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YOUNG-MEASURE APPROXIMATIONS FOR ELASTODYNAMICS
WITH NON-MONOTONE STRESS-STRAIN RELATIONS
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Abstract. Microstructures in phase-transitions of alloys are modeled by the energy minimization of a
nonconvex energy density φ. Their time-evolution leads to a nonlinear wave equation utt = div S(Du)
with the non-monotone stress-strain relation S = Dφ plus proper boundary and initial conditions. This
hyperbolic-elliptic initial-boundary value problem of changing types allows, in general, solely Young-
measure solutions. This paper introduces a fully-numerical time-space discretization of this equation
in a corresponding very weak sense. It is shown that discrete solutions exist and generate weakly
convergent subsequences whose limit is a Young-measure solution. Numerical examples in one space
dimension illustrate the time-evolving phase transitions and microstructures of a nonlinearly vibrating
string.
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1. Introduction

The numerical simulation of a nonlinear wave equation

utt = div S(Du) in Q = Ω × (0, T ), (1.1)

the space-time domain, plus boundary and initial conditions is certainly one of the more important tasks in
computational sciences and engineering. The hyperbolic nature of (1.1) possibly leads to discontinuities (e.g.
shocks). The nonlinear stress-strain relation S = Dφ is modeled by the gradient of a smooth function φ. Even
for convex φ it is, in general, unknown whether or not there always exist weak solutions in the class of Sobolev
functions. There are, however, affirmative results if Ω ⊂ R is one-dimensional, in particular the seminal works
by DiPerna, Murat and Tartar where Young-measures had been used to obtain global existence results (see,
e.g., [27] for further references). In higher dimensions there are local results for small T > 0 [11].

The simulation of phase-transition problems motivates nonconvex energy densities φ where weak solutions
may not exist. Instead, oscillations are likely to occur which can be described mathematically using the concept

Keywords and phrases. Non-monotone evolution, nonlinear elastodynamics, Young-measure approximation, nonlinear wave
equation.

1 Department of Mathematics, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin, Germany.
e-mail: cc@math.hu-berlin.de
2 Scuola Normale Superiore, Piazza dei Cavalieri 7, 56100 Pisa, Italy. e-mail: rieger@sns.it

c© EDP Sciences, SMAI 2004



398 C. CARSTENSEN AND M.O. RIEGER

of Young-measure valued solutions (see Sect. 2). The following example suggests that even if classical solutions
are present, there may exist further Young-measure solutions with more physical relevance.

Example. Let Ω = (0, 1) denote the unit interval and let φ(y) = (1 − y2)2 denote the 2-well energy density.
Given a parameter λ ∈ R, the initial conditions u0(x) = λx and u1(x) = 0 for 0 < x < 1 and the boundary
conditions u(x, ·) = λx for x = 0 and x = 1 we obtain the classical stationary solution u(·, t) = u0(·). For
−1 < λ < 1 and µ := (1 − λ)/2, the measure ν := µδ−1 + (1 − µ)δ+1 defines a Young-measure solution in the
sense specified below in this paper. Here and below, δ±1 denotes the Dirac measure supported at ±1, the two
wells where the energy density φ is minimal.

In contrast to the smooth classical solution u0, the measure valued solution defined by ν does describe
oscillations in agreement to observations in physical experiments. Moreover, the total energy of the Young-
measure solution is zero, whereas the classical solution has the energy φ(λ) > 0. Finally, for |λ| < 3−1/2, the
classical solution is instable, a linearized model leads to an oscillator with a spring of negative stiffness φ′′(λ).
However, the Young-measure solution is stable, in the sense that it corresponds to a state with minimal energy.

In conclusion, the Young-measure solution is a very relevant object; its numerical simulation appears an
innovative task and is therefore introduced in this paper.

For the numerical simulation with (1.1), a viscous regularization

utt = div S(Du) + µ∆ut (1.2)

has been proposed [7, 16] for a small parameter µ > 0, the viscosity. It is known that the initial-boundary
value problem with (1.2) has a solution if S is, e.g., globally Lipschitz continuous, but possibly non-monotone
[14]. Moreover, the numerical analysis of a backward time-step discretization combined with a finite element
discretization of Ω in space was reported in [16] to be instable for µ > 0 and a nonconforming FEM was suggested.
Recently, the convergence for the conforming FEM was established under strong regularity assumptions of the
unique exact solution in [7]. The situation for µ = 0, however, cannot be handled since some a priori bounds
of the discrete FE solutions are missing in the passage to the limit. As a consequence, measure-valued solution
concepts are necessary which are weak enough to allow high oscillations in the limit. In particular the notion
of Young-measures as they were originally introduced by L.C. Young under the name “generalized curves” (see
[28, 29]) turned out to be an adequate concept in the 1970s with the work of Tartar (see [26] and [1, 3] for
stimulating contributions).

The numerical simulation of related nonconvex minimization problems has been studied in [8–10, 17] for a
direct minimization, in [4,5] for a convexified situation, and in [4,6,19,24] for a measure-valued generalization.
Time-evolution problems have been studied analytically in [12, 13, 15, 21–23,25] and are numerically addressed
in this paper in the spirit of [6].

