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Abstract The modeling of the finite elastoplastic behaviour of single crystals with one active slip system
leads to a nonconvex variational problem, whose minimization produces fine structures. The computation of
the quasiconvex envelope of the energy density involves the solution of a nonconvex optimization problem
and faces severe numerical difficulties from the presence of many local minima. In this paper, we consider a
standard model problem in two dimensions and, by exploiting analytical relaxation results for limiting cases
and the special structure of the problem at hand, we obtain a fast and efficient numerical relaxation algorithm.
The effectiveness of our algorithm is demonstrated with numerical examples. The precision of the results is
assessed by lower bounds from polyconvexity.

Keywords Relaxation · Quasiconvexity · Crystal plasticity

PACS 62.20.F- · 64.70.K- · 81.40.Lm

1 Introduction and model problem

In this paper we develop a mixed numerical–analytical relaxation method and apply it to a variational model
for finite single-slip crystal plasticity in ductile single crystals. Relaxation is a general theory which permits
the study of the macroscopic behavior of materials which develop microstructures; its practical application
has been up to now largely limited by the fact that it has rarely been possible to obtain efficiently the explicit
relaxation of the problem at hand. Indeed, whereas only very few problems admit an analytical relaxation, a
direct numerical relaxation which does not exploit any special structure is faced with huge numerical difficulties
from the presence of many local minima. We address here this difficulty by providing, for one test case from
crystal plasticity which has already been studied several times in the literature, a method which combines some
analytical results with an efficient numerical optimization of the microstructure, within a restricted class.

We focus on two spatial dimensions and on the case that only one slip system is active, and use a variational
model based on a time discrete formulation. This falls within the class of time-discrete variational models for
geometrically nonlinear plasticity, which have been recently studied exploiting the analogy with problems from
martensitic microstructures. This analogy, and the possibility to study each incremental problem in plasticity
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via a variational functional depending on the deformation gradient F = Dφ, as in nonlinear elasticity, was
advanced by Ortiz and Repetto in [37]; in the same paper the variational origin of geometrical softening is
discussed and comparisons to experimental observations of microstructures in plastic materials are provided.

We focus here on the model defined in [13] and simulated in [9,29]. The model of [13] permits the treatment
of unloading through the study of a sequence of variational problems; we shall here however, focus on the first
time-step alone. This restriction is appropriate for monotone loading, and closely related to the deformation
theory of plasticity. Precisely, we consider one slip system, described by an orthonormal pair of vectors s and m,
with s denoting the slip direction and m the normal to the slip plane. In a geometrically nonlinear context, we
assume the multiplicative decomposition of the deformation gradient F = Fe Fp with Fp = Id+γ s⊗m and the
plastic slip γ ∈ R. Hardening is included through a single internal variable p ∈ R. Within the framework of rate-
independent processes [30–32], we consider one time step in an implicit time-discrete scheme. Minimizing out
locally the internal variables, the incremental problem can be cast equivalently into a variational formulation
expressed only in terms of the deformation gradient F and can therefore be analysed by the methods of the
calculus of variations.

The constitutive behaviour of the single crystal is described in terms of two potentials: the free energy
density Wep(F, γ, p) and the dissipation potential J (γ, p). The free energy density is the sum of the elastic
and the plastic contribution,

Wep(F, γ, p) = We(F(Id − γ s ⊗ m))+ Wp(p), (1.1)

where we used the relations Fp = Id + γ s ⊗ m , Fe = F F−1
p = F(Id − γ s ⊗ m). Here

Wp(p) = h

2
p2 (1.2)

and U (F) = κ
4 ((det F)2 − 1)− κ+2µ

2 log (det F),

We(Fe) =
{

U (Fe)+ µ

2
(|Fe|2 − 2) if det Fe > 0,

∞ else.
(1.3)

Here and throughout, µ, κ > 0 are elastic constants and h > 0 is the hardening modulus. The function We is
polyconvex, hence in the absence of plastic deformation (this is, if one prescribes γ = p = 0 everywhere) no
microstructure is expected. In this case the condensed energy W (defined next) equals We and the condensed
problem (defined next) has minimizers [5]. The functional form is chosen so that We is nonnegative, and
vanishes on SO(2) the group of orthogonal matrices of R

2×2 with positive determinant. The dissipation
potential J (γ, p) is

J (γ, p) =
{
τcr|γ | if |γ | + p ≤ 0
∞ else, (1.4)

with τcr > 0 the critical shear stress. We use | · | for the Euclidean norm (|F |2 = Tr FT F for matrices) and ·
for the scalar product in R

2.
We focus here on the first time-step of a time-incremental formulation. In this case the considered model

reduces to the minimization of∫
�

[
Wep(Dφ, γ, p)+ J (γ, p)

]
dx + external forces (1.5)

over deformations φ : � ⊂ R
2 → R

2, with γ, p : � → R subject to appropriate boundary conditions. Since
the internal variables (γ, p) enter locally into the energy, it is convenient to minimize them out pointwise. One
immediately obtains p = −|γ | whereas minimization in γ leads to the condensed energy [13]

W (F) = U (F)+ µ

2
(|F |2 − 2)− 1

2

(max{0, µ|Fs · Fm| − τcr})2
µ|Fs|2 + h

. (1.6)

This is the starting point of our analysis. The variational problem (1.5) then reduces to the condensed problem
of minimizing ∫

�

W (Dφ)dx + external forces.



Mixed analytical–numerical relaxation in finite single-slip crystal plasticity 277

At the same time, the plastic slip reads

γ (F) = max{0, µ|Fs · Fm| − τcr}
µ|Fs|2 + h

sign(Fs · Fm). (1.7)

The energy density (1.6) is not rank-one convex and, hence, not quasiconvex [13]. General theory shows then
that for many boundary data the functional (1.5) does not have a minimizer, and that low-energy sequences
develop fine-scale oscillations in the gradient [6,7,20,22,34]. For the case under consideration, the occur-
rence of such microstructures has been indeed illustrated in [24] by a direct finite element simulation using
representative volume elements under affine-periodic boundary conditions.

The macroscopic material behaviour is modelled by minimizing out locally the possible microstructures,
which amounts to computing the quasiconvex envelope W qc of W . The latter is defined as the pointwise
supremum of the family of the quasiconvex functions which bound W from below; a function V : R

m×n →
R ∪ {∞} is called quasiconvex if, for all F ∈ R

m×n and all ϕ ∈ W 1,∞
0 ((0, 1)n; R

m) for which the integral
exists,

V (F) ≤
∫

(0,1)n

V (F + ∇ϕ)dx .

If W is continuous one can show that

W qc(F) = inf

⎧⎪⎨
⎪⎩

∫
(0,1)n

W (F + ∇ϕ)dx : ϕ ∈ W 1,∞
0 ((0, 1)n; R

m)

⎫⎪⎬
⎪⎭ . (1.8)

For additional details see, e.g., [20,34]. Knowledge of W qc permits one to perform macroscopic finite-element
simulations, where the energy density W is replaced by W qc. Equivalently, the variational problem is replaced
by its relaxation. Since optimal microstructure is in this case already accounted for in the energetics, it is not
necessary to resolve it explicitly by the finite-element solution. This leads to mesh-independent results, and
permits to successfully use rather coarse meshes to study realistic experimental geometries, as was done for
example in [4,14,19,29]. A largely similar situation arires in the setting of shape optimization, see [2,26] and
references therein. In both cases usage of the relaxation technique for mechanical problems with microstructure
has been up to now mainly limited by the difficulty of determining the relaxation W qc.

