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364 C. Carstensen et al.

1 Unified mixed approach to error control

This section introduces a primal mixed formulation used in [15] to cover applica-
tions which have an abstract saddle-point structure such as the Laplace, Stokes, and
Lamé equations. Throughout this paper, let V and L be Hilbert spaces (Sobolev and
Lebesgue spaces) and set X := L x V with dual X* := L* x V*, The primal variable
u € V (e.g., the displacement field or velocity) is accompanied by a dual variable
p € L (e.g., the flux or stress). It is assumed that the linear operator A : X — X*,
defined by

(A(p,u))(q,v) :=a(p,q)+b(p,v) +b(q,u) forallu,ve Vandp,qelL,
(1.1)

is bounded, bijective, and has a continuous inverse. This can be ensured under well-
established conditions [4,11] on the bilinear form a : L x L — R and the linear form
b:LxV — R.Givenany f € L* and g € V*, there consequently exists a unique
(p,u) € X such that

a(p,q)+b(g,u) = f(g) forallqg € L, (1.2)
b(p,v) = g(v) forallveV. (1.3)

Given any approximation (py, ij,) € X to (p, u) define the two residuals

Resr(q) = f(q) —a(pn,q) —b(q,up) forallg € L, (1.4)
Resy (v) := g(v) — b(py,v) forallve V. (1.5)

The residual Resy € V* is called equilibrium residual, while Res; € L* is the
consistency residual. Here and throughout the text, iy, is a function in V and not nec-
essarily a discrete function; the subindex % in i, refers to the fact that i, might be
closely related to u;, and, in principal, is at our disposal. Since A : X — X™* is an
isomorphism, it follows that

Ip = pulle + lu —anlly = [IResLliLx + [Resy llv=. (1.6)

We note that the inequality a < b replaces a < Cb if C is a mesh-size independent
constant which depends only on the domain €2 and the shape of the finite elements.
Moreover, a ~ b abbreviatesa < b < a.

One obstacle in the application of (1.6) to the dG FEM is that pj, is only required
to have Lebesgue regularity and hence jumps or the resulting mesh-depending norms
are not meaningful for p,. The main observation of this paper is that lifting oper-
ators provide a proper flux reconstruction to apply (1.4) and (1.5) and to avoid all
mesh-dependent norms from the beginning.

Theorem 3.1 below states abstract and precise estimates of || Resy ||}, and [ Res ||
in terms of the two estimators 1 + ¢ for the equilibration and consistency error sources
in continuation of [15] for dG FEMs.
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A posteriori error control for dG FEM 365

We highlight that the error analysis also covers inconsistent methods such as [8,13].
The focus of this paper is on a universal view of the a posteriori error analysis and not
on generic constants as, e.g., in [2].

2 Preliminaries

This section fixes the notation and outlines known results employed in the subsequent
sections.

2.1 Function spaces

LetV = HOl (2; R™) and L = L?(2; R™*") denote standard Sobolev and Lebesgue
spaces on a bounded polyhedral domain €2 in R”. Suppose that 7 is a decomposi-
tion of Q into triangles or rectangles if n = 2 and into tetrahedrons or parallelepi-
peds if n = 3. An (n — 1)-dimensional face of an element T is called facet. Let
Eq be the set of all interior facets, let £y be the set of all boundary facets, and let
& = EqUEyq. The diameter of an element 7 is denoted by A7 ; the diameter of a facet is
denoted by hf.

The spaces of polynomials of total or partial degree less or equal than k are denoted
by Py (T)and Qi (T),respectively. If T is a triangle or tetrahedron set Py (T') := Py (T),
otherwise P (T) := Qi (T). Define

Vi = Vi(T: R™) = {v € LA R™) :forall T € T, v|r € Pu(T: R’")} ,

Ly i= Li(Ts R™:i= [w € L2(Q: R™) : forall T€T, wly € P(T: R,
0h = On(T;R) i= {q € LX) :forall T € T, wlr € Pk_l(T)},

Vi =V, (T;R") = Vp(T; RN V.

The piecewise action of a differential operator with respect to a decomposition 7 is
denoted with the subscript 7, e.g., V, D, div become V7, D7, divy.

