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Abstract. The striking simplicity of averaging techniques in a posteriori er-

ror control of finite element methods as well as their amazing accuracy in

many numerical examples over the last decade have made them an extremely

popular tool in scientific computing. Given a discrete stress or flux ph and

a post-processed approximation A(ph), the a posteriori error estimator reads

ηA := ‖ph −A(ph)‖. There is not even a need for an equation to compute the

estimator ηA and hence averaging techniques are employed everywhere. The

most prominent example is occasionally named after Zienkiewicz and Zhu, and

also called gradient recovery but preferably called averaging technique in the

literature.

The first mathematical justification of the error estimator ηA as a computable

approximation of the (unknown) error ‖p− ph‖ involved the concept of super-

convergence points. For highly structured meshes and a very smooth exact

solution p, the error ‖p−A(ph)‖ of the post-processed approximation Aph may

be (much) smaller than ‖p − ph‖ of the given ph. Under the assumption that

‖p−A(ph)‖ = h.o.t. is in relative terms sufficiently small, the triangle inequal-

ity immediately verifies reliability, i.e.,

‖p− ph‖ ≤ Crel ηA + h.o.t.,

and efficiency, i.e.,

ηA ≤ Ceff ‖p− ph‖+ h.o.t.,

of the averaging error estimator ηA. However, the required assumptions on the

symmetry of the mesh and the smoothness of the solution essentially contradict

the use of adaptive grid refining when p is singular and the proper treatment

of boundary conditions remains unclear.

This paper aims at an actual overview on the reliability and efficiency of

averaging a posteriori error control for unstructured grids. New aspects are

new proofs of the efficiency of all averaging techniques and for all problems.

Key Words. a posteriori error estimate, efficiency, finite element method,

gradient recovery, averaging operator, mixed finite element method, non-confor-

ming finite element method

1. Overview

The outcome of a first-order finite element method (FEM) is a globally contin-
uous and piecewise polynomial function uh. The corresponding flux or stress ph is
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usually a linear operator C evaluated for the gradient Duh (or its symmetric part)
of the finite element function uh,

ph := CDuh ∈ P0(T ;M).

Here and throughout, T is a triangulation of the computational domain Ω, M is
a space of vectors or matrices, and Pk(T ;M) denotes the piecewise polynomials of
degree ≤ k [piecewise with respect to T and with values in M].

Typical examples are elliptic partial differential equations of second order in Ω,
namely,

− div CDu = f in Ω,

for the Poisson or Lamé equations, which give rise to a weak formulation

a(u, v) = b(v) for all v ∈ V.

Here and throughout, a is a bounded bilinear form on the Hilbert space V (or on
some larger space) and b is a bounded linear functional on V , written b ∈ V ∗.

For the ease of this overview, the presentation is restricted to homogeneous
Dirichlet conditions on the entire boundary. Then, the flux or stress p := CDu sat-
isfies no prescribed boundary conditions and can be approximated by some globally
continuous and piecewise polynomial functions which form a discrete space

Qh := P1(T ;M) ∩ C0(Ω;M).

Given ph, the norm ‖ · ‖, and the discrete space Qh, the minimal averaging a pos-
teriori error estimator ηM reads

ηM := min
qh∈Qh

‖ph − qh‖.
The computation of ηM involves a global minimization which can be solved by an
iterative scheme which is not too costly in many applications when a (weighted)
L2 projection is involved. However, local versions appear as accurate as ηM which
involves a postprocessing defined by an operator

A : Q → Qh for Q := {CDv : v ∈ V } ⊂ L := L2(Ω;M).

Then the A averaging a posteriori error estimator ηA reads

ηA := ‖ph −A(ph)‖.
One particular important example is the ZZ estimator [24]

ηZ := ‖ph − Z(ph)‖ ≈ ηE ,

which is equivalent to the jumps across interior element edges ηE (for conforming P1

FEM). Details on the notation follow in Section 2. It is obvious that ηM ≤ ηA. The
surprising converse of which will be shown below for a class of averaging operators.
In fact, Section 2 establishes

ηA ≈ ηM ≈ ηZ ≈ ηE .

Here and throughout, the statement a . b abbreviates a ≤ C b for some positive
generic constant C which does not depend on the meshsize in T , and a . b . a is
abbreviated by a ≈ b.

This paper discusses examples of problems and estimators and studies their
reliability, i.e.,

‖p− ph‖ . ηM + h.o.t.,
(recall that h.o.t. abbreviates higher-oder terms, the meaning of which is clarified
below) and their efficiency, i.e.,

ηM . ‖p− ph‖+ h.o.t.
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The remaining part of this paper is organized as follows. Section 2 introduces
the necessary notation to define averaging operators with respect to a general fi-
nite element mesh on a general level. Section 3 aims at a proof of efficiency of
all averaging techniques by a discussion of the various equivalences. Up to this
point, there is no need to restrict the application to some specific PDE. Section 4,
however, has to focus on a model example of an elliptic boundary value problem
and the reliability of ηM and hence reliability of all averaging techniques. The
concluding Section 5 comments on various generalizations such as history, other
averaging spaces, averaging on large patches, other boundary conditions, and nu-
merical experience.

