
Averaging Techniques for A Posteriori Error

Control in Finite Element and Boundary

Element Analysis

Carsten Carstensen1 and Dirk Praetorius2

1 Department of Mathematics, Humboldt-Universität zu Berlin,
Unter den Linden 6, D-10099 Berlin, Germany
cc@math.hu-berlin.de

∗

2 Institute for Analysis and Scientific Computing, Vienna University of
Technology, Wiedner Hauptstraße 8-10, A-1040 Vienna, Austria
Dirk.Praetorius@tuwien.ac.at

Summary. Averaging techniques for a posteriori error control are established for
differential and integral equations within a unifying setting. The reliability and effi-
ciency of the introduced estimator results from two grids Th and TH with different
polynomial degrees for a smooth exact solution. The proofs are based on first order
approximation operators and inverse estimates. For a finer and finer fine mesh Th,
the estimator becomes asymptotically exact. The abstract framework is applicable
to a finite element method for the Laplace equation, boundary element methods for
Symm’s and the hypersingular integral equation or transmission problems.
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1 Introduction

The striking simplicity of averaging techniques in a posteriori error control as
well as their amazing accuracy in many numerical examples have made them
an extremely popular tool in scientific computing over the last decade. Given
a discrete stress or flux ph and a post-processed (smoothened) approximation
Aph, the a posteriori error estimator reads

ηA := ‖ph −Aph‖.

There is not even a need for an equation to compute the estimator ηA, and
hence averaging techniques are easily employed everywhere. The most promi-
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nent example is occasionally named after Zienkiewicz and Zhu [ZZ], and also
called gradient recovery but preferably called averaging technique in the lit-
erature. The most frequently quoted paper is [ZZ] for the P1 finite element
method for some Laplace equation on some domain ω and some local averag-
ing operator Aph on the piecewise constant gradients ph = Duh followed by
linear interpolation. The estimator ηA = ‖ph − Aph‖ is then computed with
respect to the norm ‖ · ‖ on L2(Ω).
In the work of Zienkiewicz and Zhu [ZZ], there was no rigorous justification to
interpret ηA as some computable approximation of the (rigorous) exact error
‖p−ph‖ with p = Du, but there arose quite some numerical evidence for that.
The first mathematical justification of the error estimator ηA as a computable
approximation of the (unknown) error ‖p − ph‖ involved the concept of su-
perconvergence points. For highly structured meshes and a very smooth exact
solution p, the error ‖p − Aph‖ of the post-processed approximation Aph
may be (much) smaller than the error ‖p − ph‖ of the given ph. Under the
assumption that ‖p − Aph‖ is sufficiently small in relative terms, written
‖p−Aph‖ = h.o.t = higher-order terms, the triangle inequality immediately
verifies reliability, i.e.,

‖p− ph‖ ≤ Crel ηA + h.o.t.,

and efficiency, i.e.,
ηA ≤ Ceff ‖p− ph‖ + h.o.t.,

of the averaging error estimator ηA (even with Crel = Ceff = 1). However, the
required assumptions on the symmetry of the mesh and the smoothness of
the solution essentially contradict the use of adaptive grid refinement when p
is singular. Moreover, the proper treatment of boundary conditions remains
unclear.

The first mathematical verification by Rodriguez on reliability of ηA on un-
structured grids has been indicated in the literature [R1, R2, N, BR] but was
not mentioned in the (otherwise comprehensive) works [AO, BS, EEHJ, V].
The first author was unaware of Rodriguez’s result [R2] when he started
to work on the mathematical justification [CV] that ended in the surpriz-
ing and new conclusion that, in fact, all averaging techniques are reliable
[BC1, BC2, C1, C2, CA, CF1, CF2].

A corresponding technique for the boundary element method was initiated
with extraction and recovery techniques in [WSS], [SWe], [SchMW], [SchHW],
[SSW] and was proposed thereafter in a small series of works of the two authors
[CP1, CP2] and in [FP]. In the latter works, an approximation Aph is com-
puted as some best approximation of ph based on a higher-order spline space
on some coarser mesh. For some smooth exact solution, the resulting approxi-
mation error is of higher order. The corresponding error estimator is therefore
efficient. Reliability follows provided the quotient of the mesh-sizes is suffi-
ciently small. These two arguments, called approximation assumption (AA)
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and discrete property (DP), allow a unified analysis of reliability and efficiency
of ηA.

This paper links the two discretization methods, namely the finite element
method and the boundary element method, in that there is one abstract set-
ting provided in which an averaging scheme is seen to be reliable and efficient
without any reference to some saturation assumption or superconvergence.
The paper is roughly organized in two mayor parts: In Section 2–4, we pro-
vide and analyze the analytical setting for our averaging method, while the
remaining Sections 5–8 of the paper discuss concrete applications. Namely, in
Section 2 we state and prove our abstract main result in Theorem 2.1, which is
commented in Section 3. The essential condition for Theorem 2.1 is a discrete
property (DP). We stress the difference of (DP) and a saturation assumption
and remark on further generalizations of Theorem 2.1. In Section 4, the es-
sential condition is studied in detail and characterized as some strengthened
Cauchy inequality of related spaces. Section 5 considers the introduced averag-
ing technique for the finite element method for a model example. Section 6 is
an overview of a recent work [CP1] on averaging for Symm’s integral equation.
In Section 7, we treat the hypersingular integral equation following [CP2, FP].
Finally, the last application of our abstract analysis concerns the boundary
integral formulation of a transmission problem in Section 8.

2 Abstract Setting

We consider the abstract framework of the Lax-Milgram lemma with a finite
dimensional subspace Sh of a real Hilbert space H with corresponding norm
‖ · ‖H. Let 〈〈· , ·〉〉 be an elliptic and bounded (but possibly non-symmetric)
bilinear form on H, i.e., there are constants 0 < Cell ≤ Cbd such that

Cell‖u‖2
H ≤ 〈〈u , u〉〉 and 〈〈u , v〉〉 ≤ Cbd‖u‖H‖v‖H for all u, v ∈ H. (1)

The (linear) Galerkin projection Gh : H → Sh is characterized by the Galerkin
orthogonality

〈〈v − Ghv , vh〉〉 = 0 for all vh ∈ Sh and v ∈ H. (2)

An immediate consequence is the quasi-optimal convergence, also known as
Céa’s lemma:

‖v − Ghv‖H ≤ (Cbd/Cell) min
vh∈Sh

‖v − vh‖H for all v ∈ H. (3)

Given an unknown solution u ∈ H for a prescribed right-hand side f = 〈〈u , ·〉〉 ∈
H∗, the discrete solution uh := Ghu is computed. In order to approximate the
energy norm of the (unknown) error

e := u− uh, (4)
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we are given a second finite-dimensional subspace SH of H. Then, the a pos-
teriori error estimator for ‖u− uh‖H reads

ηM := min
vH∈SH

‖uh − vH‖H. (5)

The justification below is based on one approximation assumption (AA) and
some discrete property (DP) of Sh and SH where, in applications below, Sh
corresponds to a lower polynomial degree ansatz but a finer mesh when com-
pared to SH , and u is smooth. Moreover, as the triangulation Th corresponding
to Sh will be a uniform refinement of the triangulation TH corresponding to
SH , we assume that Sh and SH are linked through the mesh-sizes h and H :

δhH := min
vH∈SH

‖u− vH‖H/ min
vh∈Sh

‖u− vh‖H = o(1), (AA)

q := max
vH∈SH\{0}

min
vh∈Sh

‖vH − vh‖H
‖vH‖H

< Cell/Cbd. (DP)

Theorem 2.1. With the notation from (AA) and under assumption (DP)
there holds

ηM/(1 + δhH) ≤ ‖e‖H ≤ Crel(ηM + min
vH∈SH

‖u− vH‖H) (6)

with

Crel := Cbd/(Cell − qCbd). (7)

Proof. The lower estimate (efficiency of ηM ) is an immediate consequence of
the triangle inequality: For any vH ∈ SH , there holds

ηM ≤ ‖e‖H + ‖u− vH‖H.

