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SUMMARY

The partition of unity for localization in adaptive finite element method (FEM) for elliptic partial
differential equations has been proposed in Carstensen and Funken (SIAM J. Sci. Comput. 2000; 21:
1465–1484) and is applied therein to the Laplace problem. A direct adaptation to linear elasticity in
this paper yields a first estimator �L based on patch-oriented local-weighted interface problems. The
global Korn inequality with a constant CKorn yields reliability ‖|u − uh |‖�CKorn�L for any finite element
approximation uh to the exact displacement u. In order to localize this inequality further and so to involve
the global constant CKorn directly in the local computations, we deduce a new error estimator �L. The
latter estimator is based on local-weighted interface problems with rigid body motions (RBM) as a kernel
and so leads to effective estimates only if RBM are included in the local FE test functions. Therefore, the
excluded first-order FEM has to be enlarged by RBM, which leads to a partition of unit method (PUM)
with RBM, called P1 +RBM, or to second-order FEMs, called P2 FEM. For P1 +RBM and P2 FEM (or
even higher-order schemes) one obtains the sharper reliability estimate ‖|u − uh |‖��L. Efficiency holds
in the strict sense of �L�‖|u − uh ||.

The local-weighted interface problems behind the implicit error estimators �L and �L are usually not
exactly solvable and are rather approximated by some FEM on a refined mesh and/or with a higher-
order FEM. The computable approximations �̃L��L and �̃L��L are shown to be reliable in the sense of
‖|u − uh |‖�min{�̃L, �̃L}+osc. The oscillations osc are known functions of the given data and higher-order
terms if the data are smooth for first-order FEM.

The mathematical proofs are based on weighted Korn inequalities and inverse estimates combined with
standard arguments. The numerical experiments for uniform and adapted FEM on benchmarks such as an
L-shape problem, Cook’s membrane, or a slit problem validate the theoretical estimates and also concern
numerical bounds for CKorn and the locking phenomena. Copyright q 2007 John Wiley & Sons, Ltd.
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C. CARSTENSEN AND J. THIELE

1. INTRODUCTION

Residual-based a posteriori error estimators for a finite element method (FEM) with computed
approximation uh for the unknown exact displacement u are well established in computational
mechanics [1–6]. A typical form of an explicit estimator reads �R with

�2R := ∑
T∈T

�2T + ∑
E∈E

�2E

with local contributions: The volume contribution of one element �2T = h2T ‖div �h + f ‖L2(T ) is
the residual div �(uh) + f on each element T ∈T, T is the triangulation (the set of element
domains) of the domain �, taken in L2-norm over the triangle and weighted with the local mesh
size hT := diam(T ); the edge contribution �2E = hE‖J j‖2,E is the jump of the discrete stress field
�h with its jump Jh of its normal component taken in its L2-norm over the edge and weighted
with the local mesh size hE := diam(E).

The estimator �R is known to be efficient and reliable in the sense that there exist constants
CR,eff and CR,rel and higher-order terms such that there holds

CR,eff�R − h.o.t.�‖u − uh‖1,2�CR,rel�R + h.o.t.

The constants CR,eff and CR,rel do not depend on the mesh sizes hT or hE but in a mild form on the
minimal angle or the largest aspect ratio of the element domains in a (shape) regular triangulation.
In elasticity, the constants may well depend on the material parameter. Note also that ‖u−uh‖1,2 is
the error u−uh in its semi-norm which is equivalent to the energy norm; but again, the equivalence
constants depend on the material parameter.

Moreover, it is observed in [7] for the Poisson problem, that the strict estimation of CR,eff and
CR,rel is (almost) useless as a termination criterion: the overestimation is up to a factor 10 and
much higher in practical examples. For sharp error control, one requires implicit error estimators
such as the equilibration error estimator �EQ [8] or the patch-residual error estimator �L [9–11].

A direct adaptation to linear elasticity in this paper yields a first estimator �L which is based
on patch-oriented local-weighted interface problems. The global Korn inequality with a constant
CKorn yields reliability ‖|u − uh |‖�CKorn�L for any finite element approximation uh to the exact
displacement u. In order to localize this inequality further and so to involve the global constant
CKorn directly in the local computations, one deduces a related but new error estimator �L. The
latter estimator is based on local-weighted interface problems with rigid body motions (RBM) as a
kernel and so leads to effective estimates only if RBM are included in the local FE test functions.
Therefore, the excluded first-order FEM have to be enlarged by RBM, which leads to a partition
of unit method (PUM) with RBM, called P1 + RBM, or to second-order FEMs, called P2 FEM.
For P1 + RBM and P2 FEM (or even higher-order schemes) one obtains the sharper reliability
estimate ‖|u − uh |‖��L. Efficiency holds in the strict sense of �L�‖|u − uh |‖. In the following,
a�b abbreviates a�Cb with a multiplicative generic constant C .

The local-weighted interface problems behind �L and �L are usually not exactly solvable but
are rather approximated by some FEM on a refined mesh and/or with a higher-order FEM.
The computable approximations �̃L��L and �̃L��L are shown to be reliable in the sense of
‖|u − uh |‖�min{�̃L, �̃L} + osc. The oscillations osc are known functions of the given data and
higher-order terms if the given data are smooth.
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The mathematical proofs are based on weighted Korn inequalities and inverse estimates plus
standard arguments. Numerical bounds for CKorn and locking phenomena are provided as well.

The remainder of this paper is organized as follows: necessary notation and assumptions on
the continuous and discrete model are summarized in Section 2. The localized error estima-
tor �L and its reliability and efficiency are established in Section 3. The constant in the local
Korn’s inequalities are involved in �L of Section 4 where the reliability and efficiency of �L
are proved and numerical approximations of CGKorn are studied. The numerical realization of
the implicit a posteriori error estimators �L and �L through their finite element approximations
�̃L and �̃L is discussed in Section 5. The numerical experiments of Section 6 for uniform and
adapted FEM on benchmarks such as an L-shape problem, Cook’s membrane, or a slit problem
validate the theoretical estimates. A brief discussion of some main results in Section 7 concludes
the paper.

2. PRELIMINARIES

This section introduces the necessary notation and assumptions and presents the well-established
facts about the mathematical model and its finite element discretization.

2.1. Mathematical model—Lamé–Navier equations

The elastic body �⊂ R2 is viewed as a planar-bounded Lipschitz domain with polygonal bound-
ary ��=�D ∪ �N. It is loaded by applied volume forces f ∈ L2(�; R2) and surface traction
g ∈ L2(�N; R2) on some (relatively open) part �N of the boundary �� with exterior unit normal �.
The elastic body is supported on the remaining closed part �D := ��\�N where the displacement
field is prescribed by the Dirichlet part uD ∈ H1(�; R2). It is important for Korn’s inequality and
the unique existence of weak solutions below that �D is closed and has a positive length. The
remaining case of a pure Neumann problem with �N = �� and �D = ∅ requires a slightly different
functional analytical setting and is hence excluded here for the ease of this presentation.

