ERROR REDUCTION IN ADAPTIVE FINITE ELEMENT APPROXIMATIONS OF
ELLIPTIC OBSTACLE PROBLEMS

DIETRICH BRAESS* CARSTEN CARSTENSEN, AND RONALD H.W. HOPPE?

Abstract. We consider an adaptive finite element method (AFEM) for obstamblems associated with linear
second order elliptic boundary value problems and prove actemh in the energy norm of the discretization error
which leads to R-linear convergence. This result is showmotd up to a consistency error due to the extension of
the discrete multipliers (point functionals) f8—! and a possible mismatch between the continuous and discrete
coincidence and noncoincidence sets. The AFEM is based esidunl-type error estimator consisting of element
and edge residuals. The a posteriori error analysis retleatigshe significant difference to the unconstrained case
lies in the fact that these residuals only have to be takenadntount within the discrete noncoincidence set. The
proof of the error reduction property uses the reliabilitglahe discrete local efficiency of the estimator as well as a
perturbed Galerkin orthogonality. Numerical results axegiillustrating the performance of the AFEM.

AMS subject classifications.65N30, 65N50

Key words. Adaptive finite element methods, convergence analysis, edurction, elliptic obstacle problems

1. Introduction. Adaptive finite element methods (AFEMSs) for partial diffetial equa-
tions based on residual- or hierarchical-type estimatocsl averaging techniques, the goal-
oriented dual weighted approach, or the theory of functityy@e error majorants have been
intensively studied during the past decades (see, e.gmtmographs [1, 3, 4, 16, 25, 33]
and the references therein). As far as elliptic obstaclélpros are concerned, we refer to
[2,5,7,8, 14, 19, 23, 26, 27, 31].

More recently, substantial efforts have been devoted tga@ous convergence analysis
of AFEMSs, initiated in [15] for standard conforming finiteeehent approximations of linear
elliptic boundary value problems and further investigaited24]. Using techniques from
approximation theory, under mild regularity assumptioptmal order of convergence has
been established in [6, 29]. Nonstandard finite element oastisuch as mixed methods,
nonconforming elements and edge elements have been aeffiie$s1, 12, 13]. A nonlinear
elliptic boundary value problem, namely for the p-Laplacibas been treated in [32]. The
basic ingredients of the convergence proofs are the rétiabf the estimator, its discrete
local efficiency, and a bulk criterion realizing an apprafeiselection of edges and elements
for refinement.

For elliptic obstacle problems, the issue of error reductiothe energy functional as-
sociated with the formulation of the obstacle problem asrstrained convex minimization
problem has been studied in [9] and [28]. The approach in [@Bs on techniques from
nonlinear optimization, whereas the convergence anaiyd@] is restricted to the case of
affine obstacles.

In this paper, we focus on the error reduction property watspect to the energy norm
for general obstacles. The error estimator is of residysd gnd consists of element and edge
residuals. The a posteriori error analysis reveals thabirast to the unconstrained case the
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local residuals only have to be taken into account for elésand edges within the discrete
noncoincidence set.

The paper is organized as follows: In section 2, we introdibeelliptic obstacle problem
as a variational inequality involving a closed, convex stili§ C Hj () and address its
unconstrained formulation in terms of a Lagrange multigher/ — (Q2). We further consider
a finite element approximation by means of P1 conformingdialements with respect to a
simplicial triangulation of the computational domain. Tingconstrained formulation of the
discrete approximation gives rise to discrete multiplishsch are Radon measures, namely
a linear combination of point functionals associated witidal points within the discrete
coincidence set. The evaluation of the discrete multiplfer the nodal basis functions of
the underlying finite element space and the specification afresistency error due to the
extension of the discrete multipliers f8—'(2) and the mismatch between the continuous
and discrete coincidence and noncoincidence sets are shatizd keys for the subsequent
a posteriori error analysis. In section 3, we present ther eastimator, data oscillations,
a bulk criterion taking care of the selection of elements addes for refinement, and the
refinement strategy. Furthermore, the main convergenaoé iestated in terms of a reduction
of the discretization error in the energy norm up to the cxiesicy error. The subsequent
section 4 is devoted to the proof of the error reduction prigp&hich uses the reliability
of the estimator, its discrete local efficiency, and a péedrGalerkin orthogonality as basic
tools. Finally, section 6 contains a detailed documematib numerical results for some
selected test examples displaying the convergence hisfahe AFEM and thus illustrating
its numerical performance.

2. The obstacle problem and its finite element approximation We assumé) c R?
to be a bounded, polygonal domain with boundBry= 092. We use standard notation from
Lebesgue and Sobolev space theory, refdi tg2), k € N, as the Sobolev spaces based on
L?(€2), and denote their norms ds ||x.o. We refer to(-,-)o.o as the inner product of the
Hilbert spacel.?(Q2). Fork = 1, | - |1, stands for the associated seminormmh((2) which
actually is a norm oV := Hi(Q) := {v € HY(Q) | v|r = 0}. We refer toV* := H~1(Q)
as the dual o/ and to(-, -) as the associated dual pairing. Likewise;)r stands for the dual
pairing between the trace spafe/?(I") and its dual. We denote by, := {v € V | v >
0 a.e. onQ2} the positive cone of” and byV} the positive cone o/, i.e.,o € V} iff
(o,v) > 0forallv e V,.

We further refer taC(2) as the Banach space of continuous functiononits dual
M(Q) = C(Q)* is the space of Radon measuregbwith ((-, -)) standing for the associated
dual pairing. We refer t@’, (Q2) and M () as the positive cones 6f(2) and M(Q). In
particularc € M (Q) iff ((o,v)) > 0forallv e C(Q).