A passage of vH to the minimum in (AA) yields

ηM ≤ ‖e‖H + δhH min
vh∈Sh

‖u− vh‖H ≤ ‖e‖H(1 + δhH).

This establishes efficiency of ηM . To prove the reliability of ηM , let eH ∈ SH
be the best approximation of e, i.e.

‖e− eH‖H = min
vH∈SH

‖e− vH‖. (8)

By the definition of q in the discrete property (DP), there holds

min
vh∈Sh

‖eH − vh‖H ≤ q‖eH‖H.

The Galerkin orthogonality of Gh and the boundedness of the bilinear form
〈〈· , ·〉〉 followed by the aforementioned estimate lead to
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〈〈e , eH〉〉 = min
vh∈Sh

〈〈e , eH − vh〉〉 ≤ q Cbd‖e‖H‖eH‖H.

Combining this with the ellipticity and boundedness of 〈〈· , ·〉〉, we obtain

Cell‖e‖2
H ≤ 〈〈e , e〉〉 = 〈〈e , e− eH〉〉 + 〈〈e , eH〉〉 ≤ Cbd‖e‖H

(
‖e− eH‖H + q‖eH‖H

)
.

Now, the stability estimate ‖eH‖H ≤ ‖e‖H proves

‖e‖H ≤ C−1
ell Cbd

1 − qC−1
ell Cbd

‖e− eH‖H = Crel min
vH∈SH

‖e− vH‖H.

If uH and uhH denote the best approximations of u resp. uh in SH , the special
choice of vH = uH − uhH and a triangle inequality yield

‖e‖H ≤ Crel(‖u− uH‖H + ‖uhH − uh‖H) = Crel( min
vH∈SH

‖u− vH‖H + ηM ).

This concludes the proof of the reliability. �

3 Comments

Some remarks are in order before a list of applications enlightens the abstract
results of the preceeding chapter.

3.1. Efficiency and Reliability. The discrete property (DP) is not neces-
sary for efficiency of ηM . The reliability depends essentially on the discrete
property (DP) in that, up to some approximation error

h.o.t. := min
vH∈SH

‖u− vH‖H,

there holds reliability in the sense of

‖e‖H ≤ Crel(ηM + h.o.t.).

However, this is reasonable only if h.o.t. ∼ δhH‖e‖H is indeed of higher order.
In fact, there holds

‖e‖H ≤ Crel(ηM + δhH‖e‖H).

Then, for δhH < C−1
rel , there holds

‖e‖H ≤ Crel/(1 − δhHCrel) ηM .

3.2. Constants in the Symmetric Case. In the important case that the
bilinear form 〈〈· , ·〉〉 is symmetric, it is a scalar product. The induced norm
|||v||| := 〈〈v , v〉〉1/2 is an equivalent Hilbert norm on H. Moreover, Gh is the
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orthogonal projection onto Sh with respect to 〈〈· , ·〉〉. Then, (3) holds with
(Cbd/Cell)

1/2 replacing Cbd/Cell, and Gh is characterized by the best approx-
imation property |||v − Ghv||| = min

vh∈Sh

|||v − vh||| for all v ∈ H.

In the symmetric case, one usually states (6) with respect to the energy norm
‖ · ‖H = ||| · |||, i.e. Cbd = 1 = Cell. Asymptotic exactness of ηM then follows
for q → 0 in the sense of Crel → 1. Moreover, the reliability constant Crel =
1/(1 − q) from (7) can be improved to Crel = 1/(1 − q2)1/2 by the following
refined stability estimate: Using the symmetry of orthogonal projections and
the same arguments as in the proof of Theorem 2.1, we obtain

|||eH |||2 = 〈〈eH , eH〉〉 = 〈〈e , eH〉〉 = min
vh∈Sh

〈〈e , eH − vh〉〉 ≤ q|||e||||||eH |||.

This implies the refined stability estimate |||eH ||| ≤ q|||e|||. Together with the
Pythagoras theorem, there holds

|||e|||2 = |||e− eH |||2 + |||eH |||2 ≤ |||e− eH |||2 + q2|||e|||2.

This yields |||e||| ≤ |||eH |||/(1 − q2)1/2, and we obtain the reliability of ηM with
the improved constant Crel = 1/(1 − q2)1/2.

3.3. Remarks on the Saturation Assumption. Assumption (DP) is just
a definition of δhH with the possible interpretation discussed in Section 3.1.
A much stronger statement is the saturation assumption of the form

δhH = |||u− GHu|||/|||e||| ≤ Csat < 1 (SA)

in the symmetric case ‖ · ‖H = ||| · ||| etc. of the preceding subsection. Recall
that GH denote the Galerkin projection onto SH . With uH := GHu, a triangle
inequality for e = u−uH+uH−uh plus (SA) leads to the reliable a posteriori
error estimate

|||e||| ≤ |||uh − uH |||/(1 − Csat)

for the different hierarchical estimator |||uh − uH |||. It has been the starting
point of our analysis to avoid a strong assumption on the actual size of δhH
like (SA) because it is hard to check in practise.

3.4. Verification of Assumption (DP)(DP)(DP). This subsection outlines the argu-
ments sufficient for (DP) in an abstract (and non-local) framework. Examples
follow in the remaining applications of this paper. For an appropriate semi-
norm ||| · ||| and the mesh-size parameter H > 0 associated with SH , an inverse
estimate is of the form

|||vH||| ≤ cinvH
−α‖vH‖H for all vH ∈ SH .

The exponent α > 0 depends only on the energy (Sobolev) space, e.g., H = Hα

or H = H−α. Moreover, ||| · ||| may allow an approximation estimate of the form
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min
vh∈Sh

‖vH − vh‖H ≤ capxh
α|||vH||| for all vH ∈ SH .

The combination of the two estimates yields

q := max
vH∈SH\{0}

min
vh∈Sh

‖vH − vh‖H
‖vH‖H

≤ capxcinv(h/H)α.

Hence, for any mesh-size h sufficiently small relative to H, (DP) follows.

3.5. Other Averaging Techniques. Under assumptions (AA)–(DP), we
obtain reliable error estimators ηA whenever we replace the minimum of the
best approximation by an arbitrary operator AH : H → SH ,

ηA := ‖uh −AHuh‖H ≥ min
vH∈SH

‖uh − vH‖H =: ηM . (9)

Thus, each averaging technique yields a reliable error estimator [BC1]. Clearly,
the efficiency of ηA is some further property of the chosen operator AH . Ac-
cording to Céa’s lemma (3), the Galerkin projection AH = GH always leads
to an efficient and reliable error estimator since

(Cell/Cbd) ‖v − GHv‖H ≤ min
vH∈SH

‖v − vH‖H ≤ ‖v − GHv‖H.

3.6. Generalizations. Theorem 2.1 can be generalized in several ways.
In the following, we give some simple examples, for which the analysis from
Section 2 also works: (i) For the Hilbert space H, there holds eH = uH −uhH
for the best approximations in the proof of Theorem 2.1. However, the linearity
of the best approximation is not needed, and the argument remains valid in
the case that H only is a reflexive Banach space: There still holds the Lax-
Milgram lemma, and the best approximation problem (8) still allows for a (in
general non-unique) solution eH . Finally, a triangle inequality proves stability
‖eH‖H ≤ 2‖e‖H. We must therefore assume 2qC−1

ell Cbd < 1 in (DP) and are
led to reliability with Crel = 2Cbd/(Cell − 2qCbd).
(ii) Theorem 2.1 also holds when we consider weakly non-linear problems.
More precisely, let A : H → H∗ be a uniformly monotone and Lipschitz
continuous operator on the Hilbert space H, i.e. there holds, for all u, v ∈ H,

Cell‖u− v‖2
H ≤ 〈Au−Av , u− v〉H∗×H and ‖Au−Av‖H∗ ≤ Cbd‖u− v‖H,

where 〈· , ·〉H∗×H denote the duality brackets. Also in this context, there holds
the Lax-Milgram lemma. The (nonlinear) Galerkin projection Gh : H → Sh
is characterized by the Galerkin orthogonality

〈Av −A(Ghv) , vh〉H∗×H = 0 for all vh ∈ Sh and v ∈ H.
There still holds Céa’s lemma (3), and we prove Theorem 2.1 with the same
techniques.
(iii) A generalization of our averaging method in the context of the FEM-BEM
coupling and saddle point problems which allow an LBB condition is slightly
more involved and shall therefore appear elsewhere [CP3].
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4 Characterizations of Discrete Property (DP)(DP)(DP) in Hilbert

Spaces

In this section, let V and W be closed subspaces of the real Hilbert space H
and let V ⊥ denote the orthogonal complement of V ,

V ⊥ := {x ∈ H : ∀v ∈ V 〈x , v〉H = 0}.