2. Averaging techniques as universal tool for a posteriori error control

This section introduces the precise notation (Subsection 2.1), some discrete
spaces (Subsection 2.2), some averaging operators (Subsection 2.3), and associated
estimators (Subsection 2.4). Universality is supported by the fact that no boundary
value problem is considered in this and the following section: The definitions of the
averaging operators and their efficiency are universal for all problems.

2.1. Notation and preliminaries on the FEM. The bounded Lipschitz domain
Ω ⊂ Rn, n = 1, 2, 3, with piecewise affine boundary Γ is exactly covered by a
triangulation T , ∪T = Ω. Each element T ∈ T is a compact interval T = conv{a, b}
if n = 1, a triangle T = conv{a, b, c} if n = 2, or a tetrahedron T = conv{a, b, c, d}
if n = 3. The element’s vertices a, . . . , d are called nodes; N denotes the set of
all nodes. Each flat boundary E of an element T ∈ T is either a point E = {a},
an edge E = conv{a, b}, or a face E = conv{a, b, c}; E denotes the set of all such
E; EΩ denotes the interior edges or faces and EΓ := {E ∈ E : E ⊂ Γ} = E\EΩ

denotes the boundary edges. Analogous notation applies to parallelograms (n = 2)
or parallelepipeds (n = 3) which are possible elements in T as well. Intersecting
distinct elements share either one vertex, an edge, or a common face. Hanging nodes
are excluded solely for the ease of the presentation. For each node z ∈ N let Ez :=
{E ∈ E : z ∈ E ∩ N} and the patch ωz := int(∪Tz), Tz := {T ∈ T : z ∈ T ∩ N}.
Each edge or face E is associated to a unit normal vector νE with fixed orientation;
if E ⊆ ∂Ω, set νE = ν, the outer unit normal along ∂Ω. The length and area of
E ∈ E is denoted by hE = diam(E) and |E| = Ln−1(E), respectively; Ln denotes
the n-dimensional Lebesgue measure along any affine subspace of Rn. Similarly
the length and volume of T ∈ T is denoted by hT = diam(T ) and |T | = Ln(T ),
respectively.

2.2. Discrete spaces. On each element there exists a set of shape functions,
namely, Pk(T ) := P(k)(T ) if T is triangular (or tetrahedral in 3D) and Pk(T ) :=
Q(k)(T ) if T is rectangular; P(k)(T ) and Q(k)(T ) denote algebraic polynomials on
T ⊆ Rn of total and partial degree ≤ k, respectively. Furthermore, for each T ∈ T ,
let P (T ;M) be M valued and satisfy P0(T ;M) ⊂ P (T ;M) ⊂ P1(T ;M). Then, set

Pk(T ) := {vh ∈ L∞(Ω) : ∀T ∈ T , vh|T ∈ Pk(T )} for k = 0, 1,

S1(T ) := P1(T ) ∩ C0(Ω) = span{ϕz : z ∈ N},
Ph := P (T ;M) := {ph ∈ L∞(Ω;M) : ∀T ∈ T , ph|T ∈ P (T ;M)},
Qh := S1(T ;M) = {qh ∈ C0(Ω;M) : ∀T ∈ T , qh|T ∈ P1(T ;M)}.

The nodal basis functions (ϕz : z ∈ N ) are defined by ϕz ∈ S1(T ) with ϕz(z) = 1
and ϕz(x) = 0 for all z, x ∈ N with x 6= z. Without further explicit notice, we
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shall make frequent use of

0 ≤ ϕz ≤ 1, supp ϕz = ωz, and
∑

z∈Nϕz = 1.

Given any open subset ω of Ω we define the restricted spaces

Ph|ω := {ph|ω : ph ∈ Ph} and Qh|ω := {qh|ω : qh ∈ Qh}.

2.3. Averaging Operators. Given ph ∈ Ph (not necessarily globally continuous),
the operator A : Ph → Qh is supposed to average ph on each patch ωz and to adapt
to boundary conditions. Therefore,

A(ph) :=
∑

z∈N
Az(ph|ωz ) ϕz and Az : P1(Tz;M) →M.

Recall that P(1)(Tz) denotes the Tz piecewise polynomials of degree ≤ 1 and that
ph|ωz

belongs to P(1)(Tz). The linear operator

Az : P1(Tz;M) →M

describes a local averaging process and is (frequently in this paper) assumed to
preserve

N(ωz) := (Ph|ωz ) ∩ (Qh|ωz ).

