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SUMMARY

Multi-yield elastoplasticity models a material with more than one plastic state and hence allows for
re�ned approximation of irreversible deformations. Aspects of the mathematical modelling and a proof
of unique existence of weak solutions can be found in part I of this paper (Math. Models Methods
Appl. Sci. 2004). In this part II we establish a canonical time–space discretization of the evolution
problem and present various algorithms for the solving really discrete problems. Based on a global
Newton–Raphson solver, we carefully study and solve elementwise inner iterations. Numerical examples
illustrate the model and its �exibility to allow for re�ned hysteresis curves. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

In this article we consider the quasi-static initial-boundary value problem for small strain
elastoplasticity with a multi-surface constitutive law of linear kinematic hardening type. In
the �rst part [1], we presented the precise formulation of the initial-boundary value problem
in the form of a system of evolution variational inequalities for unknown �elds of displacement
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and several plastic strain components attached to di�erent surfaces. We proved the existence
and uniqueness of its solution by verifying the assumptions of a general theorem [2] and also
derived an estimate for the ellipticity constant in dependence on the material parameters.
This second part concerns a time–space discretization of the system of variational inequal-

ities presented in the �rst part, it develops a solution algorithm and reports on numerical
examples in 2D and 3D. For the numerical treatment of single-yield hardening models de-
scribed by a single variational inequality we refer to Reference [3]. In those works, we use
the conforming �nite element space of lowest order with elementwise linear displacement
and constant plastic strains. In order to describe the multi-yield aspect in a compact way, a
matrix formulation is used and original system of inequalities is rewritten as an equilibrium
equation and an elementwise matrix inequality for plastic strains only. Then, an algorithm
with an outer Newton–Raphson method for solving the equilibrium equation is applied. An
inner loop for elementwise solution of the matrix inequality is carefully studied. It has al-
ready been shown that a solution of the elementwise inequality can be written explicitly in
the single-yield case. Our analysis indicates that, already in the two-yield case, the situation
is considerably more di�cult. Indeed, one encounters root �nding of a 8th degree polynomial.
Alternatively, we derive an iterative algorithm for the original matrix inequality and prove its
geometrical convergence.
Numerical experiments demonstrate the feasibility of the algorithm; the di�erent hysteresis

behaviour curves and elastoplastic zones and their evolution is shown. An illustrating movie
for a time-evolving elastoplastic process can be downloaded from the web [4].
The paper is organized as follows. Section 2 brie�y recalls the mathematical formulation

from part I and then establishes the discrete model. The Newton–Raphson method of Section
3 allows for an e�ective solution of the non-linear system of variational equations with an
outer and an elementwise inner loop. Numerical examples in Section 4 illustrate the behaviour
of the proposed re�ned two-yield elastoplastic model.

2. MATHEMATICAL AND DISCRETE MODEL

Following the �rst part of this article [1] the multi-yield elastoplastic continuum can be
modelled by the following abstract evolution variational inequality explained below in detail.

Problem 2.1 (BVP of quasi-static multi-surface elastoplasticity)
Given ‘∈H 1(0; T ;H∗) with ‘(0)=0 in a Hilbert space H and its dual H∗ and duality
bracket 〈·; ·〉, �nd x∈H 1(0; T ;H) with x(0)=0 such that

〈‘(t); y − ẋ(t)〉6a(x(t); y − ẋ(t)) +  (y)−  (ẋ(t)) for all y∈H (1)

holds for almost all t ∈ (0; T ).
Therein, we are given x=(u; (pr)r ∈ I); y=(v; (qr)r ∈ I) in H=H 1

D(�)×� r∈I

dev(L2(�)d×d
sym ) with

H 1
D(�)= {v∈H 1(�)d|v=0 on �D}

dev(L2(�)d×d
sym )= {q∈L2(�)d×d: for all x∈�; q(x)∈ devRd×d

sym }

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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for the usual Sobolev and Lebesgue spaces H 1(�) and L2(�) on the bounded Lipschitz
domain � (which has a polygonal boundary � split into a Dirichlet �D and Neumann
�N :=�\�D parts), devRd×d

sym is de�ned using the deviatoric operator dev: Rd×d
sym →Rd×d

sym ;
dev q= q − (1=d)tr qI by

devRd×d
sym = {q∈Rd×d

sym : ∃p ∈Rd×d
sym ; q=devp}

Here and below, I denotes the identity tensor (an identity matrix) and tr :Rd×d →R de�nes
the trace of a matrix, tr � :=

∑d
j=1 �jj, for �∈Rd×d

sym , where d is the problem dimension. The
bilinear form a(·; ·), the linear form ‘(t), and the non-linear functional  read

a :H×H→R; a(x; y) =
∫
�
C
(
�(u)− ∑

r ∈ I
pr

)
:
(
�(v)− ∑

r ∈ I
qr

)
dx

+
∑
r ∈ I

∫
�
Hrpr : qr dx

‘(t) :H→R; 〈‘(t); y〉=
∫
�
f(t) · v dx +

∫
�N

g(t) · v dS(x) (2)

