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Abstract. Averaging or gradient recovery techniques, which are a popular
tool for improved convergence or superconvergence of finite element methods in
elliptic partial differential equations, have not been recommended for noncon-
vex minimization problems as the energy minimization process enforces finer
and finer oscillations and hence at the first glance, a smoothing step appears
even counterproductive. For macroscopic quantities such as the stress field,
however, this counterargument is no longer true. In fact, this paper advertises
an averaging technique for a surprisingly improved convergence behavior for
nonconvex minimization problems. Similar to a finite volume scheme, numer-
ical experiments on a double-well benchmark example provide empirical evi-
dence of superconvergence phenomena in macroscopic numerical simulations of
oscillating microstructures.

1. Introduction

Consider a typical problem of minimizing a functional

E(u) =

∫

Ω

W (Du) dx +

∫

Ω

|u− f |2 dx, (1.1)

in a set admissible functions

A = {u ∈ W 1,p(Ω; Rm) : u|∂Ω = u0}, (1.2)

where Ω ⊂ Rn is a connected open set with Lipschitz continuous boundary ∂Ω

and W (·) is non-convex (non-quasiconvex in the vector case, i.e. n ≥ 2 and

m ≥ 2). It is well known that such problems has in general no solutions in

the classical sense [1, 2], and the minimizing sequences of E(·) in A can develop
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finer and finer oscillations and lead to generalized solutions, or microstructures,

represented by gradient Young measures [1, 3, 4]. Even though there are some

successful numerical methods based on the direct method for the computation of

some special microstructures (see [5, 6, 7] among many others, more references

on numerical analysis and computation of microstructures based on the direct

method can be found in [8, 9]), it is found that the numerical results for such

problems can be strongly mesh dependent [8, 10, 11, 12] and the increasingly fine

length scale oscillations are often practically impossible to resolve numerically, so

it is generally extremely difficult to solve the problem by direct numerical compu-

tation. Thus, naturally, mathematical models and methods based on some kind

of relaxation are considered essential in the numerical computations, especially in

the macroscopic simulations of such problems [13], and a lot of progress has been

made in numerical analysis and computations based on relaxation models and

methods (see for example [14, 15, 16, 17, 18, 19], more references can be found

in [20]).

On the other hand, it is well known that averaging or gradient recovery

techniques are a popular tool for improved convergence or superconvergence of

finite element methods in elliptic partial differential equations with applications

to a posteriori error control (see for example [21, 22, 23, 24]). For nonconvex min-

imization problems such techniques have not been recommended as the energy

minimization process enforces finer and finer oscillations. Hence, at first glance,

a smoothing step appears even counterproductive. For macroscopic quantities

such as the stress field, however, this counterargument is no longer true [25]. In

fact, this paper advertises averaging techniques for a surprisingly improved con-

vergence behavior. Numerical experiments on a double-well benchmark example

[14, 19] provide empirical evidence that there are superconvergence phenomena

in macroscopic numerical simulations of oscillating microstructures.

The rest of the paper is organized as follows. In section 2, we establish a

numerical algorithm by applying an averaging technique to a relaxation model of

the non-convex minimization problem. In section 3, numerical experiments on a

double-well benchmark example are shown. Conclusions of the paper are given

in section 4.
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2. Model and algorithm

For the macroscopic simulation, instead of considering the problem of mini-

mizing the functional E(·) in A, we consider the corresponding relaxed problem

of minimizing the functional

E∗∗(u) =

∫

Ω

W ∗∗(Du) dx +

∫

Ω

|u− f |2 dx (2.1)

in the set of admissible functions A (see (1.2)), where W ∗∗ is the convex envelope

(quasiconvex envelope in the vector case) of the energy density W . It is well

known that the relaxed problem is solvable under certain general conditions on

W [2].

Let Th(Ω) be regular triangulations of Ω with mesh size h [26]. Let

Ah = {u ∈ (C(Ω))m : u|K is affine ∀K ∈ Th(Ω)} (2.2)

and

Ah(u0,h) = {u ∈ Ah : u|∂Ω = u0,h}, (2.3)

where u0,h is the interpolation of u0 in Ah. A standard finite element discretization

of the relaxed problem is to minimize the functional E∗∗(·) in the set Ah(u0,h)

of finite element functions. Since Duh is only piecewise constant for uh ∈ Ah,

the approximation is not expected to be good, especially at regions where the

solution is non-smooth. In principle, averaging, or gradient recovery techniques

are applied in the hope of obtaining a higher order approximation for the gradient

field (or stress field), and thus a better approximation of the solution.