That means, there holds

(2.1) Az(f) = f(z) for all f ∈ N(ωz) and all z ∈ N .

Example 2.1 (Averaging of Nodal Values). Amongst the easiest averaging tech-
niques is the averaging at the node z ∈ N where Az is defined as some mean of all
the different values of (f |T )(z) at z ∈ T for the different elements T ∈ Tz (notice f
is, in general, discontinuous at z). That is

(2.2) Az(f) :=
∑

T∈Tz

λz,T (f |T )(z) for all f ∈ P1(Tz), z ∈ N .

A necessary and sufficient condition for (2.1) on the real coefficients (λz,T : T ∈ Tz)
in (2.2) reads

(2.3)
∑

T∈Tz
λz,T = 1.

Example 2.2 (ZZ Averaging). The particular situation of (2.2) with

(2.4) λz,T := |T |/|ωz| for all T ∈ T , z ∈ N

(where | · | denotes the area or volume) is our interpretation of a gradient recovery.
For Ph = P0(T )d, this is due to Zienkiewicz and Zhu [24]. The corresponding
operator Z := A with Az := Zz reads

Z(f) =
∑

z∈N

( ∑

T∈Tz

|T |/|ωz|(f |T )(z)

)
ϕz.

Since the choice (2.4) immediately implies (2.3), whence (2.1).
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2.4. Estimators. Given the spaces Ph andQh of Subsection 2.2 and the averaging
operator A : Ph → Qh of Subsection 2.3, we define, for any fixed ph ∈ Ph, the
averaging estimators

ηM := min
rh∈Qh

‖ph − rh‖L2(Ω) ≤ ηA := ‖ph −A(ph)‖L2(Ω).

For the ZZ averaging operator from Example 2.2, we define

ηZ := ‖ph − Z(ph)‖L2(Ω).

Finally, given any ph ∈ Ph and E ∈ E let [ph]|E denotes the jump of ph across
the edge (if d = 2) or face (if d = 3) E with the L2 norm ‖[ph]|E‖L2(E) along E

ηE := (
∑

E∈E
hE‖[ph]|E‖2L2(E))

1/2.

Throughout this paper, there are no Neumann boundary conditions on p and hence
only interior edges are under consideration by the convention [ph]|E := 0 if E ∈ EΓ.

All considered estimators are applicable once a triangulation and the spaces Ph

and Qh are known.

3. Efficiency of all averaging schemes and all problems

There is no need to specify the boundary value problem in order to apply the
estimators ηM ≤ ηA. This section is devoted to prove that all averaging estimators
are generically efficient for smooth solutions of any problem.

3.1. Efficiency of ηM for smooth exact solution. Given the spaces Ph and
Qh of Subsection 2.2 and ηM of Subsection 2.4, there holds efficiency in the sense
of

(3.1) ηM ≤ ‖p− ph‖+ h.o.t.

The surprising fact is that p can be any smooth function, e.g. p ∈ H1(Ω;Rn), and
‖ · ‖ can be any norm such that the approximation properties of Ph and Qh justify
the notation of

(3.2) h.o.t. := min
qh∈Qh

‖p− qh‖

as higher-order terms when compared with ‖p − ph‖. The proof of (3.1) is via a
triangle inequality: For any qh ∈ Qh there holds

ηM ≤ ‖ph − qh‖ ≤ ‖p− ph‖+ ‖p− qh‖.
Thus efficiency (3.1) holds without any reference to the underling boundary value
problem. For instance, if ph denotes some flux approximation in a first-order con-
forming or nonconforming or lowest-order mixed FEM, then the L2 error ‖p− ph‖
is of first order, while (3.2) is of second order provided the exact flux p is sufficiently
smooth.

For PDEs in divergence form and conforming first-order finite element methods,
this efficiency result can be improved such that the higher-order terms are explicitly
known as data oscillations. We refer to Subsection 4.5 below for a discussion of this
point.

In this paper, the efficiency of ηA is reduced to that of ηM .
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3.2. Equivalence ηM ≈ ηA. The above very general description requires an extra
condition for the claimed equivalence. For each node z ∈ N we suppose that the
averaging operator Az is exact on N(ωz).

Theorem 3.1. Suppose that A : Ph → Qh satisfies, for any z ∈ N , that

(3.3) Az(f) = f(z) for all f ∈ N(ωz).

Then there exists a mesh-size independent positive constant Ceff with

ηM ≤ ηA ≤ Ceff ηM .

Remark 3.1. A detailed analysis for P1 finite element methods on simplices in Rn

with stiffness matrices, strengthened Cauchy inequalities, and some adaptation of
Ascoli’s lemma in [8] shows that the constant Ceff does not depend on the shape of
the geometry. In fact,

Ceff ≤
√

10 for d = 2 and Ceff ≤
√

15 for d = 3.