 :H→R;  (y)=
∑
r ∈ I

∫
�
�y
r |qr| dx

Here and throughout the paper, �(v) := symDv := 1
2 (Dv + (Dv)T) denotes the linear Green

strain and A:B:=
∑d

j;k=1 AjkBjk is the Euclid product of A; B∈Rd×d. The linear elasticity matrix
C from the isotropic case is de�ned by

C�=2��+ �(tr �)I

for the (positive) Lam�e coe�cients � and �. The hardening matrices read Hr = hrI, where
hr¿0 are hardening coe�cients. According to the choice of the index set I we classify a
single-yield case with I = {1}, a two-yield case with I = {1; 2} and a more general M -yield
case with I = {1; : : : ; M}. Further details on the notation can be found in Reference [1]. This
paper essentially contributes to the two-yield model, i.e. M =2, unless stated di�erently.
The discretization of the variational inequality (1) consists of time and space discretizations.

We discretize the continuous time interval (0; T ) by the discrete times t0; : : : ; tN with

0= t0¡�16t1¡�26t2¡ · · ·6tN−1¡�N6tN =T

with a time step kj= tj − tj−1; j=1; : : : ; N and the polygonal domain �⊂R2 by a regular
triangulation T in triangles in the sense of Ciarlet [5], i.e. T is a �nite partition of � into
closed triangles; two distinct elements T1 and T2 are either disjoint, or T1 ∩T2 is a complete
edge or a common node of both T1 and T2. In the �rst time step t1, the time derivative ẋ(t1)
is approximated by the backward Euler method as Ẋ

1
= (X 1 − X 0)=k1, where X 0 = 0. The

Hilbert space H is approximated by the conforming �nite element subspace

S=S1
D (T)×

∏
r ∈ I

dev(S0(T)d×d
sym )
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which is a product space of the space of T-piecewise constant functions

dev(S0(T)d×d
sym ) := {a∈L2(�)d×d : ∀T ∈T; a|T ∈ devRd×d

sym }

and the set of T-piecewise a�ne functions that are zero on �D by

S1
D (T) := {v∈H 1

D(�) : ∀T ∈T; v|T ∈P1(T )d}

(P1(T ) denotes the a�ne functions on T .) We discretize the variational inequality (1) as
follows. Find X 1 = (U 1; (P1r )r ∈ I) := (U 1; P1)∈S such that, for all Y =(V; (Qr)r ∈ I) :=
(V;Q)∈S,

〈
‘(t1);

(
Y − X 1 − X 0

k1

)〉
6a

(
X 1; Y − X 1 − X 0

k1

)
+  (Q)−  

(
P1 − P0

k1

)

After introducing an incremental variable X := (U;P)=X 1 − X 0 and a linear functional
L(Y )= 〈‘(t1); Y 〉 − a(X 0; Y ) we obtain a one-time step discrete problem.

Lemma 1 (equivalent reformulations)
For each X =(U;P)∈S the following three conditions (a)–(c) are equivalent:

(a) L(Y − X )6a(X; Y − X ) +  (Q)−  (P) for all Y =(V;Q)∈S.

(b) 	(X )= minY ∈S 	(Y ) for 	(Y )=
1
2
a(Y; Y ) +  (Q)− L(Y ).

(c) L(Y − X )= a(X; Y − X ) for all Y =(V; P)∈S and
L(Y − X )6a(X; Y − X ) +  (Q)−  (P) for all Y =(U;Q)∈S.

Proof
Elementary calculations with the quadratic forms, we omit the details.

The following matrix notation allows for a brief formulation of the discrete problem. Let

P :=




P1

...

PM


 ; P0 :=




P01

...

P0M


 ; Q :=




Q1

...

QM


 ; 
̂ :=



C�(U )

...

C�(U )





̂0 :=



C�(U 0)

...

C�(U 0)


 ; Ĉ :=



C : : : C

...
...

C : : : C


 ; Ĥ :=



H1 : : : 0

...
...

0 : : : HM




Since the plastic yield parameters �y
1 ; : : : ; �

y
M are positive, the expansion

|(P1; : : : ; PM )T|�y := �y
1 |P1|+ · · ·+ �y

M |PM |
Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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de�nes a norm in RMd×d, where | · | denotes the Frobenius norm. Then there holds

−a(X; Y − X ) =
∫
�
(
̂− (Ĉ+ Ĥ)P) : (Q − P) dx

L(Y − X ) =
∫
�
(
̂0 − (Ĉ+ Ĥ)P0) : (Q − P) dx

 (Y ) =
∫
�

|Q|�y dx

With the substitution Â := 
̂ + 
̂0 − (Ĉ+ Ĥ)P0 and for U =V , inequality (c) from Lemma
1 reads ∫