Let N be the set of nodes in Th(Ω), and let ϕz, z ∈ N be the shape functions

defined on Th(Ω). Define

Duh(z) =
1

|ωz|
∫

ωz

Duh(x) dx (2.4)

where ωz = {x ∈ Ω : ϕz(x) > 0} and |ωz| denotes the measure of ωz. Then, for a

given function uh ∈ Ah, {Duh(z) : z ∈ N} defines a piecewise affine gradient field

Duh on Th(Ω). This averaging technique leads to the following discrete problem

{
Find uh ∈ Ah(u0,h) such that,

Eh(uh) = minvh∈Ah(u0,h) Eh(vh),
(2.5)
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where

Eh(uh) =
∑

z∈N

|ωz|
3

(W ∗∗(Duh(z)) + |uh(z)− f(z)|2) (2.6)

is a discrete functional defined on the finite element function space Ah obtained

by substituting Duh to Duh in E(uh) and by applying a numerical quadrature

on the integrals.

Next, we apply the above averaging technique to the following double well

benchmark example [14, 19]. Let Ω = (0, 1)× (0, 3/2) and let the energy density

W (F ) = |F − F1|2|F − F2|2 for F ∈ R2, (2.7)

where F1 = −(3, 2)/
√

13 and F2 = −F1 are the two given distinct wells, and let

the boundary condition u0 be given by

u0(x, y) =





√
13(3− 2y)3(3(3− 2y)2/281216 + 1/507) for x = 0;

2y(1 + 4y2/312)/
√

13 for x = 1;√
13(1− x)3(729(1− x)2 + 14976)/281216 for y = 0;

3x(1 + 9x2/13)/
√

13 for y = 3/2,

(2.8)

and finally let A = u0 + W 1,4
0 (Ω). It can be shown [14] that the lower convex

envelope of W is given by

W ∗∗(F ) = ((|F |2 − 1)+)2 + 4(|F |2 − (F1 · F )2), (2.9)

where (·)+ = max{0, ·}, and while the infimum of E in A is not attainable, the

corresponding relaxed problem has a unique solution given by

u(x, y) =

{
f0(t + 1

2
) for − 1

2
≤ t ≤ 0;

f1(t + 1
2
) for 0 ≤ t ≤ 1

2
,

(2.10)

where t = (3(x− 1) + 2y)/
√

13 and

f0(t +
1

2
) = −3t5/128− t3/3;

f1(t +
1

2
) = t3/24 + t.

It is not difficult to see [14] that W ∗∗ is differentiable and

DW ∗∗(F ) = 4((|F |2 − 1)+ + 2)F − 8(F1 · F )F1. (2.11)
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The gradients of u is given by

Du(x, y) =

{
t2(1 + 15t4/128)F1 for − 1

2
≤ t ≤ 0;

(1 + t2/8)F2 for 0 ≤ t ≤ 1
2
,

(2.12)

which is continuous on the lower left and upper right subdomains

M = {the convex hull of (0, 0), (1, 0), (0, 3/2)};
R = {the convex hull of (1, 0), (1, 3/2), (0, 3/2)},

but is discontinuous on the antidiagonal Γ = M∩R, that is t = 0, or 2y + 3(x−
1) = 0, however the stress field

σ = DW ∗∗(Du) =

{
0 for − 1

2
≤ t ≤ 0;

t2(1 + 3t2/16 + t4/64)F2 for 0 ≤ t ≤ 1
2

(2.13)

is continuously differentiable on the whole domain Ω.

Since W ∗∗(·) is differentiable, Eh(·) is also differentiable and the optimization

problem (2.5) can be solved by gradient type methods. The conjugate gradient

method leads to the following scheme.

Algorithm:

Input an initial uh ∈ Ah with uh = u0 on ∂Ω.

(a): Compute DEh(uh);

(b): If |DEh(uh)| < TOL then go to step (f);

(c): Compute the conjugate gradient direction vh;

(d): Find t∗ to minimize Eh(uh + tvh);

(e): Set uh = uh + t∗vh, go to step (a);

(f): If necessary refine the mesh and go to step (a);

Output uh.

In step (a) of the algorithm, we apply an incomplete search, in which the

step length t is limited to either being doubled or being halved in searching for

a ”minima”. In step (f), either the uniform mesh refinement or adaptive mesh

refinement can be applied, and the interpolation of the numerical result obtained

on the coarse mesh is taken as the initial guess on the refined mesh. In the

adaptive mesh refinements, we use the ZZ-error indicator given in [19] which

is defined in the following way: let σh = DW ∗∗(Duh), and for each element
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T ∈ Th(Ω), define

ηT,z = ‖σh − Aσh‖4/3

L4/3(T )
,

where A is an averaging operator given by

Aσh =
∑

z∈N

(
1

|ωz|
∫

ω

σh(y) dy)ϕz,

and define the averaging estimator by

ηz = (
∑

T∈Th(Ω)

ηT,z)
3/4. (2.14)

3. Numerical experiments

Noticing that the antidiagonal Γ = M ∩R is a free boundary across which

the gradient of the solution is discontinuous, we are easily convinced that a finite

element mesh having Γ included in its mesh lines can lead to a much better

numerical approximation. Since such free boundaries are not known a priori in

practical applications, and the ability to resolve the free boundary is one of the

key issues for a successful algorithm, we will use meshes which, even after many

adaptive mesh refinements, do not have mesh lines on Γ.

