
Volume 10 (2010) Number 2

CONTENTS

A preconditioned minimal residual solver for a class of linear operator equa-

tions

O.Awono and J.Tagoudjeu 119

Penalty methods for computing singular minimizers

C.Carstensen and C.Ortner 137

Additive average Schwarz methods for discretization of elliptic problems with

highly discontinuous coefficients

M.Dryja and M. Sarkis 164

A regularizing parameter for some Fredholm Integral equations

L. Fermo 177

Runge-Kutta Nystrom method of order three for solving fuzzy differential

equations

K.Kanagarajan and M. Sambath 195

Computation of the Hartree-Fock exchange by the tensor-structured methods

V.Khoromskaia 204

A flux-corrected finite element method for chemotaxis problems

R. Strehl, A. Sokolov, D.Kuzmin, and S.Turek 219



Computational Methods in Applied Mathematics (ISSN 1609–4840) is published four times
a year.

Founder
Institute of Mathematics of the National Academy of Sciences of Belarus

Manuscripts and correspondence concerning manuscripts under review should be addressed
to the Editor, Prof. P.Matus by e-mail: cmam@cmam.info .
Editorial Board of the Journal “Computational Methods in Applied Mathematics”, 11 Surganov St.,
220072 Minsk, Belarus. Tel./Fax: (37517) 284 1963. Information for contributors is available at
http://www.cmam.info

60× 84/8

©



COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, Vol. 10 (2010), No. 2, pp. 119–136

c© 2010 Institute of Mathematics of the National Academy of Sciences of Belarus

A PRECONDITIONED MINIMAL RESIDUAL

SOLVER FOR A CLASS OF LINEAR OPERATOR

EQUATIONS

O.AWONO1 AND J.TAGOUDJEU2

Abstract — We consider the class of linear operator equations with operators admit-
ting self-adjoint positive definite and m-accretive splitting (SAS). This splitting leads
to an ADI-like iterative method which is equivalent to a fixed point problem where the
operator is a 2 by 2 matrix of operators. An infinite dimensional adaptation of a min-
imal residual algorithm with Symmetric Gauss-Seidel and polynomial preconditioning
is then applied to solve the resulting matrix operator equation. Theoretical analysis
shows the convergence of the methods, and upper bounds for the decrease rate of the
residual are derived. The convergence of the methods is numerically illustrated with
the example of the neutron transport problem in 2-D geometry.
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1. Introduction

Iterative methods are widely used for solving linear operator equations (see [1, 3, 32, 17,
18, 30, 15, 20, 27] and the references therein). The GMRES algorithm for linear equa-
tions with bounded operators in a separable Hilbert space was studied in [15]. It was
shown that the results of the finite dimensional case can be generalized in the continu-
ous case if the operator is algebraic [15]. Recently, some new iterative methods for solv-
ing linear operator equations with bounded [20] and unbounded [30] operators have been
introduced and analyzed. These methods make use of the adjoint operator in the transfor-
mation of the initial equation. For the particular case of the neutron transport equation,
extensive use of iterative methods for continuous and discrete problems has been made (see
[2, 4, 5, 14, 13, 22, 24, 28, 29, 33, 34, 37, 38] and the references therein). The standard
method is the source iteration method based on the decoupling between the differential and
integral parts of the transport operator. This method becomes extremely slow in the critical
case. Several acceleration techniques of convergence of the source iteration method such
as Diffusion Synthetic Acceleration (DSA) [2, 38] and multigrid algorithms have been in-
troduced and studied [2, 13, 22]. Based on the natural splitting of the integral part of the
transport operator, other methods such as Jacobi, Gauss-Seidel [34] and Successive overre-
laxation (SOR) iteration have been successfully applied to the transport problem by solving
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a fixed point problem derived from the source iteration method. Using the same splitting,
an adaptation to the continuous case of the minimal residual iteration method [4, 5] was
proposed for the solution of the transport in slab geometry, in 2-D cartesian geometry and
in 1-D spherical geometry. This method was proved to be efficient and it competes with the
SOR method. Further, its preconditioned versions have been analyzed [35]. Recently, an
ADI-like iterative method [25] based on positive definite and m-accretive splitting for linear
operator equations with operators admitting such splitting has been proposed and analyzed
[6]. This method converges unconditionally and its SOR acceleration [6] yields convergence
results similar to those obtained in the presence of finite dimensional systems with matrices
possessing the Young property A [11, 19, 39] that are matrices with non null diagonal permu-
tationally similar to 2× 2 block matrices with diagonal blocks being diagonal matrices. In a
particular case where the positive definite part of the linear equation operator is self-adjoint,
an upper bound for the contraction factor of the iterative method which depends solely on
the spectrum of the self-adjoint part was derived [7]. As such, this method has been suc-
cessfully applied to the neutron transport equation in slab and 2-D Cartesian geometry [7]
and in 1-D spherical geometry [9].

