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Abstract The adaptive algorithm for the obstacle problem presented in this paper
relies on the jump residual contributions of a standard explicit residual-based a pos-
teriori error estimator. Each cycle of the adaptive loop consists of the steps ‘SOLVE’,
‘ESTIMATE’, ‘MARK’, and ‘REFINE’. The techniques from the unrestricted vari-
ational problem are modified for the convergence analysis to overcome the lack of
Galerkin orthogonality. We establish R-linear convergence of the part of the energy
above its minimal value, if there is appropriate control of the data oscillations. Sur-
prisingly, the adaptive mesh-refinement algorithm is the same as in the unconstrained
case of a linear PDE—in fact, there is no modification near the discrete free boundary
necessary for R-linear convergence. The arguments are presented for a model obstacle
problem with an affine obstacle χ and homogeneous Dirichlet boundary conditions.
The proof of the discrete local efficiency is more involved than in the unconstrained
case. Numerical results are given to illustrate the performance of the error estimator.
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456 D. Braess et al.

1 Introduction

Let Ω to be a bounded, polygonal domain in R
2 with boundary Γ = ∂Ω . An obstacle

is defined in Ω by an affine function χ on Ω̄ with χ ≤ 0 on Γ . Adopting standard
notation from Sobolev space theory, we set V := H1

0 (Ω), and we denote by K ⊂ V
the non-empty, closed, convex set

K := {v ∈ V | v ≥ χ a.e. in Ω}.

Let (·, ·)0,Ω denote the L2-inner product and introduce the bilinear form a(·, ·) :
V × V → R and, given f ∈ H1(Ω), the functional b ∈ V ∗ = H−1(Ω) according to

a(v,w) := (∇v,∇w)0,Ω for all v,w ∈ V,

b(v) := ( f, v)0,Ω for all v ∈ V .

Then the energy functional

Π(v) := 1

2
a(v, v) − b(v) (1)

is defined for v ∈ V and minimized over K or over discrete subsets K�. The equivalent
variational inequality of the elliptic obstacle problem reads: Find u ∈ K such that

a(u, v − u) ≥ b(v − u) for all v ∈ K . (2)

It is well known that (2) admits a unique solution u ∈ K ; see, e.g., [23], which equals
the minimizer of Π in K . We introduce σ ∈ V ∗ as the Lagrange multiplier given by

〈σ, v〉∗ := a(u, v) − b(v) for all v ∈ V, (3)

where 〈·, ·〉∗ stands for the dual pairing between V ∗ and V . A direct consequence of
(2) reads

σ ∈ V ∗+, i.e., 〈σ, v〉∗ ≥ 0 for all v ∈ V+, (4)

where V+ := {v ∈ V | v ≥ 0 a.e.} is the positive cone in V . Moreover, we have the
following complementarity condition

〈σ, u − χ〉∗ = 0. (5)

The numerical solution of (2) by finite element discretizations has been intensively
studied; see, e.g., [18]. We choose shape regular, simplicial triangulations {T�(Ω)}�
of Ω , and refer to V� ⊂ V as the corresponding finite element spaces of globally
continuous and piecewise linear finite elements with respect to T�(Ω). There exists a
unique finite element solution u� for the mesh T�(Ω) in the cone K� := K ∩ V� with

a(u�, v� − u�) ≥ b(v� − u�) for all v� ∈ K�. (6)
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Convergence of an adaptive FEM for an obstacle problem 457

Let σ� ∈ V ∗
� be the discrete Lagrange multiplier associated to (6) according to

〈σ�, v�〉∗ := a(u�, v�) − b(v�) for all v� ∈ V�.

Besides the efficient numerical solution of (6), adaptive refinements of the finite
element mesh on the basis of appropriate a posteriori error estimators is an important
issue. Adaptive finite element methods for partial differential equations and systems
are well established for residual- or hierarchical-type estimators, local averaging tech-
niques, or the so-called goal-oriented dual weighted approach; see, e.g., the mono-
graphs [1,3,4,17,26,34] and the references therein. For elliptic obstacle problems we
refer to [2,5,7,15,21,22,27,28,31,32].