�
(Â − (Ĉ+ Ĥ)P) : (Q − P) dx6

∫
�
(|Q|�y − |P|�y) dx (3)

for all Q∈ ∏M
r=1 dev(S

0(T)d×d
sym ). Owing to the zero-order discretization, P and Â are con-

stant matrices on every triangle T of the triangulation T. It enables us to decompose in-
equality (3) elementwise. Given Â; Ĉ; Ĥ∈RMd×Md, we seek P=(P1; : : : ; PM )T ∈RMd×d with
P1; : : : ; PM ∈ devRd×d

sym , such that for all Q=(Q1; : : : ; QM )T ∈RMd×d with Q1; : : : ; QM ∈ devRd×d
sym

holds

(Â − (Ĉ+ Ĥ)P) : (Q − P)6|Q|�y − |P|�y (4)

Detailed formulation of the equilibrium equation together with the latter inequality de�ne the
discrete problem:

Problem 2.2 (discrete problem)
Given U 0 ∈S1

D (T), P01 ; : : : ; P
0
M ∈ dev(S0(T)d×d

sym ), seek U 1 ∈S1
D (T) such that for all V ∈

S1
D (T), ∫

�
C
(
�(U 1)−

M∑
r=1

P1r

)
: �(V ) dx −

∫
�
f(t)V dx −

∫
�N

gV dx=0 (5)

Here P=(P1; : : : ; PM )T = (P11 ; : : : ; P
1
M )

T − (P01 ; : : : ; P0M )T satis�es elementwise the inequality

(Â − (Ĉ+ Ĥ)P) : (Q − P)6|Q|�y − |P|�y (6)

for all Q=(Q1; : : : ; QM )T with Q1; : : : ; QM ∈ dev(S0(T)d×d
sym ).

3. NUMERICAL SOLUTION OF DISCRETE MODEL

The numerical solution of the discrete problem for d=2 is discussed in this and the subsequent
section for it is split into an outer and an inner iteration.

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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3.1. Outer loop in Newton–Raphson scheme

Equilibrium equation (5) represents a non-linear system of equations for unknown displace-
ments and plastic strains. As it is explained later in Sections 3.2 and 3.3 for cases of single-
and two-yield models, the plastic strains can be calculated from displacements elementwise by
solving inequality (6). Therefore, for the triangulation T with N nodes in d=2 dimensions,
the equilibrium equation (5) together with inequality (6) can be equivalently understood as
a non-linear system of equations for 2N displacement unknowns U1 = (U 1

1 ; : : : ; U
1
2N )

T written
in an abstract form as

Fi(U1)=0 for all i=1; : : : ; 2N (7)

We use the Newton–Raphson method for the iterative solution of (7).

Algorithm 3.1 (Newton–Raphson method)

(a) Choose an initial approximation U10 ∈R2N, set k := 0.
(b) Let k := k + 1, solve U1k from DF(U1k−1)(U

1
k −U1k−1)= − F(U1k−1).

(c) If U1k −U1k−1 is su�ciently small then output U1k, otherwise goto (b).

Remark 1
In order to incorporate the Dirichlet boundary conditions properly, the linear system in step
(b) is extended, (

DF(U1k−1) BT

B 0

)(
U1k −U1k−1

�

)
=

(−F(U1k−1)
0

)

with some matrix B and the vector of Lagrange parameters �, see Reference [6].

Remark 2
Here, DF(U1k)∈R2N×2N represents a sparse tangential sti�ness matrix

DF(U)ij ≈ F(U1; : : : ; Uj + �j; : : : ; U2N )i − F(U1; : : : ; Uj − �j; : : : ; U2N )i
2�j

approximated by a central di�erence scheme with small parameters �j¿0, j=1; : : : ; 2N .

Remark 3 (Three stages convergence control)
The termination criterion used in step (c) reads

|U1k −U1k−1|
|U1k|+ |U1k−1|

¡tol or |U1k|+ |U1k−1|=0

together with the condition rk¿rk−1, where rk= |F(U1k)−BT�| is a residual. If the number k
of iterations exceeds some prede�ned bound, Algorithm 3.1 terminates with no solution.

Remark 4 (Nested iterations)
The nested iteration technique [7] is applied for the solution of the problem on nested meshes
T0 ⊆T1 ⊆ · · · ⊆TF .

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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3.2. Inner loop for single-yield model

The single-yield model is speci�ed by one plastic strain P ∈R2×2sym with tr P=0, the elastic ma-
trix C with CP=2�P, the hardening matrix H with HP= hP, the matrix norm |P|�y =�y|P|
and the matrix A := Â := C�(U ) + C�(U 0) − (C+H)P0. In this case there exists a solution
formula:

Lemma 2 (Alberty et al. [8])
Given A∈Rd×d

sym and �y¿0 there exists exactly one P ∈ devRd×d
sym that satis�es

{A − (C+H)P} : (Q − P)6�y{|Q| − |P|}
for all Q∈ devRd×d

sym . This P is characterized as the minimizer of
1
2 (C+H)Q : Q − Q : A+ �y|Q| (8)

(amongst trace-free symmetric d×d-matrices) and is given by

P=
(|devA| − �y)+

2�+ h
devA
|devA| (9)

where (·)+ := max{0; ·} denotes the non-negative part. The minimal value of (8) (attained for
P as in (9)) is − 1

2 (|devA|−�y)2+=(2�+h). The non-negative part enters through the di�erent
elastic (|devA|¡�y) and plastic (|devA|¿�y) phases.