Self-adjoint and m-accretive splitting leads to a fixed point problem where the opera-
tor is a 2 by 2 matrix of operators. A preconditioned minimal residual algorithm using
symmetric Gauss-Seidel and polynomial preconditioning is then applied to solve the matrix
operator equation. Theoretical analysis shows that the methods converge unconditionally
and the upper bounds of the residual decrease rate which depend solely on the spectrum
of the self-adjoint part of the operator are derived. Each step of the proposed iterative
methods requires finding solutions of two linear equations, one with a bounded self-adjoint
operator and the other with an m-accretive operator. These linear operator equations can
be solved approximately using appropriate methods with respect to the properties of each
operator. The convergence of these solvers is numerically illustrated with the example of the
neutron transport problem in 2-D geometry. Various test cases, including pure scattering
and optically thick domains [31] were considered.

The remainder of this paper is organized as follows: in Section 2 we give the descrip-
tion and the convergence properties of the SAS and minimal residual iteration method.
The analysis of the preconditioned version of the minimal residual method using symmet-
ric Gauss-Seidel preconditioning and polynomial preconditioning is considered in Section 3.
Section 4 is devoted to the application of the method to the 2-D neutron transport equation
and the numerical illustration. Concluding remarks are given in Section 5.

2. The SAS and Minimal Residual Iteration Method

Let us consider a Hilbert space H with inner product (., .) and the associated norm ‖.‖. Let
X be an unbounded linear operator on H with a domain D(X). Let I denote the identity
operator on H.

Definition 2.1. The operator X is said to be m-accretive if

∀u ∈ D(X), (Xu, u)H > 0

and

∀q ∈ H, ∃u ∈ D(X) such that Xu+ u = q.
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We have the following results [12, 14]:

Theorem 2.1. Assume that X is an m-accretive operator on H. Then

1. D(X) is dense in H;

2. the operator X is closed;

3. ∀α > 0, (I + αX) is bijective from D(X) to H, the operator (I + αX)−1 is bounded
and ‖(I + αX)−1‖ 6 1.

It follows from Theorem 2.1 that if X is an m-accretive operator, for any positive constant
α, (αI +X) is positive definite and ‖(αI +X)−1‖ 6

1
α
. Thus (αI +X)−1 is bounded on H.

Let T be a linear operator on H with a domain D(T ) and a range R(T ) = H. We denote
by I, the identity operator. Suppose that we need to solve in D(T ) the following problem:

Tu = q, (2.1)

where q ∈ H is given and u ∈ D(T ) is the unknown.
We assume that the operator T admits the following splitting [7, 10]:

T = S + A, (2.2)

where S is a bounded self-adjoint positive definite operator and A is an m-accretive operator.
Therefore, the operator T is positive definite and equation (2.1) admits a unique solution
in H.