On the other hand, there is only little work regarding a rigorous convergence analy-
sis. For standard conforming finite element approximations of linear elliptic boundary
value problems, pioneering work has been done in [16] followed by [25] where the
role of data oscillations has been clarified. A different approach with techniques from
approximation theory established optimal order of convergence under mild regularity
assumptions [6,30]. For nonstandard finite element methods such as mixed methods,
nonconforming elements and edge elements a convergence analysis has been provided
in [11–13]. The basic ingredients of the convergence proofs are the reliability of the
estimator, its discrete local efficiency, and a so-called bulk criterion taking care of an
appropriate selection of edges and elements for refinement.

In this paper, we develop an adaptive finite element algorithm for the
elliptic obstacle problem (2). The analysis of the adaptive method shows that in general
we can expect an energy reduction property, but not necessarily a guaranteed reduction
in the energy norm. Energy reduction was also considered with adaptive algorithms
for other nonlinear variational problems [33]. The analysis uses the equivalence of
two well-known error estimators for the obstacle problem which depend on the jumps
on the edges of the mesh.

In Sect. 2 we present the adaptive loop focusing on a residual-type a posteriori error
estimator and a bulk criterion selecting edges for refinement. Section 3 is devoted to
the reliability of the estimator, whereas its discrete local efficiency is shown in Sect. 4.
Combined with the bulk criterion, this results in an energy reduction property which
is established in Sect. 5 as the main result of the paper. The final Sect. 6 contains
numerical results illustrating the performance of the error estimator.

We conclude this section with some notations. For D ⊆ Ω , we denote the L2-norm
on L2(D) by ‖ · ‖0,D and refer to

||| · ||| := a(·, ·)1/2

as the energy norm. Moreover, for a simplicial triangulation T�, we denote the set
of interior nodal points by N� and the set of interior edges by E�. We set hT :=
diam(T ), T ∈ T�, and hT := max{hT |T ∈ T�}. We refer to hE , E ∈ E�, as the length
of the edge E . Further, ΩE := T+ ∪ T− stands for the patch formed by the triangles
T± ∈ T� sharing E = T+ ∩ T− as a common edge. Finally, given two expressions A
and B, we write A � B if there exists a constant c > 0, depending only on the shape
regularity of the triangulation such that A ≤ cB.
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458 D. Braess et al.

2 The adaptive loop

Adaptive finite element methods consist of successive loops of a cycle involving the
steps ‘SOLVE’, ‘ESTIMATE’, ‘MARK’, and ‘REFINE’. Here, ‘SOLVE’ means the
numerical solution of the discretized problem on the given mesh. For the numerical
solution of (6), efficient iterative solvers such as multigrid methods based on active set
strategies [19,20] or monotone multigrid methods [24] are available. For estimating
the discretization error in the next step ‘ESTIMATE’, we consider the estimator

η2
� :=

∑

E∈E�

η2
E (7)

based on the edge residuals

ηE := h1/2
E ‖νE · [∇u�]‖0,E for E ∈ E�. (8)

Here νE is the unit normal to the (interior) edge E and [∇u�] refers to the jump of
∇u� across E . (The product νE · [∇u�] is independent of the orientation of E .) The
estimator (7) is known from the unconstrained case [14]. The convergence analysis
further invokes data oscillations [25]

osc�( f ) :=
⎛

⎝
∑

E∈E�(Ω)

osc2
E ( f )

⎞

⎠
1/2

, (9)

Osc�( f ) :=
⎛

⎝osc2
�( f ) +

∑

T ∈TΓ

h2
T ‖ f ‖2

0,T

⎞

⎠
1/2

, (10)

where oscE ( f ) := |ΩE |1/2 ‖ f − fΩE ‖0,ΩE , and fΩE := |ΩE |−1
∫
ΩE

f dx is the
integral mean of f on the patch ΩE . Moreover, TΓ := {T ∈ T�| T ∩ Γ �= ∅}. The
second term on the right-hand side of (10) vanishes if χ < 0 holds on the boundary.