The remaining part of the paper is organized as follows. Section 2 establishes the concept of Young-measure
solutions of (1.1) and states an existence result in Theorem 2.1. The consistent discretization in space-time is
addressed in Section 3 where we introduce a numerical scheme, prove existence of discrete solutions, a discrete
energy estimate, and a convergence result. The numerical realization is explained in Section 4 before several
numerical simulations are reported in Section 5. Some extending remarks conclude the paper with Section 6.

We will use the following notations: throughout this article, Ω denotes an open domain in R
n with Lipschitz

boundary. Lp(Ω) denotes the Lebesgue space of functions u such that |u|p is integrable; L∞(Ω) the space of
bounded functions; Wm,p(A, B) is the Sobolev space of all functions u : A → B with Dmu in Lp(Ω) for p ∈ [1,∞],
where Dm denotes partial derivatives of order m ∈ N. We write Hm(A, B) := Wm,2(A, B).

Let p < ∞. A sequence of functions un is said to be weakly converging to a limit function u in Lp(Ω) if
un ∈ Lp(Ω) and for all test functions ζ ∈ Lp′

with 1/p + 1/p′ = 1 we have

∫
Ω

unζ →
∫

Ω

uζ.
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We denote this by un ⇀ u in Lp(Ω). Similarly we say that un ⇀ u in Wm,p(Ω) if un ∈ Wm,p(Ω) and for all
ζ ∈ Wm,p′

(Ω) ∫
Ω

unDmζ →
∫

Ω

uDmζ.

A function f : R
m×n → R is called quasiconvex if it satisfies∫

Ω

f(P + Dφ) dx ≥ |Ω| f(P )

for every test function φ (i.e. φ ∈ C∞(Ω) with supp φ compactly in Ω) and every P ∈ R
m×n.

Finally by φ∗∗ we denote the convexification of φ (the largest convex function below φ) and by φqc the
quasiconvexification of φ (the largest quasiconvex function below φ).

2. Young-measure-valued solutions

The aim of this section is to establish a time discretization scheme for nonconvex elastodynamical equations
converging to a Young-measure solution. The statistics of the oscillating deformation gradient of our approxi-
mate solution is described by a probability measure. The constructive existence proof in Section 3 is the basis
for the numerical simulations below.

Given initial data u0 ∈ H1
0 (Ω; Rn), v0 ∈ L2(Ω; Rn), and boundary data g ∈ H1(Ω), the nonlinear system of

elastic time evolution reads

utt = div S(Du) (in the sense of distributions), (2.1)
u(x, 0) = u0(x) for almost every x ∈ Ω, (2.2)

ut(x, 0) = v0(x) for almost every x ∈ Ω, (2.3)
u(x, 0) = g(x) for x ∈ ∂Ω (in the sense of traces). (2.4)

The non-negative energy density φ ∈ C1(Rm×n) and its derivative S := Dφ : R
m×n → R

m×n satisfy for some
constants α, β > 0 certain growth conditions formulated with the spaces E0 and F0.

By E0 we denote the space of continuous functions with specified quadratic growth and by F0 the space with
linear growth,

E0 =

{
f ∈ C(Rm×n; R+)

∣∣∣∣∣ lim
||A||→∞

f(A)
1 + ||A||2 exists and is finite

}
,

F0 =

{
f ∈ C(Rm×n; R+)

∣∣∣∣∣ lim
||A||→∞

f(A)
1 + ||A|| exists and is finite

}
·

The vector spaces E0 and F0 are endowed with the norms

‖f‖E0 := sup
A

|f(A)|
1 + ||A||2 and ‖f‖F0 := sup

A

|f(A)|
1 + ||A|| ,

respectively.
A probability measure ν is a non-negative Radon measure on a set E with ν(E) = 1. A Young-measure

(or parameterized measure) is a family of probability measures (νx)x∈Ω on R
N associated with a sequence of

measurable functions (fj)j∈N with fj : Ω ⊂ R
n → R

N such that for any continuous function φ : R
N → R the

function
φ(x) =

∫
RN

φ(F ) dνx(F ) =: 〈νx, φ〉
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is measurable, and for every weakly-converging sequence (fj) we have for all open subsets Ω0 ⊂ Ω∫
Ω0

(φ(fj))j(x) dx →
∫

Ω0

φ(x) dx.

We can think of the Young-measure as a “one-point statistic” for the sequence fj, i.e. νx describes (in a certain
sense which can be made mathematically precise [20]) the probability distribution of the values of the sequence
fj near x ∈ Ω. For an introduction into Young measures and their applications see [18, 20].

Theorem 2.1 (Existence of Young-measure solution). Given φ ∈ E0 with S := Dφ ∈ F0, such that φqc is
convex and φ(A) ≥ α(||A||2 − 1), u0 ∈ H1(Ω), u1 ∈ H1(Ω), g ∈ H1(Ω) and Q := Ω × (0, T ) ⊂ R

n+1, there
exists a Young measure solution (u, ν) of (2.1)-(2.4) in the sense that

u − g ∈ W 1,∞((0, T ); L2(Ω)) ∩ L∞((0, T ); W 1,2
0 (Ω)),

u(x, 0) = u0(x), ut(x, 0) = u1(x) for all x ∈ Ω,

ν = (νx,t : (x, t) ∈ Q) is a family of probability measure,∫ T

0

∫
Ω
(〈ν, S〉∇ζ − utζt) dxdt = 0 for all ζ ∈ C∞

0 (Q),
Du(x, t) = 〈νx,t, Id〉 for almost every (x, t) ∈ Q.