For givenf € L?(Q2) andy € H'(Q) with +|r > 0, we consider the obstacle problem

. 1
inf J(v), @) = Za(,v) = (fv)g, (2.1)
whereK stands for the closed, convex set

K:={veV|v<yae on}.

anda(-,-) : V x V — Ris the bilinear form

a(v,w) :z/Vv-dea:, v,w € V.
Q
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It is well-known [21] that (2.1) admits a unique solution ahdt the necessary and sufficient
optimality conditions are given by the variational inedtyal

a(u,v—u) > (f,v—u)on, veK. (2.2)

We define the coincidence set (active sétas the maximal open set { such thatu(z) =
Y(x) f.a.a.x € A and the noncoincidence set (inactive $egccording taZ := J,., B,
whereB. is the maximal open set it such thatu(z) < ¢(z) — ¢ for almost allz € B..

Introducing a Lagrange multiplier € V* for the constraints, (2.2) can be written in
unconstrained form as follows

a(u,v) = (va)O,SZ - <0,U> CAS ‘/7 (23)

where(:, -) stands for the dual pairing df* andV'. We note that- € V. Moreover, the
following complementarity condition is satisfied

(o,u—1) =0. (2.4)

We assume 7y }oen, to be a shape regular family of simplicial triangulationstioé
computational domaif. GivenD C Q, we refer ta\V, (D) and&,(D) as the sets of vertices
and edges of; in D, and we simply write\; and&,, if D = Q. ForD C Q andE € & we
denote by D| and|E| the area ofD and length ofF, and we refer tgfp as the integral mean
of f with respect taD, i.e., fp := |D|! [}, fdx. Moreover, forT’ € 7,(Q) andE € &(T),
we denote by x the exterior unit normal ot. Forp € Ny, E € &, andT € T, we refer to

wp = {T € T |p e Nu(D)},
wi =T e Tu| E € &(T)},
wf = (T € T | NuT) N NU(T) # 0}
as the patches of elements associated witfi andT’, respectively. Further,
&= {E €& |peNiE)}

is the set of edges sharipgas a common vertex.
We denote bys, the finite element space of continuous, piecewise lineaefaiements
with respect td7, and set

Ve:=85,nV.

We further define), € S, as some approximation gf € H*(2). For instance, ifs € C(Q),
we may choose, € Sy as the nodal interpoland of (cf. [17]).

The finite element approximation of (2.1) amounts to the tsmuof the finite dimen-
sional constrained minimization problem

min J(ve), J(ve):= %a(w,w) — (f,ve)o.q - (2.5)

ve€EKy

Here, the constrained discrete $étis given by

Ky :={ve € Vg |ve(z) < (), 2 € Q} .
3



Again, the optimality conditions give rise to the variatmequality
a(ug,ve —ug) > (f,ve —we)oq, ve € Ky. (2.6)

We define the discrete coincidence set accordingta= {z € Q | us(z) = ¢(x)} and
refer toZ, := Q\ A, as the discrete noncoincidence set. We note thatay consist of
vertices and/or edges only.

The corresponding Lagrange multipliercan be written as a linear combination of Dirac
delta functional®, associated withy € N, according to

ori= Y aup)s,, aup)€ER, peN. @7)
pEN,

As in the continuous setting, (2.6) can be written in uncamséd form as

a(ug,ve) = (f,ve)o,0 — ({oe,ve)) , v € V5. (2.8)
In particular,c, € M () and the complementarity condition
(o0, e —ug)) =0 (2.9)
is satisfied.
Residual-type a posteriori error estimators for obstaablems that contain the standard

edge residualgg := h11E/2||z/E - [Vuelgllo, e, Where[Vu,] g denotes the jump 0¥, across

E, for edges within the discrete coincidence set cannot beiegifi Assumey, to have a
kink that aligns with some edgE in the discrete coincidence set. Then, the edge residual
ng = hlE/ZHVE - Vi) ello, e will be large, although the discretization erfar— w|; o can

be arbitrarily small. The same applies to the discrete leffadiency. As will be shown in

the subsequent a posteriori error analysis, the standardeelt and edge residuals within
the discrete coincidence set do not contribute to the estimator. They will be eliminated

in essence by the discrete multiplier. However, the a piostegrror analysis requires an
extension of the discrete multiplier #6* = H~1(Q2). This extension is motivated by the
following explicit representation aof,.

LEMMA 2.1.The discrete Lagrange multiplier, has the representation

> (fiedor— X e [Vwle,¢))oe, peN(A),
ay(p) = § Tew? Eegy (2.10)

0, p € Ne(Zy),

wherey/ is the nodal basis function associated with the nodal ppint
Proof. It is an immediate consequence of (2.9) thatp) = 0 for p € Z,. On the other
hand, ifp € A,, we choose, = 7. It follows from (2.8) that

Olg(p) = <<O-£790§>> = (fa 995)0@5 - (VW,V%))OM; . (211)

An elementwise application of Green’s formula to the secanoh on the right-hand side in
(2.11) yields

(Vue, Vop)owr = Z (Vue, Voy)or = Z (ve - [V, ¥7)o,E- (2.12)
Tew) Eeé&)
Inserting (2.12) in (2.11) we obtain the assertion. O

4



In the a posteriori error analysis of obstacle problems,Llihgrange multipliers, is
considered as a functional dn and extended t®’; see, e.g., [8]. Usually this is done via
a representation as dn, function. Here, for the reasons mentioned above, the amtgin
refers to Lemma 2.1 and edge terms are included. We set

(e,0) = Z (% Z (va)O,T_% Z (VE'[VUA,U)QE). (2.13)
PENL(Ae) Te QF Ec €P

REMARK 2.1. The sum in the definition af,, i.e., in(2.13)is restricted to points in
the active set. If the summation runs over all nodal pointthefgrid and the factors are
adjusted at the boundary, then we obtain an extengjonith (6, v) = a(up,v) — (f,v) for
all v € V; see [10].