A linear elastic material behaviour is modelled with the two positive Lamé parameters � and �
which define the fourth-order isotropic material tensor C. That is, the stress tensor � is a linear
function of the linear Green strain �(u) := (Du + (Du)T)/2, the symmetric part of the functional
matrix Du = (u j,k) j,k = 1,2 of all first-order partial derivatives u j,k := �u j/�xk of the (unknown)
displacement field u,

�(u) := C�(u) := � tr(�(u))I + 2��(u)

For each material point x ∈ �, �(x), and �(u)(x) are symmetric 2× 2 matrices with the trace and
a row-wise divergence, e.g. the scalar tr(�(u))= div u = u1,1 + u2,2 and the vector div� = (� j,1 +
� j,2) j = 1,2.

In the aforementioned notation, the strong form of boundary-value problem with the Lamé–
Navier equations in linear elasticity reads: seek u ∈ H1(�; R2) with

−div �(u) = f in � (1)

�(u)� = g on �N (2)

u = uD on �D (3)
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2.2. Weak formulation

The Sobolev space H1(�; R2) := {v ∈ L2(�; R2) : Dv ∈ L2(�; R2× 2)} consists of L2-functions
(i.e. Lebesgue measurable functions with integrables squares) with a square-integrable weak deriva-
tive Dv. Define the restriction of H1(�; R2) with homogenous Dirichlet boundary values as

V := H1
D(�; R2) := {v ∈ H1(�; R2) : v = 0 on �D}

The weak form consists of the bilinear form a(u, v) and the linear functional b(v), defined by

a(u, v) :=
∫

�
�(u) : �(v) dx =

∫
�

C�(u) : �(v) dx (4)

b(v) :=
∫

�
f · v dx +

∫
�N

g · v ds (5)

for all u, v ∈ H1(�; Rd). Then, given the data of Section 2.1, the weak formulation of the Navier–
Lamé equations reads: seek u ∈ H1(�; Rd) such that u = uD on �D and that

a(u, v)= b(v) for all v ∈ V (6)

According to the positive definiteness of the material tensor C and Korn’s inequality, namely

‖Dv‖L2(�) �CKorn‖�(v)‖L2(�) for all v ∈ V (7)

‖Dv‖L2(�) �CKornelast‖C1/2�(v)‖L2(�) for all v ∈ V (8)

the bilinear form a is a scalar product on V (here we require that �D has a positive length). The
unique existence of a weak solution u is then a consequence of the Riesz representation theorem
in the Hilbert space (V, a). More remarks on Korn’s constants and even numerical approximations
will be given in Sections 6.1–6.3.

2.3. Regular triangulations

Each of the studied FEM is based on a shape-regular triangulation T of the domain � in closed
triangles which is specified in the following. The set T consists of closed triangles with positive
area such that their union ∪T covers the domain and its boundary

∪T= � = �∪ ��

The intersection T ∩ K of each pair of distinct triangles T and K in T satisfies one of the three
conditions: T ∩ K is either empty, a common edge, or a common vertex also called node of
the two

T ∩ K ∈ {∅} ∪E∪N∪T for all T, K ∈T

Here and in the following, E is the set of all edges (of some triangle) in T and N is the set of all
nodes (or vertices of some triangle) in T. A shape-regular triangulation is a triangulation in the
aforementioned sense in which the triangles have an interior angle �1; i.e. the interior angles are
bounded below away from zero uniformly (independent of the mesh sizes). All the constants below
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may and will depend on the minimal angle in T without further mentioning this fact. [In other
words, T has no hanging nodes and is locally quasiuniform.] Related notations are summarized
below. For each element domain T ∈T of diameter hT := diam(T ) and area |T |>0, E(T ) ⊂E
denotes the set of the three edges, N(T ) ⊂N denotes the set of the three vertices or nodes. Each
edge E with E ⊂ �� satisfies either E ⊂�D or E ⊂ �N and this is denoted by E ∈ED and E ∈EN,
respectively. All the remaining edges satisfy E /⊂ �� written E ∈E�. This defines a partition

E=E� ∪ED ∪EN

Given any edge E ∈E of length hE := diam(E) there is one fixed unit normal �E and one unit
tangential vector �E ; � = �E for an edge E ∈ED ∪EN on the boundary.

For any edge E ∈E and any element T ∈T, its midpoint (centre of inertia) is denoted as mid(E)

and mid(T ), respectively.
The hat function �z of some node z ∈N is defined by the values �z(x) for a node x ∈N,

namely �z(z) = 1 and �z(x)= 0 for x ∈N \ {z}, followed by a linear interpolation on each
triangle (�z ∈ P1(T) in the notation of the following subsection). Then, the patch of a node is the
open set

	z := {x ∈ � : 0 �= �(x)}
which is the interior of the set T(z) of neighbouring elements

	z =∪T(z) where T(z) := {T ∈T : z ∈ T }
The set of free nodes K := N \ �D consists of all vertices which have a positive distance to
the Dirichlet boundary �D. The remaining nodes on the Dirichlet boundary read ND := N∩K.
The notation is restricted to d = 2 dimensions for the ease of this discussion but allows a well-
established modification to d = 3. Although details are not always displayed, the main results of
this paper hold for d�2.

2.4. Three finite element methods: P1, P1 + RBM, P2

The FEM is essentially described by the finite element space (FES) Vh of the test function space.
The geometric boundary conditions on �D are homogeneous in all three cases of Vh ⊂ V and
prescribed by uD for each node along �D (see below).