3.3. Inner loop for two-yield model

The two-yield model is speci�ed by two plastic strains P1, P2 that are coupled in a generalized
plastic strain P=(P1; P2)T. The generalized elasticity matrix and the generalized hardening
matrices read

Ĉ :=
(
C C

C C

)
and Ĥ :=

(
H1 0

0 H2

)

the generalized loading matrix reads

Â=

(
A1

A2

)
=

(
C�(U )

C�(U )

)
+

(
C�(U 0)

C�(U 0)

)
−
(
C+H1 C

C C+H2

)(
P01

P02

)

and the matrix norm is de�ned by

|P|�y =�y
1 |P1|+ �y

2 |P2|
Lemma 3
Given Â=(A1; A2)T; A1; A2 ∈Rd×d

sym there exists exactly one P=(P1; P2)T, P1; P2 ∈ devRd×d
sym that

satis�es

(Â − (Ĉ+ Ĥ)P) : (Q − P)6|Q|�y − |P|�y (10)

for all Q=(Q1; Q2)T, Q1; Q2 ∈ devRd×d
sym . This P is characterized as the minimizer of

f(Q)= 1
2(Ĉ+ Ĥ)Q : Q − Q : Â+ |Q|�y (11)

(amongst trace-free symmetric d×d matrices Q1, Q2).

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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Proof
The equivalence of f(P)= minQ f(Q) and (10) is obvious. The function f(Q) is strictly
convex, continuous in the space of all trace-free symmetric d×d matrices Q1; Q2. There holds
lim|Q| → ∞ f(Q)= +∞, and so it attains exactly one minimum.
Remark 5
In the absence of the o�-diagonal blocks in the matrix Ĉ=diag(C;C), the minimization
problem (11) could be separated into two independent minimization problems in P1 and P2.
The solution would then read

Pj=
(|devAj| − �y

j )+
2�+ hj

devAj

|devAj| for j=1; 2

The presence of the o�-diagonal blocks leads to solving a simultaneous system for P1 and P2
in the following sections.

3.4. Reduction to polynomial of degree 8 for two-yield model

In general, the elementwise inner loop leads to the computation of roots of a single non-linear
equation.

Lemma 4
Let B be a unit ball at the point 0, B := {Q∈Rd×d

sym : |Q|61}. Then the subdi�erential of
|P|�y =�y

1P1 + �y
2P2, where P=(P1; P2)∈Rd×d×Rd×d has the following form:

@| · |�y(P)=




�y
1B×�y

2B if P1 =P2 = 0{
�y
1

P1
|P1|
}

×�y
2B if P1 �= 0; P2 = 0

�y
1B×

{
�y
2

P2
|P2|
}

if P1 = 0; P2 �= 0{
�y
1

P1
|P1|
}

×
{
�y
2

P2
|P2|
}

if P1 �= 0; P2 �= 0

Proof
By the de�nition, the convex function |P|�y is decomposed as two convex functions �y

1 |P1|
and �y

2 |P2|. Both functions have subdi�erentials, namely

@(�y
1 |P1|)(P)=




�y
2B×{0} if P1 = 0{
�y
2

P2
|P2|
}

×{0} if P1 �= 0
(12)

and

@(�y
2 |P2|)(P)=




{0}×�y
1B if P2 = 0

{0}×
{
�y
2

P2
|P2|
}

if P2 �= 0
(13)

The convex functions �y
1 |P1| and �y

2 |P2|, considered as functions of two variables P1, P2, are
continuous at the point P1 =P2 = 0 in the space Rd×d

sym ×Rd×d
sym . Therefore, with some calculus

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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of convex analysis, one can prove

@(|P|�y)= @(�y
1 |P1|) + @(�y

2 |P2|)
The combination of (12) and (13) concludes the proof.

For trace-free arguments Pi ∈ devRd×d
sym holds Ai : Pi=devAi : Pi and CPi=2�Pi for i=1; 2

and inequality (10) can be rewritten as an inclusion(
devA1

devA2

)
−
(
(2�+ h1)I 2�I

2�I (2�+ h2)I

)(
P1

P2

)
∈ (@| · |�y(P1; P2))T (14)

Lemma 4 divides the analysis of (14) into four cases in dependence of the combination of
the values of P1 and P2:
Case 1: P1 =P2 = 0 with the following equivalences:

P1 =P2 = 0⇔ |devA1|6�y
1 and |devA2|6�y

2

Case 2: P1 = 0, P2 �= 0, which means
(
devA1

devA2

)
−
(
(2�+ h1)I 2�I

2�I (2�+ h2)I

)(
0

P2

)
∈

 �y

1B{
�y
2

P2
|P2|
}



We may write equivalently

devA1 − 2�P2 ∈�y
1B (15)

devA2 − (2�+ h2)P2 =�y
2

P2
|P2| (16)