Let α be a positive constant. The following two-step splitting is obtained from (2.2)

{

T = (αI + S)− (αI − A)
T = (αI + A)− (αI − S)

, (2.3)

which leads to the following self-adjoint and m-accretive splitting (SAS) iteration method
[7] Given an initial guess u(0) ∈ D(T ), for k = 0, 1, . . . until {u(k)} converges, calculate

{

(αI + S)u(k+
1

2
) = (αI − A)u(k) + q

(αI + A)u(k+1) = (αI − S)u(k+
1

2
)+

. (2.4)

The exact solution u∗ of the problem (2.1) verifies [7, 10]

‖u(k+1) − u∗‖A(α) 6 β(α)‖u(k) − u∗‖A(α), (2.5)

where ‖.‖A(α) is a norm defined on D(T ) by

‖u‖A(α) = ‖(αI + A)u‖, (2.6)

and

β(α) = sup
λ∈σ(S)

∣

∣

∣

∣

α− λ

α + λ

∣

∣

∣

∣

, (2.7)

with σ(S) denoting the spectrum of S. It follows from the positivity of α and λ that β(α) < 1.
Thus, the SAS iteration (2.4) converges unconditionally to the solution of (2.1) with respect
to norm ‖.‖A(α). Since for u ∈ D(T ), we have α‖u‖ 6 ‖u‖A(α), the convergence of the SAS
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iteration with respect to the norm ‖.‖ follows. The theoretical optimal parameter αopt for
the bound β(α) is αopt =

√
λminλmax with λmin and λmax denoting respectively the lower

and upper bounds of σ(S) [11, 25]. The convergence analysis of the incomplete version of
SAS iteration where each subproblem of (2.4) is solved approximately is given in [7].

The following fixed point equation can be derived from the definition of the SAS iteration
(2.4):

{

(αI + S)u1 = (αI − A)u2 + q
(αI + A)u2 = (αI − S)u1 + q

. (2.8)

Let us define the matrix of operators T(α) and the vector functions u and q as follows:

T(α) =

(

(αI + S) −(αI − A)
−(αI − S) (αI + A)

)

, u =

(

u1
u2

)

and q =

(

q
q

)

. (2.9)

Therefore, system (2.8) reads

T(α)u = q. (2.10)

From the m-accretive property of A and the positive definiteness of S it follows that the
solution u∗ of the linear operator equation (2.10) exits and is unique in D(T )×D(T ). This
solution verifies [6]

u∗ = (u∗, u∗)T

where u∗ is the solution of (2.1). Then it follows that problems (2.1) and (2.10) are equivalent.
Let P(α) be the matrix operator defined in D(T )×D(T ) by

P(α) =

(

(αI + S) 0
0 (αI + A)

)

. (2.11)

Preconditioning of system (2.10) from the right by [P(α)]−1 leads to the following system:

T1(α)v = q1 (2.12)

where q1 = q and T1(α) =

(

I −A1(α)
−S1(α) I

)

, with A1(α) = (αI − A)(αI + A)−1 and

S1(α) = (αI − S)(αI + S)−1. The operators A1(α) and S1(α) satisfy [7]

‖A1(α)‖ 6 1 and ‖S1(α)‖ 6 β(α).

The solution u∗ of problem (2.10) reads

u∗ = [P(α)]−1v∗, (2.13)

where v∗ is the solution of (2.12). Since all operators of the matrix T1(α) are bounded on
H, T1(α) is bounded on H ×H.

We consider in H × H the inner product 〈, 〉 defined for u = (u1, u2)
t, v = (v1, v2)

t ∈
H ×H by

〈u,v〉 = (u1, v1) + (u2, v2), (2.14)

and the associated norm
‖|u‖|2 = ‖u1‖2 + ‖u2‖2. (2.15)
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The minimal residual iteration method for the solution of problem (2.12) results from the
minimization of the residual functional ε(u) = ‖|q1−T1(α)u|‖2 [4, 5, 19, 35]. The following
estimate on the residual follows from the analysis of this minimal residual algorithm [19]:
Given an initial guess u(0), if the functions u(k) (k > 0) are computed by the minimal residual
algorithm, then

ε(u(k+1)) 6 λ1(α, k)ε(u
(k)), (2.16)

where

λ1(α, k) =

(

1− 〈r(k),T1(α)r
(k)〉

〈r(k), r(k)〉
〈r(k),T1(α)r

(k)〉
〈T1(α)r(k),T1(α)r(k)〉

)

. (2.17)

We have the following convergence results of the minimal residual method for the solution
of (2.12) [10]:

Theorem 2.2. Let α be a positive constant. Given an initial guess u(0) ∈ H ×H, if the
sequence

{

u(k)
}

k>0
is obtained by the minimal residual algorithm, then the following error

estimations hold:

ε(u(k+1)) 6
3 + β(α)

4
ε(u(k)), (2.18)

‖|u(k+1) − u∗|‖ 6
2

1− β(α)
ε(u(k+1))

1

2 . (2.19)

where u∗ is the exact solution of problem (2.12). Thus,
{

u(k)
}

k>0
converges to u∗.