Proof. The first inequality is obvious and the proof concerns the second. Through-
out the first step and main part of the proof let T denote a fixed element. In
particular, the coefficients pT,z of a fixed ph|T may depend on T (and are possibly
different for different elements). Set

ph|T =
∑

z∈N (T )

pT,zϕz|T and qh := Aph =
∑

z∈N
qzϕz for qz := Az(ph|ωz ).

For the fixed T with set of vertices N (T ) := N ∩ T let

ωT = ∪z∈N (T )ωz

denote the interior of the union ∪z∈N (T )Tz of all triangles which share at least some
vertex with T . The expressions

%1(ph) := ‖ph −Aph‖L2(T ) and %2(ph) := min
rh∈Qh

‖ph − rh‖L2(ωT )

define two seminorms on the finite-dimensional vector space

Ph|ωT := {ph|ωT : ph ∈ Ph}.
Suppose that ph ∈ Ph satisfies %2(ph|ωT

) = 0. Then, ph|ωT
= rh|ωT

for some
rh ∈ Qh. In particular, for any z ∈ N (T ), f := ph|ωz ∈ N(ωz) is a proper test
function in (3.3) and hence (notice ph is continuous in ωz) there holds Az(ph|ωz ) =
ph(z). Since this holds for any z ∈ N (T ), ph|T = qh|T , and so %1(ph|T ) = 0. In
conclusion, we have

%−1
2 ({0}) ⊆ %−1

1 ({0}).
As a further consequence of arguments for the equivalence of norms on finite-
dimensional vector spaces, is follows that

%1(ph|ωT
) ≤ CT %2(ph|ωT

) for all ph ∈ Ph.

A scaling argument proves that the constant CT . 1 does not depend on the mesh-
size (but, at this point, possibly depends on the shape) of the elements in ωT (e.g.
through their interior angles or aspect ratios).

Given any rh ∈ Qh, there holds

%2(ph|ωT ) ≤ ‖ph − rh‖L2(ωT ).

Hence, the sum over all elements T ∈ T in the preceding two estimates and the
fact that the covering (ωT : T ∈ T ) of Ω has a finite overlap CT lead to

‖ph − qh‖2L2(Ω) ≤ (max
K∈T

C2
K)

∑

T∈T
‖ph − rh‖2L2(ωT ) ≤ C2

eff ‖ph − rh‖2L2(Ω)
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with Ceff := C
1/2
T maxK∈T CK independent of the mesh-size. Since rh is arbitrary,

this concludes the proof. ¤

3.3. Equivalence ηM ≈ ηE . This equivalence holds without further assumptions.

Theorem 3.2. There holds
ηE . ηM .

Proof. The main argument of the proof is a local equivalence of norms. Given
any node z ∈ N , consider the finite-dimensional vector space Ph|ωz and the two
seminorms %3, %4 : Ph|ωz

→ R defined, for any ph ∈ Ph|ωz
, by

%3(ph):=(
∑

E∈Ez

hE‖[ph]|E‖2L2(E))
1/2 and %4(ph):= min

rh∈Qh

‖ph − rh‖L2(ωz).

Notice that the kernels %−1
j ({0}) = {f ∈ Ph|ωz

: %j(f) = 0} are equal for j = 3, 4,

%−1
3 ({0}) = (Ph|ωz

) ∩ C(ωz) = (Ph|ωz
) ∩ (Qh|ωz

) = %−1
4 ({0}).

A scaling argument shows that the constants in the equivalence

%3 ≈ %4 on Ph|ωz

do not depend on the size of the elements in Tz (but may depend on their shapes,
e.g., through their interior angles or aspect ratios).

The sum of these estimates for all z ∈ N yields

(3.4) η2
E ≈

∑

z∈N
min

rh∈Qh|ωz

‖ph − rh‖2L2(ωz).

Since the covering (ωz : z ∈ N ) of Ω has a finite overlap, the preceding equivalence
leads to ηE . ηM . ¤

The subsequent result implies the remaining estimate ηM . ηE .

Theorem 3.3. There holds
ηZ . ηE .

Proof. Adopt notation of the proof of Theorem 3.1 for A = Z and one fixed T .
Since

‖ph − Z(ph)‖2L2(T ) . |T |1/2 max
z∈N (T )

|ph(z)− Zz(ph)|,
one studies the seminorm %5 defined for each node z ∈ N by

%5(ph) := |ωz|1/2 |ph|T (z)− Zz(ph)| for all ph ∈ Ph|ωz .

The proof of Theorem 3.2 involved %4 on Ph|ωz . The above arguments imply
%−1
4 ({0}) ⊆ %−1

5 ({0}) and, by scaling, eventually lead to %5 . %4. The combination
with the first estimate of this proof leads to

‖ph − Z(ph)‖2L2(T ) .
∑

z∈N (T )

min
rh∈Qh|ωz

‖ph − rh‖2L2(ωz).