A closed form for the quasiconvex envelope of condensed energies of the kind of W is known only in few
simplified cases [1,11,17,18,21,25,26,43]. In practical applications one usually resorts to an approximation to
W qc based on laminates. Equation (1.8) shows that the quasiconvex envelope can be determined by optimizing
over all possible distributions of gradients F +∇ϕ; laminates constitute a large and yet simply accessible class
of such distributions. Precisely, laminates are probability measures on R

m×n which can be described as the
weak limit of the distribution of special sequences of gradients. A laminate of zeroth order is a Dirac delta,
i.e., it has the form ν = δF , and corresponds to the limit of the gradient distribution of the (constant) sequence
ϕ(x) = Fx . A laminate of nth order is defined inductively from a laminate of order n − 1 by replacing each of
the terms cδF by a sum c(λδF1 + (1−λ)δF2), where λF1 + (1−λ)F2 = F , λ ∈ [0, 1], rank(F1 − F2) ≤ 1 and
c ∈ (0, 1]. One says that the matrix F has been split into F1 and F2. Since laminates are probability measures,
the average of a function V over a laminate ν is denoted by 〈ν, V 〉 = ∫

Rm×n V (A)dν(A). For example, first-
order laminates have the form ν = λδF1 + (1 −λ)δF2 , with F1 − F2 = a ⊗ n, and are the limits of the gradient
distributions of the maps

ϕε(x) = F1x − aεχ
( x · n

ε

)
where χ : R → R is defined by χ(0) = 0, χ ′(t) = 0 if t ∈ (k, k + λ) and χ ′(t) = 1 if t ∈ (k + λ, k + 1),
for k ∈ Z. For small ε, the gradients ∇ϕε oscillate on a fine scale between the values F1 and F2, with
average F = λF1 + (1 − λ)F2. As ε → 0, the sequence ϕε converges weakly-∗ in W 1,∞(Rn; R

m) to the
affine function ϕ(x) = Fx ; the function V (∇ϕε) converges weakly to 〈ν, V 〉 = λV (F1) + (1 − λ)V (F2).
Refining this argument one can show that mixtures are always possible between rank-one connected matrices,
hence that all laminates as defined above are attainable as weak limits of gradients. For additional details see,
e.g., [20,22,34].
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Restricting the infimization in (1.8) to laminates of a given order produces an upper bound to W qc, which
is called the lamination envelope of order k. Precisely,

W qc(F) ≤ W lc,k(F) = inf

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
Rm×n

W (A)dν(A) : ν laminate of order k∫
Rm×n

A dν(A) = F

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭
. (1.9)

In order to compute W lc,k one has to determine, for each F , the best laminate of order k, which is a finite-
dimensional global nonconvex optimization problem. Practical implementation is, however, difficult, because
the objective function may present an exponential (in k) number of nearby optimal local minima [12]. The
method based on discretizing the function W on a regular mesh proposed by Dolzmann [23] is efficient only
in low dimension, and for smooth functions W . In particular, since the structure of the mesh is relevant for
the algorithm, it is difficult to extend that approach to models like the one of interest here which incorporate a
strong penalization on volume changes, or even a nonlinear constraint on the determinant.

Within the techniques of global optimization, probabilistic global search procedures are the ones commonly
adopted, but they remain computationally quite expensive. Since in a finite element framework this optimization
must be performed at every material point (e.g. Gauss point), for real applications it is mandatory to develop fast
techniques for the numerical relaxation. In the literature the computational effort related to the global search
is usually reduced by fixing some of the parameters of the laminate on the basis of conjectures motivated by
physical considerations [4,28,29,38].

In this paper we present a different approach to the relaxation of W over laminates. Rather than attacking
the global minimization by brute-force global optimization, we exploit in an essential fashion the structure of
the problem both to achieve a fundamental understanding on the optimal microstructure and, in parallel, to
design an efficient numerical relaxation scheme. At variance with [4,29] we do not start from a restriction to
the kinematics, but from an approximation to the energy, which is then in a second stage relaxed numerically.
Specifically, we shall use analytical expressions of the quasiconvex envelope of simplified versions of the
relevant energy. Inspired by results based on the global optimization [9] and on analytical relaxation [15,16,18],
we determine analytically a second-order laminate which has “good” energy and furnishes an upper bound
to the relaxed energy. This laminate is then used as initial guess for the local minimization. Thereby we have
constructed an effective procedure to obtain, for every deformation gradient F , a locally optimal laminate ν for
the relaxation of W . The resulting energy W opt = 〈W, ν〉 gives an upper bound on the relaxation, W opt ≥ W qc.

In a second stage we assess the quality of our result. To this end we seek a polyaffine function that coincides
with the unrelaxed energy on the support of the laminate and verify that it is below the condensed energy W ,
up to a small error term. The size of this error gives us an upper bound on the size of the error done in the
relaxation, i.e., on the difference W opt − W qc.

Since plastic deformation is isochoric, one expects the relevant macroscopic deformation gradients F
to have determinant close to unity. Our heuristics is focused on the case det F = 1, and in our numerical
examples the macroscopic deformation gradient will obey this condition. The support of the laminate obtained
by numerical optimization is however, not restricted to this set. Our results can easily be generalized to other
values of F by taking the laminate corresponding to the deviatoric part of a generic F as a starting point for
the local relaxation.

The layout of the paper is as follows. After this introduction, Sect. 2 is devoted to the construction of
approximate (first and second) order laminates. This section consists in turn of three subsections. In the first
one, we recall from [16] the analytical expression of the quasiconvex envelope in the case of rigid elasticity,
linear hardening and no dissipation. In the second one, we construct a second-order laminate with fixed
lamination direction, whereas in the last subsection we present an approximate first order laminate. These
laminates are built so that the corresponding energy bounds from above the quasiconvex envelope of the
condensed energy in the case of no dissipation. Section 3 is devoted to the numerical optimization problem
and describes the algorithm employed for the local minimization and the definition of the laminate whereas,
Sect. 4 focuses on the optimality check, which is obtained by computing a polyaffine function supported on the
laminate at the given deformation gradient F . Numerical examples of relaxation for simple shear with different
shear directions and for biaxial deformation gradient are given in Sect. 5 whereas final remarks conclude the
paper in Sect. 6.
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2 Partial analytical relaxation

We first consider some simplifications of the general model (1.6) which will allow either the explicit evaluation
of the quasiconvex envelope (such as in Sect. 2.1) or the constructions of laminates (second order in Sect. 2.2
and first order in Sect. 2.3) with good “energetic” content.

2.1 The quasiconvex envelope for the rigid case in 2D

This section recalls the analysis in [16] for a simplification of the model (1.6) in the case of so called geometric
softening [3,37]. We assume rigid elastic behaviour, that is, F = QFp with Q ∈ SO(2), Fp = Id + γ s ⊗ m,
p = |γ | and zero dissipation, that is, τcr = 0. Under these conditions, the condensed energy reads as follows:

W1(F) =
{ h

2
γ 2 if F = Q(Id + γ s ⊗ m) for some Q ∈ SO(2) and γ ∈ R,

∞ else.
(2.1)

This energy density is not rank one convex, hence neither quasiconvex. The quasiconvex envelope can be
determined analytically and reads as follows.

Proposition 2.1 (From [16]) The quasiconvex envelope W qc
1 (F) of W1(F) reads

W qc
1 (F) =

{
h
2 (|Fm|2 − 1) if det F = 1 and |Fs| ≤ 1,
∞ else.

(2.2)

Moreover, the quasi-, poly-, and first order laminate-convex envelope coincide. The optimal laminate corre-
sponding to a matrix F is supported on the matrices

F1 = F + υ1a ⊗ b and F2 = F + υ2a ⊗ b (2.3)

where b = s, a = Fm/|Fm|, and υi for i = 1, 2 are the two real solutions of the equation

υ2 + 2υ
Fm · Fs

|Fm| + |Fs|2 − 1 = 0, (2.4)

with υ1υ2 ≤ 0.

Proof The proof of the lower bound is obtained by showing that W qc
1 (F) is polyconvex and W qc

1 (F) ≤
W1(F). As a result, one obtains W qc

1 (F)≤ W pc
1 (F)≤ W1(F). For the proof of the upper bound one shows that

W qc
1 (F) is obtained by considering the first lamination convex envelope, and then constructs a test function

ϕ ∈ W 1,∞
0 ((0, 1)2; R

2) using convex integration techniques from [35] by following the same arguments as in
[18]. The details are included in [16] and hence omitted here. ��
Remark 2.2 The two phases F1 and F2 have the same plastic slip γ in absolute value. This corresponds to the
condition W1(F1) = W1(F2) or equivalently |F1m| = |F2m|. Since m ·s = 0, the latter is a trivial consequence
of (2.3) and the fact that b = s.

2.2 An approximate 2nd-order laminate

In this section we address the construction of second order laminates which have “good” energy, neglecting
dissipation. The key idea is to construct an optimal first-order laminate between a purely elastic phase and the
analytic relaxation W qc

1 obtained in Proposition 2.1. Both functions are—in appropriate domains—quadratic,
hence, given a lamination direction, the relaxation can be determined analytically, by computing the convex
envelope of the minimum of two parabolas.