Elimination of P2 from (16) yields

P2 =
|devA2| − �y

2

2�+ h2
devA2
|devA2|

and the substitution of this into (15) �nally gives the condition

devA1 − 2�
( |devA2| − �y

2

2�+ h2
devA2
|devA2|

)
∈�y

1B

Case 3: P1 �= 0, P2 = 0. The same technique as in Case 2, only with the reversed indices
1 and 2, gives

P1 =
|devA1| − �y

1

2�+ h1
devA1
|devA1|

devA2 − 2�
( |devA1| − �y

1

2�+ h1
devA1
|devA1|

)
∈�y

2B

Copyright ? 2005 John Wiley & Sons, Ltd. Math. Meth. Appl. Sci. 2005; 28:881–901
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Case 4: P1 �= 0, P2 �= 0 implies(
devA1

devA2

)
−
(
(2�+ h1)I 2�I

2�I (2�+ h2)I

)(
P1

P2

)
=


�y

1
P1

|P1|

�y
2

P2
|P2|


 (17)

Applying substitutions Pi= �iXi, where |Xi|=1; i=1; 2, (17) becomes a system of non-linear
equations with positive parameters �1 = |P1|; �2 = |P2|, namely(

devA1

devA2

)
=

(
(�y
1 + (2�+ h1)�1)I 2��2I

2��1I (�y
2 + (2�+ h2)�2)I

)(
X1

X2

)

Additional substitutions �1 := �y
1 +(2�+h1)�1, �2 := �y

2 +(2�+h2)�2, �1 := 2��1, �2 := 2��2
and the fact that (

�1I �2I

�1I �2I

)−1

=
1

�1�2 − �1�2

(
�2I −�2I

−�1I �1I

)

yield

�2 devA1 − �2 devA2 = (�1�2 − �1�2)X1

−�1 devA1 + �1 devA2 = (�1�2 − �1�2)X2
(18)

Normalization of (18) and the application of substitutions for �1, �2, �1, �2 give the system
of non-linear equations for positive �1, �2

|l1(�1)| − |r(�1; �2)|=0; |l2(�2)| − |r(�1; �2)|=0 (19)

where

l1(�1) = (�
y
1 + (2�+ h1)�1) devA2 − 2��1 devA1

l2(�2) = (�
y
2 + (2�+ h2)�2) devA1 − 2��2 devA2

r(�1; �2) = (�
y
1 + (2�+ h2)�1)(�

y
2 + (2�+ h2)�2)− 4�2�1�2

Instead of the solving (19) we prefer to solve the equivalent system of non-linear equations

	j(�1; �2)= |lj(�j)|2 − (r(�1; �2))2 =0; for j=1; 2 (20)

Lemma 5
Given �y

1 , �
y
2 , h1, h2, �, devA1, devA2. Then the solution �2 of the non-linear system (20)

is a root of the 8th degree polynomial of the form

(J 4F 2)�82 + (2T4J
2F)�72 + (2T3J

2F + T 24 )�
6
2 + (2T2J

2F + 2T3T4)�52
+(2T1J 2F + 2T2T4 + T 23 − F(BJ + 2IC)2)�42
+(−E(BJ + 2IC)2 − 2F(2CG + BH)(BJ + 2IC) + 2T1T4 + 2T2T3)�32
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+(−D(BJ + 2IC)2 − 2E(2CG + BH)(BJ + 2IC)− F(2CG + BH)2

+2T1T3 + T 22 )�
2
2

+(−2D(2CG + BH)(BJ + 2IC)− E(2CG + BH)2 + 2T1T2)�2

+(T 21 − D(2CG + BH)2)=0

with the coe�cients A, B, C, D, E, F , G, H , I , J de�ned in the proof below and

T1 :=H 2D − CG2 − AH 2 − BGH − CD

T2 :=−BGJ − 2HJA − CE − 2ICG +H 2E − IBH + 2HJD

T3 :=−CF − J 2A+ 2HJE − IBJ + C + J 2D+H 2F

T4 := 2HJF + J 2E

Then

�1 =
−I�2 − G ±

√
D+ E�2 + F�22

H + J�2

Proof
Direct calculations reveal

|l1(�1)|2 = |((2�+ h1) devA2 − 2� devA1)�1 + �y
1 devA2|2

= |�y
1 devA2|2 + 2(�y

1 devA2) : ((2�+ h1) devA2 − 2� devA1)�1
+|(2�+ h1) devA2 − 2� devA1|2�21 := A+ B�1 + C�21

|l2(�2)|2 = |((2�+ h2) devA1 − 2� devA2)�2 + �y
2 devA1|2

= |�y
2 devA1|2 + 2(�y

2 devA1) : ((2�+ h2) devA1 − 2� devA2)�2
+|((2�+ h2) devA1 − 2� devA2)|2�22 := D+ E�2 + F�22

r(�1; �2)2 = (�
y
1 �

y
2 + (2�+ h1)�

y
2 �1 + (2�+ h2)�

y
1 �2 + (2�(h1 + h2) + h1h2)�1�2)2

= (G +H�1 + I�2 + J�1�2)2

Then 	1, 	2 are polynomials of the second degree in two variables �1, �2

	1(�1; �2) = A+ B�1 + C�21 − (G +H�1 + I�2 + J�1�2)2 =0

	2(�1; �2) =D+ E�2 + F�22 − (G +H�1 + I�2 + J�1�2)2 =0

Expressing �1 from the latter equation and a substitution into the former lead (with MAPLE
5, recently MAPLE 8 could not reproduce this result) to the polynomial (5).
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Example 3.1
Let �=1, �y