3. Preconditioned Minimal Residual Iteration Method

We present in this section two split type preconditioning strategies of problem (2.12). The
first strategy is symmetric Gauss-Seidel preconditioning and the second one is coupled sym-
metric Gauss-Seidel and polynomial preconditioning.

3.1. Symmetric Gauss-Seidel and polynomial preconditioning

Let us consider in H ×H the following operators:

M1(α) =

(

I 0
−S1(α) I

)

, M2(α) =

(

I −A1(α)
0 I

)

. (3.1)

The operators M1(α) and M2(α) are bounded and have bounded inverses defined by

M−1
1 (α) =

(

I 0
S1(α) I

)

, M−1
2 (α) =

(

I A1(α)
0 I

)

. (3.2)

The symmetric Gauss-Seidel preconditioner of problem (2.12) is defined by

MSGS(α) = M1(α)M2(α). (3.3)

The split preconditioning of (2.12) using MSGS leads to the following equivalent problem:

T2(α)v = q2(α), (3.4)

u = M−1
2 (α)v, (3.5)
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where

T2(α) = M−1
1 (α)T1(α)M

−1
2 (α) =

(

I 0
0 I −M(α)

)

, q2(α) = M−1
1 (α)q1,

with M(α) = S1(α)A1(α). The operator of Eq. (3.4) can be written as

T2(α) = I−M(α), (3.6)

where I denotes the identity operator inH×H andM(α) =

(

0 0
0 M(α)

)

. Since ‖M(α)‖ 6

β(α), we have for u = (u1, u2)
t ∈ H ×H

‖|M(α)u|‖2 = ‖M(α)u2‖2 < β2(α)‖u2‖2 < β2(α)‖|u‖|2.

Thus,
‖|M(α)|‖ 6 β(α) < 1, (3.7)

and

T−1
2 (α) = (I−M(α))−1 =

∞
∑

k=0

Mk(α). (3.8)

Therefore, the operatorT−1
2 (α) can be approximated by the following truncated Neumann

series:

Pn(α) =
n

∑

k=0

Mk(α). (3.9)

Setting

T2(α, n) = Pn(α)T2(α) = I−Mn+1(α) and q2(α, n) = Pn(α)q2(α), (3.10)

we obtain the following operator equation:

T2(α, n)u = q2(α, n), (3.11)

which is equivalent to (3.4). We have

T2(α, n) = C−1
1 (α)T1(α)M

−1
2 (α) and q2(α, n) = C−1

1 (α)q1, (3.12)

where C1(α) = P−1
n (α)M1(α). Thus, Eq. (3.11) follows from the split preconditioning of Eq.

(2.12), using C1(α)M2(α) as a preconditioner. This can be regarded as a coupled symmetric
Gauss-Seidel and polynomial preconditioning of eq. (2.12). It can be noticed that Eq. (3.4)
is a particular case of Eq.(3.11), when n = 0.

To use the minimal residual algorithm for solving Eq. (3.4), we have to make clear how
T2(α, n) is computed, since T2(α, n) contains some inverse operators. Let u = (u1, u2)

t ∈
H × H. The components of T2(α)u = (v1, v2)

t are expressed as v1 = u1 and v2 = u2 −
Mn+1(α)u2. The main task is to compute the product Mn+1(α)u2 obtained after n + 1
successive computations of products of the form M(α)u = ϕ. Let u ∈ H. We demonstrate
in the following how to compute ϕ =M(α)u. We have

{

ϕ2 = (A− αI)ϕ1

ϕ = (S − αI)ϕ3,
(3.13)
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where ϕ1 ∈ D(T ) satisfies the differential equation

(A+ αI)ϕ1 = u (3.14)

and ϕ3 ∈ H satisfies the integral equation

(S + αI)ϕ3 = ϕ2. (3.15)

Once ϕ1, ϕ2 and ϕ3 have been calculated, the product ϕ is easy to compute. The
differential equation (3.14) and the integral equation (3.15) can be solved numerically.

