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Strong convergence for large bodies in micromagnetics*
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The convexified Landau-Lifshitz minimisation problem in micromagnetics leads to a degenerate variational problem. There-
fore strong convergence of finite element approximations cannot be expected in general. This paper introduces a stabilised
finite element discretisation which allows for the strong convergence of the discrete magnetisation fields with reduced con-
vergence order for a uniaxial model problem.
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1 Introduction

Numerical simulations of stationary micromagnetic phenomena are most frequently based on the mathematical model named
after LANDAU and LIFSHITZ. In the case of vanishing exchange energy, the problem reads: Minimise

E(m) := / #(m) dx — / f-mdx + %/ |Vul? dz over A := {m € L®(Q;R?) | m(x)| = Lae.}. (1)
Q Q Rd

Here, @ C R, d = 2,3, is a bounded Lipschitz domain and ¢ € C(S; R>¢) is an even function on the unit sphere
S = {x € R¥||x| = 1}. For uniaxial materials, ¢ reads ¢(z) = 1 (1 — (z - e)?) with a fixed e € RY, |e| = 1, called
easy axis. The function f € L?(€2; R?) models an exterior field. The potential v is given by Vu € L?(R9;R9) in the
magnetostatic Maxwell’s equation div(—Vu +m) = 0 in R9 in the sense of distributions. Since the stray field Vu is unique
(see [2, Proposition 2.1]), Pm := Vu is well-defined.

The minimum of (1) is in general not attained, as infimizing sequences (m;) develop finer and finer oscillations without
strong limit. However, there exists a weak limit m, which is a solution of the convexified problem:

Minimise E**(m) over A™ = conv(A4)={m e L™ RY)||lm(x)| < 1ae. } Q)
with E™*(m) := / ¢ (m) dx — / f-mdx—i—}/ \Vu|? da
0 Q 2 Jra

with ¢**(z) being the convex hull of ¢(x) defined for |x| < 1. Problem (2) is the weak L?-I'-limit of the classical model by
LANDAU and LIFSHITZ with vanishing exchange energy. Solutions of (2) are equivalently characterised by the corresponding
Euler-Lagrange equations (see Theorem 4.2 in [4] or [2, (2.5)—(2.6)]): Find (A, m) € L?(Q) x L?(Q; R?) such that

Pm+ Vo™ (m)+m=f with A>0, jm| <1, A(1—-|m|)=0 ae. inQ. 3)

Existence of solutions is shown in Theorem 4.2 of [4], whereas Theorem 2.2 of [2] yields uniqueness of the quantities Pm,
V¢**(m) and Am. In the uniaxial case, even m is unique.

2 Discrete Model

In our efforts towards discretisation, we follow an approach studied in [3] and use a piecewise constant approximation: The
side-constraint [my,| < 1 is replaced by a penalisation term, and a stabilisation term o is added:

Minimise £ (my) over L9(T) with 4)
1 1 1 1
o (mp) ::/ (j)**(mh)dxf/ f.mhderf/ |73mh|2dx+f/ ~(Jmp| = 1)3 dz + o(my,, my)
’ Q Q 2 Rd 2 Q€ 2

Here 7 is a partition of 2, £°(7) denotes the space of all 7 -elementwise constant functions, and h € £°(7) is the mesh-size
function, i.e. h|r := hy := diam(T). The stabilisation o is a positive semi-definite bilinear form and (-)2 := max{-,0}?.

Theorem 2.3 of [2] guarantees (4) has at least one solution my,. The quantities Pm and V¢** (my,) are unique among the
solutions. In the uniaxial case, the solution is unique.
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3 Convergence Result

Suppose that 7 is a regular triangulation in the sense of Ciarlet and let S* (7)) = {p € C(Q) |VT € T, ¢|r € P1(T)} denote
the finite element space consisting of globally continuous and 7 -piecewise affine functions. Let Ay, : L2(Q; RY) — S1(7)4
be a linear operator which satisfies (with an h-independent constant ¢; > 0)

o || Anm| 120y < c1]|ml|f2(q) for all m € L2(Q; RY),
o |m— Awm| ;20 < c1||hDm]| 12 (q) forallm € H'(Q;RY) and h — 0,
o |[D(m — Axm)||12(0) < c1||Dm]|12(q) forallm € H'(Q;RY) and h — 0,

Examples for such operators Ay, are the L2-projection onto S;(7 )¢ as well as the Clément interpolation operator. With a
suitably chosen constant ¢y > 0 (see [2, (3.2)]), we define for my,, n;, € £°(7) the following stabilisation term:

1
o(my,ny) = o {{(id — Ap)my, ; (id — An)np) r2(0) + (hDApmy, ; hDApny) 12(0) }

Denote Ay = rTna%c hr and hpyin = jrplgl_ hr. For d = 2 and the discrete energy E% in (4) equipped with this stabilisation
€ € '

term, Thoerem 3.1 of [2] states the following: If (A\,m) and mj are the solutions of (3) and (4) for the uniaxial case,
respectively, and if m, A\m € H®(Q2; R?) for some a € (0,1] and € = O(h%,), then
lm = my 2 (0) = OB/ anin)-

max

This yields convergence for quasiuniform meshes and o > 2/3.

4 Error Estimators

The following result provides error estimations of the stray field and the magnetisation in the direction of the easy axis of the
uniaxial case. Theorem 3.3 of [1] shows without stabilisation (o = 0), that with an h-independent constant c3 > 0

[Pm — Pmy || 12ra) + [V (m) — V™ (myp)|| r2(0) <
< Cg{((f — fT) — (th - (th)T) ;m — m7>Lz(Q)
+ [[(lmp| = 1)+ ((f — £7) — (Pmp, — (Pmp)7)) [|2(0) + [[(Jmn] — 1)+HL2(Q)}~

The first term on the right hand side, though not being a posteriori, can be dominated with Holders inequality. This estimate
gives rise to several error estimators that are either reliable, or (expected to be) efficient, but not both. This phenomenon is
called Reliability-Efficiency-Gap and illustrated in Figure 1.
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Fig. 1 Numerical solution of a problem with m ¢ H* (a) and Reliability-Efficiency-Gap of error estimators (b).
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