1 = 1, �
y
2 = 2, h1 = 1, h2 = 1 and A1 =A2 =

(
20
0

0
0

)
. The direct calculation shows

l1(�1) =

(
10 + 10�1 0

0 −10− 10�1

)

l2(�2) =

(
20 + 10�2 0

0 −20− 10�2

)

r(�1; �2) = 5�1�2 + 6�1 + 3�2 + 2

and the non-linear system of Equations (20) for positive �1, �2¿0 reads

	1(�1; �2) = 200 + 400�1 + 200�21 − (2 + 3�2 + 6�1 + 5�1�2)2 =0 (21)

	2(�1; �2) = 800 + 800�2 + 200�22 − (2 + 3�2 + 6�1 + 5�1�2)2 =0 (22)

The unknown �1 is expressed from (22)

�1 =
−3�2 − 2± 10√10(2 + �2)

5�2 + 6
(23)

and the substitution of the plus term into (21) implies after the factorization the equality

(5�2 + 8− 10√2)(5�2 + 4− 10√2)(�2 + 2)2
(6 + 5�2)

=0 (24)

Note that the substitution of the minus term (23) into (21) leads to the di�erent signs of �1
and �2. The roots of (24) are given by

�2 ={− 4
5 + 2

√
2;− 8

5 − 2
√
2;−2;−2}

There is one positive root �2 =− 4
5 + 2

√
2≈ 2:028427124 only, whose substitution into (21)

represents the quadratic equation (995�1 + 801− 50√2)(5�1 − 1− 10√2)=0 with roots

�1 =

{
−1
5

−1 + 40√2
1 + 10

√
2

;
1
5
201 + 2

√
2

1 + 10
√
2

}

Merely the �rst root �1 = −(1=5)(−1 + 40√2)=(1 + 10√2)≈ 3:028427125 is positive.

3.5. Iterative solution of the discrete inequality

The following iterative scheme is shown to converge towards the solution of the discrete
inequality for the two-yield model.
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Algorithm 3:2 (Iterative approach for calculation of P1; P2)
Input �, h1, h2, �

y
1 , �

y
2 , devA1, devA2 and tol¿0.

(a) Choose an initial approximation (P01 ; P
0
2 )∈ devRd×d

sym ×devRd×d
sym , set i := 0.

(b) Find Pi+1
2 ∈ devRd×d

sym such that

f(Pi
1 ; P

i+1
2 )= min

Q ∈ dev Rd×d
sym

f(Pi
1 ; Q)

(c) Find Pi+1
1 ∈ devRd×d

sym such that

f(Pi+1
1 ; Pi+1

2 )= min
Q ∈ dev Rd×d

sym

f(Q;Pi+1
2 )

(d) If |Pi+1
1 |+|Pi

1 |+|Pi+1
2 |+|Pi

2 |=0 or |Pi+1
1 −Pi

1 |+|Pi+1
2 −Pi

2 |
|Pi+1
1 |+|Pi

1 |+|Pi+1
2 |+|Pi

2 | ¡tol output (P
i+1
1 ; Pi+1

2 ) otherwise
set i := i + 1 and goto (b).

Algorithm 3.2 belongs to the class of alternating direction algorithms. Similarly as in the
single-yield case, the minimization problems in steps (b) and (c) can be solved explicitly as

Pi+1
2 =

(|devA2 − 2�Pi
1 | − �y

2 )+
2�+ h2

devA2 − 2�Pi
1

|devA2 − 2�Pi
1 |

Pi+1
1 =

(|devA1 − 2�Pi+1
2 | − �y

1 )+
2�+ h1

devA1 − 2�Pi+1
2

|devA1 − 2�Pi+1
2 |

Proposition 1 states the geometrical convergence of Algorithm 3.2.

Proposition 1 (Convergence of Algorithm 3.2)
Let (P1; P2) be the minimizer of f and let the sequence (Pi

1 ; P
i
2 )

∞
i=0 be generated by Algorithm

3.2. De�ne q := 	=(1 + 	), 	 := (min{�y
2 ; �

y
2 })−2L2 · 
−2, C0 := 2(1 + 	) · 
−1 · (f(P01 ; P02 ) −

f(P1; P2)), where 
¿0 and L¿0 are constants for the strong monotonicity and the Lipschitz
continuity of the Fr�echet-di�erential of 	(P) := 1