Compared to the situation of Sect. 2.1, we only keep the assumption that τcr = 0 and consider the following
energy density

W2(F) = min
γ∈R

Wep(F, γ ), (2.5)
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where Wep(F, γ )= We(F(Id + γ s ⊗ m)−1)+ h
2γ

2 is obtained from (1.1) with p = − |γ | and Fe = F(Id +
γ s ⊗ m)−1 = F(Id − γ s ⊗ m).

Then a first result that relates the energy W2(F) with W1(F) defined by (2.1) and We defined by (1.3) is
given in the following.

Lemma 2.3 The following bound holds

W2(F) ≤ min{W1(F), We(F)}. (2.6)

Proof From (2.5) we have
W2(F) ≤ Wep(F, 0) = We(F). (2.7)

By accounting for (2.1) and (1.3) we have also

W1(F) =
{

Wep(F, γ ) if F = Q(Id + γ s ⊗ m),
∞ else. (2.8)

Therefore,
Wep(F, γ ) ≤ W1(F) for every γ ∈ R. (2.9)

Recalling (2.5) one obtains
W2(F) ≤ W1(F). (2.10)

This and (2.7) imply (2.6). ��
Equation (2.6) bounds W2 with the minimum of the two functions W1 and We. For both, the quasiconvex

envelope is known: of the first one from Proposition 2.1, of the second one by the fact that We is polyconvex,
and hence W qc

e = We. The relaxation of W2 is therefore bounded by the relaxation of min{W qc
1 ,We}, and in

particular by its first lamination convex envelope. The latter can be easily determined by taking the convex
envelope along each rank-one direction. Since W qc

1 is infinite away from the unit-determinant surface, if
det F = 1 the laminate is necessarily isochoric. Precisely, let S1 denote the set of elements of R

2 with unit
norm, given a lamination direction b ∈ S1 with b = (cosβ, sin β) for β ∈ [0, π/2), for any υ ∈ R the condition
det(F + υ a ⊗ b) = 1 gives

a = Fb⊥

|Fb⊥| , (2.11)

with b⊥ = (− sin β, cosβ). For each direction b ∈ S1, consider then the function f : R × S1 → R

f (υ ; b) = min {W qc
1 (F + υ a ⊗ b), We(F + υ a ⊗ b)}. (2.12)

Here we work at fixed F and a is given by (2.11). The convex envelope of (2.12) with respect to its first
argument υ ∈ R and fixed b is denoted by

f ∗∗(·; b) = conv f (·; b). (2.13)

Since f is the minimum of two parabolas, f ∗∗ can be computed analytically; for brevity we do not report the
explicit formula here and denote succintly by

(υ1(b), υ2(b)) = ConEnv(F; b)

the abscissa of the tangent points to We(F + υ a ⊗ b) and W qc
1 (F + υ a ⊗ b), respectively, and the function

that defines those values.
The main result of this section then reads as follows.

Proposition 2.4 The quasiconvex envelope W qc
2 of the energy density W2 defined by (2.5) satisfies

W qc
2 (F) ≤ f ∗∗(0; b) for all b with |b| = 1. (2.14)
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Proof On matrices F with det F ≤ 0, all functions mentioned in the statement equal ∞, hence the result is
true.

On the set of matrices F with det F > 0 one has W qc
2 ≤ W2 < ∞, hence on the same set W qc

2 is rank-one
convex. Fix F ∈ R

2×2 with det F > 0, let b ∈ S1, and a as in (2.11). Then rank-one convexity implies convexity
of the function g : R → R defined by

g(υ) = W qc
2 (F + υa ⊗ b).

Lemma 2.3 implies that g ≤ f . By the convexity of g this implies g(υ) ≤ f ∗∗(υ; b) for all υ ∈ R; in particular
W qc

2 (F) = g(0) ≤ f ∗∗(0; b). ��
Condition (2.14) states that for any given lamination direction b one can construct a second order laminate

with energy higher than W qc
2 . We can therefore look for the laminates with the least energy. This problem

consists of finding b ∈ S1 that minimize f ∗∗(0; b) and their search reduces to a one-dimensional global opti-
mization problem. Let bopt be such that

f ∗∗(0; bopt) = min
b∈S1

f ∗∗(0; b).

We define, for future reference, the optimal energy obtained this way as Wf ,

Wf(F) = f ∗∗(0; bopt) = min
b∈S1

f ∗∗(0; b). (2.15)

Obviously W qc
2 ≤ W lc,2

2 ≤ Wf .
The second-order laminate corresponding to Wf is supported on three matrices, say, F1, F21 and F22. The

deformation gradient F1 is defined as

F1 = F + υ1(bopt)
Fb⊥

opt

|Fb⊥
opt|

⊗ bopt

where υ1(bopt) is the abscissa of the tangent point to We(F + υ
Fb⊥

opt

|Fb⊥
opt |

⊗ bopt) in the evaluation of the convex

envelope f ∗∗(υ; bopt), and F21 and F22 are obtained using the analytical results of Sect. 2.1 with

F2 = F + υ2(bopt)
Fb⊥

opt

|Fb⊥
opt|

⊗ bopt

where υ2(bopt) is the abscissa of the tangent point to W qc
1 (F + υ Fb⊥

opt

|Fb⊥
opt |

⊗ bopt). Figure 1 depicts the definition

of υ1(b) and υ2(b), whereas Box 1 summarizes the steps for the definition of the laminate described in this
section. In Box 1 the laminate is represented as ν2 = λ1δF1 + (1 − λ1)λ21δF21 + (1 − λ1)(1 − λ21)δF22 with
δF the Dirac measure concentrated at F [34,40,41].

Remark 2.5 The laminates we consider split F into two phases: an elastic one F1 and a plastic one F2. The
plastic phase F2, in turn, is being splitted according to Proposition 2.1 and following remark into other two
phases: F21 and F22 with γ (F21) = −γ (F22). The graph of the laminate is shown in Fig. 2.

Remark 2.6 Assuming as condensed energy

WCT(F) =
{
τcr|γ | if F = Q(Id + γ s ⊗ m) for some γ and Q ∈ SO(2)
∞ else (2.16)

corresponding to rigid elasticity and zero free plastic energy, the following expression for the quasiconvex
envelope is obtained in [18]

W qc
CT(F) =

{
τcr (λ2(F)− λ1(F)) if det F = 1 and |Fs| ≤ 1,
∞ else, (2.17)



282 C. Carstensen et al.

Fig. 1 Definition of f ∗∗(υ; b) together with υ1 and υ2 for computing f ∗∗(0; b) for a given lamination direction b ∈ S1

Box 1 Construction of a second order laminate with energy bounding from above W qc
2

Data: m, s ∈ R
2 for Fp = Id + γ s ⊗ m

Input: F ∈ R
2×2 with det F = 1

Find: bopt = arg min
b∈S1

f ∗∗(0; b) with f ∗∗(0; b) from (2.13)

(υ1(bopt), υ2(bopt) = ConEnv(F; bopt)

Solve: quadratic equation υ2 + 2υ
F2m · F2s

|F2m| + |F2s|2 − 1 = 0

with two real solutions υ1 and υ2.

Output: ν2 = λ1δF1 + (1 − λ1)λ21δF21 + (1 − λ1)(1 − λ21)δF22

for λ21 = |υ2|
|υ1| + |υ2| and F2i = F2 + υi

F2m

|F2m| ⊗ s for i = 1, 2

Fig. 2 Graph of a second order laminate built with (2.2) and (2.17)

with λ2>λ1 the singular values of F , i.e. the eigenvalues of (FT F)1/2. The optimal microstructure is given in
this case by a simple laminate with either F+ or F− belonging to SO(2), i.e., plastic deformation is concentrated
only on one of the two. As a result, it is possible to define with similar arguments another type of second order
laminate whose energy bounds from above the effective energy in the case the dissipation is the dominant
mechanism. The laminate would therefore present the phase F splitted into two phases: F1 and F2 with F1
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elastic and F2 unstable. The latter would be then splitted into other two: an elastic F21 and plastic F22. The
corresponding graph and microstructure is depicted in Fig. 2. In this case, however, for the determination of
f ∗∗ one would have to find the convex envelope between a parabola We(F + xa ⊗ b) and the convex function
W qc

CT(F + xa ⊗ b) rather than between the two parabolas as in (2.12).