Here 〈ν, S〉 is defined as dual pairing of S with the measure ν, i.e.

〈ν, S〉 :=
∫

Rm×n

S(A) dν(A).

Remark 2.2. If the Young-measure ν is a Dirac measure for almost every (x, t) ∈ Q, then u is a weak solution
of the elastodynamical system (2.1)–(2.4).

Remark 2.3. For φ ∈ E0, S ∈ F0 and A ∈ R
m×n there holds

φ(A) ≤ β(||A||2 + 1), (2.5)
|S(A)| ≤ β(||A|| + 1). (2.6)

Remark 2.4. The condition that φqc is convex is automatically satisfied for n = 1 or m = 1. The condition is
needed to establish an a priori energy estimate for the solutions of the time discretized problem. If such bounds
exist, the condition is not necessary in the proof of Theorem 2.1.

Remark 2.5. Alternative approximation schemes which can ensure existence in the case where φqc is nonconvex
will be discussed Section 6.

3. Numerical schemes and constructive existence proof

The proof of Theorem 2.1 is based on a discretization in time, energy estimates, and relaxation for each
time-step [13,21]. The limit for infinitely small time steps then provides the asserted regularity of the solution.
Without loss of generality let g ≡ 0 (as a shift of u to u − g would result in a problem with homogeneous
boundary conditions).

3.1. Time discretization

Definition 3.1. Given u0, v0, g ≡ 0, and h > 0 with an integer N = T/h, find (uh,j)h,j such that uh,0 = u0,
uh,−1 = u0 − hv0, and uhj ∈ H1

0 (Ω; Rm) satisfies, for j = 1, 2 . . . , N ,

uh,j − 2uh,j−1 + uh,j−2

h2
− div S(Duh,j) = 0. (3.1)
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In the following we abbreviate

vh,j :=
uh,j − uh,j−1

h
and (3.2)

Ej := Eh,j :=
∫

Ω

(
φqc(Duh,j) +

1
2
|vh,j |2

)
. (3.3)

Theorem 3.2 (Discrete Solution). The relaxed time-discretized system∫
Ω

(〈
νh,j , S

〉
Dζ +

uh,j − 2uh,j−1 + uh,j−2

h2
ζ

)
dx = 0 (3.4)

with j ∈ N and ζ ∈ H1
0 (Ω; Rm) admits a solution (uh,j , νh,j) where uh,j ∈ H1

0 (Ω; Rm) and νh,j is a Young-
measure with 〈νh,j , Id〉 = Duh,j.

Proof. The discrete problem (3.1) reads as a minimization problem for the energy functional

Wj(v) := W (v; uh,j−1, uh,j−2)

:=
∫

Ω

(
φ(Dv) +

|v − 2uh,j−1 + uh,j−2|2
2h2

)
·

Any minimizer u of Wj is a solution of the discretized differential equations. But, in general, Wj is not weakly
lower semicontinuous (w.l.s.c.) since φ is not assumed to be quasiconvex. Hence the existence of a minimizing
Sobolev function u cannot be expected. To describe more general solution concepts we consider W qc

j , the
quasiconvexification of the energy function Wj , i.e.

W qc
j (v) :=

∫
Ω

(
φqc(Dv) +

|v − 2uh,j−1 + uh,j−2|2
2h2

)
·

Since W qc
j is w.l.s.c. there exists a minimizer uh,j with

inf
j

Wj(v) = inf
v

W qc
j (v) = W qc

j (uh,j).

Then, one can prove the theorem by relaxation theory as in [13]. �

3.2. Space discretization

For each time-step, a Galerkin discretization is needed for the time-discretized system (3.4). A uniform
partition with mesh-size dx = L/M in M subintervals I1, I2, . . . , IM of Ω = (0, L) defines the first-order finite
element spaces

Sh := {vh ∈ C(Ω)| ∀k = 1, 2, . . . , M, vh affine on Ik},
Hh,g := {vh ∈ Sh| vh = g on ∂Ω}, and Hh,0 := Sh ∩ H1

0 (Ω).

On each interval Ik := ((k−1)dx, k dx), the Young-measure νh,j is discretized as a finite sum of q Dirac measures.
The chosen supports F1, . . . , Fq discretize R and each discrete Young-measure assumes the representation

νh,j |Ik
=

q∑
�=1

λj,k,�δF�
on Ik, k = 1, . . . , M, (3.5)
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with unknown convex coefficients

λj,k,1, . . . , λj,k,q ≥ 0 with
q∑

�=1

λj,k,� = 1 (3.6)

and subject to the side-restriction
q∑

�=1

λj,k,�F� = ∂uh,j/∂x |Ik
. (3.7)

Then define

Y Mh := {νh,j Young-measure| νh,j satisfies (3.5) for coefficients
with (3.6)},

Bj := {(uh,j
h , νh,j) ∈ Hh,g × Y Mh|uh,j and νh,j satisfies (3.7)}·

Definition 3.3 (Fully discrete Problem). Given u0, v0, g, h > 0, dx > 0 such that N = T/h and M = L/dx are
integers, set uh,0 = u0, uh,−1 = u0 − hv0 at the nodes xk = k dx for k = 0, 1, . . . , M and for all j = 1, . . . , N ,
find (uh,j, νh,j) ∈ Bj which satisfies∫

Ω

(〈
νh,j , S

〉
vh + h−2(uh,j − 2uh,j−1 + uh,j−2)vh

)
dx = 0

for all test functions vh ∈ Hh,0.