For any subset 	 (patch, triangle, or edge), let Pk(	) denote the vector space of all algebraic
polynomials viewed as real-valued functions on 	 of total degree at most k = 0, 1, 2. Then

Pk(T) := {vh ∈ L∞(�) : ∀T ∈T, vh |T ∈ Pk(T )}
denotes the piecewise polynomials of degree at most k where piecewise is with respect to the
shape-regular triangulation T; in general, the functions in Pk(T) are discontinuous. The globally
continuous functions in P1(T) and P2(T) form the P1 and P2 FES

PkFES(T)d := (Pk(T) ∩C(�))d and Pk,DFES(T)d := Pk(T)d ∩ V for k = 1, 2

Observe that (
z : z ∈N) is the nodal basis of P1FES(T) and (
z : z ∈K) is the nodal basis of
P1,DFES(T).
To define the partition of unity method, namely the intermediate P1 + RBM FES, let

RBM := {v ∈ P1(R
d; Rd) : �(v) ≡ 0} (9)
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denote the RBMs. Their product with hat functions, namely {�z v : v ∈RBM}, is added to
P1,DFES(T). We define a new method via replacing H1(�; Rd) by

Vh := P1,D ×RBM(T) := span{�z v : v ∈RBM, z ∈K} (10)

Given uD,h as a piecewise linear (for P1 and P1+RBM) or piecewise quadratic (for P2) interpolation
of uD along �D extended by/to a function on � (by a P1, P1 + RBM or P2 interpolation), the
discrete problem reads: seek uh in uD,h + Vh such that

a(uh, vh) = b(vh) for all vh ∈ Vh (11)

Recall that Vh := Pk(T)d ∩ V for k = 1, 2 and Vh := (P1,D ×RBM(T ))d ∩ V for the three FEM
under consideration.

2.5. Error and residual

For a discrete FE solution uh and the discrete stress �h := �(uh) we define the volume residual
R(uh) for each triangle T and the edge residual J (uh) for each edge E by

R(uh) := f + divT�(uh) on T ∈T (12)

J (uh)|E := [�h]�E =

⎧⎪⎪⎨
⎪⎪⎩
0 for E ∈ED := E∩ �D

�h�E − g for E ∈EN := E∩ �N

(�+
h |T+ − �−

h |T−)�E for E ∈E� := E \ (EN ∪ED)

(13)

Here and throughout divT is the elementwise-defined divergence and E = �T+ ∩ �T− ∈E� and
two distinct T± ∈T. An elementwise integration by parts proves that the functional

Res := b − a(uh, ·) ∈ V ∗

equals, for any argument v ∈ V ,

Res(v) = (R(uh), v)L2(�) − ∑
E∈E

∫
E
J (uh)v ds

The error e := u − uh is defined for the exact solution u ∈ H1(�; Rd) of (8) and some discrete
solution uh from Section 2.4 computed by one of the P1, P1 +RBM, P2 FEMs. The energy norm
‖| · |‖ of a displacement w ∈ H1(�; Rd) is defined by

‖|w|‖2 := ‖C1/2�(w)‖2L2(�)
:=
∫

�
�(w) : C�(w) dx = a(w,w)

Since this paper does not focus on non-homogeneous Dirichlet conditions, these are described
in an abstract form by �D only. Recall that displacements in Vh ⊆ V vanish along �D while
(u − uh)|�D = uD − uD,h does not. Hence

�D := inf
w∈H1(�;Rd )

w|�D=uD−uD,h

‖|w|‖

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng (in press)
DOI: 10.1002/nme



PARTITION OF UNITY FOR LOCALIZATION IN FINITE ELEMENT ERROR CONTROL

is non-zero (but of higher order when uD is smooth). Then set

‖|Res|‖∗ := sup
v ∈ V \{0}

Res(v)/‖|v|‖

‖|Res|‖−1 := sup
v ∈ V \{0}

Res(v)/‖Dv‖L2(�)

Note that (7) implies

‖|Res|‖∗�CKornelast‖|Res|‖−1 (14)

Theorem 2.1
The following bounds hold �D�‖|e|‖, ‖|Res|‖∗�‖|e|‖, and ‖|e|‖2��2D + ‖|Res|‖2∗.
Proof
This is essentially well known, we give the proof for completeness: let v ∈ V be minimizing
a(e + v, e + v) and w := e + v. Then ‖|e + v|‖= �D and a(e + v, ·) = 0 on V and

‖|e|‖2 = ‖|e + v|‖2 + ‖|v|‖2 = �2D − a(e, v)

� �2D + ‖|Res|‖∗‖|v|‖
= �2D + ‖|Res|‖∗(‖|e|‖2 − �2D)1/2

This proves �2D�‖|e|‖2��2D+‖|Res|‖2∗. The remaining assertion ‖|Res|‖∗�‖|e|‖ follows immediately
from the definition of ‖|Res|‖∗. �

3. LOCALIZED ERROR ESTIMATOR �L

This section is devoted to a first localization approach. It is straightforward in the sense that it is
an immediate generalization of the ideas from [9] and treats the residual of the elastic problem as
if it was a residual of a vector Laplace problem.

3.1. Definition of �L

For the FE solution uh , define the functional Resz(v) for v in V := H1
D(�; Rd) by

Resz(v) :=
∫

	z

�z R(uh) · v dx −
∫
E�∩	z

�z J (uh) · v ds

For each node z in N define �z as

�z := sup
�zv /≡ 0,v ∈ V

Resz(v)/‖�1/2
z Dv‖L2(	z)

and as a global error estimator define �L by �2L := ∑
z∈N �2z .
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3.2. Reliability of �L

The error estimator �L is reliable.

Theorem 3.1 (Reliability of �L)
Assume that u is the solution of the model problem (6) and that uh solves the discrete problem
(11) for P1, P1 + RBM, or P2 FEM. Then

‖|Res|‖−1��L and ‖|Res|‖∗�CKornelast�L (15)

The constant CKornelast is defined by (8).

Proof
Let v ∈ V . An integration by parts, the Galerkin orthogonality, and the partition of unity

∑
N �z = 1

lead to

Res(v) =
∫

�
( f + divT �h) · v dx − ∑

E∈E�

∫
E
[�h]�E · v ds

= ∑
z∈N

(∫
�

�z( f + divT �h) · v dx −
∫
E�

�z[�h]�E · v ds

)

= ∑
z∈N

Resz(v)�
∑
z∈N

�z‖�1/2
z Dv‖L2(	z)

� �L

( ∑
z∈N

‖�1/2Dv‖L2(	z)

)1/2

= �L‖Dv‖L2(�)

This proves the first inequality of (15); the second follows from (8). �

3.3. Efficiency of �L

The proof of efficiency of �L requires a weighted Poincaré–Friedrichs inequality. Define ‖ · ‖z :=
az(·, ·)1/2 and distinguish two cases for Vz , namely

Vz :=

⎧⎪⎨
⎪⎩

{v ∈ H1
loc(	z) : ‖�1/2

z Dv‖L2(	z)
<∞ and v|�D = 0} if z ∈ �D{

v ∈ H1
loc(	z) : ‖�1/2

z Dv‖L2(	z)
<∞ and

∫
	z

v dx = 0

}
if z ∈H

For the following tool and throughout this subsection let d = 2 and let T consist of triangles.