2.3 An approximate first order laminate

The laminate constructed above is based on assuming that the elastic and the plastic deformation are, to a
good approximation, spatially separated. We consider here instead a different situation, in which a plastic
microstructure is superimposed to a uniform elastic deformation. This will lead us to the determination of a
different laminate, which also produces an upper bound on the sought relaxation. Choice of the best one will
in the end be done by a variational criterion.

We consider the energy

W3(F) = min
Fe

{
We(Fe)+ W qc

1 (Fp) : Fp = F−1
e F

}
. (2.18)

This corresponds to the best average energy that can be obtained by superimposing a uniform elastic deformation
Fe to all plastic microstructures determined, for the energy W1, in Sect. 2.1. Consider an average deformation
gradient F with det F = 1. Since det Fp = 1, then necessarily det Fe = 1 and |Fe| = |F−1

e |. By accounting
for (1.3) and (2.2), the argument in the minimization of (2.18) reads

W̄ (F, F−1
e ) =

⎧⎪⎨
⎪⎩
µ

2
(|F−1

e |2 − 2)+ h

2
(|F−1

e Fm|2 − 1) if |F−1
e Fs| ≤ 1 and

det F−1
e = 1,

∞ else.

(2.19)

By introducing

w = Fm

|Fm| ,

we can express F−1
e in general as follows

F−1
e = Q

(
ηw ⊗ w + θw ⊗ w⊥ + 1

η
w⊥ ⊗ w⊥

)
(2.20)

for some Q ∈ SO(2), η, θ ∈ R, η �= 0. Using the identities |F−1
e w|2 = η2 and |F−1

e w⊥|2 = θ2 + 1/η2,
(2.19) can be re-written as

W̄ (F; η, θ) =
{
φ(F; η, θ) if (η, θ) ∈ X,
∞ else. (2.21)

Here

φ(F; η, θ) = η2
(
µ

2
+ h

2
|Fm|2

)
+ µ

2

(
1

η2 + θ2
)

−
(
µ+ h

2

)
(2.22)

and

X =
{
(η, θ) ∈ R

2 :
∣∣∣∣
(
ηw ⊗ w + θw ⊗ w⊥ + 1

η
w⊥ ⊗ w⊥

)
Fs

∣∣∣∣ ≤ 1

}
. (2.23)

If F �= Id, the set X is compact and φ is continuous, hence, if X is not empty, there will exist at least a Fe such
that the minimum in (2.18) is attained. With these definitions, we can then give the following result.

Proposition 2.7 If X is not empty, then W3(F) is finite and there holds

W qc
2 (F) ≤ W3(F). (2.24)
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Proof Let Fe ∈ R
2×2. From the definition of W2 we have that

W2(F) ≤ We(Fe)+ W1(F
−1
e F).

Taking the quasiconvex envelope on both sides (seen as a function of F , with fixed Fe) we obtain

W qc
2 (F) ≤ We(Fe)+ W qc

1 (F
−1
e F)

for all F , and all Fe. Taking the minimum of both sides with respect to Fe proves the assertion. ��
The energy W3(F) equals the average energy of a simple laminate whose definition, however, requires that

one finds a global minimum of (2.21). In order to obtain a first order laminate which is simpler to compute
and at the same time still retains the upper bound on W qc

2 , we restrict the minimization of (2.21), and hence
of (2.18), to the matrices F−1

e of the type

F−1
e = Q

(
ηw ⊗ w + 1

η
w⊥ ⊗ w⊥

)
(2.25)

for some Q ∈ SO(2) and η �= 0. As a result, by defining

W ′
3(F) = min

η∈X0
W̄ ′(F; η) (2.26)

with W̄ ′(F; η) = W̄ (F; η, 0) and

X0 =
{
η ∈ R :

∣∣∣∣
(
ηw ⊗ w + 1

η
w⊥ ⊗ w⊥

)
Fs

∣∣∣∣ ≤ 1

}
, (2.27)

one easily checks the bound

W3(F) ≤ W ′
3(F).

Let ηopt ∈ X0 be a point where the minimum of (2.26) is attained. This means that if we set

Fe =
(

1

ηopt
w ⊗ w + ηoptw

⊥ ⊗ w⊥
)

QT (2.28)

for some Q ∈ SO(2) and Fp = F−1
e F , then it is

W ′
3(F) = We(Fe)+ W qc

1 (F
−1
e F). (2.29)

Furthermore, by definition of X0 necessarily the two real solutions υ1 and υ2 of the equation

υ2 + 2υ
Fpm · Fps

|Fpm| + |Fps|2 − 1 = 0, (2.30)

have opposite sign. Notice that the coefficients of (2.30) remain unchanged if we replace Fp with QFp for any
Q ∈ SO(2).

Proposition 2.8 If X0 is not empty then W ′
3(F) is finite and there holds

W ′
3(F) = λW2(F1)+ (1 − λ)W2(F2), (2.31)

where
Fi = F + υi

|Fpm| Fm ⊗ s i = 1, 2, (2.32)

and

λ = |υ2|
|υ1| + |υ2| . (2.33)
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Box 2 Construction of a first order laminate with energy bounding from above W qc
2

Data: m, s ∈ R
2 for Fp = Id + γ s ⊗ m

Input: F ∈ R
2×2 with det F = 1

Compute: X0 from (2.27)

If X0 = ∅ stop ‘F homogeneous phase and ν = δF ’.

ηopt ∈ arg min
η∈X0

(
η2(

µ

2
+ h

2
|Fm|2)+ µ

2η2 − (µ+ h

2
)

)

Set: w = Fm

|Fm| and G p = (ηoptw ⊗ w + 1

ηopt
w⊥ ⊗ w⊥)F

Solve: quadratic equation υ2 + 2υ
G pm · G ps

|G pm| + |G ps|2 − 1 = 0

with two real solutions υ1 and υ2.

Output: ν = λδF1 + (1 − λ)δF2

for λ = |υ2|
|υ1| + |υ2| and Fi = F + υi

Fm

|G pm| ⊗ s for i = 1, 2

Proof Let Fp = F−1
e F with Fe as in (2.29). From Proposition 2.1, by definition of W qc

1 we have then that Fp
is supported on the matrices

Fpi = Fp + υi
Fpm

|Fpm| ⊗ s i = 1, 2 (2.34)

with υ1 and υ2 solutions of (2.30). As a result, W qc
1 (F

−1
e F) in (2.29) can be expressed as follows

W qc
1 (F

−1
e F) = λW1(Fp1)+ (1 − λ)W1(Fp2)

= λWp(γ (Fp1))+ (1 − λ)Wp(γ (Fp2)), (2.35)

with λ given by (2.33) and γ (F) = Fm · Fs. Notice that by construction Fpi are such that det Fpi = 1 and
|Fpi s| = 1 for i = 1, 2. By replacing (2.35) into (2.29) we have

W ′
3(F) = λ(We(Fe)+ Wp(γ (Fp1)))+ (1 − λ)(We(Fe)+ Wp(γ (Fp2))) (2.36)

which yields (2.31) after observing that

W2(Fi ) = We(Fe)+ Wp(γ (Fpi )) i = 1, 2, (2.37)

with Fi = Fe Fpi given by (2.32). ��
Box 2 finally summarizes the algorithm for the construction of the laminate.

3 Numerical relaxation

The analytical results from the previous sections give several laminates with good energy, but there is no reason
to expect them to be the optimal ones (and indeed they are not). We shall use them to determine numerically a
locally optimal laminate. This means that we construct a numerical algorithm which optimizes locally each of
the analytically proposed laminates. We check the final result for stability against increase in the lamination
order; we shall see that in all cases laminates of order up to two, corresponding to the graph depicted in Fig. 3,
are sufficient to achieve local stability. Therefore we shall formulate the algorithm only for second-order
laminates, higher lamination order would bring heavier notation (as well as heavier computation, of course).
The fact that second laminates are sufficient is also in agreement with previous numerical results from [9]
using a clustering type global optimization algorithm.