Theorem 3.4. The fully discrete problem has a unique solution uh,j.

Proof. The proof is based on the stationary situation within each time-step essentially given in [6, 24]. The
uniqueness of the discrete displacement variables results from the uniform monotonicity of the low-order time-
difference term. �

Remark 3.5. The uniqueness of the discrete Young-measures is related to the 2-well problem which defines
the convex hull uniquely. In the discrete situation, however, it may be that the minimizing Young measure is
non-unique. For instance, let F1, F2, F3 and F4 denote the four distinct real arguments with φ(Fn) = 0.1 in the
situation for φ of Figure 1. Then, even though the mean u′

h|Ij = νh,j = λ1F1 + · · · + λ4F4 = 0 is unique, there
are infinitely many convex coefficients λ1, . . . , λ4 ≥ 0 with λ1F1 + · · · + λ4F4 = 0 and λ1 + · · · + λ4 = 1. Each
of those solutions defines a different Young-measure which may be part of one different solution of the fully
discrete problem.

Remark 3.6. The effective numerical solution is performed with a multilevel active-set strategy of [6] based on
the Weierstrass maximum principle for Lagrange multipliers. The practical performance shows linear complexity
in the number of unknowns [6].

Remark 3.7. Weak convergence as dx → 0 and q → ∞ follows with the direct method of the calculus of
variations, cf. [24] for details. Strong convergence is less obvious. We refer to [5] for a related problem
(obtained for q = ∞ by convexification).

3.3. Discrete energy estimate

In order to prove the convergence of the discrete solution to a solution of the original problem it is necessary
to obtain some a priori energy estimates for the discrete solutions which are independent of the discretization
parameter h > 0. We can prove the following result:
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Theorem 3.8 (Discrete Energy Estimate). Suppose φqc is convex, that α is as in Theorem 2.1, and that
uh,j, vh,j solve (3.1)–(3.3) for all j = 1, . . . , N . Then, for all j = 1, . . . , N ,

||uh,j||2H1 + ||vh,j ||2 ≤ 1
α

(2E0 + |Ω|) and Ej ≤ E0 < ∞. (3.8)

Proof. Proposition 3.6 in [2] reads Dφqc(∇uh,j) =
〈
νh,j , S

〉
. Multiplication of the discrete elasticity equation

with vh,j , integration in space and summing over all j leads to∫
Ω

∑
j

vh,j − vh,j−1

h
vh,j dx = −

∫
Ω

∑
j

Dφqc(∇uh,j)
∇vh,j

h
dx.

Since φqc is convex by assumption one can use Jensen’s inequality to obtain from this the discrete energy
inequality (3.8). �

3.4. Weak convergence of the time discretization

Theorem 3.9. The solutions uh,j, vh,j of the time discretized problem are convergent as h → 0 if and only if
they satisfy the a priori estimate (3.8).

For the proof considers the piecewise constant and piecewise affine interpolations of the nodal values (uh,j),
(vh,j), (vh,j − vh,j−1)/h and (νh,j). The separability of F0 and E0 is used to obtain a weakly converging
subsequence for the Young-measures (νh,j). The discrete energy inequality yields bounds for the other interpo-
lations. The technicalities follow arguments of [12] (in a slightly different notation) and hence are suppressed
in the sequel.

For h > 0, j ∈ N, and the characteristic function χh,j := χ[hj,h(j+1)] of the set [hj, h(j + 1)] for jh < t <
h(j + 1), where χA(x) := 1 if x ∈ A and χA(x) = 0 elsewhere.

wh(t) :=
∑

j

χh,j(t)
vh,j+1 − vh,j

h

(step function approximation of utt),

ṽh(t) :=
∑

j

χh,j(t)
(

vh,j +
vh,j+1 − vh,j

h
(t − hj)

)
(the primitive of wh),

vh(t) :=
∑

j

χh,j(t)vh,j+1 (step function approximation of ut),

ũh(t) :=
∑

j

χh,j(t)
(
uh,j + vh,j+1(t − hj)

)
(its primitive),

uh(t) :=
∑

j

χh,j(t)uh,j+1 (step function approximation of u),

νh := (νh
x,t)(x,t) :=

∑
j

χh,j(t)νh,j+1
x (Young-measure).