Theorem 3.2 (Weighted Poincaré–Friedrichs inequality)
For v ∈ Vz

‖v‖L2(	z)
�CPF diam(	z)‖�1/2

z Dv‖L2(	z)

The constant CPF depends on the shape [and the boundary conditions] of the patch, but not on its
size.
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Proof
See [9, 10]. �

Theorem 3.3 (Efficiency of �L)
Assume u is the solution of the model problem (6) and uh is the solution of the discrete problem
(11). Then, for every node z ∈N,

Az := sup
v∈Vz

‖C1/2�(�zv)‖L2(	z)
/‖�1/2

z Dv‖L2(	z)
<∞ (16)

and

�z�Az‖C1/2�(u − uh)‖L2(	z)
(17)

With CA := maxz∈N Az there holds efficiency of �L in the sense of

�L�
√
3CA‖C1/2�(u − uh)‖L2(�) (18)

Proof
Given any v ∈ Vz , the product rule leads to

‖C1/2�(�zv)‖2L2(�)
= �‖div (�zv)‖2L2(�)

+ 2�‖�(�zv)‖2L2(�)

� �‖�z(div v) + v · D�z‖2L2(�)
+ 2�‖�z(Dv) + v ⊗ D�z‖2L2(�)

This and Theorem 3.2 prove

‖C1/2�(�zv)‖L2(�) � �1/2
√
2‖�z Dv‖L2(�) + �1/2‖D�z‖L∞(�)‖v‖L2(	z)

+ (2�)1/2‖�z Dv‖L2(�)

+ (2�)1/2‖�z‖L∞(�)‖v‖L2(	z)

� ((2�)1/2 + (2�)1/2)(1 + CPF diam(	z)‖D�z‖L∞(�))‖�1/2
z Dv‖L2(	z)

Since |D�z| diam(	z)<∞ is bounded from above independently of the mesh size, this proves
Az<∞.
An integration by parts, a Cauchy inequality, and (16) yield for any v ∈ Vz

Resz(v) =
∫

	z

�z( f + divT �h) · v dx −
∫

∪E∩	z

�z[�h]�E · v ds

=
∫

	z

C�(u − uh) : �(�zv) dx

� ‖C1/2�(u − uh)‖L2(	z)
‖C1/2�(�zv)‖L2(	z)

� ‖C1/2�(u − uh)‖L2(	z)
Az‖�1/2

z Dv‖L2(	z)

This proves (17). Equation (18) follows from

�2L = ∑
z∈N

�2z�
∑
z∈N

C2
A‖C1/2�(u − uh)‖2L2(	z)

�3C2
A‖C1/2�(u − uh)‖2L2(�)

�
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3.4. Remarks on �L

The usability of �L is limited, because CKornelast is an unknown global constant which enters the
estimate of ‖|Res|‖∗ and so of ‖|e|‖. This motivates another estimator �L in Section 4. There, the
solvability of the local problems is an important issue. The arguments for �L can be adopted from
[9, 10]. It turns out that the definition of Vz implies for each node z ∈N that there exists a unique
solution vz ∈ Vz with ∫

�
�z Dvz · Dw dx =Resz(w) for all w ∈ Vz (19)

Moreover

�z =‖�1/2
z Dvz‖L2(	z)

(20)

4. LOCALIZED ERROR ESTIMATOR �L

4.1. Definition of �L

For each node z in N define �z by

�z := sup
�1/2
z C1/2�(v) /≡0,v∈V

Resz(v)/‖�1/2
z C1/2�(v)‖L2(	z)

As a global error estimator define

�L :=
( ∑
z∈N

�2z

)1/2

At this stage, �z =∞ and �L =∞ are possible and below we will exclude the P1 FEM.

4.2. Reliability of �L

Assume u to be the solution of the model problem and uh a numerical approximation of u obtained
by an appropriate FEM.

Theorem 4.1
We have the following bound on �L

‖C1/2�(u − uh)‖L2(�)��L (21)

Proof
This is obtained along the arguments of the previous proofs indicated in the following:

‖C1/2�(u − uh)‖2L2(�)
=
∫

�
�(u − uh) : C�(u − uh) dx

�
∑
z∈N

�z‖�1/2
z C1/2�(u − uh)‖L2(�)

� �L‖C1/2�(u − uh)‖L2(�) �
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4.3. Weighted Korn’s inequality

The proof of efficiency of �L requires a weighted Korn’s inequality. This section aims to prove
that there exists a constant CWKorn, such that there holds

‖�1/2
z Dw‖L2(	z)

�CWKorn‖�1/2
z �(w)‖L2(	z)

for all w ∈Wz (22)

with Wz defined as follows:

Wz :=

⎧⎪⎨
⎪⎩

{v|	z : v ∈ V, ‖�1/2
z �(v)‖L2(	z)

<∞, and v|�D = 0} if z ∈ �D{
v|	z : v ∈ V, ‖�1/2

z �(v)‖L2(	z)
<∞, and

∫
	z

v dx = 0

}
if z ∈H

Let Rn×n
skew denote the set of skew symmetric matrices, the gradients of RBMs.

Theorem 4.2 (Generalized weighted Korn’s inequality)
Given a Lipschitz domain �⊂ Rn and a positive weight function �∈C0(�̄) with �(x)>0 for all
x ∈ �, define

�̂ := {(x, xn+1) ∈ Rn+1 : x ∈ �, 0<xn+1<�(x)}
and assume that �̂ is also a Lipschitz domain in Rn+1. Then there exists a constant CWKorn such
that

min
S∈Rn×n

skew

‖�1/2(Dv − S)‖L2(�)�CWKorn‖�1/2�(v)‖L2(�) for all v ∈ V (23)

Remark 4.3
A scaling argument reveals that CWKorn depends on the shape of � and � only but not on the size
of �.

Proof
Given v ∈ V , define the function v̂ ∈ H1(�̂; Rn+1) by setting

v̂(x, xn+1) := (v(x), 0)

On �̂ there holds a Korn’s inequality with a constant CGKorn for v̂. Thus, there exists a skew
symmetric matrix Ŝ ∈ R

(n+1)×(n+1)
skew , such that

‖Dv̂ − Ŝ‖L2(�̂)
�CGKorn‖�̂(v̂)‖L2(�̂)

(24)

Since v̂ is independent of xn+1 and vanishes in the last component, the last row and the last column
of the matrices Dû and �(û) only vanish

Dû =

⎛
⎜⎜⎜⎜⎜⎝

0

Du
...

0

0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠ and �̂(û) =

⎛
⎜⎜⎜⎜⎜⎝

0

�(u)
...