We denote by, (A,) and 7,(A,) the sets of edges and elements having all vertices
within the discrete coincidence s4dt, i.e.,

Er(Ar) = | J{E € &(Q) | No(E) C A}, (2.14a)
Ti(Ar) = | HT € Tu(Q) | NU(T) € Arj, (2.14b)

and we refer t&,(Z,) and7,(Z,) as the complements
Eo(Ze) = &\ E(Ar), To(Zy) = To\ Te(Ag) . (2.15)

We further introduceﬁ’fjg c & andTJf\? C 7, as the subsets of edges and elements having
1 vertices in the discrete coincidence gkt i.e.,

eV = | {E e & | cardNu(B) N A) =i}, i€{0,1,2}, (2.16a)
T = | J{T € T | cardNo(T) N Ag) =i}, i €{0,1,2,3}, (2.16b)

and we defineﬁ’}? andTI(Z) analogously. In particulag,(A,) = 5;22 and7;(Ay) = Tf(j).
Moreover, we set

Tr, == To\ (TAE73> U 7}23))) , Er, =&\ (EAEZ) U 'TIéz))) (2.17)

Now the summation in (2.13) can be reorganized such that eiactyle and each edge
enters only once. Taking (2.14) and (2.16) into accountnf(@.13) we easily deduce that
for v € V there holds

(Ge,v Z Z (fsv)o,r *Z Z vE - [Vwle, v)oE . (2.18)
= Te’T( % =1" pee®)
It follows that forv, € V,

((o,ve)) — (Ge,ve) = Z kr(f,ve)or — Z ke(VE - [Vwle,v)oe, (2.19)

TET]:Z EES}'K
where
. ::1—%, TeT1) | kg ;:1—%, Ecé&l, (2.20)

We note that, does not inherit the complementarity properties fromin particular,s, ¢
V. Obviously, the contribution of, reminds of the well-known residual estimators for
linear problems. Section 4 will highlight its role in the asperiori error analysis.
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3. The a posteriori error estimator and the error reduction property. We consider
the residual-type a posteriori error estimator

/
W::( Somkt Y n%)”, 3.1)
TeT:(Te) E€&¢(Ze)

where7,(Z,) and&,(Z,) are given by (2.15). The element residuaisare weighted elemen-
twise L2-residuals and the edge residuajsare weighted.?-norms of the jumps g - [Vuy]
of the normal derivatives across the interior edges acagriti

o > nE =0 ve - [Vudsllo.s- (3.2)

nr := hrl fr

They are defined as in the linear regime (see, e.g., [33]jnkdntrast to that case they only
have to be considered for elemefitand edge within the discrete non-coincidence dgt

The refinement of a triangulatich is based on a bulk criterion that has been previously
used in the convergence analysis of adaptive finite elenfientedal finite element methods
[15, 24]. For the obstacle problem under considerationbthiecriterion is as follows: Given

a universal constai® € (0, 1), we create a set of elememsw C 7,(Z,) and a set of edges
Mf) C &(Zy) such that

o > n< > o, (3.32)

TeT,(Zy) TEM?)
o > np< Y (3.3b)
Ee&i(Ze) EGMEQ)

The bulk criterion is realized by a greedy algorithm [12,.184sed on the bulk criterion, we

generate a fine mesh,, as follows: IfT" € /\/lél) orE=T,NT_ ¢ MP? | we refineT
or T by repeated bisection such that an interior nodal peinin 7 or interior nodal points
p+ € Ty andp_ € T_ are created [24]. In order to guarantee a geometricallyaramfg
triangulation, new nodal points are generated, if necgssar

We further have to take into account data oscillations anata rm with respect to the
right-hand sidef and the obstaclé. The data oscillationssc, are given by

osc? = osci(f) + osci(v), (3.4)

whereoscy(f) andosc (1)) are defined by means of

0sci(f) :== Z 0sca(f) + Z oscif(f), (3.5a)
TET () Ee&i(Q)

oscj() = Y oscp()+ Y o0scp(¥), (3.5b)
TET, () Eec&i(2)

oscp(f) :==diam(D) ||f — fpllo.p»
oscp(¥) :== [ —Yelip, D e{T,w;}.

On the other hand, the data teppis of the form

pi= Y wp@) , pe®)=hs|ve- [VYle

Eem?

0,5 (3.6)
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where
/\?lf) ={F ¢ Mf) | mp € Apyrandpy € Zyp10rp_ € Ty}

with p1 denoting the interior nodal points ifi. (E = T N T-) (cf. case(ii)>; in the
proof of Lemma 5.3 in section 5 below which is the only sitaativhereu? occurs in the a
posteriori error analysis).