We first fix the notation with the help of Fig. 3. Figure 3a illustrates the graph of the laminate, and Fig. 3b
a sketch of the microstructure. The laminate has average F , and is supported on the four matrices F11, F12,
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(a) (b)

Fig. 3 a Graph of the second order laminate considered for the relaxation of (1.6) with b corresponding microstructure

F21 and F22 with volume fractions λ1λ11, λ1(1 − λ11), (1 − λ1)λ21 and (1 − λ1)(1 − λ21), respectively, for
λ1, λ11, λ21 ∈ [0, 1]. We express a generic rank-one matrix in R

2×2 as

ρa ⊗ b, (3.1)

with a = (cosα, sin α) and b = (cosβ, sin β), for α, β, ρ ∈ R. The support of the laminate in Fig. 3 is then
given by the matrices

F11 = F1 − (1 − λ11)ρ1a1 ⊗ b1, F12 = F1 + λ11ρ1a1 ⊗ b1,

F21 = F2 − (1 − λ21)ρ2a2 ⊗ b2, F22 = F2 + λ21ρ2a2 ⊗ b2,
(3.2)

where
F1 = F − (1 − λ1)ρa ⊗ b, and F2 = F + λ1ρa ⊗ b (3.3)

with ai = (cosαi , sin αi ), bi = (cosβi , sin βi ) for αi , βi , ρi ∈ R, i = 1, 2. The laminate is the measure

ν = λ1λ11δF11 + λ1(1 − λ11)δF12 + (1 − λ1)λ21δF21 + (1 − λ1)(1 − λ21)δF22 . (3.4)

If we denote by q = (α, β,α1, β1, α2, β2, λ1, λ11, λ21, ρ, ρ1, ρ2) the degrees of freedom of ν, the corresponding
energy is then equal to

E lc,2(F; q) = 〈ν; W 〉
= λ1λ11W (F − (1 − λ1)ρa ⊗ b − (1 − λ11)ρ1a1 ⊗ b1)

+ λ1(1 − λ11)W (F − (1 − λ1)ρa ⊗ b + λ11ρ1a1 ⊗ b1)

+ (1 − λ1)λ21W (F + λ1ρa ⊗ b − (1 − λ21)ρ2a2 ⊗ b2)

+ (1 − λ1)(1 − λ21)W (F + λ1ρa ⊗ b + λ21ρ2a2 ⊗ b2), (3.5)

with the microscopic energy W (F) defined in (1.6). The best upper bound on the relaxation that can be obtained
with second-order laminates is the second lamination-convex envelope of W , i.e.,

W lc,2(F) = min
q∈S

E lc,2(F; q), (3.6)

with the admissible domain S defined as

S =
⎧⎨
⎩q ∈ R

12 : λ1, λ11, λ21 ∈ [0, 1],
det(F11) > 0, det(F12) > 0, det(F21) > 0, det(F22) > 0

⎫⎬
⎭ . (3.7)
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Remark 3.1 (i) Since E lc,2(F; q) is continuous, E lc,2(F; q) → ∞ as det Fi → 0, and W grows quadratically
at infinity, then (3.6) admits at least one solution.
(ii) The first Piola–Kirchhoff stress tensor of the relaxed energy can correspondingly be determined by averaging
of the stress in each phase Fi . If q̄ denotes an optimal solution that gives W lc,2(F), that is,

W lc,2(F) = E lc,2(F, q̄(F)), (3.8)

by taking the derivative with respect to F and using the chain rule we obtain

DW lc,2 = ∂E lc,2

∂F
+ ∂E lc,2

∂q
: ∂q

∂F
. (3.9)

Since q̄(F) is an optimal solution to (3.6), if λ1, λ11, λ21 ∈ ]0, 1[ then there holds

∂E lc,2

∂q
(F, q̄(F)) = 0, (3.10)

and (3.9) together with (3.5) yields

DW lc,2(F) = λ1λ11 DW (F11)+ λ1(1 − λ11)DW (F12)

+ (1 − λ1)λ21 DW (F21)+ (1 − λ1)(1 − λ21)DW (F22). (3.11)

By direct inspection, (3.11) is then extended also to λ1, λ11, λ21 ∈ [0, 1].
The solution of (3.6) is computationally very expensive, for most of the algorithms require meaningful

and representative sampling of the space R
12 in order to locate the best choice where then one can start the

local minimization [9,27,39]. We propose, instead, to perform two local minimizations assuming as initial
guess the two laminates obtained in Sects. 2.2 and 2.3. We then determine local stability of either of the two
local minima, with respect to increase of the order of lamination. Precisely, for every Fi in the support of the
considered laminates, we verify the stability condition

min
a,b∈R2

{W (Fi + a ⊗ b)+ W (Fi − a ⊗ b)− 2W (Fi ) } ≥ 0. (3.12)

In practice, only small values of a and b are considered, corresponding to a local check on the rank-one convexity
of W at Fi . If condition (3.12) fails, then one needs to refine the laminate. In this case, if a ⊗ b denotes a
rank-one matrix that violates (3.12), we consider the laminate obtained by splitting Fi along a ⊗ b with volume
fraction equal to 0.5 and use this as initial guess for the local minimization of the energy corresponding to the
new resulting laminate.

4 Optimality of the relaxation via polyaffine lower bounds

We now turn to checking optimality of the relaxation we obtained in the previous sections. We do this by using
polyaffine functions, which are a simple but yet rather general class of quasiconvex functions [33, Theorem 5.1].
Following Ball [5] we call a function � : R

2×2 → R polyaffine if it is an affine function of A and det A, i.e., if

�(A) = ξ + H : A + ζdetA, (4.1)

with ξ, ζ ∈ R, H ∈ R
2×2 and H : A = Tr(AT H). Consider a polyaffine function �which bounds from below

W , in the sense that
�(A) ≤ W (A) for all A ∈ R

2×2. (4.2)

Then, since A and det A are null Lagrangians [5,20], for any ϕ ∈ W 1,∞
0 ((0, 1)2; R

2) one has

�(A) =
∫

(0,1)2

�(A)dx =
∫

(0,1)2

�(A + ∇ϕ)dx ≤
∫

(0,1)2

W (A + ∇ϕ)dx,

and taking the infimum over all test functions ϕ one easily sees that (4.2) implies

�(A) ≤ W qc(A) for all A ∈ R
2×2. (4.3)
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Except for some degenerate situations, there is no single � which gives a good bound for all possible A.
However, in many cases of interest one can determine, for each given F ∈ R

2×2, a polyaffine function �which
obeys (4.2) and such that it gives the optimal bound �(F) ≤ W qc(F). We shall show that in the situation of
interest here this is indeed the case for most matrices, up to a small numerical error.

Consider some matrix F ∈ R
2×2. In the previous sections we have constructed a laminate giving a good

bound from above on W lc,k(F). For any polyaffine function � which obeys (4.2), by (4.3) we have

�(F) ≤ W qc(F) ≤ W lc,k(F), for all k ∈ N. (4.4)

(In practice we deal with k = 1 or 2). If we can construct such a function, with additionally the property
�(F) = W lc,k(F) for some k, then equality holds throughout and we have determined the relaxation at F . If
instead we only achieve �(F) < W lc,k(F), then (4.4) gives nevertheless an upper and a lower bound on the
relaxation, and in particular we know that the remaining error is controlled by W lc,k(F)− �(F). In the current
situation this error will turn out to be either zero, or very small.

Polyaffine functions, as well as the more general concept of polyconvex functions, are a canonical method
to obtain lower bounds on a relaxation. Numerically, an efficient algorithm for the determination of polyconvex
envelopes was proposed in [8]. It is based on building a continuous piecewise multilinear approximation to the
polyconvex envelope and considering the characterization of the polyconvex envelope using the Carathéodory
theorem [20,41]. This permitted one to work at the same time on all matrices, without the need to treat each F
individually; however, the results in [8] are based on a discretization in matrix space, and hence are affected by
mesh-size discretization errors. This has lead, for example in [9], to lower bounds which are somewhat higher
than the upper bounds. Our approach eliminates this difficulty, since it is mesh-free.

Given a matrix F , the search for the best polyaffine lower bound is, in principle, a finite-dimensional
optimization problem. The space of all polyaffine functions is six dimensional, and can be parameterized by
(ξ, H, ζ ). For each H and ζ , the highest polyaffine function which obeys (4.2) is obtained by taking

ξ = inf
A∈R2×2

W (A)− (H : A + ζ det A).