One can prove that the Young-measure νh is generated by the sequence
(∑

j χh,j(t)Duh,j,k
)

k
. Moreover there

holds
νh ∈ L1

loc(Ω × (0, T0); E ′
0) ∩ L2

loc(Ω × (0, T0),F ′
0).
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With νh and wh one can recast (3.1) for t ≥ h and ζ ∈ H1
0 (Ω; Rm) into∫

Ω

(〈
νh

x,t, S
〉
Dζ + wh(x, t)ζ

)
dx = 0. (3.9)

An integration over (h, T0) leads to∫ T0

h

∫
Ω

(〈
νh

x,t, S
〉
Dζ − ṽh(x, t)ζt(x)

)
dxdt = 0, for all ζ ∈ H1

0 (3.10)

Then one proves Duh =
〈
νh, Id

〉
. A short calculation shows

ũh(·, 0) = u0, and ṽh
t (·, 0) = v0. (3.11)

The aim is to prove that uh and νh converge in an appropriate norm to a solution of the original problem. One
observes that (νh)h is bounded in L2

loc(Ω × R
+;F ′

0). Since F0 is separable,

L2
loc(Ω × R

+;F ′
0) ∼=

(
L2

loc(Ω × R
+;F0)

)′
.

Hence the bounded sequence (νh)h has a subsequence (not relabeled) which converges weakly in
(
L2

loc(Ω × R
+;F0)

)′.
Therefore for all g ∈ L2

loc(Ω × R
+;F0),(∫ T0

0

∫
Ω

〈νh
x,t, gx,t〉dxdt

)
h

→
∫ T0

0

∫
Ω

〈νx,t, gx,t〉dxdt.

For test functions gx,t(y) = f(y)ζ(x, t) with ζ ∈ L2
loc(Ω × R

+) and f ∈ F0, this yields

(〈νh, f〉)h ⇀ 〈ν, f〉 in L2
loc(Ω × R

+). (3.12)

The same arguments show

(νh)h ⇀ ν in L2
loc(Ω × R

+;F ′
0) ∩ L1

loc(Ω × R
+; E ′

0). (3.13)

Moreover, there exists a diagonal sequence of
(∑

j χh,j(t)uh,j,k
)

h,k
which generates the Young-measure ν. Since

Dφ, Dφqc ∈ F0 leads to

(〈νh, Dφ〉)h ⇀ 〈ν, Dφ〉,
(〈νh, Dφqc〉)h ⇀ 〈ν, Dφqc〉 in L2

loc(Ω × R
+). (3.14)

Now the discrete energy inequality allows to prove the following a priori bounds:

sup
0≤t≤T0

(||uh(t)||H1
0

+ ||ũh(t)|| + ||vh(t)|| + ||vh(t)|| + ||ṽh(t)||H−1 + ||wh(t)||H−1 + ||ṽh(t)||) ≤ C.

Then the weak-� compactness property yields subsequences with

(uh) �
⇀ u in L∞ ((0, T0); H1

0

)
,

(ũh) �
⇀ ũ in W 1,∞ ((0, T0); L2

)
,

(vh) �
⇀ v in L∞ ((0, T0); L2

)
,

(ṽh) �
⇀ ṽ in W 1,∞ ((0, T0); H−1

) ∩ L∞ ((0, T0); L2
)
.
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With Lemma 6.3 from [15] one proves that ũ = u, ṽ = v.
In the limit h → 0, the weak convergence of (νh)h leads to

supp ν ⊂ {a|φ(a) = φqc(a)} almost everywhere.

Moreover we get ∫ T0

0

∫
Ω

(〈ν, S〉Dζ − utζt) dxdt = 0 for all ζ ∈ H1
0 (Ω × (0, T0)).

Furthermore, by the weak convergence of (νh)h, 〈νh, Id〉 ⇀ 〈ν, Id〉. But on the other hand, 〈νh, Id〉 = Duh ⇀
Du. Hence Du = 〈ν, Id〉 which concludes the proof. �

3.5. Extensions to weaker differentiability conditions

We can slightly enlarge the class of energy functionals for which Theorem 2.1 holds. In particular we want to
allow functions with cusps. A typical example is the 2-well energy density φ(Y ) := dist(Y, {−1, +1})2 plotted
in Figure 1.

-3 -2 -1 1 2 3

0.5

1

1.5

2

Figure 1. Plot of the energy function φ(Y ) := dist(Y , {−1, +1})2 for −3 ≤ Y ≤ +3. The
cusp of φ in Y = 0 does not lead to a lack of differentiability for φqc.

Theorem 3.10 (Weakening of the differentiability condition). If φ is not a C1–function, but if, for all B ∈
R

m×n, there exists a linear mapping L from R
m×n to R

m×n, such that

φ(A) ≤ φ(B) + L(A − B) + o(|A − B|2) (3.15)

for all A ∈ R
m×n, then there exists a Young-measure solution of (2.1)–(2.3) in the sense of Theorem 2.1.