The sum over all elements T , the finite overlap of all patches ωz, and the already
established estimate (3.4) from the end of the proof of Theorem 3.2 verifies

‖ph − Z(ph)‖2L2(Ω) .
∑

z∈N
min

rh∈Qh|ωz

‖ph − rh‖2L2(ωz) ≈ η2
E .

¤
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4. A Posteriori Error Analysis for PDE in Divergence Form

This section is devoted to some reliability estimates for equations of divergence
form. This is perhaps the most general and abstract form that allows the precise
formulation of reliability and efficiency in an a posteriori error analysis.

4.1. Model Problem in Divergence Form. Given a right-hand side f ∈ L2(Ω;
Rm), suppose that the exact flux p ∈ L := L2(Ω;M) satisfies

f + div p = 0 in Ω.

The weak form is satisfied by the discrete flux ph ∈ Ph in the sense of∫

Ω

ph : Dvh dx =
∫

Ω

f · vh dx for all vh ∈ Vh ⊂ V := H1
0 (Ω;Rm).

Here and throughout this section, S1
0 (T ) ⊆ Vh, i.e., Vh is supposed to include

S1
0 (T ) := {vh ∈ S1(T ) : vh = 0 on ∂Ω} = S1(T ) ∩ V ⊆ Vh.

The first-order approximation property and the H1 stability of a Clément type
approximation operator J : V → Vh (also called quasi interpolation operator)

‖v − J(v)‖2V +
∑

T∈T
h−2

T ‖v − J(v)‖2L2(T ) +
∑

E∈E
h−1

E ‖v − J(v)‖2L2(E) . ‖v‖2V

are well-established. The paper [13] studies a simple example and gives explicit
constants in this estimate.

It is understood that p exists but is not known, while the data f and Ω as well
as the triangulation T and the discrete flux ph ∈ Ph are given.

4.2. Data Oscillations. Given the right-hand side f ∈ L2(Ω;Rm) and the tri-
angulation T , let fT ∈ P0(T ;Rm) denote the piecewise integral means defined
by

fT |T := fT := |T |−1

∫

T

f(x) dx for all T ∈ T .

Let hT ∈ P0(T ) denote the piecewise constant mesh-size defined by hT |T := hT :=
diam(T ) for all T ∈ T . Then

osc(f ; T ) := ‖hT (f − fT )‖L2(Ω) =

(∑

T∈T
h2

T ‖f − fT ‖2L2(T )

)1/2

denotes the elementwise data oscillations. Given any patch ωz set

fωz := |ωz|−1

∫

ωz

f(x) dx.

Then

osc(f ;N ) :=

(∑

z∈N
diam(ωz)2‖f − fωz‖2L2(ωz)

)1/2

denotes the patchwise data oscillations.
Notice that a Poincaré inequality for smooth data f proves that the data oscil-

lations are of quadratic order as the mesh-size tends to zero in the sense that

osc(f ;N ) + osc(f ; T ) . ‖h2
T Df‖L2(Ω) in case f ∈ H1(Ω;Rm).

The subsequent theorem is essentially known and recalled here with a sketch of
the proof for the reader’s convenience. The proof gives a local form of the assertion
which is not displayed for brevity.
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Recall that [ph] is the jump of ph accross E and νE is the unit normal vector for
E ∈ E , and define divh ph as the elementwise divergence of ph.

Theorem 4.1. There holds

‖hT (f + divh ph)‖L2(Ω) .
(∑

E∈E
hE‖[ph]νE‖2L2(E)

)1/2

+ osc(f + divh ph;N ).

Proof. Let ∈ N (Ω) denote an interior node and abbreviate hz := diam(ωz) and
fz := fωz

∈ Rm. Write g := f + divh ph and define gz := gωz
∈ Rm. Since

gz ϕz ∈ Vh, the discrete equilibrium condition yields
∫

Ω

f · gz ϕz dx =
∫

Ω

ph : D(gzϕz) dx.

An elementwise integration by parts shows that this equals
∑

E∈Ez

∫

E

(gzϕz) · [ph]νE ds−
∫

Ω

ϕz gz · divh ph dx.

Since g = f + divh ph, the above two identities combine to
∫

Ω

g · gz ϕz dx =
∑

E∈Ez

∫

E

(gzϕz) · [ph]νE ds.

Up to multiplicative constants, this is bounded from above by

‖gz‖L2(ωz)

( ∑

E∈Ez

h−1
E ‖[ph]νE‖2L2(E)

)1/2

.

On the other hand, with some elementary considerations,

‖g‖2L2(ωz) = ‖g − gz‖2L2(ωz) + ‖gz‖2L2(ωz)

.
∫

Ω

g · gz ϕz dx + ‖g − gz‖2L2(ωz).