Having defined ξ this way, one seeks H and ζ which maximize �(F). In other words, we obtain a nine-
dimensional minimax problem, which is in practice not easy to solve efficiently.

There are however, additional conditions that permit, in some cases, to greatly reduce the space in which
one searches. These can be understood by analogy to the case of convexity: taking a convex envelope in one
dimension amounts to a double-tangent construction, and one uses a straight line which has to agree up to the
gradient with the original function at two points. Reformulating this condition in the polyaffine setting, we
obtain the following result.

Lemma 4.1 Let F ∈ R
2×2, and assume that

ν =
k∑

i=1

λiδFi , with λi > 0,
k∑

i=1

λi = 1,
k∑

i=1

λi Fi = F0

is a laminate such that

W lc,k(F) =
k∑

i=1

λi W (Fi ). (4.5)

If there is a polyaffine function � such that � ≤ W [in the sense of (4.3)] and

�(F) = W lc,k(F), (4.6)

then necessarily
�(Fi ) = W (Fi ) i = 1, . . . , k. (4.7)

If additionally W is differentiable at F1, . . . , Fk, then

D�(Fi ) = DW (Fi ) i = 1, . . . , k. (4.8)
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Proof The key fact is that polyaffine functions are affine along laminates, hence

�(F) =
k∑

i=1

λi�(Fi ) ≤
k∑

i=1

λi W (Fi ).

If one or more of the inequalities were strict, then—since λi > 0—comparing with (4.5) we would get �(F) <
W lc,k(F), against the assumption. Therefore �(Fi ) = W (Fi ) for all i , and the function A �→ W (A) − �(A)
has absolute minima at the points Fi . If it is differentiable there, then necessarily its gradient must vanish. This
concludes the proof. ��

Of course, in general there is no guarantee that such a function � exists, and there is no guarantee that the
best laminate we have found actually gives the relaxation.

Conditions (4.7) and (4.8) will be used to verify the existence of the polyaffine function � of Lemma 4.1; if
such a function does not exist, we shall nevertheless use those conditions to determine a good candidate for �.
The way we construct � will be different according to the type of laminate, so that the following cases need to
be distinguished:

(i) ν is a homogeneous phase;
(ii) ν is a first order laminate;

(iii) ν is a second order laminate.

For the case (iii) we describe below the procedure only when the laminate is of the type shown in Fig. 2.
We shall therefore first construct �meeting as close as possible the conditions (4.7) and (4.8), and afterwards

determine
m = inf

A∈R2×2
W (A)− �(A). (4.9)

If m ≥ 0, then equality holds throughout and we are done (the case m > 0 is impossible, and its occurrence
would indicate numerical or algorithmical errors). If, on the contrary, m < 0, then the function �̄ = � + m
gives a lower bound to W qc, i.e., �(F)+ m ≤ W qc(F).

Homogeneous phase: Conditions (4.7) and (4.8) become

�(F) = W (F), D�(F) = DW (F) (4.10)

and yield a system of five equations in the six unknowns: ξ, H, and ζ . By reparameterizing � according to

�(A) = ξ ′ + H ′ : (A − F)+ ζ ′det(A − F)

one finds

ξ ′ = W (F) and H ′ = DW (F),

consequently, the polyaffine function

�(A) = W (F)+ DW (F) : (A − F)+ ζ ′det(A − F)

obeys (4.7) and (4.8) for any ζ ′ ∈ R. In this case, therefore, the problem reduces to verify the existence of
some ζ ′ ∈ R such that the global condition m ≥ 0 is met.

First-order laminate: To fix notation, assume that the optimal first-order laminate has the form ν = λδF1 +
(1 − λ)δF2 , with

F1 = F − (1 − λ)ρa ⊗ b and F2 = F + λρa ⊗ b, (4.11)

with λ ∈ (0, 1), a = (cosα, sin α), and b = (cosβ, sin β). Optimality implies that this is a stationary point
for E lc,1(F; q) = 〈ν; W 〉, with q = (α, β, λ, ρ). In this case, the conditions (4.7) and (4.8) read

�(F1) = W (F1), �(F2) = W (F2)

D�(F1) = DW (F1), D�(F2) = DW (F2)
(4.12)
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which yield the following system of 10 equations in the 6 unknowns ξ, H, and ζ :

ξ + H : F1 + ζdetF1 = W (F1)

ξ + H : F2 + ζdetF2 = W (F2)

H + ζcofF1 = DW (F1)

H + ζcofF2 = DW (F2).

(4.13)

This linear system is, from the dimensional viewpoint, overdetermined. However, the coefficients are not
all independent, since the laminate we are considering is optimal. The fact that E lc,1 is stationary gives the
following conditions:

∂αE lc,1 = λ(1 − λ)ρ(a⊥ ⊗ b) : (−DW (F1)+ DW (F2)) = 0

∂βE lc,1 = λ(1 − λ)ρ(a ⊗ b⊥) : (−DW (F1)+ DW (F2)) = 0

∂ρE lc,1 = λ(1 − λ)(a ⊗ b) : (−DW (F1)+ DW (F2)) = 0

∂λE lc,1 = W (F1)− W (F2)+ ρ(a ⊗ b) : (λDW (F1)+ (1 − λ)DW (F2)) = 0.

(4.14)

Here a⊥ = (− sin α, cosα) and b⊥ = (− sin β, cosβ). We can then state the following result.

Proposition 4.2 Given F, F1 and F2 as in (4.11) with some λ ∈ (0, 1), ρ ∈ R, a, b ∈ R
2, if the conditions

(4.14) are met then the system (4.13) has one and only one solution.

Proof Replacing the first pair of equations with their difference and their λ-weighted average, and the same
for the second pair, one sees that the system (4.13) is equivalent to

H : (F1 − F2)+ ζ(detF1 − detF2) = W (F1)− W (F2)

ξ + H : F + ζdetF = λW (F1)+ (1 − λ)W (F2)
(4.15)

H + ζ cof F = λDW (F1)+ (1 − λ)DW (F2)

ζ(cof F1 − cof F2) = DW (F1)− DW (F2).

The first three equations of (4.14) imply that DW (F1) − DW (F2) is parallel to a⊥ ⊗ b⊥. The same is true
for the left-hand side of the last equation (4.15)4. Indeed, the linearity of cof as a linear map on R

2×2 together
with (4.11) imply

cof F1 − cof F2 = cof(F1 − F2) = −ρa⊥ ⊗ b⊥.

Therefore (4.15)4 can be solved uniquely with respect to ζ . Then (4.15)3 yields a unique solution for H , and
(4.15)2 for ξ .

It remains to be shown that these three equations, and the last remaining of (4.14), imply (4.15)1. We first
observe that

det F1 − det F2 = cof F : (F1 − F2)

hence the left-hand side of (4.15)1 equals the left-hand side of (4.15)3 multiplied by F1 − F2 = −ρa ⊗ b. The
same is true for the corresponding right-hand sides, by (4.14)4. This concludes the proof. ��
Second-order laminate: Given an optimal double laminate of the type shown in Fig. 2, the conditions (4.7) and
(4.8) yield a system of 15 equations in the 6 unknowns: ξ, H, and ζ , as follows

ξ + H : F1 + ζdetF1 = W (F1)

ξ + H : F21 + ζdetF21 = W (F21)

ξ + H : F22 + ζdetF22 = W (F22)

H + ζ cof F1 = DW (F1)

H + ζ cof F21 = DW (F21)

H + ζ cof F22 = DW (F22),

(4.16)
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which can be transformed into the equivalent system

H : (F1 − F2)+ ζ(detF1 − detF2) = W (F1)− (λ21W (F21)+ (1 − λ21)W (F22))

ξ + H : F2 + ζdetF2 = λ21W (F21)+ (1 − λ21)W (F22)

H + ζcofF2 = λ21 DW (F21)+ (1 − λ21)DW (F22)
(4.17)

ζcof(F1 − F2) = DW (F1)− (λ21 DW (F21)+ (1 − λ21)DW (F22))

ξ + H : F22 + ζdetF22 = W (F22)

H + ζcofF22 = DW (F22),

with F2 = λ21 F21 + (1 − λ21)F22. Using the optimality conditions ∂q E lc,2 = 0 and similar arguments as in
the previous case, one can show that the Eqs. (4.17)2–(4.17)4 define uniquely �. In the following numerical
examples, we will use the polyaffine function � so defined to check condition (4.9).