The core of the step ‘MARK’ is a bulk criterion [16]. Let Θ be a non-negative
constant with 0 < Θ < 1. We select a set M� of edges E ∈ E� such that

∑

E∈M�

η2
E ≥ Θ

∑

E∈E�

η2
E . (11)

The bulk criterion can be implemented by a greedy algorithm; see, e.g., [12,13].
Finally, in the last step ‘REFINE’ we generate a fine mesh T�+1 as follows: If

E = T+ ∩ T− ∈ M�, we refine T± ∈ T� by repeated bisection such that at least
one interior nodal point in T± is created [25]. In order to guarantee a geometrically
conforming triangulation, new nodal points are generated on edges E ∈ E� \M� such
that E = T± ∩ T ′ for some T ′ ∈ T�, and the element T ′ is bisected by joining E with
the vertex of T ′ opposite to E .
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Convergence of an adaptive FEM for an obstacle problem 459

Moreover, the refinement and the new mesh T�+1 shall also take care of a reduction
of the data oscillation; cf. [25]. Specifically, we require that

Osc�+1( f ) ≤ κ Osc�( f ) (12)

for some 0 < κ < 1. This will be achieved by additional refinements, if necessary.

3 Reliability

The reliability of the estimator will be stated in terms of the energy functional Π from
(1), and not in terms of the energy norm ||| · |||. In this way we circumvent the lack of
Galerkin orthogonality.

Theorem 1 (reliability) Let η� and Osc�( f ) be given by (7)–(10). There holds

ε� := Π(u�) − Π(u) � η2
� + Osc2

�( f ). (13)

Proof We start with a reliability result from [5]. Let

η̃� := min
q

‖∇u� − q‖0,Ω

be the a posteriori error estimator based on averaging where q is an arbritrary
continuous P1 finite element function in each of its two components. Since the func-
tion χ that defines the obstacle is assumed to be an affine function and we restrict
ourselves to homogeneous Dirichlet boundary conditions, the estimate in [5, Theorem
3] reduces to

|||u − u�||| � η̃� + ‖h2
T ∇ f ‖0 +

⎛

⎝
∑

T ∈TΓ

h2
T ‖ f ‖2

0,T

⎞

⎠
1/2

.

This estimate will be improved with respect to two items. If we look at Lemma 1 and
(2.5) in [5], we see that the term ‖h2

T ∇ f ‖0 actually stems from local data oscillations
(
∑

E∈E�
h2

E minz ‖ f − z‖2
0,ΩE

)1/2 and can thus be included in osc�( f ). Recalling (10)
we have

|||u − u�||| � η̃� + Osc�( f ). (14)

Next, we revive the term 〈σ, u − u�〉∗ that was abandoned during the proof of
Theorem 2 in [5] to obtain an improvement of (14)

|||u − u�|||2 + 〈σ, u − u�〉∗ � η̃2
� + Osc2

�( f ). (15)
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From (3) and the definition of Π it follows, for all v ∈ K , that

Π(v) − Π(u) = 1

2
a(v, v) − ( f, v) −

(1

2
a(u, u) − ( f, u)

)

+
(

a(u, u − v) − f (u − v) − 〈σ, u − v〉∗
)

= 1

2
|||v − u|||2 + 〈σ, v − u〉∗ . (16)

Both terms on the right-hand side are nonnegative for v ∈ K reflecting the minimal
property of the solution u. From (15) and (16) we deduce an a posteriori estimate for
the energy surplus instead of the energy norm

Π(u�) − Π(u) � η̃2
� + Osc2

�( f ).