2.2 Jump and averages

Throughout the paper - and : denote the scalar products in R” and R™*". Let E =
9T N AT~ be an interior facet shared by two elements T+ and T~ which have the
outward unit normals v and v, respectively. Given an element v;, of the product

space [Tpc7 L*>(3T; R™)set vff := vplyr+. The jump and average operators is defined
as

1
vl = v ®vF +v, ®v~ and {v}:= E(U;[ +v;,),
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366 C. Carstensen et al.

respectively. Given t;, € [y L2(3T; R™*") with t;t = 1|7, set
_ ++,+ -, d ._ 1 + — 21
[zl =7, v + 1, v and {7} := E(Th +1,). 2.1
Similarly, given ¢, € 7 L*(dT; R) with qff ‘= gpl7=+, set

_ 1 _
[gn]:=qy v +q, v and {ga}:= (g, +;)- 2.2)
For v € R™ and w € R”, define v ® w € R™*" by
r® w),-j =viw;j. (2.3)

On boundary facets E € Eyq with unit outward normal v, the jump of v € L? (0T; R™)
and average of w € L*(3T; R") are defined by

[v]:=v®v and {w}:=w. 2.4)

2.3 Lifting operators

Given a facet E € &, the local lifting operators rg : L2(E ; R™*My — Ly and
lE : L2(E; R™) — Ly, are characterised by

/VE(q) trpdx =/q :{rn}ds forall ry € Ly,

Q E 2.5)
/EE(v):rhdxz/v-[rh]ds for all rj, € Ly,.
Q E

The global lifting operators 7 : L2(<€'; R™*"y — Lj and £ : LZ(EQ; R™) — L, are

ro= Z}’E and (¢ := z lEg. (2.6)

EcE Ec&q

We also use the lifting operators r}; : L*(E;R) - Qp and £y L%(E;:R") - Oy,
defined by

/rZ(qﬁ)'qu:/dr{q}ds forallg € Qp,
E

Q@ (2.7)
/EE(v)qu:/v-[q]ds forall g € Qy.
Q

E
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A posteriori error control for dG FEM 367

The corresponding global lifting operators are described by

*::Zr;g and £* := Z 0.

Ee& Ee&q

Lemma 2.1 [31, Lemma 7.4]. Let vy, wy € Vi (7, R") and let the polynomial degree
k be greater or equal to 1. Then every vector-valued function 8 € Ter L*(3T; R")
which is constant on all E € £ satisfies

”r([vh])IlLZ(Q) S Z ”[UI’L]HLZ(E)v

EeS

k2
1enl - Blizagy S X En[vh]uizm,

Ec&q

I QwaDll7 g S Z ||[wh]||L2(E),

EeE

k2
2 § 2
”E*([wh]ﬂ)llLZ(Q) 5 hE ”[wh]”LZ(E)-

Ec&q

3 Abstract reliability a posteriori error analysis

In this section an abstract framework for the explicit error estimates is developed,
which extends ideas of the equilibrium and consistency analysis in [15,19].

A central observation is that dG schemes for quite diverse differential equations
share a common abstract structure based on which a unified a posteriori error analysis
can be carried out. Stating the differential equation in form of (1.2) and (1.3), the
bilinear form b is generally of the type

b(q.v) = (¢. Bv)L

whereby B is a differential operator with domain V and co-domain L. Element-
wise application of B defines the broken differential operator B, : V), + V. — L.
For example if B = V, then Bjv = Vv is obtained by taking the gradient of v
element-by-element. Such broken differential operators Bj naturally appear in the
construction of dG methods, where (1.2) is approximated by an equation

a(pn.q) + (Bpup, @)1 + (Fup, @)1 = f(q).
Here F subsums the flux functions of the method in form of the lifting operators from

the previous subsection; the precise form of F specifies the dG method and is given
for the applications below in terms of various jump terms. Since By, is defined on the
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368 C. Carstensen et al.

sum of V;, and V it naturally induces a semi-norm which allows to control discrete as
well as continuous functions:

|vlg := [|BpvllL, veV,+V.

Various techniques in the literature to derive residual-based error bounds can be traced
back to the control of a recovery operator R in the || - || p semi-norm. More specifically,
these techniques are based an operator R : Vj, — V which satisfies

|Rvw — ol S D K hi ol 3.1)
Ee&

Selecting i1, := Ruy, the consistency residual satisfies

IResL I+ = o l(a(ph, q) + blin. q) — f(q))
qiiL=

= sup ((Bitn.q)L — (Buun.q)r — (Fup,q)r)
llgll=1
< N Bu(up — up)lie + | FupllL

1/2
< (30 R he i) + 1 Fugl

Ee&

As demonstrated in the previous section, lifting operators can be controlled by inter-
elemental jumps, leading to the bound

IResLl7- S DK b Iunllly =: &2, (3.2)
Ee&

Observe that Ruj, does not need to be computed to obtain (3.2). Recovery operators
R are for instance constructed and discussed in [19].