3.2. Convergence analysis of the preconditioned minimal residual method

We present in this section the convergence results of the minimal residual algorithm of
Section 2 applied to (3.11).

The following properties are characteristic of the operator T2(α, n):

Theorem 3.1. Let α be a positive constant. For all u ∈ H×H, the following inequalities
hold true:

〈T2(α, n)u,u〉 > (1− βn+1(α))‖|u|‖2, (3.16)

〈T2(α, n)u,u〉 >
1

2
〈T2(α, n)u,T2(α, n)u〉. (3.17)

Proof. Let u = (u1, u2)
t. We have

〈T2(α, n)u,u〉 = ‖u1‖2 + ‖u2‖2 − (Mn+1(α)u2, u2)
> ‖u1‖2 + ‖u2‖2 − ‖Mn+1(α)‖‖u2‖2
> ‖|u|‖2 − ‖Mn+1(α)‖‖|u‖|2
> (1− βn+1(α))‖|u‖|2.

We also have

〈T2(α, n)u,u〉 − 1
2
〈T2(α, n)u,T2(α, n)u〉 = 1

2
‖|u‖|2 − 1

2
‖Mn+1(α)u1‖2

>
(1−β2n+2(α))

2
‖|u‖|2 > 0.

Thus, the inequality (3.17) is satisfied.

Theorem 3.2. Convergence results.
Let α be a positive constant. Given an initial guess u(0) ∈ H × H, if the sequence

{

u(k)
}

k>0
for the approximation of the solution u∗ of (3.11) is obtained by the minimal

residual algorithm, then the following error estimates hold:

ε(u(k+1)) 6
1 + βn+1(α)

2
ε(u(k)), (3.18)

‖|u(k+1) − u∗|‖ 6
1

1− βn+1(α)
ε(u(k+1))

1

2 . (3.19)

where u∗ is the exact solution of problem (3.11). Thus
{

u(k)
}

k>0
converges to u∗.
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Proof. Replacing in (2.17) T1(α) by T2(α, n), we deduce from inequalities (3.16) and
(3.17) the following bound for the residual decrease rate:

λ3(α, k) 6
1 + βn+1(α)

2
, k > 0

and inequality (3.18) follows from (2.16).

Replacing in (3.16) u by (u(k+1) − u∗) yields

‖|u(k+1) − u∗|‖2 6
1

1−βn+1(α)
〈T2(α, n)u

(k+1) − q2(α, n),u
(k+1) − u∗〉

6
1

1−βn+1(α)

(

ε(u(k+1)
)

1

2 .‖|u(k+1) − u∗|‖,

and the estimate (3.19) then follows.

Let ν1(α) and ν2(α, n) denote the upper bounds for the residual decrease rate of the
minimal residual solver applied respectively to Eqs. (2.12) and (3.11). It follows from
Theorem 2.2 and Theorem 3.2 that for α > 0 and n > 0,

ν1(α)− ν2(α, n) =
(1− βn+1(α)) + β(α)(1− βn(α))

4
> 0. (3.20)

It follows that ν1(α) > ν2(α, n) and the preconditioned minimal residual solver is theo-
retically faster than the minimal residual solver. Moreover, ν2(α, n) > ν2(α,m) for m > n.
Thus, the convergence is theoretically faster and faster with increasing n. Figure 3.1 plots
the estimates of the upper bounds for the residual decrease rate as a function of β(α) of the
minimal residual method and its preconditioned versions for several values of n.