The main focus is on the uniform estimate

min
v∈V

‖v − w‖H ≤ c‖w‖H for all w ∈W. (10)

Obviously, there holds c ≤ 1, and we discuss the case of c < 1 in the following.
This plus the optimal constant is characterized in Theorem 4.1 in terms of

γV ⊥,W := sup
v⊥∈V ⊥\{0}

sup
w∈W\{0}

〈v⊥ , w〉H
‖v⊥‖H‖w‖H

and

qV,W := sup
w∈W\{0}

min
v∈V

‖v − w‖H
‖w‖H

.

Notice that qSH ,Sh
is called q in the discrete property (DP) of Section 2.

The estimate γV ⊥,W < 1 is known as strengthened Cauchy inequality between
V ⊥ and W . (In fact 0 ≤ cos(∢(V ⊥,W )) := γV ⊥,W ≤ 1 defines the angle
∢(V ⊥,W ) between the spaces V ⊥ and W .)
The following result, which is essentially taken from [B], states that the opti-
mal constant in (10) equals c = qV,W = γV ⊥,W and the estimates (ii)-(iv) are
in fact equivalent characterizations of c < 1.

Theorem 4.1. There holds qV,W = γV ⊥,W ≤ 1, and for any constant c ≥ 0
with c < 1 the assertions (i), (ii), (iii), (iv) are pairwise equivalent.

(i) γV ⊥,W = qV,W ≤ c,

(ii) there holds
√

1 − c2 ‖v⊥‖H ≤ minw∈W ‖v⊥ − w‖H for all v⊥ ∈ V ⊥,

(iii) there holds
√

(1 − c2)/2 (‖v⊥‖H + ‖w‖H) ≤ ‖v⊥ +w‖H for all (v⊥, w) ∈
V ⊥ ×W ,

(iv) there holds minv∈V ‖v − w‖H ≤ c‖w‖H for all w ∈W .

Proof. The equivalence of γV ⊥,W ≤ c < 1 with (ii) and (iii), respectively, can
be found in [B, Lemma 3.1], where V is substituted by V ⊥. The equivalence of
qV,W ≤ c and (iv) is obvious since qV,W is, by definition, the optimal constant
in (iv). Thus, it only remains to prove the equality γV ⊥,W = qV,W : Given
v⊥ ∈ V ⊥, v ∈ V , and w ∈ W , there holds 〈v⊥ , w〉H = 〈v⊥ , w − v〉H ≤
‖v⊥‖H‖w − v‖H. Since v ∈ V is arbitrary, we obtain

〈v⊥ , w〉H ≤ ‖v⊥‖H min
v∈V

‖v − w‖H ≤ qV,W ‖v⊥‖H‖w‖H for all w ∈ W,
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whence γV ⊥,W ≤ qV,W . To prove the converse inequality, we construct se-
quences v⊥j ∈ V ⊥\{0} and wj ∈W such that ‖wj‖H = 1 and

limj→∞〈v⊥j , wj〉H/‖v⊥j ‖H = qV,W . Without loss of generality we assume
qV,W 6= 0 since qV,W = 0 implies V = W and thus γV ⊥,W = 0 as well.
For qV,W > 0, let wj ∈ W be a sequence with

‖wj‖H = 1, lim
j→∞

min
v∈V

‖v − wj‖H = qV,W > 0, and min
v∈V

‖v − wj‖H > 0.

Let Π : H → V denote the orthogonal projection onto V and choose vj :=
Πwj . Then, there holds

‖vj − wj‖H = min
v∈V

‖v − wj‖H,

and v⊥j := wj − vj satisfies v⊥j ∈ V ⊥\{0} and

〈v⊥j , wj〉H = 〈v⊥j , wj − vj〉H = ‖wj − vj‖2
H = ‖wj − vj‖H‖v⊥j ‖H.

Finally, we obtain

γV ⊥,W ≥ lim
j→∞

〈v⊥j , wj〉H
‖v⊥j ‖H

= lim
j→∞

‖wj − vj‖H = qV,W .

This concludes the proof. �

5 Finite Element Method for the Laplace Problem

We consider the following model example on a bounded Lipschitz domain
Ω ⊂ Rd, d = 2, 3,

−∆u = f in Ω,

u = 0 on ΓD ⊆ ∂Ω,

∂u/∂ν = g on ΓN = ∂Ω\ΓD.
(11)

We assume that ΓD is closed and that the right-hand side f and the given
normal flux g allow for a weak solution

u ∈ H = H1
D(Ω) := {u ∈ H1(Ω) : u|ΓD = 0}, (12)

of (11). Provided ΓD has positive surface measure, the Friedrichs’ inequality
shows that

〈〈u , v〉〉 =

∫

Ω

∇u · ∇v dx (13)

defines the energy scalar product with equivalent norm ‖·‖H := |||·||| ∼ ‖·‖H1(Ω)

on H. The weak form of (11) allows for a unique solution u ∈ H in the usual
sense
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〈〈u , v〉〉 =

∫

Ω

fv dx+

∫

ΓN

gv dsx for all v ∈ H. (14)

The lowest order conforming FE discretization of (14) uses Th-piecewise affine
and globally continuous functions: Let Th be a regular triangulation [in the
sense of Ciarlet] which consists of triangles, for d = 2, and tetrahedra, for
d = 3, respectively. For p ∈ N, let Pp(Th) denote the vector space of functions
wh ∈ Pp(Th) which are polynomials of total degree ≤ p on each element T ∈
Th. Let h ∈ L∞(Ω) denote the local mesh-size of Th defined by h|T = diam(T )
for T ∈ Th.
To apply the averaging technique, let TH be a regular triangulation of Ω
and let Th be obtained from ℓ ∈ N red-refinements of TH , i.e., we recursively
refine each element T ∈ TH ℓ-times into 4 congruent elements. In particular,
H/h = 2ℓ. With

SpD(Th) := {uh ∈ Pp(Th) ∩ C(Ω) : uh|ΓD = 0} ⊂ H,

set

Sh = S1
D(Th) and SH = S2

D(TH). (15)

Finally, we denote by Hs(T ) the space of all T -piecewise Hs functions for
s ≥ 0.

Theorem 5.1. Provided u ∈ H ∩ H2+ε(TH) for some ε > 0 and ℓ large

enough, Assumptions (AA)–(DP) hold and therefore Theorem 2.1 applies with

ηM = |||uh − GHuh|||.

Proof. Recall the local inverse estimate

‖H wH‖L2(Ω) ≤ cinv‖∇wH‖L2(Ω) for all wH ∈ P1(TH),

where cinv > 0 depends only on the shape of the elements in TH and the
gradient ∇ is evaluated elementwise. In particular, this holds with wH = ∇vH
for all vH ∈ P2(TH). Moreover, the Bramble-Hilbert lemma implies

‖∇v −∇(Phv)‖L2(Ω) ≤ capx‖hD2v‖L2(Ω)

for all continuous v ∈ H1(Ω) ∩H2(Th) and Ph the nodal interpolation oper-
ator. Together with H/h = 2ℓ, the combination of both estimates proves

q := max
vH∈SH\{0}

min
vh∈Sh

|||vH − vh|||
|||vH ||| ≤ capxcinv/2

ℓ

Therefore, (DP) is satisfied for ℓ sufficiently large. Note the best approxima-
tion result |||u − Ghu||| = O(h) and |||u − GHu||| = O(H1+ε). Given a fixed
parameter ℓ, (AA) follows. �
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Remark 5.1. Since the energy norm is based on the local L2-norm, we can
write ηM as a sum of local contributions

ηM =
( ∑

Tj∈TH

η2
M,j

)1/2

with ηM,j := ‖∇uh −∇(GHuh)‖L2(Tj). (16)

The refinement indicators ηM,j can be used for an adaptive mesh-refining
strategy.