A unified error analysis requires to identify key properties all relevant consistent
and inconsistent dG methods share. Such a key property is that dG methods are in
general consistent in the conforming part of (1.3). In other words methods such as
[13,8] are inconsistent in the non-conforming part only as far as (1.3) is concerned.
This observation is used in our analysis in form of the following two conditions (A1)
and (A2).

(A1) There exists a Clément-type operator J : V — V,* which satisfies the bound

5 1/2
Ik/hr 0 = Tl 2@ + (X k/he o= JolE)  + v = Jvlly S olly.
Ee€&

(A2) The conforming finite element space V" is a subset of the kernel of the linear
functional Resy, that is th C ker Resy .

@ Springer



A posteriori error control for dG FEM 369

An immediate consequence of (A2) is that

[Resyllvs = sup (g(v— Jv) — (pn, B(v — Jv))1)

lvllv=1

= sup (g(v—Jv)— (B*pp,v—Jv)L) (3.3)

lvllv=1

The adjoint operator B* can be computed via integration-by-parts. To make this more
concrete we shall focus on second-order differential equations and make for the sake
of simplicity the assumption that the differential operators have constant coefficients.
The general case follows directly. For dG schemes the equilibrium residual then takes
the form of the functional

Resy (v) :=/g-vdx—/ph:Dvdx forallv e V,
Q Q

where g € L2(Q; R™) and pj, € L*(2; R™*") are appropriately selected functions.
In other words B = V.
Under the assumptions (A1) and (A2), it is proved in [19, Theorem 2.1] that

h? . hg
= D0 S F g+ div pulTay + D S MpallZag, (3.4)
TeT Ec&q

is reliable in the sense that ||Resy|v+ < 5. Together with Equation (3.2), we obtain
the reliability of the estimator n + ¢.

Theorem 3.1 Under the assumptions (Al) and (A2), the residual-based error estima-
tor is reliable in the sense that

lp—pull Sn+¢.

Remark 3.1 Assumption (A1) is satisfied for shape-regular triangulations, following
from the well-established construction [14,17,20,22] of approximation operators for
conforming first-order finite elements. The dependence on the polynomial degree & is
detailed in [29]. The constant in (A1) may depend on the anisotropy of the mesh and
the type and number of hanging nodes. The focus of this paper is not on those fine
aspects of degenerated meshes and hence (A1) serves us throughout this paper well
as an underlying but rather general condition on the meshes.

4 Application to the Laplace operator

This section concerns the residual-based a posteriori error control of the dG FEMs
listed in Table 1 for the Poisson problem on 2 C R”.
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370 C. Carstensen et al.

Table 1 Selected dG schemes quoted in form of (4.2) and (4.3)

Method [Ref.] ur T c1 (&)

Bassi and Rebay [10] {up} {pn} —1 0
Brezzi et al. [7] {up} {pn} —ar(up)) —1 0
LDG [23] {up} — B - lupl {pn} + Blpnl — aj(lup]) -1 -1
IP [24] {up} {Dup} —aj([upl) —1 0
Bassi et al. [12] {up} {Dup} — or ([up) -1 0
Baumann and Oden [9] fupt +vr - [upl {Dup} 1 0
NIPG [30] {un} +vr - [up] {Dup} —orj([upl) 1 0
Babuska and Zlamal [13] (uplT)loT —oj ([uh])hE1 0 0
Brezzi et al. [8] (uplT)lor —ar([up]) 0 0

4.1 Model Poisson problem

Giveng € L?(Q),letu € V := H(} (2), m = 1, be the unique solution to the Poisson
Problem

Au+g=0inQ and u =0ondQ. “.1)

The operator A : X — X* is defined in (1.1) withv € V, p,qg € L := LZ(Q; R™)
and

a(Paq)=/p~qu and b(p,v)z_/p.vvdx_
§ Q

The operator A is bounded, linear, and bijective [15] and the flux p := Vu € L and
u €V satisfy