The refinement and the new me®h ; shall also take care of a reduction of the data oscilla-
tions (cf., e.g., [24]). In particular, we require that

osci, ., < p2osc; (3.7)

for some0 < py < 1. This can be achieved by additional refinements if neceskdgwise,
we require that

Pios1 < p3 g, (3.8)

where0 < p3 < 1. Since these terms can be expected to arise only in the tiswacoinci-
dence set close to the discrete free boundary, (3.8) canhievad by including edges in the
vicinity of the discrete free boundary in the refinement psx

The convergence analysis is based on the reliability andiioeete efficiency of the esti-
matorn, as well as on a perturbed Galerkin orthogonality which wéllaaidressed in detail in
the subsequent section. These properties involve conesisegrors due to the extensién of
the discrete multiplies, and the mismatch between the continuous and discrete deimm
and noncoincidence sets. In particular, we define

cong = cony® + cong" . (3.9)
Here,con}¢ and cong"® refer to the consistency errors associated with the réitialoif 7,
and the perturbed Galerkin orthogonality:

cony® = (5o, —u)| ,  cond™ = 2 (o, 1hy — wy). (3.10)

Due to the construction @f,, the consistency erreon;°! is nonzero only in the small patch
Tr, U Ex, in the vicinity of the discrete free boundary (cf. (2.17)dan C;, := A, N T.
On the other hand, the consistency erron$™ is nonzero only inC, := AN Z, The
setsC; and(C, represent the mismatch between the continuous and diswieteidence and
noncoincidence sets. Usually, the s@fs U ££, andC,,1 < v < 2, are small and the
consistency errorgon} andcong" turn out to be at least one order of magnitude smaller
than the other error terms as it is the case, for instancégimimerical examples presented
in section 6. However, if necessary, the marking strategybmextended by marking the
elements and edges -, U £, andC,,1 < v < 2, for refinement. To do so, we need to
provide approximations of the mismatch sétsandC,. We denote by (D), D C Q, the
characteristic function ab and, following [18] and [22], define

e — up
Xp = T - o
'Yhz + e — up

with appropriately chosen,r > 0 as an approximation of(A). Indeed, it can be shown
that||x;* — x(A)|lo.r — 0ash, — 0 foreachl’ € T,() (cf. [18, 22]). Thenx? := I —x;!
is an approximation of(Z) and hencex$' := x(A/)x? andx$? := x(Z;)x7* provide
approximations of the characteristic function®, ) andx(Cs).
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The main result of this paper states an error reduction in| thig o-norm up to the
consistency erroton,.

THEOREM 3.1. Letu € V anduy € Vp, upr1 € Vi1, respectively, be the solutions
of (2.2) and (2.8), and letoscy, e, andcon, be the data oscillations, data terms, and the
consistency error as given [§8.4), (3.6), and(3.9), respectively. Assume th@.7),(3.8) are
satisfied. Then, there exist constafits p; < 1 andC; > 0,1 < i < 3, depending only on
© and the local geometry of the triangulations, such that

u—uelf o pr G O u—uelig Cs cony
05}, 4 < 0 p2 O o0sc? + 0 . (3.11)
/U'?Jrl 0 0 p3 u? 0

REMARK 3.1. If the consistency erroron, is negligible, the error reduction property
(3.11) implies R-linear convergence of the finite element apprations u, € V, to the
solutionu € V of (2.2).

The proof of Theorem 3.1 will be presented in the next section

4. Reliability. We will show that the residual-type error estimator fromLjJrovides
an upfper bound for the energy norm error up to the data asoiiand the consistency error
cone .

Throughout this section, we denote ®y> 0 a constant depending only on the geometry
of the triangulation, not necessarily the same at each cexece. Moreover, fod, B € R we
use the notationl < B, if A < CB. Likewise,A ~ Biff A < BandB < A.

THEOREMA4.1. Letu € V andu, € V; be the solutions of2.3)and (2.8), respectively,
and letr,, osc,, andcon’¢ be the error estimato(3.1), the data oscillation¢3.4) and the
consistency errof3.10) respectively. Then, there holds

|u—w\%79 < 77? + osc? + conzel. 4.1)

Proof. Settinge,, := u—wu, and denoting byPy, : V' — V, Clément’s quasi-interpolation
operator (see, e.g., [33]), we find by straightforward cotapon

|eu|iﬂ = a(eu, eu) = r(ey — Py,eu) + £1(Pyeq) + la(ew), (4.2)
where

r(v) = (f,v)0.0 — alug,v) — (G,0) , veEV,
O1(ve) := ({o0,v0)) — (Ge,ve) , v €V,
2(v) = (6¢g—o,v) , veEW

N

Elementwise integration by parts and the representatid8)2eads to

r@) =Y (fv)or— Y. (g [Vude,v)or — (Ge,v) (4.3)
TET, EE&,(Q)
= > wr(fr,v)er— Y. ke(ve- [Vl v)or+
TeT(Zs) Ee€&(Zy)
> kr(f = frovor,
TeT(Ze)
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wherexr andk g are given by (2.20). Standard estimation of the terms onigi-hand side
in (4.3) withv := e,, — Py, e, yields

rlew—Predl S Y. (mr+oser(D)lealior + Y. mlealiup

TGT((I[) Ec&(Te)
< o lea + C(m + 05 (1). (4.4)
For ¢, (Py,e,) in (4.2) we obtain
1
0(Pre) < leia+C( Y mh+osch()+ Y k). (45)
TET}'Z EEE]’Z
Moreover, foréy (e, ) it follows that
gQ(eu) = <6-Z - O',U_¢> + <6Z _an - wf> + <&Z _0‘7’(/}5 _’U/E> .
From the complementarity property (2.4),(2.13) and V we deduce

0= 0ea) < qoleBia+C( X (R HosEN+ X M)+ (46

TGT}‘K EGS}‘Z
+ 0sc (V) + conj + (60 — 0,9 — ).

