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We show that an adaptive conforming finite element method for the solution of a variational inequality of the second kind,
as model of one implicit time step of the primal problem of plasticity with positive hardening, yields the energy reduction
property and the R−linear convergence of the stresses.

1 Introduction

Convergence of adaptive finite element methods (hereafter referred to as AFEM) have only recently experienced significant
development following the work of Dörfler [6]. The introduction of the bulk criterion as marking strategy in place of the
max refinement rule [1], along with the discrete efficiency estimate, and the orthogonality of the discrete conforming finite
element approximations, represent the key ingredients for proving the linear convergence of AFEMs for conforming finite
element approximations of the Poisson problem [6, 7]. Extensions to nonlinear problems have then been considered in [9] for
the nonlinear laplacian whereas [3] presents a thorough analysis for uniformly convex and degenerated convex minimization
problems, with applications to relaxed formulations in computational microstructures. Along the same line as [3] this short
note states the energy reduction and the R−linear convergence of the stresses for a conforming FE method of the primal
problem of plasticity [8]. Proof and details are given elsewhere [5].

2 Primal formulation of plasticity and the discrete problem

Let Ω be a bounded Lipschitz domain in Rd, for d = 2, 3, with Dirichlet ΓD and Neumann ΓN boundary with uD = 0
on ΓD and prescribed traction force g ∈ H1/2(ΓN ; Rd) on ΓN . We denote by f ∈ L2(Ω; Rd) the volume force. As
usual, it is assumed ΓD ∩ ΓN = ∅ and ΓD ∪ Γ̄N = ∂Ω. We consider small strain theory of associative elastoplasticity
with positive hardening for the quite general model of isotropic-kinematic hardening with Von Mises yield condition. For
u ∈ V := H1

D(Ω; Rd), the linear strain ε(u) = 1/2(∇u + ∇uT ) is split into an elastic e and plastic part p, with e = C−1σ,

C being the elasticity tensor used to define the norm ‖|τ |‖C−1;Ω := (τ ; C−1τ)
1/2

L2(Ω;Rd×d)
in L2(Ω; Rd×d). The kinematic

hardening is described by the back stress tensor σb related to the conjugate internal variable α by σb = Hα, with H the
positive definite hardening tensor, whereas the isotropic hardening is described by the additional scalar internal variable R
related to the conjugate kinematical variable A by R = kA with k > 0. Using the Von Mises yield condition, the closed
and convex domain E := {(τ, τb, S) ∈ Rd×d

sym × Rd×d
sym × R : | dev(τ − τb)| − (S + σy) ≤ 0, S ≥ 0} with σy a material

constant, defines the set of admissible generalized stresses (σ, σb, R). Without loss of generality, we consider initial conditions
equal to zero in the time discrete form of the evolution law, expressed as (p, α, A) ∈ ∂IE(σ, σb, R) or in the dual form
(σ, σb, R) ∈ ∂I∗

E
(p, α, A) with IE indicator function of E, I∗

E
its Legendre-Fenchel dual, and ∂f subdifferential of the convex

function f . The elastoplastic problem is then defined by the above constitutive equation together with the equilibrium condition
for the stress σ = C(ε(u) − p). The primal formulation of plasticity assumes w := (u, p, α, A) ∈ H := V × Q × Q × L as
primary variable, with Q := {q ∈ L2(Ω; Rd×d

sym) : tr(q) = 0} and L := L2(Ω; R). Let z := (v, q, β, B) ∈ H denote the test
function, the weak form reduces to the solution w ∈ H of the following variational inequality

b(z − w) ≤ a(w; z − w) + ψ(z) − ψ(w) for all z ∈ H, (1)

with a(w; z) := (σ; ε(v) − q)L2(Ω;Rd×d) + (Hα; β)L2(Ω;Rd×d) + (kA; B)L2(Ω;R), b(z) := (f ; v)L2(Ω;Rd) +
∫
ΓN

g · v ds,
and ψ(z) :=

∫
Ω I∗

E
(q, β, B) dx. For the model here considered, the bilinear form a is continuous and H−elliptic, b linear

and bounded, and ψ convex, lower semicontinuous (lsc), and non differentiable [2, 8]. The variational inequality (1) is also
equivalent to the following minimization problem

w = arg min
z∈H

J(z) with J :=
1

2
a(z; z)− b(z) + ψ(z) convex, lsc, and uniformly convex. (2)