(A(p,u))(g,v) = —/gv dx forall (g,v) e X=LxYV.
Q

4.2 Unified dG formulation

With the local numerical flux functions #7 and p7 from Table 1, the unified dG formu-
lation for the Laplace problem [1] with V}, and L, from Sect. 2.1 reads: Find u, € Vj,
and pp € Lj such that, forallw € L, and all v € V},,

a(pp, w) = —/uh divy wdx + D /ﬁr(vr -w) ds, (4.2)
Q TETBT

/ph -Drvdx = /gvdx + Z /(ﬁT -vr)vds. 4.3)
Q Q TeTyT
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A posteriori error control for dG FEM 371

The local flux functions elementwise define the global numerical fluxes & and p. The
solution (up, pp) of (4.2) and (4.3) satisfies [1]

ph = Dzup +r([i —upl) + ({0 — up}).
The substitution of pj, in (4.3) results in a linear system of equations for u, € Vj, of

which we suppose that it has a unique solution.

Remark 4.1 InTable 1 and (4.2) and (4.3), B € L?>(E; R") is a vector-valued function
which is constant along each E € Eq. The jumps satisfy o ([u]) = aEhE] [uy] and
or([up)) = ap{re((uy])} on E € £ withag > 0.

Remark 4.2 The methods of Bassi and Rebay [10] and of Baumann and Oden [9] for
k =1 are not stable. However, our a posteriori error analysis includes these methods.

4.3 Unified a posteriori error analysis

Itis remarkable that Theorem 3.1 covers all schemes of Table 1 in one strike. In fact, the
a posteriori analysis of Theorem 4.1 recovers the results [5,6,28] for the IP, NIPG and
LDG methods, and yields new error estimates for the remaining methods of Table 1.

Theorem 4.1 Suppose u € V and p € L solve the Poisson problem as stated in
Subsection 4.1 while u, € Vy, and pj, € Ly, solve (4.2) and (4.3). Recall n and ¢ from
(3.2)—(3.4). Then, there holds

lp—pull Sn+¢.

Proof Given py € L from (4.2) and (4.3) and any iy, € V, then (1.6) holds for

Resp(q) = /q - (Dity, — pp)dx € L*, 4.4)
Q
Resy (v) = —/gvdx —i—/ph -Dvdx e V*. 4.5)
Q Q

As observed in [15], the consistency residuum Resy from (4.4) has the norm
ResrliLx = | pn — Ditn||L-

Notice that, on each E € Eq, the jump [p] = 0 vanishes for all p of Table 1. Moreover,
(4.3) and (4.5) lead to Resy (vy) = 0 for all v;, € th. This verifies (A2).

Table 1 shows that [ — uy] = cq[uy] for some ¢y € {—1, 0, 1} and {# — up} =
calup] - B with ¢ € {—1, 0}. For the LDG method ¢ = —1 and otherwise ¢, = 0.

In conclusion,

ph = Dzup +cir([upl) + c2 £({upl - B).
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372 C. Carstensen et al.

This and the triangle inequality show that

| pn — DiipllL S | D7un — Dﬁh”LZ(Q) + ||”([Mh])||L2(Q) + [1€([un] - ﬂ)||L2(Q)~

Consequently, (1.6), Lemma 2.1 as well as Theorem 3.1 imply the a posteriori error
estimate | p — palle S n+¢. o

5 Application to the Stokes problem
5.1 Stokes model problem
The unsymmetrical formulation of the Stokes problem with m = n reads: Given

g € L2 R"), seeku € V := HI (R and p € L3(Q) := {g € LX) :
Jq g dx =0} = L?(Q)/R such that for all (v, ¢) € H}(2; R") x L}(S),

M/Du:Dvdx—/pdivvdx—/qdivudx:/g~vdx. (GR))

Q Q Q Q

The unique existence of a solution u to (5.1) is well known [4]. The deviatoric part
of a square matrix F € R"*" is dev F = F — (tr(F)/n)I using the trace tr(F) =
Fi1+ Fp+---+ Fyy,. Setting L := {7 € LZ(SZ; R*1) fQ tr(t) dx = 0} and

1
a(o, 1) ::/—deva :devtdx forallo,t €L,
"
Q

(5.2)
b(o,v) = —/a :Dvdx for(o,v) e X:=L xV,

Q

it is known that the operator A : X — X*, defined for (o, u) € X by (1.1) is linear,
bounded, and bijective [4].