Proof. The condition (3.15) is sufficient to use the results from [2] (in particular Prop. 3.6). The proof of
Theorem 2.1 considers the full derivatives of φ solely after testing by the corresponding Young-measures. Their
support is contained in the set where φ = φqc and is C1. Hence the above arguments prove Theorem 3.10 as
well. �
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4. Numerical realization

This section is devoted to the multilevel adaptation of [6] for the scientific computation of one-dimensional
nonconvex elastodynamics based on the algorithm of Section 3. For the time-step width h and given initial
values u0, u1, set uh,0 = u0, uh,−1 = u0 − hv0, and let uh,j solve

uh,j − 2uh,j−1 + uh,j−2

h2
− div S(Duh,j) = 0. (4.1)

In each time step we have to minimize the energy functional

Wh,j(v) := Wh(v; uh,j−1, uh,j−2)

:=
∫

Ω

φ(Dv) +
|v − 2uh,j−1 + uh,j−2|2

2h2
(4.2)

subject to the boundary conditions v ∈ H1
0 (Ω). The minimization problem (4.2) is nonconvex and, in general,

admits no classical solution. Instead, we can find a pair (uh,j , νh,j), where uh,j ∈ H1
0 (Ω), νh,j = (νh,j

x )x is a
probability measure, and 〈νh,j , Id〉 = Duh,j for almost every x ∈ Ω, such that (uh,j, νh,j) minimizes

W̃h,j(v, µ) :=
∫

Ω

〈φ, µ〉 +
|v − 2uh,j−1 + uh,j−2|2

2h2
· (4.3)

The one-dimensional domain Ω = (0, 1) is split into a finite number of intervals of length � = dx. Then let U�

denotes the space of all continuous functions which are affine on each discretization interval of Ω and satisfy
the boundary conditions (e.g. Dirichlet boundary conditions on ∂Ω).

On each element, the Young-measure ν is approximated by a finite sum of Dirac measures δFi with unknown
weights λj , 0 ≤ λj ≤ 1 and

∑
j λj = 1, and prescribed atoms Fj . Details on the static problem are given in [6].

The support of the approximating measure given by (Fj)j=1,...,K is chosen as Fj := −A+2Aj/K with A = 2
and K = 12. The precise value of A is not crucial if it is only chosen sufficiently larger than a critical value
given by sup |ux|.

In the time evolution problem, at hand, we have only weak convergence in the limit for h → 0 (where h > 0
is the time-step width); we do not expect a priori error estimates.

By the approximation of the Young-measure described above, the time step problem reduces to the mini-
mization of the functional

W̃h,j
approx =

∫
Ω

(∑
k

λk(x)φ(Fk) +
1
2h

∣∣v(x) − 2uh,j(x) + uh,j−1(x)
∣∣2)dx (4.4)

over all λk ≥ 0 and v ∈ U� with
∑

k λk(x)Fk = v(x) and
∑

k λk(x) = 1.
Problem (4.4) is a discrete optimization problem. In fact it is (independent of the choice of φ) a quadratic

problem and hence solvable by standard optimization software (qp in Matlab).
A flow chart on the algorithm is depicted in Figure 2. For a description of how to select active grid points

for the approximative measure and how to check the need for activating more grid points we refer to [6]. The
complete program was firstly tested on the problem of the linear wave equation, where the true solutions are
well-known. The approximated solution shows an error for large times, a possible consequence of numerical
viscosity. The numerical viscosity can be reduced by choosing a fine discretization of the Young-measure (i.e.
K large) and this has been observed experimentally.

As in linear elasticity we have to choose h sufficiently small with respect to �. In our experiments we follow
the Courant-Friedrichs-Lewy (CFL) stability condition h/� ≤ |φxx|.
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Initialization

Activate certain grid points
for the approximating measure

Activation

Solve the discrete problem
Optimization

for one time step

MATHLAB
routines of

using quadratic optimization

Check whether more
grid points are

necessary

END

Time step j

of time step

Save result

START

j:=j+1

Yes No

Figure 2. Overview on the implemented algorithm.

Table 1. Overview of presented numerical experiments. (SMA abbreviates shape memory alloy.)

Sec. Label Description dx h
5.1 Exp. A 2-well potential, initially two peaks 0.02 0.02
5.2 Exp. B Sinus on the boundary, stopping 0.05 0.05

Exp. C Small sinus on the boundary, stopping 0.05 0.05
Exp. D Sinus on the boundary, decaying 0.05 0.05
Exp. E Sinus on the boundary, long time 0.05 0.05

5.3 Exp. F SMA with decreasing temperature 0.02 0.02
Exp. G SMA with increasing temperature 0.02 0.02

5. Numerical examples

In this section we present several one-dimensional numerical simulations of elastodynamics with a material
that allows phase transitions. The seven simulations A, B, . . . , G summarized in Table 1 fall into three different
categories with emphasis on initial conditions (Sect. 5.1), time-depending boundary conditions (Sect. 5.2), and
changing temperature (Sect. 5.3). The variable u(x, t) physically describes either the elongation or transversal
displacement at x ∈ Ω of the beam Ω = (0, 1) at time t. Microscopic oscillations of the one-dimensional
deformation gradient are described by the Young measure νx,t. The algorithm of Section 4 produced numerical
approximations uh(x, t) and νh

x,t indicated through their expectation values uh
x(x, t). We emphasize that the

microstructure is encoded in the measure νh
x,t and is infinitely fine, hence it is not immediately visible in the

following pictures that describe only the macroscopic deformation.
The 2-well potential φ(F ) := min{|F − 1|2, |F + 1|2} of Figure 1 models a two-phase shape memory alloy

(SMA) in the one-dimensional body Ω with g = 0 and v0 = 0.
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Figure 3. Numerical solution uh,j in Experiment A for dx = 0.02 and h = 0.02 plotted over
the space-time domain (0, 1) × (0, 1.96) in units of t/h and x/dx.