Remark 3.1. Since we focus on the solution of Eq. (2.1), for the computational purpose
we need only to solve the second sub-equation of problem (3.11) which reads

(I −Mn+1(α))v = q2, (3.21)

where q2 is the second component of the vector q2(α, n). The solution u
∗ of (2.1) is computed

from the solution v∗ of (3.21) as follows:

u∗ = (αI + A)−1v∗. (3.22)

Proceeding similarly as in the proof of Theorem 3.1 and Theorem 3.2, we have the following
convergence results of the minimal residual method applied to (3.21):

‖q2 − (I −Mn+1(α))v(k+1)‖2 6
1 + βn+1(α)

2
‖q2 − (I −Mn+1(α))v(k)‖2, (3.23)

‖v(k+1) − v∗‖ 6
1

1− βn+1(α)
‖q2 − (I −Mn+1(α))v(k+1)‖. (3.24)
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Fig. 3.1. Comparison of upper bounds for the residual decrease rate of the methods

4. Numerical Results for the 2-D Neutron Transport Equation

We apply the above minimal residual algorithm for solving the neutron transport equation
in 2-D Cartesian geometry.

4.1. The 2-D Neutron Transport Equation

Consider the following single-group steady-state first-order neutron transport equation in
2-D Cartesian geometry [4, 7, 10]:

{

Tu(r, ω) := Au(r, ω) + Σu(r, ω)−Ku(r, ω) = q(r, ω), (r, ω) ∈ R× B
u(r, ω) ∈ D(T ),

(4.1)

where the operators A, Σ and K are defined by

Au = ω∇ru; Σu = σ(r)u; Ku =

∫

B

κ(r, ω, ω′)u(r, ω′)dω′ (4.2)

and
D(T ) = {u ∈ L2(Q) : ω∇ru ∈ L2(Q) and u|Γ

−

= 0}, (4.3)

where Q = R × B, Γ− = {(r, ω) ∈ ∂R × B : µnx + ηny < 0} (n = (nx, ny) being the
outer normal to ∂R), r = (x, y), ω = (µ, η), R =]0, 1[×]0, 1[ and B = {ω ∈ R

2 : |ω| < 1}.
The function σ(r) represents the total cross section and κ(r, ω, ω′) is a nonnegative kernel
describing the scattering of particles. The function q is a nonnegative source term.

The operator A is m-accretive [14]. In the following it is assumed that:

(a1) σ ∈ L∞(Q) and ∃σ0 > 0 such that σ(r) > σ0 a.e on R×B;

(a2) κ(r, ω, ω′) = κ(x, ω′, ω) and κ is non negative;

(a3) ∃c ∈ [0, 1),

∫

B

κ(r, ω, ω′)dω′
6 σ0c a.e on R×B.
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Therefore, the operator S = σI −K is self-adjoint and positive definite [14]. Thus, T is
positive definite and the existence and uniqueness of the solution of problem (4.1) follows.
Moreover, T admits a self-adjoint positive definite and m-accretive splitting (SAS) which
yields the SAS iteration method. The SAS iteration method, the minimal residual method
and its preceding preconditioned versions for the solution of Eq. (4.1) converge. Equation
(4.1) is known to be near singular when c ≈ 1 [14].

In the case of isotropic scattering where the integral operator is defined by

Kψ = σs(x)Pu, (4.4)

with

Pu =
1

π

∫

B

u(x,Ω′)dΩ′,

the inverse of the operator (αI + S) is given by [7]

(αI + S)−1 =
1

σ(x)− σs(x) + α
P +

1

σ(x) + α
(I − P ). (4.5)

Therefore, the linear integral equation (3.15) can be solved explicitly. Moreover, the
function ϕ in (3.13) can be calculated as follows:

ϕ = P1ϕ2, (4.6)

where

P1 =

(

α− σ − σs
α + σ − σs

− α− σ

α + σ

)

P +
α− σ

α + σ
I. (4.7)

Here, σs and σa = σ− σs denote the scattering and the absorption cross sections respec-
tively. The scattering ratio and the optical coefficient are defined respectively as follows:

γ = max
x∈R

(

σs(x)

σs(x) + σa(x)

)

and ν = min
x∈R

(σs(x) + σa(x)) diam(R), (4.8)

where diam(R) denotes the diameter of the domain R. The values γ = 1 and ν >> 1 (σa >>
1) correspond to the pure scattering and optically thick domains, respectively, and represent
two extreme situations in the computational transport where conventional discretization
methods such as piecewise linear finite elements using the Galerkin formulation [23], the
classical finite difference scheme [16] and the upwind difference scheme [22] yield inaccurate
solutions unless the spatial grid is very fine. As mentioned in [28, 21], as σt = σa + σs
tends to infinity and γ tends to 1, the problem becomes singularly perturbed. Therefore,
the discrete approximation of the transport problem using these methods will have operators
with condition numbers of the order of at least σ2

t regardless of the mesh size [21].