0

0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎠
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Table I. Numerical approximations of the eigenvalue problem (25) with the p-version of the FEM on four
different meshes (not-displayed) on the reference triangle Tref to illustrate the conjectured upper bound 5.

Mesh 1 Mesh 2 Mesh 3 Mesh 4

p DOF Cref DOF Cref DOF Cref DOF Cref �2

1 3 1.0000 6 1.7164 15 2.3232 45 3.2165 0.4310
2 6 2.2360 15 3.2967 45 3.9287 153 4.3574 5.2621
3 10 3.2124 28 3.8993 91 4.3254 325 4.5420 4.7660
4 15 3.5801 45 4.2000 153 4.4766 561 4.6089 4.7302
5 21 3.7573 66 4.3310 231 4.5459 861 4.6405 4.7149
6 28 3.9076 91 4.3939 325 4.5798 1225 4.6564 4.7103
7 36 3.9992 120 4.4330 435 4.5986 1653 4.6658 4.7118
8 45 4.0707 153 4.4601 561 4.6109 2145 4.6723 4.7145
9 55 4.1280 190 4.4809 703 4.6201 2701 4.6774 4.7176

10 66 4.1740 231 4.4977 861 4.6275 3321 4.6817 4.7204
11 78 4.2124 276 4.5118 1035 4.6338 4005 4.6853 4.7230
12 91 4.2446 325 4.5239 1225 4.6392 4753 4.6885 4.7252
13 105 4.2724 378 4.5344 1431 4.6440 5565 4.6913 4.7272
�2 4.4440 4.6031 4.6786 4.7141

Let the matrix S ∈ Rn×n
skew be the leading upper submatrix of Ŝ. Then∫

�̂
|Dû − Ŝ|2 dx̂ =

∫
�

�(x)|Du − S|2 dx

and similar expression holds for ‖�̂(v̂)‖L2(�̂)
. Then (24) reads∫

�
�(x)|Du − S|2 dx̂�C2

GKorn

∫
�

�(x)|�(u)|2 dx �

4.4. Numerical computations of CKorn

This subsection illustrates (23) numerically. By noticing �(g) = 0 for g ∈RBM, we reformulate
(23) as follows: seek Cref with

C2
ref = max

f ∈H2(Tref)2/RBM
min

g∈RBM

∫
Tref

�ref|D( f − g)|2 dx∫
Tref

�ref|�( f )|2 dx
(25)

Therein, Tref = conv{(0, 0), (0, 1), (1, 0)} denotes the reference triangle and �ref equals �ref(x, y)=
1 − x − y for (x, y) ∈ Tref.

This problem can be transformed into a generalized eigenvalue problem which is solved by
FEMs with polynomial degree p�1 on a series of fixed meshes graded towards the origin.

Table I displays numerical approximations for p= 1, 2, . . . , 13 and the Aitken �2 extrapolation
values. Theorem 4.2 guarantees that Cref<∞ is a fixed constant.

4.5. Mesh-independence of CWKorn

The previous two subsections illustrate that CWKorn<∞ depends in a mild way on �z . This
subsection analyses that CWKorn is bounded by Cref and mesh parameters such as the minimal
angle in the triangulation. The technique is to glue the estimates for individual elements together.
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Lemma 4.4
Let T be a triangle of the triangulation T and let �z be the nodal basis function of some node
z ∈ T . For all f ∈ H1(T ; Rd) there exists some RBM g ∈RBM(T ) with

‖�1/2
z D( f − g)‖L2(T )�CT ‖�1/2

z �( f )‖L2(T ) (26)

The constant CT depends on the shape of T but not on its size.

Proof
This follows from a transformation argument from (26) and Cref<∞ with Theorem 4.2. The details
are omitted. �

Theorem 4.5
Given any f ∈ H1(�)2, there exists some g ∈RBM(�) such that

‖�1/2
z D( f − g)‖L2(�)�C‖�1/2

z �( f )‖L2(�) (27)

The constant C is independent of f and g and solely depends on the shape of the elements but
not on their size.

Proof
Let 	 := {x ∈ � :�z(x)>

1
2 } ⊂� and given f ∈ H1(�; Rd) employ Korn’s inequality on 	 (which

has the same shape as 	z) to find some g ∈RBM(�) such that

‖D( f − g)‖L2(	)�C1‖�( f )‖L2(	) (28)

For all T ∈T, Lemma 4.4 yields

‖�1/2
z D( f − gT )‖L2(T )�C2‖�1/2

z �( f )‖L2(T )

for some gT ∈RBM(T ). Let gT ∈ L∞(�) be piecewise gT , i.e.

gT|T := gT for all T ∈T

and let DT denote the piecewise gradient. Then the last estimate reads

‖�1/2
z DT( f − gT)‖L2(�)�C2‖�1/2

z �( f )‖L2(�) (29)

A triangular inequality and (29) lead to

‖�1/2
z D( f − g)‖L2(�) � ‖�1/2

z DT( f − gT)‖L2(�) + ‖�1/2
z DT(g − gT)‖L2(�)

�C2‖�1/2
z �( f )‖L2(�) + C3‖DT(g − gT)‖L2(�)

In the last step we used that DT(g − gT) is piecewise constant and employed

C2
3 := max

T∈T

∫
T

�z(x) dx/|T ∩	|
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From (28)

‖DT(g − gT)‖L2(	) � ‖DT(gT − f )‖L2(	) + ‖D(g − f )‖L2(	)

�
√
2‖�1/2

z DT(gT − f )‖L2(	) + C1‖�( f )‖L2(	)

�
√
2C2‖�1/2

z �( f )‖L2(�) + C1
√
2‖�1/2

z �( f )‖L2(	)

= (C1 + C2)
√
2‖�1/2

z �( f )‖L2(	)

Altogether, one proves the assertion with C =C2 + C3
√
2(C1 + C2). �

4.6. Efficiency of �L

This subsection aims at an analysis of the efficiency of �L.