Remark 5.2. With ΠH the L2 projection onto P1(TH)d, we define

µΠ := min
qH∈P1(TH)d

‖∇uh − qH‖L2(Ω) = ‖∇uh −ΠH(∇uh)‖L2(Ω). (17)

Since ∇(GHuh) ∈ P1(TH)d, there holds µΠ ≤ ηM . Therefore, µΠ is efficient
up to terms of higher order under the assumptions of Theorem 5.1. The math-
ematical analysis of the reliability of µΠ — although supported by numerical
evidence — remains open.

6 Symm’s Integral Equation

In this section, we consider Symm’s integral equation

V u = f on Γ (18)

with a relatively open subset Γ ⊆ ∂Ω of the boundary ∂Ω of a bounded
Lipschitz domainΩ in Rd, d = 2, 3. The operator V is the single-layer potential

V u(x) =

∫

Γ

κ(x, y)u(y) dsy , (19)

where ds denotes the integration on the manifold Γ , and κ(x, y) denotes (up to
a multiplicative constant) the fundamental solution of the Laplace operator,

κ(x, y) =





− 1

π
log |x− y| for d = 2,

+
1

2π
|x− y|−1 for d = 3.

(20)

The variational formulation of (19) needs Sobolev spaces on the boundary.
First, the space

H1/2(∂Ω) = {u|∂Ω : u ∈ H1(Rd)}
of traces of H1 functions associated with the trace norm

‖u‖H1/2(∂Ω) = inf{‖û‖H1(Rd) : û ∈ H1(Rd) with û|Γ = u}.

Moreover, we consider the subspace
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H1/2(Γ ) = {u|Γ : u ∈ H1/2(∂Ω)},

where the norm of u ∈ H1/2(Γ ) is defined as the minimal norm of any exten-
sion, i.e.

‖u‖H1/2(Γ ) = inf{‖û‖H1/2(∂Ω) : û ∈ H1/2(∂Ω) with û|Γ = u}.

Furthermore, there are Sobolev spaces

H̃1/2(Γ ) = {u ∈ H1/2(∂Ω) : supp(u) ⊆ Γ}

associated with the usual H1/2(Γ ) norm. Finally, the corresponding spaces of
negative order are defined by duality with respect to the extended L2 scalar
product,

H−1/2(Γ ) = H̃1/2(Γ )∗ and H̃−1/2(Γ ) = H1/2(Γ )∗.

Remark 6.1. There are other equivalent definitions of the involved Sobolev
spaces, e.g., by real oder complex interpolation, a Fourier norm, or Sobolev-
Slobodeckij norms [W, McL].

For a particular right-hand side f in (18) and Γ = ∂Ω, Symm’s integral
equation is an equivalent formulation of the Laplace problem (11) with ΓD =
∂Ω, cf. [McL]. For d = 3 and provided additionally diam(Ω) < 1 for d = 2,
the operator

V : H̃−1/2(Γ ) → H1/2(Γ ) (21)

is an isomorphism between the two Hilbert spaces H̃−1/2(Γ ) and H1/2(Γ )
which build a dual pairing with respect to the extended L2 scalar product
〈· , ·〉. The energy scalar product

〈〈u , v〉〉 := 〈V u , v〉 for u, v ∈ H̃−1/2(Γ ) (22)

induces an equivalent norm ‖ · ‖H := ||| · ||| on H = H̃−1/2(Γ ).
Let Th = {Γ1, . . . , Γn} be a regular triangulation of Γ with local mesh-size
h ∈ L∞(Γ ), h|Γj = diam(Γj). Each element Γj of Th is supposed to be a
connected (affine) boundary piece for d = 2 and a (flat) triangle for d = 3,
respectively.
For an integer p ≥ 0, Pp(Th) denotes the space of all piecewise poly-
nomials of degree ≤ p [defined on reference elements Γ 2D

ref = [0, 1] and
Γ 3D

ref,3 = conv{(0, 0), (0, 1), (1, 0)} and Γ 3D
ref,4 = conv{(0, 0), (0, 1), (1, 0), (1, 1)}

for d = 2, 3, respectively].
For the averaging error estimation, we consider again the lowest order case:
Let TH be a regular triangulation of Γ and obtain Th by ℓ ∈ N red-refinements
of TH . Adopt the aforegoing notations for TH and Th accordingly and define
the discrete spaces

Sh = P0(Th) and SH = P1(TH). (23)
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Theorem 6.1. Provided u ∈ H ∩ H1+ε(TH) for some ε > 0 and ℓ large

enough, Assumptions (AA)–(DP) hold and therefore Theorem 2.1 applies with

ηM = |||uh − GHuh|||.
Proof. Local inverse estimates for fractional order Sobolev spaces [DFGHS,
GHS] read

‖Hα+κvH‖L2(Γ ) ≤ cH,pinv ‖HκvH‖H−α(Γ ) for all vH ∈ Pp(TH) and κ ∈ R.
(24)

The constant cH,pinv > 0 depends only on the shape of the elements in TH , the

polynomial degree p ∈ N0, and the parameter α ≥ 0. Since H̃α(Γ ) is a closed

subspace of Hα(Γ ), the corresponding dual spaces H−α(Γ ) = H̃α(Γ )∗ and

H̃−α(Γ ) = Hα(Γ )∗ satisfy H̃−α(Γ ) ⊆ Hα(Γ )∗ with ‖v‖H−α(Γ ) ≤ ‖v‖ eH−α(Γ ).

Therefore, we may apply (24) for the energy norm ||| · ||| ∼ ‖·‖ eHα(Γ ). This leads
to

‖H1/2vH‖L2(Γ ) ≤ cH,pinv |||vH ||| for all vH ∈ Pp(TH). (25)

[Note that, for a closed boundary Γ = ∂Ω, there holds Hα(Γ ) = H̃α(Γ )
with equal norms.] Moreover, with the L2-projection Πp

h onto Pp(Th), there
holds [CP1]

‖v −Πp
hv‖ eH−α(Γ ) ≤ ch,papx‖hαv‖L2(Γ ) for all v ∈ L2(Γ ). (26)

Here, ch,papx > 0 depends only on the shape of the elements in Th, the polynomial

degree p ∈ N0, and α ≥ 0. Together with H/h = 2ℓ, the combination of (25)
and (26), for α = 1/2 and ||| · ||| ∼ ‖ · ‖ eH−1/2(Γ ), proves

q := max
vH∈SH\{0}

min
vh∈Sh

|||vH − vh|||
|||vH ||| ≤ ch,0apxc

H,1
inv /2

−ℓ/2.

This proves (DP) for ℓ sufficiently large. Assumption (AA) follows from best
approximation results |||u − Ghu||| = O(h3/2), |||u − GHu||| = O(H3/2+ε),
cf. [SaS]. �

In contrast to the FE method from the previous section with Hm norms, the
energy norm ||| · ||| ∼ ‖ · ‖ eH−1/2(Γ ) is non-local, i.e., it cannot be written as a

sum over non-interacting local contributions. The following theorem asserts
the equivalence of the energy norm based error estimator ηM and the weighted
L2 norm based error estimator

µM := ‖H1/2(uh − GHuh)‖L2(Γ ). (27)

This leads to the equivalent error estimators

ηΠ := |||uh −Π1
Huh||| and µΠ := ‖H1/2(uh −Π1

Huh)‖L2(Γ ), (28)

where Π1
H denotes the L2 projection onto P1(TH). Under the assumptions of

Theorem 6.1, µM , µΠ , and ηΠ are reliable and efficient in the following sense.
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Theorem 6.2. There are constants C1, C2 > 0 which only depend on the

shape of the elements in TH and the quotient H/h = 2ℓ such that

ηM ≤ ηΠ ≤ C1 µΠ and µΠ ≤ µM ≤ C2 ηM . (29)

Proof. The estimate ηM ≤ ηΠ follows from the best approximation property
of GH and was already mentioned in the introduction. Since we consider
globally discontinuous polynomials, Π1

H is also TH -elementwise orthogonal.
Hence,

‖uh −Π1
Huh‖L2(Γj) ≤ ‖uh − GHuh‖L2(Γj).