It was shown in [8–10] that the estimator η̃� is equivalent to the estimator η� with the
edge residuals terms, and we obtain eventually (13). ��
Remark 3.2 We like to comment on the relation to other estimators in the literature.
As was shown in [7], for the obstacle problem we have

|||u − u�|||2 � η̂2
� + 〈σ�, u� − u〉∗ − 〈σ, u� − u〉∗ , (17)

where η̂� is an error estimator for the unconstrained problem. It may be one of the
commonly used estimators. The last term on the right-hand side can be shifted to the
left-hand side as done in (15). The other term in (17), namely 〈σ�, u� − u〉∗, is the
difficult one. In particular, the Lagrange multiplier σ� has to be approximated (by a
functional called σ+

� in [7]) in order to achieve a monotonicity property by which the
unknown solution u can be eliminated. This approximation is done, e.g. in [5] by the
mapping v �→ 〈σ�, J (v)〉∗ where J is a monotone interpolation operator and maps
into the finite element space.

Fortunately, the difficult term under consideration can be absorbed by the estimator
η̃� based on the averaging technique; cf. [5, Lemma 8]. Eventually, this process yielded
(13).

4 Discrete local efficiency

For proving the discrete local efficiency, we have to establish upper bounds for the edge
residual ηE , E ∈ M�, in terms of u�+1 − u�. We note that the Lagrange multipliers
do not enter into the estimates of this section.

Let E = ∂T+ ∩ ∂T− with T± ∈ T� and ΩE = T+ ∪ T−. We set P := mid(E) ∈
N�+1 \ N� and refer to P± ∈ N�+1 \ N� of T± as interior nodes with nodal basis
functions

ϕ := ϕP and ϕ± := ϕP± ∈ V�+1 with 0 ≤ ϕ, ϕ± ∈ H1
0 (ΩE ) ∩ V+.

123



Convergence of an adaptive FEM for an obstacle problem 461

Fig. 1 Notation for E ∈ M�

and the adjacent elements
T+, T− νE

P−
P+

E

P

T+ T−

The proof of local efficiency discusses several cases depending on

0 ≤ w�+1 := u�+1 − χ ∈ H1(Ω).

The first lemma provides a preparation for the proof of the subsequent Proposition 1
and contains arguments that are also found in proofs of the other cases (Fig. 1).

Lemma 1 For Q = P+ and Q = P− with nodal basis functions ϕQ = ϕ+ and
ϕQ = ϕ− supported at K = T+ and K = T−, respectively, and w�+1(Q) = 0 there
holds

h1/2
E ‖A · νE‖0,E � ‖∇w�+1 − A‖0,K for all A ∈ R2. (18)

Proof Since w�+1 ≥ 0 on K and w�+1(Q) = 0 for an interior point Q in K , ∇w�+1·νE

is piecewise constant and has nonnegative as well as nonpositive values on at least one
of the fine element domains in T�+1|K := {T ∈ T�+1| T ⊆ K }. Given A ∈ R

2, the
products A · νE and ∇w�+1 · νE have therefore opposite signs (or are zero) in at least
one element T ∈ T�+1|K , and there we have

|A · νE | ≤ ∣∣(∇w�+1|T − A) · νE )
∣∣ ≤ ∣∣∇w�+1|T − A

∣∣.

Since |T | ≈ |K | ≈ hE |E |, it follows that

h1/2
E ‖A · νE‖0,E � ‖∇w�+1 − A‖0,T � ‖∇w�+1 − A‖0,K .

��
The following proposition yields already the final estimate for the special case where

both points P+ and P− belong to the discrete coincidence set while Proposition 2
provides only a preliminary result for the case that one of them is in the discrete
non-coincidence set.