5 Numerical examples

We shall now discuss concrete application of the algorithm developed in the previous sections to determine the
relaxation of the energy W defined in (1.6) on selected macroscopic deformation gradients F . In particular,
we shall focus on the case that F is a simple shear deformation and a biaxial deformation. The algorithm is
summarized in Box 3 and considers the relaxation up to a complete laminate of order two.

We take material constants as in [9]: µ = 1.0 × 104MPa, κ = 1.5 × 104 MPa, h = 1.0 × 103 MPa and
τcr = 10 MPa. We fix a reference system in R

2, and characterize the orientation of the slip system (s,m) through
an angle ψ , by taking s = (cosψ, sinψ) and m = (− sinψ, cosψ). For the local minimization of (3.5),
we have adopted the SQ P algorithm implemented in the release 7.0 (R14) of MatLab and described in [42].
For more details on SQ P see also [36]. All energy values below are expressed in MPa.

5.1 Simple shear

We consider macroscopic deformation gradients F of the type

F = Id + ξr ⊗ r⊥.

Here ξ ∈ R is the shear strain, r = (cos θ, sin θ), r⊥ = (− sin θ, cos θ) for θ ∈ [0, 2π); following [9] we
use here the slip system (s, m) defined by ψ = 3π/4. We start from the case θ = 0, that is r = (1, 0). This

Box 3 Relaxation algorithm for (1.6)

Data: m, s ∈ R
2 for Fp = Id + γ s ⊗ m, tol = 1e − 6.

Input: F ∈ R
2×2 with det F = 1.

Compute: νi from algorithm in Box i for i=1,2.

Find: optimal ν from (3.6) using initial guess ν0 = νi for i = 1, 2.
While (3.12) fails

find a ⊗ b that violates (3.12) at the phase Fi
select new laminate ν0 by splitting phase Fi along a ⊗ b
solve (3.6) with initial guess ν0

Set: W lc,2(F) = 〈ν; W 〉
Compute: polyaffine � from (4.7) and (4.8), and m = min

A∈R2×2
W (A)− �(A)

Output: If m > −tol then: �(F) = W pc(F) = W qc(F) = W lc,2(F)

else: �(F)+ m ≤ W pc(F) ≤ W qc(F) ≤ W lc,2(F)



292 C. Carstensen et al.
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Fig. 4 Energy densities before numerical relaxation on the line F = Id + ξr ⊗ r⊥ and with r = (1, 0) (see Sect. 5.1). In a we
plot, from the higher to the lower curve at the central region ξ ∼ 1: the elastic energy We defined in (1.3); the condensed energy
W (from 1.6) and its approximation W2 with τcr = 0 (from 2.5); the relaxation of the rigid-plastic energy W qc

1 (from 2.2) and the
optimal lamination energy Wf (from 2.15). The two pairs (W , W2) and (W qc

1 , Wf ) are undistinguishable in this scale, except for
the fact that W qc

1 is only defined up to ξ = 2. We also report enlargements of the region around ξ = 0 (b) and ξ = 2 (c)

is exactly the problem simulated in [29] where a semianalytical formula for the relaxation over first order
laminates is developed.

Figure 4a reports the value of several of the energies determined analytically in Sect. 2 as functions of ξ , i.e.,
along a one-dimensional, rank-one section of their definition domain R

2×2 . The condensed energy W (see Eq.
1.6) is apparently not convex along this rank-one direction. The elastic energy We (see Eq. 1.3) is convex but
significantly higher than W , except for small values of ξ . The analytic relaxation had been obtained in the case
τcr = 0. Therefore we report W2 (defined as W for τcr = 0; obviously W2 ≤ W ), which is seen to be very close to
W , and barely distinguishable from it on this scale. Further, we report the relaxation with constrained elasticity
W qc

1 (see Eq. 2.2) and the value Wf(F) of the energy of the second order laminate constructed in Sect. 2.2,
see (2.15). From (2.6) and definition of Wf , it follows also W qc

1 (F) ≥ Wf(F) and We(F) ≥ Wf(F); both
inequalities are also apparent in Fig. 4b. For low values of ξ , we observe in Fig. 4b that Wf is indistinguishable
from We. This corresponds to the fact that a purely elastic deformation is stable, no microstructure and no
plastic deformation are expected. As ξ increases, the evaluation of the convex envelope in f (·; b) becomes
nontrivial (i.e., the two parabolas W qc

1 (F + xa ⊗b) and We(F + xa ⊗b), which one must consider to evaluate
Wf(F), intersect each other as in Fig. 1). As a result, Wf(F) < W qc

1 (F) and the laminate is of second order.
With increasing ξ the laminate becomes then of first order, and Wf(F) = W qc

1 (F) (see Fig. 4b) with both
the phases plastic for ξ ≤ 2. In this case Wf(F) = W qc

1 (F), since the parabola W qc
1 (F + xa ⊗ b) is below

We(F +xa⊗b). For ξ ≥ 2 the condition |Fs| ≤ 1, needed for W qc
1 (F) to be finite (see Eq. 2.2), is violated, and

one obtains again a second-order laminate between the elastic phase and the plastic one. In this case, the elastic
phase provides the major contribution to Wf(F) and determines the change of slope (see Fig. 4c). Numerical
optimization has been performed, starting from the above laminates, as discussed in Sect. 3. For any given ξ we
denote by νana the best laminate constructed semianalytically as above, and by W ana = 〈νana, W 〉 the estimate
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Fig. 5 Condensed energy W and estimates for its relaxation, for the same strains as Fig. 4. We report the best upper bound
obtained with the analytical lamination W ana = 〈νana,W 〉, the upper bound after numerical optimization W opt = 〈ν,W 〉, and
the lower bound �+ m. For comparison we also report the upper bound W opt

BCHH and the lower bound W pc
BCHH from [9]. In a we

show the same domain as Fig. 4, whereas b and c show blow-ups of the region at small ξ and of the region around ξ = 1

on the energy it produces. The optimal laminate after numerical local minimization of (3.5) is denoted by ν,
and the corresponding energy by W opt = 〈ν, W 〉 ≥ W lc,2. Both curves are illustrated in Fig. 5a with details of
the diagram around ξ = 0 and ξ = 1 in Fig. 5b, c, respectively. Both the figures show that the two curves are
very close for the values of ξ where laminates are the stable phases, with a discontinuity at ξ � 2.13 where the
homogeneous phase becomes the stable phase. For ξ < 2.13 the semianalytical solution provides therefore a
good approximation of the effective energy. Also, this Figure shows a very good quantitative agreement for
the values of W opt with those in [9] obtained using a global optimization algorithm, requiring consequently a
significantly higher numerical effort (see also [10]).

We now turn to the optimality, which has been verified using the procedure discussed in Sect. 4. Results are
also included in Fig. 5; the resulting lower bound �+m turns out to be indistinguishable from the upper bound
W opt on this scale (see below for a finer analysis of the remaining difference). We also report the approximation

of the polyconvex envelope realized in [9] with the procedure described in [8] (denoted by W pc
BCHH). Figure 5c

shows that in some regions this becomes somewhat larger than the upper bound, a fact already noticed in [9],
and attributed to the discretization in the matrix space. Our method is free from such discretizations, and free
from this difficulty. For instance, for ξ = 0.10 we have F = (

1 0.10
0 1

)
, W (F) = 49.920398, and we find the

following optimal double laminate

F11 =
(

1.000268 0.076068

−0.021716 0.997612

)
F12 =

(
1.180307 −0.049463

0.205408 0.839252

)

F2 =
(

0.829708 0.314685

−0.125711 1.158482

)

λ1 = 0.198369 λ11 = 0.767415
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Fig. 6 Relative uncertainty on the relaxation (W opt − (�(F) + m))/(W − W opt) in logarithmic scale, on the same domain as
Figs. 4 and 5

which gives �(F)+ m = 39.792579 ≤ W qc(F) ≤ 〈ν,W 〉 = 39.803629 with �+ m ≤ W everywhere. This in
turn means that we obtain the following two-sided bound �(F)+ m ≤ W qc(F) ≤ W lc,2(F) ≤ 〈ν,W 〉, or that
we have determined W qc(F) up to an error of about 10−2, which is three orders of magnitude smaller than the
difference between the relaxed and the unrelaxed energy, W opt −W ∼ 10. The same estimate applies of course
to the rank-one convex and polyconvex envelopes of W [20,22]. The result of this analysis is reported in Fig. 6
for all values of ξ . We report there, in a logarithmic scale, the relative error on the relaxation, defined as the
difference between the upper and lower bounds on W qc(F) scaled by the difference between the unrelaxed
and the relaxed energy.