Given integers M > 1 and N > 1, a uniform mesh is introduced by the

following lines

x = i/M 0 ≤ i ≤ M ;

y = 3j/2N 0 ≤ j ≤ N ;

y = 3(Mx + k)/2N −M ≤ k ≤ N.

It is obvious that for an initial mesh with M 6= N , neither uniform mesh refine-

ments nor adaptive mesh refinements can produce mesh lines lying on Γ.

First, numerical experiments on uniform meshes are done in which we take

M = 10, 20, 30, 40, 50 and N = 3M/2, or 15, 30, 45, 60, 75 respectively. For the

initial guess, we take uh(z) = 0 for all the interior nodes z. The tolerance TOL

in the step (b) of the algorithm is set to 10−9. The conjugate gradient method

is restarted in every 25 iterations. The initial step length t = 0.25 is taken.

Numerical results obtained by the standard finite element method using piecewise

affine finite element functions and the numerical results obtained by the method

using the averaging technique are compared in Figure 1-4.
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Figure 1. Error ‖u− uh‖2 on uniform meshes.
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Figure 2. Error ‖Du−Duh‖2 on uniform meshes.
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Figure 3. Error ‖Du−Duh‖4 on uniform meshes.
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Figure 4. Error ‖σ − σh‖4/3 on uniform meshes.
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It is clearly shown in Figure 1-4 that the averaging technique greatly improves

the convergence behavior, especially the superconvergence is achieved for u on L2

and W 1,2 norms, and for σ on L4/3 norm, with the corresponding convergence

rates being increased from 3/4, 3/8, 1 to 5/4, 1/2, 3/2 respectively.

Next, we show some numerical results obtained by combining the adaptive

mesh refinements using ηz (see (2.14)) with the averaging technique. In figure 5,

the error in different norms on uniform and adaptively refined meshes are shown,

where ”∗” and ”+” represent the adaptive mesh refinements starting from 10×15

and 30×45 uniform meshes respectively. It is clearly seen that the adaptive mesh

refinements further improve the convergence. The optimal refinements seem to

be when the nodes’ number N is about 3 to 4 times of the original size, more

adaptive mesh refinements further improves the convergence but not as effective

(compare the results shown in ” ∗ ” and ”+”). Figure 6 shows a numerical result

of uh on an adaptively refined mesh starting from a 10 × 15 uniform mesh. In

figure 6, we can also see clearly that the antidiagonal Γ = M∩R is well resolved,

however the mesh refinements are too much concentrated around Γ that causes
the drop of efficiency of the mesh refinements.
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Figure 6. uh on an adaptively refined mesh (N = 5147).

4. Conclusions

Even though there is no theoretical justification of any kind, empirical evi-

dences show that averaging techniques can significantly improve the convergence

for the macroscopic numerical approximation of nonconvex minimization prob-

lems, and further improvement can be achieved by combining adaptive mesh

refinements.

For solutions having discontinuous gradient, the alignment of the mesh lines

with the set of discontinuity can significantly reduce the numerical error and

reduce the adaptive cost. A recent work of Zhou and Li [27] showed that the

mesh transformation method can be applied to achieving the alignment. Thus

a combination of the averaging techniques, mesh transformation method and

adaptive refinements is highly recommended.
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[5] Z.-P. Li, Rotational transformation method and some numerical techniques for the compu-

tation of microstructures. Math. Models Meth. Appl. Sci., 8(1998), 985-1002.

[6] Z.-P. Li, A periodic relaxation method for computing microstructures. Appl. Numer.

Math., 32(2000), 291-303.

[7] Z.-P. Li, A mesh transformation method for computing microstructures. Numer. Math.,

89(2001), 511-533.

[8] M. Luskin, On the computation of crystalline microstructure. Acta Numerica, 5(1996),
191-257.

[9] M.K. Gobbert and A. Prohl, A comparison of classical and new finite element methods for

the computation of laminated microstructure, Appl. Numer. Math. 36(2001), pp.155-
178.

[10] C. Collins, Computation of twinning, in Microstructure and Phase Transitions, IMA
Volumes in Mathematics and Its Applications, Vol.54, J. Ericksen, R. James, D. Kinder-
lehrer and M. Luskin, eds, Springer-Verlag, New York, (1993), pp. 39-50.

[11] C. Collins, M. Luskin and J. Riordan, Computational results for a two-dimensional model
of crystalline microstructure, in Microstructure and Phase Transitions, IMA Volumes
in Mathematics and Its Applications, Vol.54, J. Ericksen, R. James, D. Kinderlehrer and
M. Luskin, eds, Springer-Verlag, New York, (1993), pp. 51-56.

[12] Z.-P. Li, Laminated microstructure in a variational problem with a non-rank-one connected

double well potential, J. Math. Anal. Appl., 217(1998), 490-500.
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