It remains to estimat&, — o, — ). Zero boundary conditions are not requireddoro.
We note that: € V andu, € V, satisfy

a(u,v) = (f,v)o0 + (vr-Vu,v)p — {(o,v), v€ H'(Q), 4.7
a(ue,ve) = (f,ve)o,0 + (vr - Vug,vg)r — (6,v0), ve € Sp, (4.8)

Settingdy,, = ¢ — ¢, € H'(Q) and denoting byPs, : H'(Q) — S, Clement’s quasi-
interpolation operator, we obtain

(6¢ — o, (5w> = (69 — o, PS[5¢> + (6¢ — o, Oy — P526¢>' 4.9
We have
(00 = 0, Ps,0y) = ({02, Ps,0y) = (04, Ps,04))) + ({02, Ps,0y)) = (0, Ps,0y)). (4.10)

For the first term on the right-hand side in (4.10) we get

(52, Ps,64) — ({02, Ps,6u))| S 0scf () + D (g +oscp() + Y np. (411)

TET}‘Z EE&FZ
SincePs,d, is an admissible test function in (4.7) and (4.8), the traeguiality
lvr - V(u—we)|—1/2r0 S Ju—uel1,0, (4.12)

and Young's inequality imply that the second term on thetriggnd side in (4.10) can be
bounded from above as follows

({00 Ps,04)) = (0, Ps,0y)| < |a(u —ue, Ps,0y)| + (4.13)

1
[(vr - V(1 = ue), Ps,Su)r| < 15 | —welig + Cosci(v).
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Next, using (2.13) for dealing witk, and (4.7) witho we get
<0 — 5’[,51/, — PS[5¢> =1 + IQ, (414)

where

1
Iy == (f,0p — Ps,0p)00 — 3 3 > (f,05 = Ps,64)0.0,

PEN(Ay) TGw?
Iy = <VF : Vu,(sw - Pse5w>r - a(uv% - Pse&l}) +

1
+ E 3 E (ve - [Vuel g, 6 — Ps,0y)0,0-
pENe(Ae) EGE?

For the first term it follows that

Ll < > (W =kr) (1105 = Psdoorl +1(f = fr.05 = Ps,dp)orl)| S

TeT,(Zy)

S > (hT | frllo,r + hr Hf—fT|0,T) 10y l10r
TeT,(Ze)

S Y (B + o) + osd)
TeTy(Ze)

Moreover, using (4.12) and Young's inequality again, theosel term/, is estimated from
above

|| < la(ew,dy — Ps,0p)| + Y (1= rg) (Ve - [Vudg, 6y — Ps,04)0.2|
E€&(Zy)

+ > lve- V(u—u),ds — Ps,0p) x|
Ec&(T)

The preceding two estimates give

- 1
(o = 52,00 = Ps,0y)| < 5 leuli + C (n3+osc§(f)+osc§(¢)). (4.15)

Finally, combining (4.4)-(4.6), (4.10), (4.11) (4.13) a@ddl5) we complete the proof of (4.1).
O

5. Discrete local efficiency, perturbed Galerkin orthogonéty, and proof of the er-
ror reduction property. We will prove discrete efficiency of the error estimator ie 8ense
that it provides a lower bound for the energy norm of the diffeeu, — uy; between the
coarse and fine mesh approximation up to the data oscilka#od the data terms.

THEOREMD5.1. Letuy € Vp,upr1 € Vi1 be the solutions of2.8) and letn,, osc, as
well aspu, be the error estimator, the data oscillations, and the dataris as given bgB3.1),
(3.4), and(3.6), respectively. Then, there holds

i S lue—uealio + oscf + pi. (5.1)
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As usual in the convergence analysis of adaptive finite ei¢mmethods, the proof of
Theorem 5.1 follows from the discrete local efficiency. Theugnteed improvements that
can be associated to the volume terms and the edge termsevéithblished by the subse-
guent two lemmas. We adjust the concept in [9] to generabolest, but it would be possible
also to adopt ideas from [10] or [28].

LEMMA 5.2. LetT € Mél) with an interior nodal poinp € Ny 1 (T).

(i) If p € Not1(Ziy1), we have

n7 S e —ueali p + oscr(f). (5.2)

(i) If p € Ney1(Apq1), duetoT € /\/lél) there exist® € Ny (T) N Ny(Z;), and there holds

EeEP

wheref,; = |wh| -1 f fdx.
Proof. Letp € M+1( ) be an interior node. We choo +)1 = mp?jr)l, k=~ fr,asan
appropriate multiple of the levél+ 1 nodal basis funcnomH1 associated witlp such that

hQT”fTH%,T > (fTsz+1)
ObservingVu, € Py(T') we find by partial integration
a(ug,v) =0 if suppv C T andv € H}(T). (5.4)

In particular, the preceding inequality yields
Wl el < 1 (oo — aluexi5y) (5.5)
TIJTlo,r = N1 Ts Xp41)0,7 — U, Xpiy) ) - .
Sincexgg1 is an admissible level + 1 test function in (2.8), we have

a(ueri Xity) — (Foxih)or + (o xfh)) = 0. (5.6)
Adding (5.5) and (5.6) results in

B frlR e = B3 (e = foxdor + (57)

+ aluer — e X{7h) + (oo L)) -

Case (i) p € Ny+1(Zy) implies that

((oeri, X P = kaga(p) = 0,

and we readily deduce from (5.7)

W2\ frl3r < Jue — werrlir B3I E) L + oseor (F) hrlxPillor . (5.8)
Observing

(p)

h ‘Xe+1|1 T hy|k| =~ hrl|lfrllor , (5.9a)

ho|T|V? |k = hel fr (5.9b)

11
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we obtain (5.2).
Case (ii} We have

Tl e < B3 (Froxor = Wy (r = foxifor + W (fxor - (5.10)
We setxém = mpﬁp) where@m is the level¢ nodal basis function associated wjthand
we choosex > 0 such that

o dr = 0. 5.11
Sﬁ’z+1 0490[ €T ( . )
we

Sincexfz’j) is an admissible level test function, there holds

(U@, XZ ) (f7 ) :WZ . (512)