5.2 Unified dG formulation

Given the flux functions ii7 5, it, ), and 67 from Table 2, the unified dG formulation
for (5.1) reads: Find (up, op, pn) € Vi X Ly X Q2 such that, for all (v, w,q) €
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A posteriori error control for dG FEM 373

Table 2 Selected dG schemes quoted in form of (5.3) and (5.5)

Method [Ref.] 0T, ar,p or c] &)
Bassi and {up} {up} {on} -1 0

Rebay [10]

IP [31] {up} {up} {Dup} —aj(up) -1 0

Bassietal. [12]  {up) {up) (Dup) —ar((up) 1 0
NIPG [32] {up} +lupl-vr {up} {Dup} —aj([upl) 1 0
LDG [18] {up} +lupl-B fupt+ Diilppl  {on} —Ilonl®@ B -1 1

+Dizlupl =[Pl ® B — D12 - [pn] —aj([up])

The parameters 8, D11, D17 are defined according to [18]
Vi x Ly x Q) where Q) = {qn € Qn : Jo qn dx = 0},

/Uh:wdx=—/L/uh~(DT~w)dx+pLZ/ﬁpg~(w~vf)ds

Q Q TeTyT
_/Ph tr(w) dx, (5.3)
Q
/Gh:DTvdxz/g~vdx+Z/6T:(v®vT)ds, (5.4)
Q Q TeTyr
/uh Vrqdx =Y [ (ir,-vr)qds (5.5)
Q TETaT

are satisfied.

Remark 5.1 The original form of the LDG method [18] is written in terms of the
variable s, := o, + pyL.

Remark 5.2 Independently of the fact that the method of Bassi and Rebay [10] is
unstable, our a posteriori error analysis includes this method.

The local numerical flux functions éi7 o, éi7, , and 67 define, respectively, the global
fluxes 4, i1, and & by elementwise application.

Proposition 5.1 Given the solution (up, oy, pn) of (5.3)—(5.5) the identity
on = p Drup — ppl + pr([ie —upl) + pwl{ids — up}).

holds.

Proof The proof follows the once from [1] and, hence, is omitted. O
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374 C. Carstensen et al.

5.3 Unified a posteriori error control

The a posteriori analysis of Theorem 5.1 recovers the results of [26] for the IP method
and provides new error estimates for the remaining methods of Table 2.

Theorem 5.1 Suppose that u and o := uDu — pl solve the Stokes problem as stated
in Sect. 5.1, while uy, and oy, solve (5.3) and (5.4). Recall ¢ and n from (3.2) and (3.4).
Then, it follows that

lo —onlle Sn+<¢+ Idivrunlzg S n+<.

Proof Given the unique discrete solution oy, define the linear functional Resy € V*
by

Resy (v) = / (g-v—op:Dv)ydx forvelV. (5.6)
Q

The argument of [15,19] shows, for any i, € V, that the residual functional Resy ,
Resp(w) = —a(op, w) — b(w, up) forallw € L 5.7

has the norm

N 1
IRespllLx = 1D (up) — m devoyllL. (5.8)

Observe that on each of E € g, that the jump [6] = O for all 6 in the Table 2.
Thus, the identities (5.4) and (5.6) lead to Resy (v;,) = 0 for all vy, € V}f. Therefore
assumption (A2) is satisfied.

Table 2 shows that [ii, — uy ] = c1 [un] withey € {—1, 0, 1}; for the NIPG method
c1 = 1 and for all other methods ¢; = —1. Similarly, {fiy, — up} = c3 [up] - B with
¢y € {0, 1}; for the LDG method ¢, = 1 and for all other methods ¢; = 0. All these
lead to

op = uwDgup — ppl +cy pwr([up]) + co wl([up] - B). (5.9)
Therefore, given i, € V with o := uDu — pl, there holds

o —onlle + llu —anllv S WD) — Drupllz + | divy up|
Hllr (Qun DIl + 1€[un] - I + Resy v+

Using (3.1) it follows || D(iiy) — Dzunlls S 3 pee k% hE Ilvalll3 = £ From (5.5)
one derives as before

divy up = r([up — al) + e{up — ),
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A posteriori error control for dG FEM 375

and hence

Il divr unll2) S ¢

Then ||Resy ||lv+ < n completes the proof. O

6 Application to linear elasticity

This section is devoted to the Navier-Lamé equation and its discontinuous Galerkin
discretizations. The unified a posteriori analysis recovers the results of [27,33] for the
IP method and makes new error estimates for LDG method available.