Figure 8 shows the components of the Kirchhoff stress tensor τ = F P with P the first Piola stress tensor,
and in particular that the two estimates for the Kirchhoff stress tensor obtained from our two bounds to the
energy, namely, P ′ = D〈ν,W 〉 and P ′′ = D� are indistinguishable. For the component τ12 our results have
also been compared with those of [9]. The little difference seen between the energies in Fig. 5 shows up more
prominently on the stress field component.

Figure 7 displays the optimal laminates also for other values of ξ together with the corresponding values of
〈ν,W 〉 and �+m and Fig. 9 depicts the value of the volume fractions λ1 and λ11. Figure 9 completely describes
the volume fractions since λ2 = 1−λ1 (and this branch is not decomposed further), and λ12 = 1−λ11. Initially,
the material is in a homogeneous elastic state. Then an elastic state and a mixture of two opposite-slip plastic
states appears. The volume fraction of the elastic phase starts at 100% and then decreases continuously until it
vanishes at a shear ξ = 0.170. Both plastic phases then progress with slowly varying volume fractions until the
homogeneous phase F is stable starting from ξ = 2.135. For the values of ξ such that the computed optimal
laminate is a simple laminate, we also verify that the two phases are to a very good approximation plastic with
opposite slip γ (see Eq. 1.7). This fact was assumed a priori for the approximate relaxation carried out in [29];
our results justify this assumption.

Finally, Fig. 10 presents a diagram of the different type of optimal laminates for θ ∈ [0, π] and ξ ∈ [0, 2.5].
In this case the computed optimal laminate yielding the effective energy is different according to the orientation
of the shear. For instance, assuming θ = 5π/36, for ξ ∈ [0.09, 0.20] the relaxed energy is realized by a simple
laminate with mixture of an elastic and plastic phase. By increasing ξ , first both phases are plastic with opposite
value of the slip γ (see Eq. 1.7) and then a stable homogeneous plastic phase occurs. Table 1 reports the values
of 〈ν, W 〉 and � + m for θ = 3π/4 and θ = π and some representative values of ξ . When θ = π we note
that there are values of ξ such that the computed optimal laminate is a full double laminate with one elastic
phase. This laminate presents a good match between upper and lower bound. As a general remark, however,
it must be recalled that there might also exist other laminates yielding the same value of the energy, since in
general one cannot ensure the uniqueness. The consideration of a laminate will finally depend on how well
the corresponding two bounds 〈ν, W 〉 and �(F)+ m agree each other, by accounting also for the observations
expressed in Sect. 4.
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Fig. 7 Optimal laminates for different values of ξ and for θ = 0, for the relaxation shown in Fig. 5

5.2 Biaxial deformation

In this example we consider the relaxation of W when the macroscopic deformation gradient F is a biaxial
deformation of the type

F =
(

exp(ξ) 0

0 exp(−ξ)

)

with ξ ∈ R. Following [29], we investigate the effect of the orientations of the slip system defined by
ψ = 65π/180 (same geometry as in [29]) and ψ =π/2 on the relaxation of W . Figures 11 and 12 dis-
play the unrelaxed energy W together with the upper bound obtained with the optimal laminate 〈ν, W 〉 and
the polyaffine lower bound �+ m for ψ = 65π/180 and ψ = π/2, respectively. Analogously, Tables 2 and 3
compare the type of optimal laminates for some representative values of ξ for ψ = 65π/180 and ψ = π/2,
respectively.

For ψ = 65π/180 we find that where the homogeneous phase is stable up to ξ ∼ 0.040, and that for
ξ ∈ [0.040, 0.080) it spontaneously decomposes into an elastic and plastic component. This structure was
not considered in [29]. For larger ξ , i.e., for ξ ∈ [0.080, 0.830], the optimal laminate contains two plastic
deformations with opposite plastic slip γ confirming the conjecture of [29]. This difference in turn reflects
into a small difference in the values of the relaxed energy as illustrated in Fig. 11b and Table 2.

In the case ψ = π/2, from (1.7) we have that γ (F) = 0 for each ξ , which implies that the homogeneous
phase has no elastic deformation (this geometry has not been analysed in [29]). However, this appears not to
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Fig. 8 Kirchhoff stress components for different values of ξ , θ = 0 and ψ = 3π/4. Geometry as in Fig. 5
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Fig. 9 Volume fractions λ1 and λ11 for different values of ξ and for θ = 0, ψ = 3π/4. Geometry as in Fig. 5

Fig. 10 Phase diagram in the plane (ξ, θ) of the type of optimal laminates for the relaxation of W when F = Id + ξr ⊗ r⊥ with
r = (cos θ, sin θ), and detail for ξ ∈ [0, 0.125] (see Sect. 5.1)

be stable. For ξ ∈ [0.035, 0.065] a second-order laminate is formed, which mixes elastic and plastic phases;
for ξ > 0.065 a simple laminate is obtained with both plastic phases of opposite slip.

The quality of our relaxation can also be appreciated indirectly looking at Fig. 13 where the components
of the Kirchhoff stress tensor for the two energies 〈ν, W 〉 and �(F) are coincident whereas they slightly differ
from those associated with the approximate relaxation of [29]. We remark that, up to a certain overestimation
of the component τ12 of the stresss (see Fig. 13a), the approximate relaxation from [29] gives very good results.
Finally, in the case ψ = 0 one obtain a stable homogeneous purely elastic phase (i.e., the laminate is trivial,
and γ (F) = 0 for each ξ ).

6 Conclusions

We have proposed an efficient algorithm for the numerical relaxation of the energy density modeling the
elastoplastic behaviour of single crystals with one active single slip system in two dimensions. Our strategy
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(a) (b)

Fig. 11 Relaxed energy for the biaxial loading discussed in Sect. 5.2 with ψ = 65π/180 (same geometry as in [29]) (a) and
diagram zoom for ξ ∈ [0, 0.60] (b)

Fig. 12 Relaxed energy for the biaxial loading discussed in Sect. 5.2 with ψ = π/2

Table 1 Relaxed energy and type of the optimal laminate for the simple shear geometry discussed in Sect. 5.1 for θ = 3π/4 and
θ = π
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Table 2 Relaxed energy for the biaxial loading discussed in Sect. 5.2 with type of optimal laminate for ψ = 65π/180 (same
geometry as in [29]) and some representative values of ξ , compared with the result W opt

MLG from [29]

(a)

(b)

Fig. 13 Kirchhoff stress components for the biaxial loading discussed in Sect. 5.2 with ψ = 65π/180 (a) and ψ = π/2 (b). In
this last case, note that τ12 = 0. The geometry for ψ = 65π/180 corresponds to Fig. 8 of [29], and in that case the results from
[29] are also reported
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Table 3 Relaxed energy for the biaxial loading discussed in Sect. 5.2 with type of optimal laminate for ψ = π/2 and some
representative values of ξ

exploits in an essential manner the structure of the problem in suggesting good initial guesses for the evaluation
of an optimal laminate, and thereby avoids the use of a brute-force global optimization algorithm. The precision
of our relaxation over laminates has been assessed by computing at each macroscopic strain a polyaffine function
which coincides with the unrelaxed energy on the support of the laminate and checking that it is below the
condensed energy, up to a very small error. This has lead us to a guaranteed lower bound to W qc(F) which is
free from mesh-size errors, at variance with algorithms based on discretization in matrix space. We illustrated
a practical application of our algorithm to determine the relaxation of W when F describes a simple shear and
a biaxial deformation. In both cases, we have obtained a good approximation of the quasiconvex envelope and
of the Kirchhoff stress components, with the two bounds very close to each other.
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