This proves µΠ ≤ µM . According to the mesh generation of Th from TH ,
there holds uh − GHuh ∈ P1(Th). An inverse estimate (25) yields ‖h1/2(uh −
GHuh)‖L2(Γ ) ≤ ch,1inv |||uh − GHuh||| and, therefore, with H/h = 2ℓ, that

µM = 2ℓ/2 ‖h1/2(uh − GHuh)‖L2(Γ ) ≤ 2ℓ/2 ch,1invηM .

To prove ηΠ ≤ cH,1apxµΠ , define v = uh −Π1
Huh ∈ L2(Γ ). With 1l the identity

on L2(Γ ), the operator (1l −Π1
H) is a projection, whence v = (1l−Π1

H)v. An
application of (26) proves

ηΠ = |||v||| = |||(1l −Π1
H)v||| ≤ cH,1apx‖H1/2v‖L2(Γ ) = µΠ . �

Remark 6.2. For an adaptive mesh-refining algorithm, one may localize the
error estimators µM and µΠ , respectively, to obtain refinement indicators,
e.g.

µΠ =
( ∑

Γj∈TH

µ2
Π,j

)1/2

with µΠ,j = ‖H1/2(uh −Π1
Huh)‖L2(Γj). (30)

The computation of the error estimators ηM , µM , and ηΠ needs the computa-
tion of dense matrices which stem from the Galerkin projection GH [explicitly
or implicitly for the computation of the energy norm]. Matrix compression
techniques, e.g., hierarchical matrices or panel clustering provide an effective
implementation. The error estimator µΠ avoids the computation of GH and
can be computed in linear complexity with respect to the number N of ele-
ments.

7 Hypersingular Integral Equation

With the notation from Section 6, we consider the hypersingular integral
equation

Wu = f on Γ (31)
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and the hypersingular integral operator

Wu(x) = − ∂

∂νx

∫

Γ

∂

∂νy
κ(x, y)u(y) dsy, (32)

where νx and νy denote the outer normal vectors on Γ at x and y, respec-
tively. For particular right-hand sides and Γ = ∂Ω, the hypersingular integral
equation (31) is equivalent to the Laplace problem (11) with pure Neumann
boundary condition ΓN = ∂Ω.
For an open boundary piece Γ $ ∂Ω, the operator

W : H̃1/2(Γ ) → H−1/2(Γ )

is an isomorphism. For a closed boundary Γ = ∂Ω, one has to consider the
factor spaces Hα

0 (Γ ) = Hα/R(Γ ) = {u ∈ Hα(Γ ) :
∫
Γ u ds = 0} to neglect

constant functions. Then,

W : H
1/2
0 (Γ ) → H

−1/2
0 (Γ )

is isomorphic. In both cases, W maps the energy space H = H̃1/2(Γ ) resp.

H = H
1/2
0 (Γ ) onto its dual, and

〈〈u , v〉〉 := 〈Wu, v〉 for u, v ∈ H (33)

defines a scalar product with equivalent norm ‖ · ‖H := ||| · ||| on H. The
discretization is based on subspaces of Sp(Th) := Pp(Th) ∩ C(Γ ) for a regular
triangulation Th of Γ and

Sp0 (Th) =

{
{vh ∈ Sp(Th) : vh|∂Γ = 0} if Γ ⊂ ∂Ω;
{vh ∈ Sp(Th) :

∫
Γ vh ds = 0} if Γ = ∂Ω.

With respect to the abstract setting in Section 2, let TH be a shape-regular
triangulation of Γ and Th obtained from TH by ℓ ∈ N red-refinements and set

Sh = S1
0 (Th) and SH = S2

0 (TH). (34)

Theorem 7.1. Provided u ∈ H ∩ H2+ε(TH) for some ε > 0 and ℓ large

enough, Assumptions (AA)–(DP) hold and therefore Theorem 2.1 applies with

ηM = |||uh − GHuh|||.

Proof. Note that there holds the local inverse estimate [CP2]

‖H1−α∇vH‖L2(Γ ) ≤ cH,pinv ‖vH‖Hα(Γ ) for all vH ∈ Sp(TH), (35)

where ∇ denotes the arc-length derivative ∇ for d = 2 and the surface gradient
for d = 3, respectively. The constant cH,pinv > 0 depends only on the shape of
the elements in Th, the polynomial degree p ∈ N, and the parameter α ≥ 0.
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In [FP] it is proven that the Galerkin projection Gp
h onto Sp0 (Th) satisfies, for

all v ∈ H ∩H1(Γ ),

|||v − Gp
hv||| ≤ ch,papx min

{
‖h1/2∇v‖L2(Γ ), ‖h1/2∇(v − Gp

hv)‖L2(Γ )

}
. (36)

The constant ch,papx > 0 depends only on the shape of the elements in Th. As
before, Assumption (DP) is satisfied, provided ℓ is large enough,

q := max
vH∈SH\{0}

min
vh∈Sh

|||vH − vh|||
|||vH ||| ≤ ch,1apxc

H,2
inv /2

ℓ/2.

Assumption (AA) follows from best approximation results |||u − Ghu||| =
O(h3/2) and |||u− GHu||| = O(H3/2+ε) [SaS]. �

As for Symm’s integral equation, the energy norm ||| · ||| for the hypersingular
equation is non-local and has to be localized. This can be done by H1/2-
weighted H1-seminorms. The following theorem states the efficiency and reli-
ability of the error estimator

µM := ‖H1/2∇(uh − GHuh)‖L2(Γ ) (37)

under the assumptions of Theorem 7.1.

Theorem 7.2. There are constants C3, C4 > 0 which only depend on the

shape of the elements in TH and the quotient H/h = 2ℓ such that

C−1
3 µM ≤ ηM ≤ C4 µM . (38)

Proof. The follows from an inverse estimate with constant C3 = ch,2inv ℓ
1/2 and

the approximation result (36) with C4 = cH,2apx . �

The computation of µM involves the dense stiffness matrix corresponding to
the Galerkin projection GH . To avoid this numerical effort, one can consider
the estimator

µΠ := ‖H1/2(∇uh −Π1
H(∇uh))‖L2(Γ ) (39)

with the L2 projection Π1
H onto P1(TH), which is efficient under the assump-

tions of Theorem 7.1.

Corollary 7.1. There holds µΠ ≤ µM . �

Remark 7.1. The reliability of µΠ , which is observed numerically [CP2, FP],
remains open — as for the finite element method in Section 5.

Another computationally challenging variant might be to consider the H1
0

projection PH : H ∩H1(Γ ) → SH , i.e. the gradient L2 projection defined by
∫

Γ

∇(u− PHu) · ∇vH = 0 for all vH ∈ SH . (40)
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The numerical realization only involves the sparse stiffness matrix from the
P 1 finite element method.

ηP := |||uh − PHuh||| and µP := ‖H1/2∇(uh − PHuh‖L2(Γ ) (41)

Clearly, ηM ≤ ηP, and therefore ηP is reliable under the assumptions of
Theorem 7.1. The analysis for fractional order Sobolev spaces Hα(Γ ) and
α > 0 is more involved than for α < 0, i.e. for Symm’s integral equation: For
quasi-uniform meshes, there holds µP ≤ C µM since ‖∇(uh − PHuh)‖L2(Γ ) ≤
‖∇(uh − GHuh)‖L2(Γ ). An estimate of the type µP ≤ C µM remains open
for adaptively generated meshes. For d = 2, it is proven that ηP and µP are
equivalent [CP2].