Proposition 1 If w�+1(P+) = w�+1(P−) = 0, then

ηE � ‖∇(u�+1 − u�)‖0,ΩE . (19)
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Proof Applying Lemma 1 with A = ∇w�|T± on T± we obtain

ηE ≤ h1/2
E ‖∇w�|T+ · νE‖0,E + h1/2

E ‖∇w�|T− · νE‖0,E

� ‖∇(w�+1 − w�)‖0,T+ + ‖∇(w�+1 − w�)‖0,T−
= ‖∇(u�+1 − u�)‖0,ΩE .

��
Proposition 2 If w�+1(P+) > 0 or w�+1(P−) > 0, then

−1

2
|ΩE |1/2

[
∂u�

∂νE

]
� ‖∇(u�+1 − u�)‖0,ΩE + oscΩE ( f ). (20)

Proof Without loss of generality, suppose that w�+1(P+) > 0. Hence,

b(ϕ+) = a(u�+1, ϕ+).

Recall ϕ = ϕP and notice b(ϕ) ≤ a(u�+1, ϕ). Choose α+ > 0 such that

ϕE := ϕ − α+ϕ+ ∈ V�+1 ∩ H1
0 (ΩE )

satisfies ∫

ΩE

ϕE dx = 0. (21)

Notice that α+ ≈ 1 and that b(ϕE ) ≤ a(u�+1, ϕE ). In view of (21), this gives

−a(u�+1, ϕE ) ≤ −(ϕE , f − fΩE )L2(ΩE ) � oscΩE ( f ).

An elementwise integration by parts verifies the well-established formula

1

2

∫

E

[
∂u�

∂νE

]
ds =

∫

E

ϕE

[
∂u�

∂νE

]
ds = a(u�, ϕE ).

The combination of the estimates above yields

−1

2

∫

E

[
∂u�

∂νE

]
ds = −a(u�, ϕE ) = a(u�+1 − u�, ϕE ) − a(u�+1, ϕE )

� ‖∇(u�+1 − u�)‖0,ΩE + oscΩE ( f ),

and the proof is complete. ��
The following two results cover the situation where P = mid(E) either belongs

to the discrete non-coincidence set (Proposition 3) or to the discrete coincidence set
(Proposition 4).
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Convergence of an adaptive FEM for an obstacle problem 463

Proposition 3 If w�+1(P) > 0, then

ηE � ‖∇(u�+1 − u�)‖0,ΩE + oscΩE ( f ). (22)

Proof The assertion follows as in the unconstrained case, since the assumption
w�+1(P) > 0 implies

b(ϕ) = a(u�+1, ϕ).

Hence,

1

2
ηE =

∣∣∣∣
∫

E

ϕP

[
∂u�

∂νE

]
ds

∣∣∣∣ = |a(u�, ϕ)| = |a(u�+1 − u�, ϕ) − b(ϕ)|.

In the case w�+1(P+) = 0 = w�+1(P−), Proposition 1 proves the assertion (even
without the oscillation term). Thus, we restrict our attention to the case that

w�+1(P+) > 0.

Since ϕ+ ∈ H1
0 (T+), it follows that

a(ul , ϕ+) =
∫

T+

∇ul∇ϕ+dx = −
∫

T+

∆ulϕ+dx +
∫

∂T+

∂ul

∂ν
ϕ+ds = 0,

and

a(u�+1 − u�, ϕ+) = b(ϕ+).

Defining ϕE = ϕ − α+ϕ+ as in the proof of Proposition 2, we obtain

ηE ≤ |a(u�+1 − u�, ϕE ) − b(ϕE )| � ‖∇(u�+1 − u�)‖0,ΩE + oscΩE ( f ).