On the other hand, by Green'’s formula

a(ur, x?) = N e [Vude, v o.p- (5.13)
ECEY
Using (5.11)—(5.13) yields
hg <f,x¢+1>0T = Wy (Foh —ax)os + abd FXye = (6.19)
=h7(f—f mxzﬂ —axép))ou? + ah?a(u,xP) =

= W3 (f = fop X —axt)oe + @by D0 e [Vude, (o
EcE;(p)

The right-hand sides in (5.14) can be estimated as follows
» _ . ®) < 5.15
‘(f f PaX[+1 aXf )0 wi"‘ ( . )
< e 7 = Sl s (e I, WB [ Hx(p))\lo,wg),

W2 |(ve - [Vud X oe S hil” llve - [Vw]EHOEW X 0,5 (5.16)

Using (5.9b) and

V2 1) o p = 212 |8l l0f”)

3/2

|wp Ho,wf 5 hr ||fT||07Ta

_ h3/2

||><;’)||0E & 6P Noe S br I fzllor,

in (5.15),(5.16), we find that (5.14) results in

+ (5.17)

7 (7, Xe+1)0,T| S (hT 1f = fur

+ > hf? e [VW}EHOE) hr || frllo,r-
ECED

Finally, using (5.9a),(5.17) in (5.10), we deduce (5.3). O
12



FiIG. 5.1. Notation forE € Mf) and the adjacent elemeris_, 7_.

LEMMA 5.3. LetE ¢ Mf), E=T,.NT_,Ty € Ty, be arefined edge with midpoint
mp € Niy1(E) and associated pateb? := T, U T—. Then, there holds

Mo S lue— el g + 0sctp(f) + osctp(y) + pi(¥). (5.18)

Proof. Letpy € Nyi1(T4) be interior nodes iy andwy41 := w1 — ey1 (cf. Fig.
5.1). We distinguish the two cases

(i) werr(p+) = wea(p-) = 0,
(ZZ) wg+1(p+) <0 or wg+1(p_) <0.

Case (i) Forwy := uy — 1y we have

hellve - Vuldli s < hellve - [Vwdl§ 5 + pk@). (5.19)

SinceVuwy|r, T € {T}, is a constant vector, there exists at least one elefffeat7,, , (T')
such thatg - Vwy|r andvg - Vw1 |7 have different signs or are zero @. Hence,

lvE - Vwelr| < |ve - V(we —werr)|r| < |V(we — wegr)|7]-
Since|T’| =~ |T| = hg|E]|, it follows that
helve - Vel g S lwe —wealir, + lwe—wealfr (5.20)
< Jue *W+1|iw5 + 0503;(1/))-

Combining (5.20) and (5.19) we obtain (5.18).

Case (iiy Without loss of generality we may assume that ; (p) < 0. We distinguish the
subcases

(#3)1 wer1(mp) <0, (#4)2  wer1(mp) = 0.

(mE)

i andgo,,+1)the nodal basis functions associated witly and

Case(ii);: Denoting byy
p+, we have

(WH,SDH{E)) = (faQDETlE))O,Q and a(ue+1,sﬁﬁﬁ)) (f»s%{)ﬁ))osz (5.21)

The latter and (5.4) yield

a(uesr —ue, o877)) = (0% )00 (5.22)
13



We set<p§E) = o) — aplPt) o > 0, and chooser such thaty|”) € Hi(wf) and

fgf <pz+1 dx = 0. It follows from (5.21) and (5.22) that

1
i/l/E'[VUg]EdS:/l/E'[VU(]E 502+1 ds
E

&

= a(u¢ — ups1, 90§+1) (fa 90/+1)0 QF
= aue — WH,S%H) (f - wa @e+1)0 Wil
We deduce
Mo S lue— el ge + oscle(f),

which proves (5.18).
Case(ii)2: We distinguish between

(ii)2,1 vE - [Vueg <0 and  (ii)22 vE-[Vudg > 0.
Case(ii)z,1: There existl’, € 741 (T%) such that
ve - Vwepilr, 2 0 = vp - Vwep|r
and hence,
0<—vg-[Vwlg = — (VE NVwglr, —vp - va|TL) —vp-[Vilg <

< - (VE - V(we — wegr) g —ve - V(we — wZ+l)|TL) —vp - [Vig <

< |V(we —wesn) oy | + [V(we —wes)lzr | + [ve - [V el
Observingw?| ~ |T| ~ h%, it follows that

Mo S lue—ueli g + i),

which shows (5.18).
Case(ii)2,2: We have

a(ueyr, Wﬁ#f)) < (fs <P§T1E))0,Q and a(uey1, @EZ:E)) (fs 90/:3))0 Q-

We construci;og)1 as in Caséii);, and obtain

1
0< §/VE-[Vw]Ed8 = /VE-[Vug]E gpﬁ)l ds
E E

E E
< alug — ugy1, <P§+)1) + (f, €0§+)1)0 QF

(UZ — Ugt1, ‘Pe+1) (f wa ‘Pe+1)0 wl>
from which we deduce (5.18). O

Proof of Theorem 5.1The upper bound (5.1) follows directly from (5.2), (5.3)Liemma 5.2
and from (5.18) in Lemma 5.3 by summing overBlE Mfgl) and allE € /\/lf) and taking
advantage of the finite overlap of the patchés O

14



The final ingredient of the proof of the error reduction pnapés the following perturbed
Galerkin orthogonality:

THEOREM5.4. Letu € V anduy € Vi, k € {{,¢ + 1}, be the solutions 0{2.2),
(2.8), and letosc, andcony" be the data oscillationg3.4) and the consistency err@8.10)
Assume that3.7)is satisfied. Then, for arnyy > 0 there holds

e —uenlfio < Q0+ 5) u—wlfo = (1=2) u—urnfio +  (529)
+ 202 0563 (f) + 21+ ps) osch () + con’”
Proof. By straightforward computation
lug —wpialf o = [u—wlfg—lu—w1lfo+2a(u—upr,u—ueyr) . (5.24)
Now, (2.2) and (2.8) imply

2a(u — w1, ue — Ugr1) = 2(f = fog1,ue — wes1)o0 + (5.25)

+2(<<0£+17W —Upt1)) — (o, up — U€+1>)-

Using thatf — f,+1 has zero integral mean on edthe 7,1, applying Young’s inequality
and (3.5), we obtain

€ 4
21(F = ferrue —uer)ogl < 5 (Ju—uelt o+ lu—uenli o) + posci(f). (5.26)

On the other hand, taking advantageef,; € M (), the complementarity condition (2.9),
ando € V7, we find

2(<<Uz+17w —ugt1)) — (o, up — ue+1>> = (5.27)
= 2(orsr,ue = Ya)) + 2(orss — 000 — Yren) — (000 — Y1) +
<0
+ 20041, Ye41 — ues1)) + 2(0, %0 —we) — 2 (0, o1 — uey)-
=0 = cong"? <0

For the estimation of the second term on the right-hand si@®.27) we set, := ¥¢—1e41
and recall (4.7) as well as

a(uer1,ve41) = (fyves1)oo — (5.28)
— (vr - Vg, ver1)or — ({01, Ve41)) 5 Vo1 € S
Sincedy, € Si41 is an admissible test function in (4.7) and (5.28), by thedrmequality
(4.12) and by Young’s inequality we find
2({oer = 0,05.)) = (0,00,)) | < (5.29)
< [2a(u = weyr, 0y, )|+ [(vr - V(v = uey1), 0y, )r| <

2

Using (5.25)—(5.27) and (5.29) in (5.24) gives (5.23). O
15
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We have now provided the prerequisites to prove the erraratézh property (3.11) as
stated in Theorem 3.1.

Proof of Theorem 3.1The reliability (4.1), the bulk criterion (3.3a), (3.3bjhet discrete
efficiency (5.1), and the assumption (3.7) imply the exiséeof a constan®’ > 0, depending
only on©® and on the local geometry of the triangulation, such that

lu—ueli o < C (|Ue — upa|f o + osci + conZef) :

Now, invoking the perturbed Galerkin orthogonality (5.28% deduce

Cl1+¢/2) -1
lu— gl < (0(143) lu— i g + CC: (0805 +u3) + C cony,

whereC. := max((4/e + £/2)p2,8(1 + p3)/e). Together with (3.5) this proves (3.11) with
p1i=(C(1+¢/2)—-1)/(C(1—¢)) <1fore <2/(3C). O

6. Numerical results. In this section, we provide a detailed documentation of the ¢
vergence history of the AFEM for two illustrative elliptidstacle problems.

Example 1.We consider an obstacle problem of the form (2.1) in an L-sHammain where
the obstacle is an 'inverted’ pyramid. The data are as falow

Q= (-2,2)2\ ([0,2] x [-2,0]) , ¥(z) := 0.5(2.01 —dist(z,d[-2,2]%), z € Q,
. 4 .
flrp) == —r??sin(2p/3) (1 (r) /1 + 71 (1)) — 37"’1/3% (r) sin(2¢/3) = 72(r) ,
1, 7 <0,
m(r) = —67° + 157 — 107 +1, 0<7 <1, Y (r) = { (1) ’ glsge\?v/f?ére
0, F>1 ’ '

wherer = 2(r — 1/4) and(r, ¢) stand for polar coordinates.

-0173
-0.121
—006%3
00176
—-0.0341
—-0.0858
-0.138
-0.189

0241

FiG. 6.1.Visualization of the solution of the obstacle problem in lapée 1

Figure 6.1 displays a visualization of the solution, wherEegure 6.2 shows the adap-
tively generated finite element meshes after 7 (left) andritht) refinement steps of the
adaptive loop ® = 0.6 in the bulk criterion (3.3), (3.3a)). The coincidence seaismall
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FIG. 6.2. Adaptive refined grid after 7 (left) and 10 (right) refinemstaps © = 0.6 in the bulk criterion)

region at the upper fore side of the hill-like structure sielRigure 6.1 where the solution is
in contact with the inverted pyramid. We see that the refimgrisedominant along the diag-
onal and in a circular region around the reentrant cornerevtie solution exhibits singular
behavior.

Table 6.1 reflects the convergence history of the AFEM whastands for the refinement
level andN, for the total number of degrees of freedom at lekeFurther,e,, 74, osce(f),
and 1, (v) denote the energy norm of the discretization error, therestimator, and the
data oscillations irf andy, respectively. The quantity/,, , refers to the percentage of ele-
ments/edges refined at levedlue to the bulk criterion (3.3a), (3.3b). Finalb/,,. , denotes
the percentage of additional elements/edges that had tefimed in order to guarantee a
reduction of the data oscillations.