The final estimate and the first three identities displayed in this proof imply

h2
z‖g‖2L2(ωz) .

∑

E∈Ez

hE‖[ph]νE‖2L2(E) + osc(g;Nz)2.

¤

4.3. Explicit Residual-Based APosterioriErrorEstimates. This subsection
introduces an abstract error norm ‖D∗(p − ph)‖V ∗ and adopts a reliable explicit
residual-based error estimator ηR from the literature.

The first derivative D : V → L and its dual D∗ : V ∗ → L define an error norm
‖D∗(p− ph)‖V ∗ , that is

‖D∗(p− ph)‖V ∗ = sup
v∈V \{0}

∫
Ω
(p− ph) : Dv dx

‖v‖V
.

Theorem 4.2. There holds

‖D∗(p− ph)‖V ∗ . ‖hT (f + divh ph)‖L2(Ω) +

(∑

E∈E
hE‖[ph]νE‖2L2(E)

)1/2

.



342 CARSTEN CARSTENSEN

Proof. The proof is standard in a slightly different context and hence we give only a
sketch of it. With the Clément type approximation operator J from Subsection 4.1
it follows for any v ∈ V and w := v − J(v) ∈ V that∫

Ω

(p− ph) : Dv dx =
∫

Ω

(p− ph) : Dw dx =
∫

Ω

f · w dx−
∫

Ω

ph : Dw dx.

An elementwise integration by parts shows

−
∫

Ω

ph : Dw dx =
∫

Ω

w · divh ph dx−
∑

E∈E

∫

E

w · [ph]νE ds.

The combination of the foregoing two identities with the first-order approximation
properties and the H1 stability leads to an upper bound of

∫
Ω
(p−ph) : Dv dx/‖v‖V

and so to the assertion. This is standard [23] and we omit further details. ¤

The combination of Theorem 4.1 and 4.2 immediately implies the following re-
fined version of Theorem 4.2.

Theorem 4.3. There holds

‖D∗(p− ph)‖V ∗.
(∑

E∈E
hE‖[ph]νE‖2L2(E)

)1/2

+ osc(f + divh ph;N ).

¤
4.4. Reliability of all Averaging Estimators up to Data Oscillations. For
ph ∈ P0(T ;M) and f ∈ H1(Ω;Rm), osc(f +divh ph;N ) . ‖h2

T Df‖L2(Ω) is of higher
order and so the normal components of the edge contributions in Theorem 4.3 are
reliable up to higher-order terms.

Theorem 4.4. Suppose ph ∈ P0(T ;M) and f ∈ H1(Ω;Rm). Then there holds

‖D∗(p− ph)‖V ∗.
(∑

E∈E
hE‖[ph]νE‖2L2(E)

)1/2

+ ‖h2
T Df‖L2(Ω).

¤
Since the edge contributions are bounded from above by ηE ≈ ηM ≈ ηA ≈ ηZ ,

this result of dominating edge-contributions reads the reliability of all averaging
techniques in the sense of

C1‖D∗(p− ph)‖V ∗ − C2‖h2
T Df‖L2(Ω) ≤ ηM ≤ ηA ≈ ηZ .

The preceding scenario allows complete error control for conforming first-order
finite element methods with ph = CDuh and uh ∈ S1(T ;Rm). In particular,
|[ph]| = |[ph]νE | because the tangential components of jumps vanish (because of the
continuity of uh along the edge provided C is continuous there).

This is untrue for nonconforming first-order finite element methods with ph =
CDhuh where uh ∈ P1(T ;Rm) is continuous at the midpoint of edges (and zero
at midpoints of boundary edges). However, a Helmholtz decomposition of p − ph

shows that we need to estimate the divergence − div = D∗ and the curl of p− ph.
For n = 2 space dimensions, the curl is just a rotated version of the divergence
and so the above result apply. Therein, the remaining crucial point is the proof
of

∫
Ω
(Dhuh) : (Curlvh) dx = 0 for any (conforming) vh ∈ S1

0 (T ;Rm). This follows
from the continuity at midpoints by an elementwise integration by parts and the
fact

∫
E

[uh] ·(∂uh/∂s) ds = 0. Details about those arguments can be found in [7, 11]
and for three space dimensions in [12].
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As the final outcome for first-order conforming or nonconforming finite element
methods, there is reliability of all averaging estimators in the sense of

C1‖p− ph‖L − C2‖h2
T Df‖L2(Ω) ≤ ηM ≤ ηA ≈ ηZ .

4.5. Efficiency of Averaging Estimators up to Data Oscillations. The edge
contributions in Theorem 4.1 and 4.2 allow for a lower bound as well.