��
Proposition 4 If 0 ≤ [

∂u�

∂νE

]
and w�+1(P) = 0, then

ηE � ‖∇(u�+1 − u�)‖0,ΩE . (23)

Proof Since w�+1 ≥ 0 and w�+1(P) = 0 at the interior point P = mid(E) of ΩE ,
there exist K+ ∈ T�+1|T+ and K− ∈ T�+1|T− with

∇w�+1|K+ · νE ≤ 0 ≤ ∇w�+1|K− · νE .
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It follows that

0 ≤
[

∂u�

∂νE

]
= ∇w�|K+ · νE − ∇w�|K− · νE

≤ ∇(w� − w�+1)|K+ · νE − ∇(w� − w�+1)|K− · νE

≤ ∣∣∇(w� − w�+1)|K+
∣∣ + ∣∣∇(w� − w�+1)|K−

∣∣.

Since |ΩE | ≈ |K±| ≈ hE |E |, this leads to

ηE = |E |1/2h1/2
E

[
∂u�

∂νE

]

� ‖∇(w�+1 − w�)‖0,K+ + ‖∇(w�+1 − w�)‖0,K−
� ‖∇(u�+1 − u�)‖0,ΩE .

��
The preceding results imply the announced efficiency. For completeness, we recall

that the obstacle is given by an affine function.

Theorem 2 (discrete local efficiency) For all E ∈ M�, there holds

ηE � ‖∇(u�+1 − u�)‖0,ΩE + oscΩE ( f ). (24)

Proof If w�+1(P+) = w�+1(P−) = 0, Proposition 1 proves the assertion and so
the remaining part of the proof assumes w�+1(P+) > 0 or w�+1(P−) > 0. If
w�+1(P) > 0, Proposition 3 proves the assertion and the remaining part of the proof
assumes w�+1(P) = 0. Then, if

[
∂u�

∂νE

] ≥ 0, Proposition 4 proves the assertion. Thus,

it remains to consider Proposition 2 for
[

∂u�

∂νE

] ≤ 0 with

ηE ≈ −|ΩE |1/2
[

∂u�

∂νE

]
� ‖∇(u�+1 − u�)‖0,ΩE + oscΩE ( f ).

��
Remark 4.7 The fact, that χ is affine has simplified the analysis at several occasions.
We point out that the error estimator does not satisfy discrete local efficiency in case
of, e.g., obstacles with kinks. In such a case, the estimator needs to be modified
appropriately.

5 Energy reduction

Now we are prepared to establish our main result on R-convergence of the adaptive
loop. Recalling ε� := Π(u�) − Π(u) we will show that lim sup�→∞ ε

1/�
� < 1; cf.

[29]. In order to be more specific, we denote the (multiplicative) constant which is
implicitly contained in (13) by cr and the constant in (24) by cdle.
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Theorem 3 (energy reduction) There exist constants 0 ≤ ρ < 1 and C > 0, depend-
ing only on the constant Θ in the bulk criterion and on the shape regularity of the
triangulations, such that

ε�+1 ≤ ρ ε� + C Osc2
�( f ). (25)

Proof The analogue of (16) for the discrete variational problem on the level � + 1
reads

Π(v) = Π(u�+1) + 1

2
|||v − u�+1|||2 + 〈σ�+1, v − u�+1〉∗ for all v ∈ K�+1.

Since the third term on the right-hand side is nonnegative, it follows that

Π(u�) − Π(u�+1) ≥ 1

2
|||u� − u�+1|||2.

Combining the bulk criterion (11) and the reliability (13) with the discrete local
efficiency of Theorem 2 we obtain

2(ε� − ε�+1) ≥ 1

cdle

∑

E∈M�

η2
E − osc2

�( f )

≥ Θ

cdle
η2

� − osc2
�( f )

≥ Θ

cdle

(
1

cr
ε� − Osc2

�( f )

)
− osc2

�( f ).

This proves the assertion

ε�+1 ≤
(

1 − Θ

2cdlecr

)
ε� + COsc2

�( f ).