Theorem 7.3. For d = 2, there are constants C5, C6 > 0 such that

C−1
5 µΠ ≤ ηP ≤ C6 µP. (42)

Proof. The lower estimate follows as in Theorem 7.2. We recall from [CP2]
that the H1

0 projection Pph onto Sp0 (Th) satisfies, for all v ∈ H ∩H1(Γ ),

|||v − Pphv||| ≤ ch,papx min
{
‖h1/2∇v‖L2(Γ ), ‖h1/2∇(v − Pphv)‖L2(Γ )

}
. (43)

The constant ch,papx only depends on p and the local mesh-ratio

̺(Th) := max{hj/hk : Γj , Γk ∈ Th s.t. Γj is a neighbour of Γk}. (44)

From (43), we obtain the upper estimate with C6 = cH,2apx . �

Remark 7.2. If AH denotes the L2 projection onto S2
0 (TH), define

ηA := |||uh −AHuh||| and µA := ‖H1/2∇(uh −AHuh)‖L2(Γ ).

Then, ηA is reliable, and one can prove that ηA and µA are equivalent. Un-
fortunately, the L2 projection AH onto S2

0 (TH) is, in general, not H1 stable.
Thus, one does neither analytically obtain nor numerically observe efficiency
of ηA and µA, cf. [CP2].

8 Integral Equation for a Transmission Problem

This section is devoted to a transmission problem which involves the integral
operators of Section 6 and 7, from where notation is adopted. Given (f, g) ∈
H1/2(Γ ) × H−1/2(Γ ) along the boundary Γ = ∂Ω of a bounded Lipschitz
domain Ω ⊂ Rd, the strong form of the transmission problem reads: Find
u− ∈ H1(Ω) and u+ ∈ H1

ℓoc(Ω) with

∆u− = 0 in Ω, ∆u+ = 0 in Rd\Ω (45)
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with some radiation condition on u+ at infinity and

u− = u+ + f,
∂u−

∂ν
=
∂u+

∂ν
+ g on Γ. (46)

This is equivalently formulated by the boundary integral equation [CoS]

A
(u
φ

)
=

(1

2
+A

)(f
g

)
in H ⊂ H1/2(Γ ) ×H−1/2(Γ ) (47)

with the Calderón projector (in symbolic form)

A =
(−K V
W K ′

)
. (48)

The operator V is defined in (19), and W is defined in (32) with kernel κ(x, y)
from (20). Moreover, K denotes the double layer potential operator and K ′

its adjoint defined by

K : H1/2(Γ ) → H1/2(Γ ), Kv(x) =

∫

Γ

v(y)
∂

∂νy
κ(x, y) dsy, (49)

K ′ : H−1/2(Γ ) → H−1/2(Γ ), K ′φ(x) =

∫

Γ

φ(y)
∂

∂νx
κ(x, y) dsy. (50)

Duality is understood with respect to the extended L2 scalar product,

〈
(u
φ

)
,
( v
ψ

)
〉H = 〈u , ψ〉 + 〈v , φ〉 for (u, φ), (v, ψ) ∈ H := H

1/2
0 (Γ ) ×H

−1/2
0 (Γ ).

(51)

The transmission problem (45)–(46) and the boundary integral formula-
tion (47) are equivalent in the following sense [CoS, CS2]: If (u−, u+) ∈
H1(Ω) × H1

ℓoc(R
d\Ω) solves the transmission problem, then (u, φ) ∈ H

solves (47), where u := u−|Γ −
∫
Γ
u− ds ∈ H

1/2
0 (Γ ) and φ := ∂u−/∂ν|Γ ∈

H
−1/2
0 (Γ ). Conversely, if (u, φ) ∈ H solves (47), then the Cauchy data of u−

are given by (u−, ∂u−/∂ν)|Γ = (u+ u0, φ) with

u0 =

∫
Γ

(
1
2 (K − 1)f − 1

2 V g + V φ−Ku
)
ds∫

Γ 1 ds
∈ R.

The solution (u−, u+) is then obtained from the representation formulae in Ω
and Rd\Ω.
The mapping properties of the involved boundary operators [McL] shows that
A : H → H is continuous and H-elliptic with respect to the canonical norm
‖(v, ψ)‖2

H := ‖v‖2
H1/2(Γ )

+ ‖ψ‖2
H−1/2(Γ )

. In fact, elementary calculations show

that the (non-symmetric) bilinear form
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〈〈(u, φ) , (v, ψ)〉〉 = 〈A
(u
φ

)
,
( v
ψ

)
〉H, (52)

induces an equivalent norm ||| · ||| which satisfies

|||(u, φ)|||2 = ‖φ‖2
V + ‖u‖2

W ≥ Cell‖(u, φ)‖2
H for all (u, φ) ∈ H (53)

with the energy norms ‖ · ‖V and ‖ · ‖W from Section 6 and 7, respectively.
Note that ||| · ||| is indeed a Hilbert norm, but 〈〈· , ·〉〉 is not the corresponding
scalar product! Let TH be a shape-regular triangulation of Γ and let Th be
obtained from TH by ℓ ∈ N red-refinements. Set Pp0 (T ) := {vh ∈ Pp(T ) :∫
Γ vh ds = 0}, set

Sh = S1
0 (Th) × P0

0 (Th) and SH = S2
0 (TH) × P1

0 (TH).

Theorem 8.1. Provided (u, φ) ∈ H∩
(
H2+ε(TH)×H1+ε(TH)

)
for some ε > 0

and ℓ large enough, Assumptions (AA) and (DP) hold and therefore Theo-

rem 2.1 applies with ηM = min
(vH ,ψH)∈SH

|||(uh, φh) − (vH , φH)|||.

Proof. Assumption (AA) follows from the regularity of (u, φ). The inverse
estimates (25) and (35) lead to

‖H1/2(∇vH , ψH)‖L2(Γ ) ≤ cH,2,1inv |||(vH , ψH)||| for all (vH , φH) ∈ SH

Since the L2-projectionΠ0
h : L2(Γ ) → P0(Th) preserves the vanishing integral

mean (i.e., Π0
hψH ∈ P0

0 (Th) provided
∫
Γ
ψH ds = 0), (26) and (36) yield

|||(vH , ψH) − (GW
h vH , Π

0
hψH)||| ≤ ch,1,0apx ‖h1/2(∇vH , ψH)‖L2(Γ ),

where GW
h : H

1/2
0 (Γ ) → S1

0 (Th) denotes the Galerkin projection with respect
to W from Section 7. The combination of the previous two inequalities results
in

q := max
(vH ,ψH)∈SH\{0}

min
(vh,ψh)∈Sh

|||(vH , ψH) − (vh, ψh)|||
|||(vH , ψH)||| ≤ ch,1,0apx cH,2,1inv /2ℓ/2,

This implies (DP) for sufficiently large ℓ. �

Remark 8.1. For an adaptive mesh-refinement, the non-local energy norm is
localized via the localization arguments from the previous sections; further
details are straightforward and hence omitted.

9 Numerical Experiments

This section provides some numerical experiments for the proposed error es-
timation. We only consider the symmetric case, where 〈〈· , ·〉〉 defines a scalar
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product and give the numerical results with respect to the energy norm, cf.
Section 3.1–3.2. Throughout, we compare uniform mesh-refinement with an
adaptive mesh-refinement, which is based on the local contributions of our
averaging error estimators as refinement indicators.

9.1. Adaptive Mesh-Refinement. The mesh-refinement strategy is for-
mulated in the following adaptive algorithm from [CP1], which is stated for
the finite element method from Section 5.

Algorithm 9.1 Choose a regular initial coarse mesh T (0)
H , k = 0, ℓ ∈ N and

0 ≤ θ ≤ 1.

(i) Obtain T (k)
h = {T1, . . . , Tn} from T (k)

H = {τ1, . . . , τN} by ℓ uniform refine-

ments.

(ii) Compute the approximation u
(k)
h for the current mesh T (k)

h .