Let T denote a shape regular triangulation of Ω into triangles, set of edges E and free nodes K. We consider the conforming
finite element approximation to w solution of (1) (or equivalently of (2)) with P1 elements for the displacement field u, and
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P0 elements for the kinematic internal variables (p, α, A). With V� ⊆ V , and Q0 and L0 subspaces of Q and L of piecewise
constant functions, respectively, we define the finite element space H� := V� ×Q0 ×Q0 ×L0 ⊆ H, and the discrete problem
as (1) (or (2)) by replacing H with H�.

3 Data oscillations

On the mesh T� at the level � = 0, 1, . . ., for f ∈ L2(Ω; Rd) we define osc2
�(f) :=

∑
z∈K�

‖hz(f − f̄)‖2
L2(ωz ;Rd), with

ωz := {T ∈ T� : z ∈ T }, |ωz| and hz area and diameter of ωz , and f̄ = 1/|ωz|
∫

ωz

f dx. For g ∈ H1/2(ΓN ; Rd) we let

osc2
�(g) :=

∑
E⊂ΓN

‖h
1/2
E (g − gE)‖L2(E;Rd) with gE := 1/hE

∫
g ds.

4 Adaptive algorithm, energy reduction, and convergence of stresses

Given an initial coarse shape-regular triangulation T0 of Ω into triangles with C, H, and k constant over each T ∈ T0, we
consider triangulations T� built according to the following algorithm.

Input the triangulation T0 with set of edges E0, 0 < Θ < 1, and repeat (a) − (e).
(a) Solve the nonlinear discrete problem w� = arg min

z�∈H�

J(z�) and evaluate σ� := C(ε(u�) − p�) .

(b) For each E ∈ E� with measure hE , compute η2
E := hE

∫
E |[σ�νE ]|2 ds and η� = (

∑
E∈E�

η2
E)1/2 . The symbol [σ�νE ]

defines the jump of the discrete stresses σ� across the interior edges E with standard modification for E ⊆ ΓN .
(c) Select M� ⊆ E� in the current triangulation T� with

Θη2
� ≤

∑

E∈M�

η2
E . (3)

(d) Control osc�(f) and osc�(g), and add (possibly) further edges to M� to decrease osc�+1(f) and osc�+1(g).
(e) Refine all the elements T with some edge in M� with the inner node [7, 3] and run the closure algorithm with red-green-
blue refinement [10]. Denote with T�+1 the resulting shape-regular triangulation. Set � := � + 1 and go to (a).
Output discrete stress fields σ0, σ1, ... in L2(Ω; Rd×d

sym) as approximation to σ = C(ε(u) − p).

Proof of the reliability of η uses Jensen inequality as in [4], whereas in [5] using inverse estimates and convex analysis we
prove a local discrete efficiency estimate in terms of the discrete energies, and the existence of positive constants ρE , ρ with
ρE < 1, depending on the regularity of the initial triangulation T0 and on the material parameters, such that there holds

δ�+1 ≤ ρEδ� + ρ(osc2
�(f) + osc2

�(g))

with δ� := J(w�) − J(w) and similar definition for δ�+1. The control of the data oscillations osc�(f) and osc�(g) with
conditions similar to (3) as step (e) of the adaptive algorithm using the inner node property leads finally to the existence of a
sequence (α�)�∈N linearly convergent to zero such that there holds

‖|σ − σ�|‖C−1;Ω ≤ α�. (4)
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