��
Finally, the reduction of the data oscillations is guaranteed by (12), and we obtain

geometrical convergence with � := max{κ2, ρ} < 1 and ρ := 1 − Θ/(2cdlecr ).
In fact, (5.1) and (12) combine to

⎛

⎝ ε�+1

δ2
�+1

⎞

⎠ ≤
⎛

⎝ρ C

0 κ2

⎞

⎠

⎛

⎝ ε�

δ2
�

⎞

⎠ , (26)

where δ2
� := Osc2

�( f ) and (26) is understood componentwise. (We have even geo-
metric convergence of the sequence (ε� + 2Cδ2

� )� with C as above and the factor
max{(1 + κ2)/2, ρ}.)

This implies R-linear convergence of (ε�)�. Since (16) implies that

1

2
|||u − u�|||2 ≤ ε�,

there follows also R-linear convergence of the energy norm (|||u − u�|||)�.
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6 Numerical results

We provide numerical results for two examples. In each case a hierarchy of simplicial
triangulations is adaptively generated by the algorithm of Sect. 2. In the first example
there is no data oscillation, while in the second example the reduction of the data
oscillations has to be controlled. This is done with the same parameter as in the bulk
criterion, i.e., we choose κ = Θ . At each refinement level, the discretized problem
has been solved by a primal-dual active set strategy.

Example 1 (Smooth rotational symmetric solution) The obstacle problem (2) is con-
sidered on the square � := (−1.5,+1.5)2 with a constant right-hand side f ≡ −2
and the obstacle fixed by χ ≡ 0. The Dirichlet boundary conditions are given by the
trace of the exact solution

u =
⎧
⎨

⎩
r2/2 − ln(r) − 1/2, r ≥ 1,

0, elsewhere,

where r = |x |. The solution is visualized in Fig. 2.

Figure 3 contains the adaptively generated finite element mesh after 10 and 16
refinement steps, respectively, where Θ = 0.6 has been used in the bulk criterion. We
see that the refinement basically occurs in the inactive zone.

The convergence history is documented in Table 1 containing the total number Ndof

of degrees of freedom, the square root
√

ε� of the energy error (error in the energy
functional), the estimator, and the data oscillation Osc�( f ) per refinement level � in
case Θ = 0.6. Although f is constant in this example, due to (10), the term Osc�( f )

contains data contributions from the boundary of the computational domain. However,
as can be clearly seen, there is a rapid decrease of Osc�( f ). Figure 4 (left) provides
a graphical representation of the convergence history. The experimental convergence
rates for

√
ε� and η� are basically the same (≈ 0.5), whereas Osc�( f ) decays almost

twice as fast. Figure 4 (right) compares the decrease of the square root of the energy

Fig. 2 Solution for Example 1
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Convergence of an adaptive FEM for an obstacle problem 467

Fig. 3 Example 1: Adaptively generated mesh after 10 (left) and 16 (right) refinement steps (Θ = 0.6 in
the bulk criterion)

Table 1 Convergence history of
the adaptive refinement process
(Example 1)

� Ndof sqrtε� η� Osc�( f )

2 41 7.90e−01 1.55e+00 2.25e+00

4 143 3.68e−01 8.93e−01 9.49e−01

6 430 1.95e−01 5.12e−01 3.84e−01

8 1373 1.06e−01 2.80e−01 1.75e−01

10 4849 5.34e−02 1.46e−01 6.39e−02

12 16985 2.76e−02 7.69e−02 2.36e−02

14 58739 1.44e−02 4.17e−02 8.60e−03

16 190649 8.74e−03 2.32e−02 3.47e−03

18 656994 4.74e−03 1.24e−02 1.30e−03

10-3

10-2

10-1

100

101

101 102 103 104 105 106

N

θ = 0.6

εl
1/2

ηl
Oscl(f)

10-3

10-2

10-1

100

101 102 103 104 105 106

N

εl
1/2

θ = 0.4
θ = 0.6
θ = 0.8
uniform

0.5

1.0

Fig. 4 Example 1: Convergence history of the adaptive refinement process for Θ = 0.6 (left) and square
root of the error in the energy functional as a function of degrees of freedom for Θ = 0.4, 0.6, 0.8, and for
uniform refinement (right)
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error for adaptive refinement with the parameters Θ = 0.4, 0.6, 0.8 and for uniform
refinement. Due to the regularity of the solution, there are no significant benefits of
adaptive refinement.