5.1. Homogenous Dirichlet boundary conditions

At fixed temperature, a clamped beam of a shape memory alloy is elongated by an initial displacement u0.

u0(x) = max{0, .05− |x − .35|, .05 − |x − .65|} and v0(x) = 0.

Experiment A. The algorithm of Figure 2 computed an approximative solution uh,j shown in Figure 3. The
discrete displacement for all x/dx = 0, 1, . . . , 50 and t/h = 0, 1, . . . , 100 were stored in a 51×101 matrix plotted
with Matlab. The different colors correspond to the height given by uh,j. The macroscopic strain ux(x, t) is
simulated by the average of the Young-measure approximation

νh,j =
〈
νh,j , Id

〉
= uh,j

x (5.1)

and plotted in Figure 4.
The approximation of ux (i.e. the expectation value of νh,j or the averaged microstructure) is given with

different colors indicated in the color bar for values between −1 (blue) and 1 (red).
We observe that traveling waves intersecting with each other start from the elongated points of the initial

state. A numerical comparison with the linear wave equation (not displayed) shows that the form of the traveling
waves is similar to, but more triangular like than those in the linear case.

5.2. Phase transformation induced through the boundary

In a minor generalization of (2.1)–(2.4) of the last experiment we choose the Dirichlet boundary condition
u = g(x, t) on ∂Ω time dependent. This simulates different prescribed oscillations of one end of the wire. With
u0 ≡ 0 ≡ v0, u ≡ 0 is a solution to the partial differential equation for homogeneous boundary conditions and
ν = 1

2δ−1 + 1
2δ+1 is the corresponding Young-measure.
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Figure 4. Macroscopic strain (5.1) (plotted in colors in the range between the wells −1 and
+1) computed from Young-measure approximation νh,j in Experiment A plotted over (0, 1) ×
(0, 1.96) in units of t/h and x/dx.

Experiment B. The time-dependent Dirichlet boundary condition reads

u(1, t) =
{

sin(2πt) for t ≤ 2,
0 for t > 2,

and u(0, t) = 0, (5.2)

while u0 ≡ 0 ≡ v0. The computed solution uh,j to this problem is shown in Figure 5. It is interesting to have a
look at the gradient of u (see Fig. 6): we observe that ux(x, t) is after some small time nearly everywhere close
to one of the wells. This means that by applying a (fast) oscillation to the boundary of the wire we induce a
phase separation in the material.

In the next experiments we investigate whether this effect does also hold for smaller amplitudes of the
oscillation and for a smooth decay of the oscillations.

Experiment C. A modification of boundary conditions in Experiment B (by multiplying by 1/2), namely
u0 ≡ 0 ≡ v0 and

u(1, t) =
{

1
2 sin(2πt) for t ≤ 2,

0 for t > 2,
and u(0, t) = 0. (5.3)

The result (see Fig. 7) is quite similar to the last experiment. In fact the phase separation seems not to
dependent on the intensity of the boundary oscillations. This can be seen from Figure 8 where the distribution
of different values for the gradients is shown. We observe clearly that the values of the gradient concentrate close
to the wells −1 and +1. The only difference to the last experiment is that the pattern of the different phases
at a given time is finer as before. We expect that in the limit of vanishing oscillations this again approaches an
infinitely fine mixture of phases.

Experiment D. Let the oscillations on the boundary decay slowly in time,

u(1, t) =
{

3−t

2 sin(2πt) if t ≤ 2,
0 if t > 2,

and u(0, t) = 0. (5.4)

We observe a similar, but slightly more complex solution as in the examples before; see Figures 9 and 10.
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Figure 5. Numerical solution uh,j in Experiment B for dx = 0.05 and h = 0.05 plotted over
the space-time domain (0, 1) × (0, 4.9) in units of t/h and x/dx.
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computed from Young-measure approximation νh,j in Experiment B plotted over (0, 1)×(0, 4.9)
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Figure 7. Numerical solution uh,j in Experiment C for dx = 0.05 and h = 0.05 plotted over
the space-time domain (0, 1) × (0, 4.9) in units of t/h and x/dx.
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Figure 8. Macroscopic strain (5.1) (plotted in colors in the range between the wells −1 and +1)
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Figure 9. Numerical solution uh,j in Experiment D for dx = 0.05 and h = 0.05 plotted over
the space-time domain (0, 1) × (0, 4.9) in units of t/h and x/dx.
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and +1) computed from Young-measure approximation νh,j in Experiment D plotted over
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Figure 11. Numerical solution uh,j in Experiment E for dx = 0.05 and h = 0.05 plotted over
the space-time domain (0, 1) × (0, 5.9) in units of t/h and x/dx.

Experiment E. The experiments B–D had the slight drawback of showing the solution only for rather small
times. To conclude the experiments with oscillating boundary conditions we show an example where the
oscillating boundary condition are present over a longer time. The resulting displacement and the deformation
(see Figs. 11 and 12) soon seem to approach a periodic solution, similar to the long time calculations above.

5.3. Phase transition induced by temperature changes

The third class of simulations concerns a time-dependent potential φ. This models a shape memory alloy
where the temperature is changed during the experiment and passes a critical value, at which the type of φ
switches from nonconvex to convex or vice versa.