Theorem 4.6 (Efficiency of �L)
Assume u is the solution of the model problem and uh a numerical approximation of u obtained
by an appropriate FEM. Then there holds for every node z

Az := sup
w∈Wz

‖C1/2�(�zv)‖L2(�z)
/‖C1/2�1/2

z �(v)‖L2(	z)
<∞ (30)

and
�z�Az‖C1/2�(u − uh)‖L2(	z)

(31)

With CA := maxz∈N Az there holds a global efficiency of �L in the sense of

�L�
√
3CA‖C1/2�(u − uh)‖L2(�) (32)

Proof
An integration by parts and Cauchy inequalities with (30) yield

Resz(v) =
∫

	z

�z( f + divT�h) · v dx −
∫

∪E∩	z

�z[�h] · v ds

=
∫

	z

C�(u − uh) : �(�zv) dx

� ‖C1/2�(u − uh)‖L2(	z)
‖C1/2�(�zv)‖L2(	z)

� ‖C1/2�(u − uh)‖L2(	z)
Az‖C1/2�1/2

z �(v)‖L2(	z)

A division by ‖C1/2�1/2
z �(v)‖L2(	z)

yields (31). Equation (32) follows as (18) in the proof of
Theorem 3.3. It remains to prove (30) with the same techniques as in the proof of (16). We have

‖C1/2�(�zv)‖L2(	z)
= ‖C1/2(�z�(v) + (v ⊗ D�z)

(s))‖L2(	z)

� ‖C1/2�z�(v)‖L2(	z)
+ ‖C1/2(v ⊗ D�z)

(s)‖L2(	z)

� ‖C1/2�z�(v)‖L2(	z)
+ ‖C1/2D�z‖L∞(	z)‖v‖L2(	z)
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where (v ⊗ D�z)
(s) denotes the symmetric part of v ⊗ D�z . Theorem 3.2 followed by (22) yields

‖v‖L2(	z)
�CPFhz‖�1/2

z Dv‖L2(	z)

�CPFhzCWKorn‖�1/2
z �(v)‖L2(	z)

� CPFhzCWKorn√
2�

‖C1/2�1/2
z �(v)‖L2(	z)

Altogether one deduces

Az�1 +√
2(1 + �/�)‖D�z‖L∞(	z)CPFhzCWKorn �

5. NUMERICAL REALIZATION

Since the localized estimators are implicit, i.e. they require the exact solution of local problems,
we need to study numerical approximations �̃L and �̃L to those estimates �L and �L, respectively.

5.1. Solvability of local problems to compute �z and �z

The computation of �z and �z requires the numerical solution of a local problem. Recall Vz and
Wz from Sections 3.3 and 4.3.

Problem (P(1)
z )

Seek w ∈ Vz , such that

az(w, v) :=
∫

	z

�z(x)Dw(x) : Dv(x) dx =Resz(v) for all v ∈ Vz (33)

Problem (P(2)
z )

Seek w ∈Wz , such that

az(w, v) :=
∫

	z

�z(x)�(w(x)) : C�(v(x)) dx =Resz(v) for all v ∈Wz (34)

Define ‖·‖z := az(·, ·)1/2 and note that �z = ‖w‖z in (20) for Problem (P(1)
z ). To see that �z = ‖w‖z

for Problem (P(2)
z ) as well, we first need to study the kernel Zz of az . It is relatively straightforward

to check {v ∈ H1
loc(	z) : az(v, ·) = 0∈W ∗

z } =RBM.
Hence, it is necessary for (34) is that Resz vanishes for RBM, i.e.

RBM⊂ ker Resz for each z ∈K (35)

Sufficient for (35) is that �zv is a finite element function for all v ∈RBM. (Resz(v) = ∫
� C�(u −

uh) : �(�zv) dx vanishes as a consequence of the Galerkin equations.) The condition

(RBM)�z ⊆ Vh for each z ∈K (36)

is sufficient for (35) and in fact sufficient for the unique solvability of (P(2)
z ).
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Note that (36) is satisfied for P2 and, by design, for the new P1 + RBM FEM. The P1 FEM is
excluded and, in fact, (35) generally fails to hold.

Theorem 5.1 (Existence and uniqueness for (P(2)
z ))

Assume that (RBM)�z ⊆ Vh for z ∈K. Then Problem (P(2)
z ) has a unique solution w ∈Wz and

�z =‖�(z)1/2C1/2�(w)‖L2(	z)
=‖w‖z (37)

Proof
The symmetric bilinear form az is Wz-elliptic because

az(w,w) :=
∫

	z

�z(x)C�(w(x)) : �(w(x)) dx�2�‖�1/2
z �(w)‖2L2(	z)

followed by the weighted Friedrichs inequality and the weighted Korn inequality. Thus, the Lax–
Milgram lemma can be applied which leads to the unique existence of w. With the Cauchy–Schwarz
inequality with respect to the scalar product az(·, ·), we have for all v ∈Wz with ‖v‖z>0

Rz(v)2/az(v, v)= az(w, v)2/az(v, v)�(az(w,w)az(v, v))/az(v, v) = az(w,w)

Hence, �z := supv ∈Wz
Rz(v)2/az(v, v) = az(w, w)=‖�1/2

z C1/2�(w)‖2
L2(	z)

. �

So far, the computation of the error estimators was performed solving local problems exactly. In
practice, one computes approximative solutions using a FEM of higher order (in our example, we
used P4 elements). This yields approximations �̃L and �̃L to �L and �L. In the following, we will
examine the efficiency and reliability of these estimators.

Theorem 5.2 (Efficiency of �̃L and �̃L)
As �L and �L are efficient according to Lemma 3.3 and Lemma 4.6, �̃L and �̃L are also efficient.

Proof
The estimators �L and �L are computed by solving local problems (P(1)

z ) and (P(2)
z ) on the space

Wz . Since �̃L and �̃L are each solved on a subspace W̃z ⊂Wz

�̃L��L and �̃L��L �

5.2. Reliability of �̃L��L

Throughout this section, we restrict to the P1 FEM where uh is piecewise affine and �h := C�(uh)
is piecewise constant. On each patch 	z , Problem (P(1)

z ) is solved for a unique solution w ∈ Vz
and �z =‖w‖z , while �̃z := ‖w̃‖z for w̃ in W̃z for a fourth-order FES W̃z ⊂Wz .

Theorem 5.3 (Reliability of �̃L)
�z is bounded by

�z = ‖wz‖z�C‖w̃z‖z + h.o.t.=C �̃z + h.o.t. for all z ∈N (38)

The remaining part of this subsection is devoted to the proof of Theorem 5.3 and the study of
minimal conditions on W sufficient for (38).
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Let Nz denote the set of nodes in 	z and let Ez be the set of all edges with z as one vertex.
With the nodal basis function � j (x), j ∈Nz , define

�z(x) := 18
∑

j∈Nz , j �=z
� j (x) − 6

Given any E ∈Ez , let the other vertex of E be zE and denote the first adjoint triangle with T1 and
the second one, if it exists, with T2, otherwise set |T2| := 0. Then define

�E (x) := 6�zE − |T1| + |T2|
2 |	z| �z

Straightforward calculations verify∫
	z

�z�z dx = |	z|
∫
F

�z�z ds = 0 for all edges F ∈Ez

∫
	z

�z�E dx = 0

∫
F

�z�E ds =
{ |E | for E = F ∈Ez

0 for all edges F ∈Ez \ {E}

Lemma 5.4
Define fz := 1/|	z|

∫
	z

f (x) dx and denote the j th canonical unit vector with e j . Then

Rz(�ze j ) =
∫

	z

( f − fz)�z�ze j dx + fz · e j |	z| (39)

Rz(�Ee j ) =
∫

	z

( f − fz)�z�Ee j dx − ([�h]�E ) · e j |E | (40)

Proof
Using the aforementioned identities and the fact that uh is affine on each triangle

Rz(�ze j ) = (divT�(uh),�z�ze j )L2(�) + ( f,�z�ze j )L2(�) − ∑
F∈Ez

∫
F

�z([�h]�F ) · �ze j ds

In fact, divT �(uh) is zero and [�h]�F is constant along F and hence
∫
F �z�z[�h]�F · e j ds = 0.