TABLE 6.1
Convergence history of the adaptive refinement processample 1

N ) e osce(f) pe() | Myge | Moge,e

15 || 1.19e+00| 5.61e+00| 7.96e+00| 2.45e+00| 49.5 34.9
37 || 1.09e+00| 5.57e+00| 5.29e+00| 1.73e+00| 33.1 19.4
76 || 7.18e-01| 3.90e+00| 2.07e+00| 1.37e+00| 27.3 15.4
171 || 5.08e-01 | 2.70e+00| 8.12e-01 | 1.09e+00| 33.4 141
361 || 3.38e-01| 1.82e+00| 3.78e-01 | 8.79e-01| 36.7 9.9
851 || 2.16e-01| 1.20e+00| 2.22e-01| 7.29e-01| 31.0 3.2
1596 || 1.54e-01| 8.52e-01| 1.46e-01 | 6.06e-01| 34.5 3.6
3273 || 1.06e-01| 5.85e-01| 7.29e-02 | 5.04e-01| 34.1 2.4
6356 || 7.54e-02 | 4.17e-01| 4.50e-02 | 4.21e-01| 35.2 2.0
10 12340 || 5.41e-02 | 2.98e-01| 2.57e-02 | 3.51e-01| 354 12
11 23988 || 3.90e-02 | 2.16e-01 | 1.60e-02 | 2.92e-01| 34.4 0.9
12 45776 || 2.79e-02 | 1.56e-01 | 9.63e-03 | 2.44e-01| 35.4 0.6
13 88439 || 1.99e-02 | 1.14e-01 | 5.92e-03 | 2.04e-01| 36.0 0.4
14 | 166926 || 1.37e-02 | 8.36e-02 | 3.46e-03 | 1.71e-01| 33.8 0.3

©CoO~NOUDWNPRE ~

Figure 6.3 displays the energy norm of the discretizatioorer, as a function of the
degrees of freedom (DOFs) for adaptive and uniform refiném&a see that in this case the
adaptive refinement is only slightly beneficial with both mefnents showing the same rate
of convergence.
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FiG. 6.3.Energy norm of the error as a function of the DOFs for adapéime uniform refinement in Example 1

Example 2. We consider the torsion of an elastic, perfectly plastiéndyical bar@Q :=

Q x (0, L) of cross sectiof2 C R? and lengthL. > 0. Denoting byoQ;, := Q x {L},
0Qo := Q x {0}, andoQ, := 9N x (0, L) the top and the bottom of the bar as well as its
lateral surface, a®#@, the bar is twisted about the;-axis by an anglé > 0, wherea)Q;

is supposed to be stress free.

) hinras \ IRdlin: N
ey ‘ WA
o e \x\ N
7 Zé// AP ‘ N\ \x\\
—ye //;? NNy ! WY ;
/7 N i N\
7 a M N4
—0475 /% VN N VYWY N
4 ¢ N \ 5 o Vi
—0317 /
—0.1%8 b h / A

-0
FiG. 6.4.Visualization of the solution of the elastic-plastic preil

Using Hencky’s law for an isotropic material, modeling thagtic region by the von
Mises yield criterion, and normalizing physical constaittsan be shown that the equilibrium
stress tensos = (0y;)7 ;_; is given byoy; = du/dxs, (i,7) € {(1,3),(3,1)}, 05 =
—0u/dz1, (i,7) € {(2,3),(3,2)}, ando;; = 0 otherwise. Here: € H} () is the solution
of the variational inequality

/Vu-V(u—u)dmZQC/(v—u)dm, veEK, (6.1)
Q Q

and K stands for the closed, convex set

K = {ve Hyj(Q) | v <+ :=dist(-,09) a.e. om2}.
18



FiG. 6.5. Adaptive refined grid after 7 (left) and 12 (right) refinemstaps © = 0.6 in the bulk criterion)

We have chosef? as the L-shaped domaid:= (—2,2)? \ ([0,2] x [-2,0]) andC = 5.

The computed solution and adaptively refined grids afteeff)(And 12 (right) refine-
ment steps® = 0.6 in the bulk criterion (3.3a), (3.3b)) are shown in Figure &l 6.5. The
coincidence and non-coincidence sets correspond to tistigoknd elastic region, respec-
tively. The non-coincidence set consists of the union ofighit®rhood of the edges forming
the reentrant corner and a neighborhood around the diagjoAalcan be expected from the
properties of the solution, the refinement is concentratiéiimthe non-coincidence set.

The convergence history of the AFEM is documented in Takitewsth the same no-
tations as in the first example. Since the right-hand siddénvariational inequality is a
constant, the associated data oscillations are zero.d-&@rdisplays the energy norm of the
discretization error as a function of the degrees of freetlwmadaptive and uniform refine-
ment and demonstrates the benefits of the adaptive approattis example.

TABLE 6.2
Convergence history of the adaptive refinement processample 2

1 Ny ) e pe() | Mye | My

65 2.49e+00| 8.42e+00| 3.46e+00| 7.5 6.2

84 || 1.95e+00| 4.99e+00| 2.83e+00| 10.9 4.3
113 || 1.73e+00| 5.73e+00| 2.29e+00| 9.8 4.9
192 || 1.21e+00| 5.91e+00| 1.90e+00| 18.3 4.1
336 || 9.26e-01 | 4.72e+00| 1.57e+00| 18.6 2.6
533 7.21e-01 | 3.67e+00| 1.26e+00| 20.1 3.6
1151 || 5.22e-01 | 2.49e+00| 1.05e+00| 20.0 1.3
1849 || 3.77e-01| 1.77e+00| 8.79e-01| 25.2 2.1
3373 || 2.69e-01 | 1.30e+00| 7.36e-01| 24.2 0.9
5720 || 2.01e-01| 9.50e-01| 6.15e-01| 26.2 1.4
11014 || 1.47e-01| 6.85e-01| 5.14e-01| 27.1 0.5
19461 || 1.08e-01 | 5.06e-01 | 4.30e-01| 26.1 0.8
34942 || 7.73e-02 | 3.71e-01| 3.60e-01| 31.8 0.4
67114 || 5.52e-02 | 2.75e-01 | 3.01le-01| 26.5 0.4
123427 || 3.75e-02 | 2.0le-01| 2.52e-01| 30.8 0.2

PR R R RRE R
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