Experiment F. In this experiment we decrease the temperature below the critical temperature, thus inducing
a phase transition from austenitic to martensitic phase. We choose the temperature-dependent potential

φ(F, θ) := θ + min
{

1
2
F 2 − θ,

1
2

min{(F − 1)2, (F + 1)2}
}

,

where the temperature θ(t) is chosen as θ(t) := 0.2− t, hence the potential is changing from a 3-well to a 2-well
potential. As initial condition we choose

u0(x) := 0.1 sin(2πx) and v0 = 0.

We observe that the initial oscillations essentially continue, but with decreasing amplitude (compare Fig. 13).
This seems to be an effect of the change in the potential that takes energy out of the system. In view of the
results of Experiment G (see below), numerical viscosity as a source of the decay in the amplitude can be
excluded.
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Figure 13. Numerical solution uh,j in Experiment F for dx = 0.02 and h = 0.02 plotted over
the space-time domain (0, 1) × (0, 1) in units of t/h and x/dx.
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Figure 14. Numerical solution uh,j in Experiment G for dx = 0.02 and h = 0.02 plotted over
the space-time domain (0, 1) × (0, 1) in units of t/h and x/dx.

Experiment G. In the last experiment (see Fig. 14) we consider the inverse situation: We start with a
deformed wire. Its deformation is stable below a certain temperature, but after passing this point it starts to
oscillate. We choose the temperature as θ(t) := t−0.1, and the initial conditions as u0(x) := 0.1 sin(πx), u1 = 0.
There is essentially no change in the amplitude (unlike as in Experiment F). After passing the critical point,
the wire starts to oscillate as if released from a deformed initial state.

6. Extensions

The condition φqc = φ∗∗ of Theorem 2.1 is, in general, difficult to handle, since the quasiconvex envelope of
a function is not easily accessible. A different characterization of this condition is given by the following result
due to Kewei Zhang.

Theorem 6.1 [30]. If φ : R
m×n → R is a C1-function and has polynomial growth of order p > 1 at infinity and

if φrc denotes the rank-one-convexification of φ, then

φqc = φ∗∗ ⇔ φrc = φ∗∗.

For a given function φ the rank-one-convexification φrc can be calculated much easier than the quasiconvex-
ification φqc. Hence this theorem makes it feasible to test whether Theorem 2.1 can be applied for given energy
densities:

Corollary 6.2. If φ is rank-one-convex but not convex, then it does not satisfy the assumptions of Theorem 2.1.

A similar result for a different time discretization scheme extends Theorem 2.1 and is in particular applicable
if φ is quasiconvex. On the other hand it is not strictly more applicable than Theorem 2.1.

Theorem 6.3 (Existence). We define

φ̃(A1, A2) :=
∫ 1

0

1
s

(
φ(sA1 + (1 − s)A2) − φ(A2)

)
ds + φ(A2).
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Figure 15. Plot of the line l(A), the function h(A) and the point (A2,−φ(A2)) in the range
−2 ≤ A ≤ +2. The line l apparently separates h and the point (A2,−φ(A2)) (cf. Example 6.4).

Let u0 ∈ H1
0 (Ω; Rm), v0 ∈ L2(Ω; Rm) and

φ̃qc(A1, A2)|A1=A2 = φqc(A1). (6.1)

Then there exists a Young-measure solution (u, ν) of our problem that can be obtained by the following time
discretization scheme

uh,j − 2uh,j−1 + uh,j−2

h2
− divS̃

(
Duh,j, Duh,j−1

)
= 0,

uh,0 = u0, uh,−1 = u0 − hv0,

where

S̃(A1, A2) :=
∫ 1

0

S(tA1 + (1 − t)A2) dt.

The discrete energy estimate can be proved for φ̃ instead of φ without any convexity assumptions. The further
existence proof follows closely the proof of Theorem 2.1.

Condition (6.1) appears technical. However, it is needed for taking the final limit as the time-step size
converges to zero. A sufficient condition for (6.1) is that the energy density φ is quasiconvex.

We might ask whether condition (6.1) holds for general energy functionals φ, but this is not true: The following
example shows that, even in simple non-quasiconvex situations, the envelope condition does not always hold.

Example 6.4. Consider φ(A) := (1 − A2)2. Set A2 := 3/(2
√

5) and h(A1) := φ̃(A1, A2) − φ(A2). Then

h(A1) =
1

400

(
1485

4
− 186

√
5A1 − 310A2

1 + 40
√

5A3
1 + 100A4

1

)
.

A line l separating the graph of h from the point (A2,−φ(A2)) is constructed as follows. Let l be defined by
the two points (see Fig. 15) (

−3
2
, h

(
−3

2

)
− 5

100

)
and

(
1, h(1) − 5

100

)
·
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The line l does not intersect the graph, and l(A2) > −φ(A2). Since A2 < 1 and therefore φqc(A2) = 0 we derive

hqc(A2) + φ(A2) ≥ h∗∗(A2) + φ(A2) > 0 = φqc(A2),

and so

φ̃qc(A1, A2)|A1=A2 > φqc(A2).

Hence φ violates condition (6.1).
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