Consequently,

Rz(�ze j ) = ( f − fz,�z�ze j )L2(�) + ( fz, �z�ze j )L2(�)

= ( f − fz,�z�ze j )L2(�) + fz · e j |	z|
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The same arguments lead to

Rz(�Ee j ) = (divT�(uh),�z�Ee j )L2(�) + ( f,�z�Ee j )L2(�) − ∑
F∈Ez

∫
F

�z[�h]�F�Ee j ds

= ( f − fz,�z�Ee j )L2(�) − ([�h]�E ) · e j |E | �

Given any uz ∈ H1
loc(	z; Rd)/Rd with ‖uz‖z = 1 set

vz := 1

|	z|�z

∫
	z

�zuz dx + ∑
E∈Ez

1

|E |�E

∫
E

�zuz ds

Lemma 5.5
We have

Rz(uz) = Rz(vz) + h.o.t.

Proof
Lemma 5.4 and the aforementioned properties of �E and �z lead to

Rz(uz) = (divT�(uh),�zuz)L2(�) + ( f,�zuz)L2(�) − ∑
E∈Ez

∫
E

�z([�h]�E ) · uz ds

= ( f − fz, �zuz)L2(�) + ( fz,�zuz)L2(�) − ∑
E∈Ez

[�h]�E ·
∫
E

�zuz ds

= 1

|	z|
∫

	z

( f − fz)�zuz dx
∫

	z

�z�z dx

+
(

1

|	z|Resz(�z)

∫
	z

�zuz dx − 1

|	z|
∫

	z

( f − fz)�z�z dx
∫

	z

�zuz ds

)

+ ∑
E∈Ez

(
1

|E |Resz(�E )

∫
E

�zuz ds − 1

|E |
∫

	z

( f − fz)�z�E dx
∫
E

�zuz ds

)

Since

Resz(vz) = 1

|	z|Resz(�z)

∫
	z

�zuz dx + ∑
E∈Ez

1

|E |Resz(�E )

∫
E

�zuz ds

the above identity verifies

Resz(uz) =Resz(vz) + h.o.t.

with the higher-order (i.e. second-order) term

h.o.t. := 1

|	z|
∫

	z

( f − fz)�zuz dx
∫

	z

�z�z dx − 1

|	z|
∫

	z

( f − fz)�z�z dx
∫

	z

�zuz dx

− ∑
E∈Ez

1

|E |
∫

	z

( f − fz)�z�E dx
∫
E

�zuz ds �
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Lemma 5.6
Under the assumption of a minimum angle condition in the patch 	z , we have ‖vz‖z�C with a
real constant C .

Proof
Straightforward calculations reveal ‖D�z‖L2(	z)

+ ‖D�E‖L2(	z)
�h−1

z |	z|1/2�1, hE ≈ hT etc.,
and the assertion reads ‖vz‖z�1. Using Cauchy’s inequality, Young’s inequality, Friedrichs’ in-
equality and the trace inequality, one deduces (where TE is some neighbour element of E)

‖vz‖z � ‖D�z‖L2(	z)

∣∣∣∣ 1

|	z|
∫

	z

�zuz dx

∣∣∣∣+ ∑
E∈Ez

‖D�E‖L2(	z)

∣∣∣∣ 1

|E |
∫
E

�zuz ds

∣∣∣∣

� h−1
z |	z|−1/2

∫
	z

|�z||uz| dx + h−1
z |	z|1/2 ∑

E∈Ez

h−1
E

∫
E

|�z||uz| ds‖�1/2
z uz‖L2(E)

� ‖�1/2
z Duz‖L2(	z)

+ ∑
E∈Ez

(h−1
E ‖�1/2

z uz‖L2(TE ) + ‖D(�1/2
z uz)‖L2(TE ))

� ‖Duz‖L2(	z)
�1 �

Proof of Theorem 5.3
This follows from Lemmas 5.5 and 5.6:

‖wz‖z = ‖Rz‖W ∗
z
= sup

‖uz‖z �=0

|Rz(uz)|
‖uz‖z � sup

‖uz‖z �=0

|Rz(vz) + h.o.t.|
‖uz‖z

� sup
‖uz‖z �=0

‖Rz‖W̃ ∗
z
‖vz‖z

‖uz‖z + h.o.t.�C‖w̃z‖z + h.o.t. �

It is stressed that the theorem requires only that �E belongs to the FES employed to solve the
local problems.

5.3. Reliability of �̃L, �̃L for other situations

The arguments of Section 5.2 essentially apply for the other FE schemes to compute uh as well as on
the spaces Ṽz and W̃z which determine �L and �L. However, the design of �z and �E may be more
involved. In order to cancel the possibly non-constant terms div �h |T and [�h]·�E on E one requires
�z and �E to have higher-order cancellation properties, e.g.

∫
T �z�zq dx = ∫

T �z�Eq dx = 0 for
all q ∈ P1(T ) and

∫
E �z�zr dx = 0 for all r ∈ P1(E). By adding proper element-bubble functions

and proper edge-bubble functions, this can indeed be achieved. At the end, it is required that �z and
all the employed �E belong to Ṽz and W̃z . Fourth-order FEs are sufficient for that and, eventually,
guarantee reliability up date oscillations. We omit further details because of their purely technical
character.
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6. NUMERICAL EXPERIMENTS FOR RELIABILITY AND EFFICIENCY

The energy error and error estimators are computed for P1, P1 + RBM, and P2 finite elements
for four examples on an L-shaped domain �= (−1, 0)× (−1, 1) ∪ [0, 1) × (0, 1), for the Cock’s
membrane problem and the slit domain � = (−1,+1)p|[0,1) ×{0}. The implementations follows
[9, 12, 13] in MATLAB with element-oriented adaptive algorithms from [9].
6.1. L-shape example

