‖H/h∇(v − vh)‖ ≤ Cinterpol
∥∥HD2

hv
∥∥ , ∥∥HD2

Hv
∥∥ ≤ Cinv ‖∇v‖ , and ‖∇v‖ ≤ Cstab ‖∇e‖ .

The combination of the aforementioned estimates proves reliability with c12 = CinterpolCinvCstab. Efficiency follows with a
triangle inequality

η ≤ ‖∇(e− v)‖ + ‖∇(u− uH)‖ ≤ ‖∇e‖ + h.o.t.(u).

As a consequence for h/H → 0, the estimator η is asymptotically exact if the patches in TH become larger and larger
compared to the finer mesh Th. This analysis gives no result for Th = TH and c12 should not be expected to be too small.
However, depending on the shape of the elements in TH there exist an integer K such that K red-refinements (each of which
is a refinement of every element into four congruent sub-triangles) result in a mesh Th which yields an efficient and reliable
error estimator η.

Remark 10. In the same spirit, the smoothing steps within a multigrid method can be used to compute an averaged quantity
with superconvergence properties and a corresponding error estimator [8].

Remark 11. Averaging techniques on larger and larger patches are suggested in [21] for the computation of ‖D2z‖ within
a duality approach for a posterior error control [13].
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9 Conclusions

The use of averaging or gradient recovery techniques can be recommended as a simple and often very efficient tool to monitor
the stress or flux error. For a large class of finite elements methods and their applications, reliability has been established and
numerical evidence exists that the estimators ηM ≤ ηA are highly accurate.

The conditions for reliability are smoothness of coefficients and right-hand sides but not necessarily of the Lipschitz
domain or the (unknown) exact solution. At the moment, time-depending problems and problems with accumulated errors or
with polution are excluded. Moreover, the robustness of averaging estimators with respect to crucial parameters jumping or
oscillating coefficients requires particular attention.

The practical performance of ηA is often highly accurate but, owing to [24,27,28], seems to depend on local symmetry and
local smoothness. Even for singular solutions, an appropriately adapted mesh balances the error and often improves the quality
of the error estimations. It is conjectured but not (fully) understood that local superconvergence phenomena are responsible for
the high accuracy.

Goal-oriented error control is excluded in this paper, but certainly very important from the conceptual and practical view
point. Therein, the effective approximation of dual solutions [13] is another important field of further applications of averaging
techniques in the future.

This paper aimed to mark the state of the art in the popular usage of averaging error estimators. One may conclude in that
their efficiency and reliability is now understood. Their success in practical applications is observed and conjectured but not
(fully) theoretically justified. This approach clearly has limitations (consistency term, non-smooth right-hand sides, etc.), but
works perfectly fine if applied appropriately.
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