6.1 Model problem in linear elasticity

The weak formulation of the linear elasticity model reads: Given g € L*($2; R"), find

ueV. .= Hol(Q; R™) such that

/o:s(v)dx:/govdx and o = Ce(u) forallv e V.
Q Q

Therein, £(v) := (Vv + (Vv)7)/2 and for F € R"*",

1
CF:=Atr(F)I+2uF and C'F:= —F

- u(F)I,
2u 2u(n +2u)

where A, > 0 are given quantities.
The operator A : X = L x V — X* is defined in form of (1.1) with

a(o, 1) := /((Cflo) cTdx
Q
for

sym Sym

o,tel = L%(Q; Ry = Ly e L2(§2; R2X™ :/tr(w)dx =0t;
Q

A is linear, bounded, and bijective with A-independent operator norms of A and A~!
[3,16].
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376 C. Carstensen et al.

Table3 Selected dG schemes quoted in formof (6.1)—(6.3) for linear elasticity with parameters o ;, B, «p, d
from [21,25]

Method Ar.e ar,p ér pPT ] €
IP [25] {up} {up} {e(up)} —A{divuy} 0 0
—aj(lup]) +aaj([up])
LDG 211 {up}+[upl-B {upt+d-[up]l  A{ep}—lepl®B  {pp}—d-[pp] -1 1
+2uip [pp] —aj([up])

6.2 Unified dG formulation

Given the numerical fluxes it ¢, ii7,p, 67 and pr from Table 3, the unified dG for-
mulation of the linear elasticity problem reads: Find

(e un, pr) € Lin(Q R x Vi x Qf) € LRI x HY(T: R x L3(Q)

sym

such that, for all (t, v, q) € L,(2; R x Vj, X Q2, it holds that

sym
/sh:rdx = —/uh-dithdx+ Z/ﬁ”.(zw)ds 6.1)
Q TeTyr
/(2,u8h—phl):DTvdx:/g vdx + Z/(ZMET—pTI) v vrds,
Q TeTyr
6.2)
/ —prq dx /uh Vrgdx — Z /(qu vr)q ds. (6.3)
Q TeTyr

Proposition 6.1 Given uy, e, and py, with (6.1) and (6.2), define oy, := 2uep, — ppL
Then,

Ly = —r([up]) + c1€(lupl - B) and Ly = r*([up]) + c2€*(d - [up] + kp [pal)
satisfy

A
Cloy = Li— — (L, +tr(L))L
op =¢&(up) + Ly nk—|—2u( 2 +tr(Ly))

Proof A direct calculation reveals

en = eup) +r(lide —upl) + €l — up}),
A pn = —divug +r*(un — dp)) + O Qun — dp)).
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This leads to the assertion

A
Clop =2uC ey — pnC T =e(up) + Ly — ———— (Lo + tr(L)L.
ni+2u

(6.4)

m}

6.3 Unified a posteriori error control

The unified a posteriori analysis extends [15,19] and, in the exceptional fully incom-
pressible case for the LDG [21, Proposition 2.1] k, > 0, and jumps of the pressures
arise. In all other cases, k, =0 and |lo — oy llz S n+¢.

Theorem 6.1 Suppose u and o satisfies the linear elasticity problem stated in Sub-
section 6.1 while (uy, en, pn) solves (6.1)—(6.3). Then, oy, := 2uen — ppl satisfies

1/2

k2
lo —onll Sn+c+ | 2 kg lellga
Ec&q E

The last sum always vanishes for the IP method (set k, = 0 for IP) and for the LDG
method if kK, = 0.

Proof Given the unique discrete solution oy, := 2uej, — pp1, define the residual func-
tional Resy € V* by

Resy (v) = /ah : Dv — /g -vdx forvelV. (6.5)
Q Q

Define the global numerical fluxes i, ii,, £ and p elementwise by means of the
respective local flux functions. Then on each E € £q, the jump [2ué — p] vanishes
for all £ and p listed in the Table 3. Therefore, identity (6.2) together with (6.5) implies
that Resy (v,) = 0 forall v, € th and verifies the assumption (A2).
In the spirit of [15], for any i), € V, the residual functional Resy , defined by
Res(t) := —a(op, 1) — b(z, Up),
has the norm
IResLllz = 1C" o3 — eGin) L.
For any uj, € V, with o = Ce(u), (1.6) and (6.4) imply
lo —onllL + llu —dnlly < lle(un) — e(@n)ll 2@ + L1+ [ L2ll + [Resy [v+.

A triangle inequality and Theorem 3.1 complete the proof. O
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