The L-shaped domain � without Neumann conditions (i.e. �� = �D) leads to CKorn = √
2 and

CKornelast =CKorn/
√
2�= 0.0050990195 has been confirmed by our numerical experiments for

Young’s modul E = 100 000 and Poisson ration � = 0.3. The pure Dirichlet problem (1)–(3) is
specified by f ≡ 0 and uD given by the exact solution which reads in polar co-ordinates (r, �)

ur (r, �) = r�

2�
(−(1 + �) cos((1 + �)�) + (c2 − (1 + �))c1 cos((� − 1)�))

u�(r, �) = r�

2�
((1 + �) sin((1 + �)�) + (c2 + � − 1)c1 sin((� − 1)�))
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Figure 1. Convergence history for energy error ‖|e|‖ and estimators CKornelast�̃L and �̃L as functions of
the number of degrees of freedom N for P1, P1 + RBM, and P2 FEM on uniform and adapted meshes

in the L shape example of Section 6.1.
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for the exponent � = 0.544483737 which solves � sin(2	) + sin(2	�) = 0 for 	= 3�/4 and for
c1 = 2(�+2�)/(�+�). We refer to [13] for meshes, algorithms and further details in this benchmark
and focus on the compressed output displayed in Figure 1. The convergence rates (≡ twice the
negative slope) in this double logarithmic scales of all the plots of the convergence history confirm
the theoretical expectations based on the singularity r� of the exact solution. For uniform mesh
refinements the three FE schemes support the convergence rate � (i.e. the slope −�/2) while the
adaptive meshes display the optimal convergence rate 1 for P1 and P1 + RBM and 2 for P2
FEM. The energy error ‖|e|‖ and its numerical upper bound CKornelast�̃L are relatively close for
the P1 + RBM and the P2 FEM. A comparison with �̃L suggests ‖|e|‖��̃L�CKornelast�̃L with a
good agreement of ‖|e|‖ and �̃L.

6.2. Cook’s membrane example

The data of the Cook’s membrane benchmark example can be found in the literature [12, 13];
f, E, � are as in Section 6.1. Numerical experiments supported CKorn = 5.2974 and CKornelast =
0.116394014 which is 21% smaller than CKorn/

√
2�. The convergence history of Figure 2 is

computed from ‖|e|‖2 =‖|u|‖2 − ‖|uh |‖2 with the value ‖|u|‖= 1.34751271200664 from careful
extrapolated simulations. In contrast to the good accuracy of the estimators �̃L and �̃L in the example
of Section 6.1, the estimation of this subsection, although supporting ‖|e|‖��̃L�CKornelast�̃L, is
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Figure 2. Convergence history for the energy error ‖|e|‖ and estimators CKornelast�̃L and �̃L as functions
of the number of degrees of freedom N for P1, P1 +RBM, and P2 FEM on uniform and adapted meshes

in the Cook’s membrane problem in Section 6.2.
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Figure 3. Deformed adapted mesh for P1+RB elements of the slit domain of Section 6.3 with 360 degrees
of freedom and a displacement magnification by the factor 1000.

less accurate with overestimation of the magnitude of [7] for the Laplace problem. The estimation
is better for adapted meshes and the various experimental convergence rates seem in agreement
with expectations from the literature.

6.3. Slit domain example

The slit domain � = (−1,+1)2\[0, 1) × {0} of an elastic material with f, E, � from the previous
examples is displayed in a deformed configuration in Figure 3. The Dirichlet boundary is on
the left side with uD ≡ 0 on �D := {−1} × (−1,+1) while the surface lead vanishes except
for {x ∈ �� : x =±1} where g(x)= (0,±1). Numerical simulations support CKorn = 5.3458 and
CKornelast = 0.01927466033063 which overestimates CKorn/

√
2� by a factor 1.19. (This illustrates

numerical difficulties and ‖|u|‖= 0.0119655862938.) The convergence history of Figure 4 allows
similar conclusions as before, but �̃L is very close to ‖|e|‖ (�̃L is scaled by an overestimated factor
CKorn).

6.4. Locking

One important effect in the numerical computation of solutions in linear elasticity is locking: as
Poisson’s ratio � tends to 0.5 and the solution is obtained with Lagrange elements, the solution
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Figure 4. Convergence history for the energy error ‖|e|‖ and estimators CKornelast�̃L and �̃L as functions
of the number of degrees of freedom N for P1, P1 + RBM, and P2 FEM on uniform and adapted

meshes in slit domain from Section 6.3.

degenerates. Figure 5 shows the energy error for the three types of elements with adaptive refinement
for the values � ={0.4, 0.45, 0.49, 0.499, 0.4999}. An examination of the new P1 + RBM FEM
elements shows that they also have this locking property while the adaptive P2 FEM compensate
for this effect best.

Similar remarks apply to the uniform mesh refinements (not displayed). For large meshes of
degrees of freedom (say N�30 000) the convergence rate is much improved in Figure 5; the
reasons for this remain unclear, although adaptive FE schemes are observed to have a positive
effect for the locking phenomenon [13].

7. DISCUSSION

The localized P1-error estimator is a reliable error estimator, but requires the global Korn’s constant.
This difficulty is circumvented and localized by using our proposed P1+RBM FEM. The numerical
experiments show that the solution itself is not much better than the solution with P1 FEM. The
localized error estimator �L, however, estimates the energy error very accurately. The use of P2
FEM shows the best results, �L is again a good reliable error estimator.

A comparison of the computation times of the three methods to compute a solution with a given
error tolerance shows that the P2-method needs the least time. At first glance this appears strange
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Figure 5. Convergence history for the energy error ‖|e|‖ as a function of the number of degrees of freedom
N for P1, P1+RBM, and P2 FEM on uniform and adapted meshes in locking example on L-shaped domain
in Section 6.4 for adaptive mesh-refining for various Poisson rations �=0.4, 0.45, 0.49, 0.499 and 0.4999.

but can be explained like this: if one looks at the computation time of one iteration in all the three
cases, it can be seen that between 80 and 90% of the time is consumed by the computation of the
error estimator. Considering one triangle, it bears 9 degrees of freedom in the P1 + RBM FEM
case and requires the solution of three local problems for the error estimator, while in the P2 case
a triangle has 12 degrees of freedom but also generates only three local problems. This means
that a certain number of degrees of freedom (and thus a certain quality of the solution) requires
a higher number of elements in the P1 + RBM FEM, etc. and thus a lot more local problems
to be solved—and this results in a much higher computation time. One possible conclusion from
the numerical experiments is the recommendation of the adaptive P2 FEM combined with the
localized error estimator proposed in this paper.
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