2(Ĥ+ Ĉ)P : P − A : P. Then, for any i¿1
there holds

|Pi
1 − P1|2 + |Pi

2 − P2|26C0qi

Proof
Let us decompose the space of X := dev(Rd×d

sym )×dev(Rd×d
sym ) as X =X1 + X2,

X1 := {(P1; 0) : P1 ∈ dev(Rd×d
sym )} and X2 := {(0; P2) : P2 ∈ dev(Rd×d

sym )}
Let M1 : X →X1 and M2 : X →X2 be linear mappings de�ned as

M1(P1; P2) := (P1; 0) and M2(P1; P2) := (0; P2)

Then we can show that for all subsets �⊆ {1; 2} and all P=(P1; P2)∈X there holds∣∣∣∣ ∑
� ∈�

M�(P1; P2)
∣∣∣∣6(min{�y

1 ; �
y
2 })−1|(P1; P2)|
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We decompose the functional f as the sum of functional 	 and  , where

	(P) := 1
2(Ĥ+ Ĉ)P : P − A : P and  (P) := |P|�y =�y

1 |P 1|+ �y
2 |P2|

One can show that the functional 	 is Fr�echet-di�erentiable and D	 is strongly monotone
with a constant 
¿0 and Lipschitz continuous with a constant L¿0. The convex, lower-
semicontinuous functional  is additive with respect to the partition X =X1 + X2, i.e. in the
sense that, for all (x1; x2)∈X1×X2,

 (x1 + x2)=  (x1) +  (x2)

For all j ∈ {1; 2}, for all yj ∈ ∑2
k=1; k �=j Xk , there holds Mjyj=0 and therefore for all xj ∈Xj

holds

 (xj +Mjyj)=  (xj)

thus  is also independent with respect to the partition X =X1 + X2. Estimate (1) is then an
immediate consequence of Theorem 2.1 in Reference [9].

The next example illustrates the behaviour of Algorithm 3.2.

Example 3.2
Let �=1, �y

1 = 1, �
y
2 = 2, h1 = 1, h2 = 1, A1 =A2 =

(
20
0

0
0

)
, tol=10−12 and the initial approx-

imation

P02 =
(|devA2| − �y

2 )+
2�+ h2

devA2
|devA2| ; P01 =

(|devA1 − 2�P02 | − �y
1 )+

2�+ h1
devA1 − 2�P02
|devA1 − 2�P02 |

Algorithm 3.2 generates approximations Pi
1 , P

i
2 , i=1; 2; : : : in the form

Pi
1 =

(
xi 0

0 −xi

)
and Pi

2 =

(
yi 0

0 −yi

)

and terminates after 34 approximations with

P341 =

(
2:14142 0

0 −2:14142

)
and P342 =

(
1:43431 0

0 −1:4343

)

Figure 1 displays the approximations (Pi
1 ; P

i
2 ), i=0; 1; 2; : : : ; 34 as the points (xi; yi) in the

x–y co-ordinate system. Note that values ‖P341 ‖ ≈ 3:028425 and ‖P342 ‖ ≈ 2:0284207 correspond
to values of �1 and �2 calculated in Example 3.1.

4. NUMERICAL EXPERIMENTS

Three numerical simulations illustrate the algorithms of this paper. More can be found in
References [10,11].
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Figure 1. The approximations Pi
1 = (x

i; 0; 0;−xi), Pi
2 = (y

i; 0; 0;−yi), i=0; : : : ; 34 computed by
Algorithm 3.2 in Example 3.2 and displayed as the points (xi; yi) in the x–y co-ordinate system.

4.1. 1D beam

To illustrate 1D e�ects, we study the following beam problem as displayed in Figure 3 (left).
We consider the unit square shape �=(0; 1)2 in a x–y co-ordinate system with the following
boundary conditions for the displacement u := (u1; u2) and the surface force g:

u(0; y) = (0; u2) for 0¡y61; u(0; 0)= (0; 0)

g(x; 0) = g(x; 1)= (0; 0) for 0¡x¡1 (25)

g(1; y) = (g1; 0) for 06y61

with a given constant g1 ∈R. Because of symmetries in the boundary conditions, the beam
displacement u=(u1(x; y); u2(x; y)) can be expected in the form

u(x; y)= (u1; u2)(x; y)= (x · u1(1; 0); y · u2(0; 1)) for (x; y)∈�

which implies for the strain tensor

�(u)=

(
u1(1; 0) 0

0 u2(0; 1)

)
in �
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Besides that, the Neumann boundary conditions (25) admit the stress tensor

�=

(
g1 0

0 0

)
in �

There holds Hooke’s law in the purely elastic phase (no plasticity), �=2��+ �(tr �)I, i.e.


g1

0

0


 =



2�+ � � 0

� 2�+ � 0

0 0 2�






u1(1; 0)

u2(0; 1)

0




The inverse rule



2�+ � � 0

� 2�+ � 0

0 0 2�




−1

=




2�+ �
4�(�+ �)

− �
4�(�+ �)

0

− �
4�(�+ �)

2�+ �
4�(�+ �)

0

0 0
1
2�




implies that the (elastic) deformation of the beam can be expressed as

u(x; y)(t)=
(
x
2�+ �
4�(�+ �)

;−y
�

4�(�+ �)

)
g1(t) (26)