(iii)Compute the error estimator ηM and the corresponding refinement indi-

cators ηM,j from (16).
(iv)Mark element τj for red-refinement provided the corresponding refinement

indicator satisfies ηM,j ≥ θmax{ηM,1, . . . , ηM,N}.
(v) Use a red-green-blue mesh-refinement strategy to obtain a regular coarse

mesh T (k+1)
H , update k, and go to (i). �

Note that we do the adaptive mesh-refinement on the coarse grid level to

obtain a sequence of meshes T (k)
H . Surprisingly, our numerical experiments

give empirical evidence that one may choose ℓ = 1 in Algorithm 9.1. That is,

the corresponding fine mesh T (k)
h , on which we compute our discrete solution

uh, is obtained by one uniform refinement of T (k)
H . We remark that the choice

of θ = 0 leads to uniform mesh-refinement. To obtain an adaptive mesh-
refinement, we choose θ = 0.5 in the subsequent experiments.
In the formulation of Algorithm 9.1, we consider the local contributions ηM,j

of ηM as refinement indicators. Alternatively, one may choose the local con-
tributions of the (efficient) error estimator µΠ from (17),

µΠ,j := min
q∈P1(τj)

‖∇uh − q‖L2(τj) = ‖∇uh −ΠH(∇uh)‖L2(τj). (54)

9.2. Visualization of Numerical Results. In all experiments we plot
the Galerkin error |||u− uh||| and the error estimators ηM and µΠ against the
number n = #Th of fine grid elements for uniform (θ = 0) and adaptive (θ =
0.5) mesh-refinement, respectively. Throughout, we choose the parameter ℓ =
1 in Algorithm 9.1. The error is computed by use of the Galerkin orthogonality

|||u− uh|||2 = |||u|||2 − |||uh|||2. (55)

The squared energy norm of the discrete solution uh reads |||uh|||2 = x · Ax

with the stiffness matrix A and the coefficient vector x corresponding to uh.
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The norm |||u|||2 can, in principle, be computed exactly. However, we use the
value |||u|||2 which is obtained by Aitkin’s ∆2-extrapolation as follows: For

a sequence T (k)
h of uniformly refined meshes, we compute the sequence of

energies Ek := |||u(k)
h |||2, where u

(k)
h is the discrete solution corresponding to

the triangulation T (k)
h . Extrapolation of the sequence Ek then yields a good

approximation of |||u|||2.
From our analysis in Section 2 and Section 5, respectively, we know that ηM
and µΠ are efficient, i.e. there holds

µΠ ≤ ηM ≤ Ceff |||u− uh|||

with efficiency constant Ceff ≤ 1+δhH and the approximation constant δhH =
|||u − GHu|||/|||u − uh||| from Assumption (AA). Provided δhH stays bounded,
we therefore expect that the curves corresponding to ηM and µΠ have at
least the same slope as the curve corresponding to |||u − uh|||. For smooth
u, δhH tends to zero with h. Therefore, the experimental efficiency constant
Ceff := ηM/|||u − uh||| ≤ 1 − δhH is expected to satisfy Ceff ≤ 1 at least for
the limit case for a finer and finer mesh-size h. Therefore, the absolute values
and hence the curves of the error estimators should be below the curve of
the error. Provided ηM is also reliable, i.e. |||u − uh||| ≤ CrelηM , the quotient
|||u− uh|||/ηM is bounded. In this case, the slopes of the curves corresponding
to |||u− uh||| and ηM are the same, i.e. the curves are parallel.
To study the efficiency and reliability of ηM even in the case that the solution
u is non-smooth, we plot the experimental reliability constant Crel := |||u −
uh|||/ηM and the approximation constant δhH in dependence on the number
n = #Th of fine grid elements. The Galerkin error |||u− GHu||| for the higher-
order method is computed as in (55).

9.3. Finite Element Method with Smooth Solution.

For our first numerical experiment, we adopt the notation from Section 5. We
consider the Dirichlet problem (11) on the unit cube Ω = [0, 1]2 ⊂ R2 with
ΓD = ∂Ω and

f(x) = (k2π2/2) sin(x1kπ/2) sin(x2kπ/2).

The exact solution is then given by

u(x) = sin(x1kπ/2) sin(x2kπ/2),

and therefore u satisfies the smoothness assumptions of Theorem 5.1. Accor-
ding to the Bramble-Hilbert lemma, we expect that uniform mesh-refinement
leads to the optimal order of convergence O(h) for the error |||u− uh|||, which
is computed by (55). Aitkin’s ∆2-extrapolation yields |||u|||2 = 44.4132.
In Figure 1 we plot the error |||u− uh||| as well as the estimators ηM and µΠ .
Note that the optimal order of convergence O(h) for P 1-elements corresponds
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Fig. 1. Error |||u − uh||| and error estimators ηM and µΠ in Example 9.3 in depen-
dence on the number of fine grid elements n = #Th. We observe optimal order of
convergence O(n−1/2) for error and error estimators and independent of uniform
[indicated by unif.] and adaptive mesh-refinement [indicated by ad.]. The values of
the error estimators ηM and µΠ coincide up to rounding errors. The error estimation
is reliable and efficient.

to O(n−1/2) in terms of elements n = #Th. Both, uniform and adaptive mesh-
refinement, lead to the optimal order of convergence for the error. Moreover,
we observe that ηM and µΠ coincide and that both are efficient and reli-
able. We stress the reliability of ηM which is analytically only predicted for
sufficiently large ℓ ∈ N, whereas we use the minimal possible choice ℓ = 1.
Moreover, note that we have only proven µΠ ≤ ηM . In our experiment, there
holds even µΠ = ηM up to rounding errors.
In Figure 2 we plot the approximation quotient δhH . From standard approx-
imation results and h ∼ H for the local mesh-sizes, we know that the nomi-
nator converges like O(h2), whereas the denominator is O(h), i.e. we expect
δhH = O(h). This is what is observed experimentally in Figure 2. Moreover,
we plot the experimental reliability constant Crel := |||u−uh|||/ηM . We observe
that it is slowly decreasing with absolute values about 1.13 at the end of our
computations.

9.4. Finite Element Method with Weakly Singular Solution.

For our second example, we again adopt the notation from Section 5 and
consider the Dirichlet problem (11) on the L-shaped domain Ω = [−1, 0]2 ∪
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Fig. 2. Quotient δhH = |||u − GHu|||/|||u − uh||| in approximation assumption (AA)
and experimental reliability constant Crel := |||u − uh|||/ηM for Example 9.3. For
both, uniform [indicated by unif.] and adaptive mesh-refinement [indicated by ad.],
δhH tends to zero with the theoretically expected order O(n−1/2) with n = #Th.
The experimental reliability constant Crel is slowly decreasing with absolute values
≈ 1.13 at the end of the computations (n = 32768 resp. n = 24016)

[−1, 0]× [0, 1]∪ [0, 1]2 with ΓD = ∂Ω, cf. Figure 3 which also shows the initial

coarse mesh T (0)
H . The right-hand side is constant f(x) = 1. The solution u(x)

is known to be a bubble u ∈ H1+2/3−ε(Ω), for all ε > 0, with singularity at
the reentrant corner (0, 0). Therefore, uniform mesh-refinement is expected to
lead to a suboptimal (experimental) convergence rate for the error |||u−uh||| =
O(h2/3) which can usually be cured by adaptive mesh-refinement.
In Figure 4 we plot the error |||u − uh||| and the error estimators ηM and
µΠ , where the error is computed by (55) with the extrapolated value |||u|||2 =
0.214076. As in Example 9.3, we observe that for both, uniform and adaptive
mesh-refinement, the error estimators ηM and µΠ coincide up to rounding
errors. Independent of the mesh-refining strategy, the error estimators are
reliable and efficient. For uniform mesh-refinement, we observe a suboptimal
order of convergence O(n−2/5) which corresponds to O(h4/5). This is slightly
better than the expected order of O(h2/3). For adaptive mesh-refinement,
we retain the optimal order of convergence O(n−1/2) after a preasymptotic
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Fig. 3. In Example 9.4, we consider the L-shaped domain Ω = [−1, 0]2 ∪ [−1, 0] ×

[0, 1] ∪ [0, 1]2. The initial coarse mesh T
(0)

H consists of N = 6 rectangular triangles.

phase (up to about n = 900 elements), where we observe the same order of
convergence as for the uniform refinement.
In Figure 5 we plot the approximation quotient δhH and the experimental
reliability constant Crel := |||u − uh|||/ηM . For uniform mesh-refinement, the
corner singularity of u dominates the convergence behavior so that we observe
δhH = O(1). For adaptive mesh-refinement, however, we obtain the optimal
order δhH = O(n−1/2). The experimental reliability constant Crel is slowly
decreasing in case of adaptive mesh-refinement with absolute value about
1.15 at the end of our computation (n = 43040). In contrast, for uniform
mesh-refinement, Crel is slowly increasing and is about 1.39 at the end of our
computation (n = 24565).