Theorem 4.5. There holds
(∑

E∈E
hE‖[ph]νE‖2L2(E)

)1/2

. ‖D∗(p− ph)‖V ∗ + osc(f ; T ).

Proof. This is a modification of Verfürth’s inverse estimation technique [23] and
hence we present only a sketch here. Since [ph]νE is affine along the fixed edge
E ∈ E , it is recast as the sum of two or three (in 2D or 3D) hat functions attached
to the vertices of E. This function w is uniquely defined. Let bE denote the edge-
bubble function which is the product of all (two or three) aforementioned nodal
basis functions which are nonzero along E. This defines wbE ∈ H1

0 (ωE ;Rm) with

hE‖[ph]νE‖2L2(E) ≤ hE

∫

E

wbE · [ph]νE ds = hE

∫

E

v · [ph]νE ds.

Herein, the function v is defined by subtraction of α±bT± from w, bT± denotes the
element bubble function (defined as the product of all nodal basis function whose
support includes the neighboring element T± of E). The coefficient α± is chosen
such that v ∈ H1

0 (ωE ;Rm) has piecewise integral mean zero. The elementwise
integration by parts of hE

∫
E

v · [ph]νE ds then leads to the assertion. This is
standard [23] and we omit further details. ¤

For first-order conforming finite element methods, Theorem 4.5 reads

ηM ≤ ηZ ≈ ηA ≈ ηE . ‖p− ph‖L + osc(f ; T ).

Compared to Subsection 3.1 the higher-order terms are now data oscillations osc(f ; T )
and do depend on the smoothness of the given right-hand side but do not depend
on the smoothness of the unknown exact solution.

5. Concluding remarks

5.1. Brief Remarks on the History of Averaging Estimators. The origin
of smoothening postprocessing steps dates back to the graphical representation
of piecewise constant stress approximations in computational mechanics. Since a
coarse piecewise stress function plot simply looked too discontinues, and the graphic
programs easily allowed continuous piecewise linear approximations, it became an
immediate issue to average at nodal points. The averaging operator A of this paper
is precisely of that form.

The operator ηZ was then suggested by engineers amongst many other strategies
for an heuristic gradient recovery [24]. However, the treatment of boundary condi-
tions and insight in the foundation of this estimator was lacking over years. There
were even attempts to discredit this estimator by laborious numerical experiments.

Superconvergene phenomena for highly symmetric meshes and very smooth func-
tions are available far away from the boundary. For instance in the context of first-
order finite element methods, the difference Ihu−uh can be much smaller than the
error u− uh. If so, the averaged solution on symmetric patches is very easily seen
to yield an asymptotically exact estimator ηZ .
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A first mathematical proof for that dates back to Rodriguez [21]. He also essen-
tially proved Theorem 4.2 in [22] and so set the mathematical foundation for the
reliability of ηZ . He also noticed (a variant of) ηZ ≈ ηE with a different proof [23].

The reliability of ηZ on unstructured grids has been indicated in the literature
[21, 22, 20, 6] but was not mentioned in the (otherwise comprehensive) works [1,
2, 17, 23]. The author was unaware of Rodriguez’s result [22] when he started to
work on the mathematical justification [16] that ended in the conclusion that all
averaging techniques are reliable [11]. This is much of a theoretical evidence in
support of the mentioned numerical experiments.

The fact that all averaging estimators are efficient is a newer result [8, 9] which
is studied in this paper with new proofs.

5.2. Applications. The discussion in this paper is very general and outlines the
relatively simple arguments. In many ways, it generalizes and complements the
overview [9] with a series of explicit examples. Hence, in this paper, we can mention
that reliable and efficient averaging techniques are described for general boundary
value problems, the Poisson, Stokes and Lamé equations, treated with conforming,
nonconforming, and even some mixed finite element methods in [11, 12, 14, 15].

Surprisingly, averaging techniques are not restricted to partial differential equa-
tions. In fact, the same techniques apply to variational inequalities as well as the
affirmative results in [5, 10] on elastoplastic and obstacle problems.

Averaging for higher-order finite element methods is possible for a local variant
established in [4].

Whenever one has some residual-based error estimator for a problem in diver-
gence form, one can see through Theorem 4.1 that the edge-contributions dominate
and then deduce reliability and efficiency as in Subsection 4.4-4.5.

Another averaging technique for unstructured grids is the use of averages over
larger patches, cf., e.g., [19, 9], known to the experts since the eighties. For a brief
sketch, suppose that we are given two meshes TH and Th such that (for the ease of
this brief illustration) Th is a uniform refinement of TH such that typical mesh-sizes
H and h of TH and Th, respectively, satisfy

H2 ¿ h ¿ H.