Example 2 (Corner singularity; L-shaped domain) The obstacle problem (2) is consid-
ered on the L-shaped domain � := (−2,+2)2 \ [0,+2)× (−2, 0] with zero obstacle,
i.e., χ ≡ 0, and the right-hand side

f (r, ϕ) := −r2/3 sin(2ϕ/3)
(
γ

′
1(r)/r + γ

′′
1 (r)

)

−4

3
r1/3γ

′
1(r) sin(2ϕ/3) − γ2(r).

where, r̄ = 2(r − 1/4) and

γ1(r) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1, r̄ < 0,

−6r̄5 + 15r̄4 − 10r̄3 + 1, 0 ≤ r̄ < 1,

0, r̄ ≥ 1,

γ2(r) =
⎧
⎨

⎩
0 r ≤ 5/4,

1 elsewhere.

The exact solution

u(r, ϕ) = r2/3γ1(r) sin(2ϕ/3)

has a corner singularity at the origin as depicted in Fig. 5. It belongs to H5/3−ε(D)

for any ε > 0 and any open neighborhood D of the origin.

For Θ = 0.6 in the bulk criterion, Fig. 6 displays the adaptively generated meshes
after 10 and 18 refinement steps. As in the previous example, the refinement is essen-
tially restricted to the inactive zone.

Fig. 5 Solution for Example 2
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Fig. 6 Example 2: Adaptively generated mesh after 10 (left) and 18 (right) refinement steps (Θ = 0.6 in
the bulk criterion)

Table 2 Convergence history of
the adaptive refinement process
(Example 2)

� Ndof
√

ε� η� Osc�( f )

2 65 7.95e−01 9.56e−01 7.01e+00

4 113 3.71e−01 1.41e+00 1.70e+00

6 303 1.84e−01 7.30e−01 4.78e−01

8 1029 9.53e−02 4.19e−01 1.52e−01

10 3248 4.85e−02 2.20e−01 4.72e−02

12 11272 2.54e−02 1.14e−01 1.58e−02

14 39399 1.36e−02 5.95e−02 4.59e−03

16 136502 7.40e−03 3.14e−02 1.57e−03

18 467972 4.67e−03 1.69e−02 4.72e−04

10-4

10-3

10-2

10-1

100

101

101 102 103 104 105 106

N

θ = 0.6

εl
1/2

ηl
Oscl(f)

10-3

10-2

10-1

100

101 102 103 104 105 106

N

εl
1/2

θ = 0.4
θ = 0.6
θ = 0.8
uniform

0.5

1.0

Fig. 7 Example 2: Convergence history of the adaptive refinement process for Θ = 0.6 (left) and square
root of the error in the energy functional as a function of degrees of freedom for Θ = 0.4, 0.6, 0.8, and for
uniform refinement (right)
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Table 2 and Fig. 7 (left) display the convergence history with the same legends as in
the previous example. The experimental convergence rates of the square root

√
ε� of the

energy error and the estimator η� are roughly the same (≈0.5), whereas the oscillation
term Osc�( f ) decays twice as fast. Figure 7 (right) is devoted to a comparison of
adaptive refinement (for Θ = 0.4, 0.6, 0.8) and uniform refinement. The experimental
convergence rate of

√
ε� in case of uniform refinement is the same as for adaptive

refinement. However, in order to achieve a prescribed accuracy, the adaptive refinement
process needs an amount of degrees of freedom which is approximately an order of
magnitude less than for uniform refinement.
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