9.5. Symm’s Integral Equation.

Finally, we consider the integral formulation of the Poisson problem

∆U = 0 in Ω and U = g on Γ = ∂Ω, (56)

which is formulated as Symm’s integral equation [McL]

V u = (K + 1)g, (57)

where V is the single-layer and K is the double-layer potential from (19)
and (49), respectively. Then, the exact solution of (57) is just the normal
derivative u = ∂U/∂n of the solution U from (56) on the boundary Γ .
We adopt the notation from Section 6. The presented numerical results are
taken from [CP1]: We consider a rotated L-shaped domain shown in Figure 6.
The Dirichlet data are chosen such that the exact solution U ∈ H1(Ω) of (56)
reads

U(x) = r2/3 cos(2ϕ/3) in polar coordinates x = r (cosϕ, sinϕ).

Then, the exact solution u ∈ H−1/2(Γ ) of Symm’s integral equation (57) is
given by
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Fig. 4. Error |||u − uh||| and error estimators ηM and µΠ in Example 9.4 in depen-
dence on the number of fine grid elements n = #Th. For uniform mesh-refinement
[indicated by unif.], we observe a suboptimal order of convergence O(n−2/5) for
error and error estimators. This is cured by our adaptive mesh-refining strategy [in-
dicated by ad.], which leads to optimal order of convergence O(n−1/2). The values
of the error estimators ηM and µΠ coincide up to rounding errors. Independent of
the mesh-refinement, the error estimation is reliable and efficient.

u(x) =
2

3
(w(ϕ) · n(x)) r−1/3 (58)

with

w(ϕ) :=

(
cos(ϕ) cos(2ϕ/3) + sin(ϕ) sin(2ϕ/3)
sin(ϕ) cos(2ϕ/3) − cos(ϕ) sin(2ϕ/3)

)
. (59)

Figure 6 shows the initial coarse mesh T (0)
H as well as the exact solution u

from (58) plotted against the arclength of Γ . The singularity of u at (0, 0)
is visible at arc-length parameter s = 0 and s = 2 by periodicity. Aitkin’s
∆2-method gives |||u|||2 = 0.404116.
We consider uniform (θ = 0) and adaptive mesh-refinement (θ = 1/2), where
we use the local contributions of the error estimator µΠ from (30) as refine-
ment indicators in Algorithm 9.1. Again, we restrict to the minimal choice
ℓ = 1 to obtain Th from TH .
Figure 7 shows the numerical results on the convergence of the error |||u−uh|||
and of the error estimators ηM = |||uh−GHuh||| and µM , ηΠ and µΠ from (27)–
(28), respectively. We plot the error and the error estimators in dependence
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Fig. 5. Quotient δhH = |||u − GHu|||/|||u − uh||| in approximation assumption (AA)
and experimental reliability constant Crel := |||u−uh|||/ηM for Example 9.4. For uni-
form mesh-refinement [indicated by unif.], the corner singularity of u dominates the
convergence behavior so that we observe δhH = O(1). For adaptive mesh-refinement
[indicated by ad.], we observe optimal convergence of δhH = O(n−1/2). The ex-
perimental reliability constant Crel is slowly decreasing in case of adaptive mesh-
refinement with absolute value ≈ 1.15 at the end of the computation (n = 43040).
However, for uniform mesh-refinement, Crel is slowly increasing with absolute value
≈ 1.39 at the end of the computation (n = 24576).

on the number of fine grid elements n = #Th. Note that an experimental
convergence rate O(hκ) now corresponds to O(n−κ) in terms of fine grid
elements, since we are dealing with a 1D discretization.
Uniform mesh-refinement leads to a suboptimal order of convergence O(h2/3)
which is due to the singularity of the exact solution at the reentrant cor-
ner and which can be predicted theoretically. The fact that the slope of the
corresponding error estimators even is 2/3 gives empirical evidence that the
estimators are reliable and efficient although the solution lacks the regularity
assumed in Section 6. The proposed adaptive algorithm cures that shortcom-
ing in the sense that it leads to the optimal order of convergence O(n−3/2)
for the error, where we used the local contributions of µΠ as refinement in-
dicators. Due to numerical instabilities in the computation of the matrices
corresponding to GH , we can only present the results for µM , ηM and ηΠ up
to about n = 300 elements in the case of adaptive mesh-refinement. This cor-
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Fig. 6. In Example 9.5, we consider a rotated L-shaped domain Ω (left). Further-

more, the plot shows the initial coarse mesh T
(0)

H with N = 8 elements and uniform
mesh size H = 1/4. The exact solution u from (58) is plotted over the arc-length
s = 0, . . . , 2 (right), where s = 0 and s = 2 correspond to the reentrant corner (0, 0),
where u is singular.

responds to an error about 10−7/2 for the higher order method. The explicit
values of ηM and ηΠ as well as the explicit values of µM and µΠ coincide
up to 2% so that there is no difference visible in the corresponding curves.
Moreover, all four estimators show numerical evidence for efficiency and relia-
bility. The computation of µΠ is stable as it only involves the computation of
some L2-mass matrices, and the condition numbers of which are O(1) under
some mild restrictions on the triangulation. The µΠ steered mesh-refinement
retains the optimal order of convergence O(n−3/2).

10 Conclusions

In this paper we provided an abstract analytical setting for the study of the
reliability and efficiency of a posteriori averaging error estimators. The ab-
stract setting applies to the Galerkin method for both, differential and inte-
gral equations under weak assumptions on the finite elements or boundary
elements gave the analytical fundament that these error estimators are reli-
able and efficient estimators for the (unknown) error |||u− uh|||. The strongest
assumption is a (piecewise) high regularity of the exact solution u. We re-
called an adaptive algorithm from [CP1] which steers the mesh-refinement
with respect to some localized error estimators. In the numerical experiments
we considered examples with different regularity. In our experiments and in
the experiments of [CP1, CP2, FP] the adaptive strategy retains the optimal
order of convergence and is therefore superior to uniform mesh-refinement.
However, there are still some gaps in the analysis: First, the introduced error
estimators are only proven to be reliable if the parameter ℓ ∈ N in Algo-
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Fig. 7. Error |||u − uh||| and error estimators ηM , ηΠ , µM , and µΠ for uniform
[indicated by unif.] and µΠ -adaptive [indicated by ad.] mesh-refinement in Exam-
ple 9.5. Uniform mesh-refinement leads to a suboptimal order of convergence. This
is improved by the proposed adaptive strategy, which retains the optimal order of
convergence. In both cases, the error estimation is reliable and efficient. The error
estimators ηM and ηΠ as well as µM and µΠ coincide up to 2%.

rithm 9.1 is large enough. In the experiments we used the minimal choice
ℓ = 1 throughout. Nevertheless, we always observed the reliability. Second,
the analytical verification of the introduced error estimators needs a high
regularity assumption on u. However, this regularity assumption might be
nonsatisfied in practice. Since our numerical experiments indicate that this
assumption can be weakened, it would be desirable to have a refined analysis
that covers these cases as well, i.e. which either avoids a regularity assump-
tion on u or explains the good performance of the indicator-based adaptive
strategy analytically.
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[R2] Rodŕıguez, R. (1994). A posteriori error analysis in the finite element

method, (Finite element methods (Jyväskylä, 1993). Lecture Notes in Pure
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