The shape of solution (26) allows to simulate 1D elastoplastic processes by this 2D model.
The numerical experiment for the hysteresis behaviour demonstration was the calculation
on the coarse mesh T0 with 16 elements, discrete times {0; 0:5; 1; : : : ; 50}, in case of the
time-dependent uniform cyclic surface loading g1 = 12 sin(t�=20). In order to compare two
di�erent material models, we �rstly considered the two-yield material speci�ed by parameters
�=1000, �=1000, �y

1 = 5, h1 = 100, �
y
2 = 7, h2 = 50 and secondly the single-yield material

speci�ed by parameters �=1000, �=1000, �y=5, h=100. Figure 4 shows hysteresis curves
in terms of the dependence of g1(t) on the x-displacement u1(t) of the point (x=1; y=0)
for the single (left) and two-yield material (right) models.

4.2. 2D beam

In order to take 2D e�ects into account, we study a second beam problem (Figure 2). Its
geometry is identical to the problem of beam with 1D e�ects, and the only di�erence being
modi�ed is the Dirichlet boundary condition, see Figure 3 (right). We prescribe the Dirichlet
boundary �D in both directions (i.e. the beam is �xed in both directions at �D), i.e.

u(0; y)= (0; 0) for 06y61

The �rst numerical experiment demonstrates 2D hysteresis e�ects. Material and time pa-
rameters, the shape of the mesh are identical to the numerical experiment for the problem
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Figure 2. Evolution of elastoplastic zones at discrete times t=4:5; 5; 5:5; 6; 6:5; 7; 8; 9 in the numerical
experiment with the two-yield 2D beam explained in Section 4.2. The black colour shows elastic zones,
brown and lighter grey colour zones in the �rst and second plastic phase. A corresponding movie

can be found in Reference [4].
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Figure 3. Geometry and coarse mesh T0 of 1D beam (left) and 2D beam (right).

Figure 4. Displayed loading-deformation relation in terms of the uniform surface load-
ing g1(t) versus the x-displacement of the point (0,1) for problems of the single-yield

1D beam (left) and two-yield 1D beam (right).

of the beam with ID e�ects. Figure 5 shows the hysteresis curves for the single (left) and
the two-yield (right) material. A comparison of Figure 4 with Figure 5 indicates that 2D
deformation e�ects smooth out the elastoplastic transition.
The second numerical experiment describes an elastoplastic transition during the deforma-

tion process. The calculation was performed at discrete times {0; 0:5; 1; : : : ; 10}, applying the
uniform surface loading

g1 = t

and the same materials as in the �rst experiment. Figure 2 displays the evolution of elasto-
plastic zones at chosen discrete times in the deformed con�guration. As the deformation
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Figure 5. Displayed loading-deformation relation in terms of the uniform surface loading g1(t) versus
the x-displacement of the point (0,1) for problems of the single-yield beam with 2D e�ects (left) and

two-yield beam with 2D e�ects (right).

process starts (at discrete times t = {0; 0:5; : : : ; 4:5}), the material behaves purely elastically.
At discrete time t=5:0 there appear the �rst plastic zones in corners (where the material
is �xed) and also in the right part of the domain � (where external forces g act). For
the two-yield model there appear the second plastic zones after the discrete time t=5:5,
and they develop in the same way as the �rst plastic zones at the time t=5. For the
�nal discrete time t=10, both material models are in entirely plastic phases. An animation
describing the evolution of this process can be downloaded from Reference [4]. The MAT-
LAB code that was used for the calculation of �rst two problems can be downloaded from
Reference [12].

4.3. 3D crankshaft

The crankshaft model consists of three crank axles and two crank arms linked by four
crank disks and is solely loaded by applied surface tractions. Homogeneous Dirichlet bound-
ary conditions are required on the left crank axle and the right crank axle as indicated in
Figure 4.3 (top). The surface loads with the value 0.5 in the vertical direction (indicated
by arrows in Figure 4.3 (top)) is applied to the cylindrical surfaces of the both crank arms.
The middle crank axle surface as well as remaining crank surfaces are traction-free surfaces
with zero Neumann boundary condition. The resulting stresses are computed for one time
step with zero initial conditions for the two-yield continuum speci�ed by material parameters
E=1; �=0; �y

1 = 1; h1 = 1; �
y
2 = 1:5; h2 = 1 and for the �nest uniform mesh with 808 448 tetra-

hedra obtained by three uniform re�nements of the coarse mesh. The calculation took 25min
and was performed by an extension of the elasticity package [13] part of NETGEN/NGSolve
software [14] with multigrid preconditioner for the solution of linear system of equations.
Figure 4.3 (bottom) displays the resulting three elastoplastic phases on the surfaces. Further
details may be found in Reference [11].
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Figure 6. Geometry with the load setup (top) and elastoplastic zones (bottom) in the numerical
experiment with the two-yield crankshaft explained in Section 4.3. The black colour shows elastic
zones, light and dark grey colour zones in the �rst and second plastic phase. Pictures were

generated by NETGEN=NGSOLVE software [14].
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