Suppose the Poisson problem has the exact solution u and discrete (fine) solution
uh. Let S2(TH) denote the TH -piecewise quadratic polynomial subspace of C(Ω).
Let uH and uhH denote the finite element approximations in S2(TH) of u and uh,
respectively. Then, with h.o.t. which depend crucially on the higher smoothness
of u,

η := ‖Duh −DuhH‖ is computable
and (cf., e.g., [9] for the simple proof) is always efficient and reliable for small h/H
in the sense that

η − h.o.t. ≤ ‖p− ph‖L ≤ η + h.o.t.
1− C3 h/H

.

Throughout this paper, the conditions for reliability are smoothness of coef-
ficients and right-hand sides but not necessarily of the Lipschitz domain or the
(unknown) exact solution. At the moment, time-depending problems and problems
with accumulated errors or with pollution are excluded. Moreover, the robustness
of averaging estimators with respect to crucial parameters jumping or oscillating
coefficients requires particular attention (cf. the end of Subsection 5.4 on [18] for
the latter point).
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5.3. Mixed Boundary Conditions. The formulae of this paper need to be mod-
ified in case of Neumann or traction boundary conditions. It is the aim of this
subsection to describe the necessary modifications in a general setting [8] (e.g. for
the Poisson problem) with m = 1 and

u = uD on ΓD and pν = g on ΓN .

Therein, the boundary Γ = ∪EΓ is split into a relatively closed part ΓD and a
remaining part ΓN := Γ\ΓD such that any edge E ∈ EΓ belongs either to ΓD or
to ΓN . That is, the two disjoint subsets ED and EN of EΓ are supposed to satisfy
ED = ∅ or ED = {E ∈ EΓ : E ⊂ ΓD} as well as EN = ∅ or EN = {E ∈ EΓ : E ⊂ ΓN}.

Given ED and EN , the boundary data g = pν ∈ L2(ΓN ) for the traction and
uD ∈ H1/2(ΓD) ∩ C(ΓD) for the displacements are supposed to satisfy g ∈ C(ED)
and uD ∈ C1(EN ), i.e.,

g|E ∈ C(E) for all E ∈ EN and uD|E ∈ C1(E) for all E ∈ ED.

On each E ∈ ED, let τ
(j)
E denote a tangential unit vector for j = 1, . . . , n − 1 such

that (νE , τ
(1)
E , . . . , τ

(n−1)
E ) is a Cartesian basis of Rn. Then, ∇EuD denotes the

tangential derivative and, given a ∈ Rn, (a)E denotes the vector of all components
of a in (τ (j)

E )n−1
j=1 , e.g. (a)E = (τ (1)

E ·a, τ
(2)
E ·a) for n = 3; ∇EuD = (∇uD)E = ∂uD/∂s

for n = 2.
The Dirichlet and Neumann boundary conditions on the gradient p = ∇u are

asserted at each boundary node z ∈ N by p(z) ∈ Az for the affine subspace

(5.1) Az := {a ∈ Rn : ∀E ∈ Ez ∩ EN , g(z) = a · νE

and ∀E ∈ Ez ∩ ED,∇EuD(z) = (a)E}
of Rn. Set Az = Rn for z ∈ N ∩ Ω and suppose Az 6= ∅ for all z ∈ N . Finally, let
πz : Rn → Rn denote the orthogonal projection onto Az,

Az = πz(0) + Vz,

where Vz is a linear subspace of Rn. The (non-linear) orthogonal projection πz is
Lipschitz continuous with Lip(πz) ≤ 1 and, for each a ∈ Rn, a− πz(a)⊥Vz.

The suggested averaging operator A then is the composition of local averaging
followed by projection, i.e., for any f ∈ P1(T ;M),

A(f) :=
∑

z∈N
πz(Az(f |ωz ))ϕz.

5.4. Numerical Examples. Many numerical examples give evidence of an amaz-
ing accuracy of the ZZ averaging scheme in the context of piecewise constant fluxes
and this is well-documented in many papers including [10, 11, 4, 14, 15]. Mesh
perturbations in some of these papers indicate that a local symmetry is important
for that. An explanation is that local superconvergence phenomena are responsible
for the high precision of ηZ .

The work [11] also displays numerical results for mixed finite element methods
and the estimator ηM and ηA. Their reliability is proved therein, but it is empha-
sized that the efficiency of ηA remains unclear because A computes the nodewise
average of the integral means (and not of their nodal values) and hence may violate
(2.1).

The averaging space Qh could be modified to some finite element space with

Qh ⊂ P1(T ;M) ∩H(div,Ω;M).
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The latter set H(div,Ω;M) ⊂ H1(Ω;M) is the vector space of allM-valued Lebesgue
functions Q ∈ L2(Ω;M) with a weak divergence in L2(Ω;Rm). For instance, mixed
FEM could be employed for Qh. We refer to [18] for details and results in situations
in which jumping coefficients suggest to relax the strict continuity conditions in the
averaging functions.
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