4.2. Discretization and Numerical Results

Discretization is carried out by the discrete ordinates and Diamond difference schemes [7, 14].
For the angular discretization a set of L discrete angular directions ΩL = {ωi = (µi, ηi), 1 6

i 6 L} ⊂ B is used. The set ΩL satisfies for all (µ, η) ∈ ΩL: a) µ 6= 0 and η 6= 0; b)
(−µ,−η) ∈ ΩL. A finite difference method based on volume control and cell averaging is
considered for the space discretization. The numerical grid is defined by
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Rh = {(xi, yj), 0 6 i 6 N, 0 6 i 6M} , (4.9)

where x0 = 0, xi = xi−1 + (∆x)i, xN = 1, y0 = 0, yj = yj−1 + (∆y)j, yM = 1 and
h = max

ij
((∆x)i, (∆y)j). The cell center grid points are defined as:

xi+ 1

2

=
xi+1 − xi

2
, yj+ 1

2

=
yj+1 − yj

2
, (∆x)i+ 1

2

= xi+1 − xi and (∆y)j+ 1

2

= yj+1 − yj.

Therefore, Eqs. (3.14) and (3.15) can be solved using respectively the direct sweeping
algorithm [7, 14] and the conjugate gradient method in the anisotropic case [7].

For the numerical results, we took particular data for which an exact solution of problem
(4.1) is known in each case. For the iterative methods tested here, the iterations are stopped
when the relative error ‖U − Uexact‖2/‖Uexact‖2 is less than the prescribed ǫ > 0.

For x = (x1, x2) ∈ R and Ω = (µ, η) ∈ B, we set σ(x) = σ, κ(x,Ω,Ω′) = σc
π

and

q(x, µ) =















µx2 + ηx1 + σx1x2 − σc
4
, µ > 0, η > 0;

−µx2 + η(1− x1) + σ(1− x1)x2 − σc
4
, µ < 0, η > 0;

−µ(1− x2)− η(1− x1) + σ(1− x1)(1− x2)− σc
4
, µ < 0, η < 0;

µ(1− x2)− ηx1 + σx1(1− x2)− σc
4
, µ > 0, η < 0.

The exact solution of this test problem is given by

ψ(x, µ) =















x1x2, µ > 0, η > 0;
(1− x1)x2, µ < 0, η > 0;
(1− x1)(1− x2), µ < 0, η < 0;
x1(1− x2), µ > 0, η < 0.

In this problem, c is the scattering ratio and σ is the optical coefficient. The quantities
σs = σc and σa = σ(1 − c) are respectively the scattering and absorption cross sections of
neutrons in R.

For the numerical test, we take ∆x = ∆y = 1
10

and L=100. We study the behavior of
the preconditioned minimal residual methods with respect to the parameters σ, c and α.
For the exemplary problem, the theoretical optimal parameter minimizing the bound β(α)
is αt = σa = σ(1 − c). It was observed in [7] that for fixed c and σ the optimal numerical
value of α can be localized in the interval [σ(1 − c), σ(1 − c/2)]. The value of α∗ given in
[10] yielded good convergence results for the SAS iteration applied to the exemplary problem
as compared to the standard source iteration method, the spatial multigrid algorithm and
some Krylov subspace methods such as GMRES and BiCGStab iterative algorithms [7]. It
was observed in [10] that for some values of σa and c (σa > 4 and c > 0.5.) the convergence
of the minimal residual seemed to be faster as compared to the SAS method using αt. This
result also holds for large values of σ in using the SAS method with α∗. The Gauss-Seidel
preconditioned version of the minimal residual algorithm gave excellent results compared to
SAS and its successive overrelaxation acceleration [10].

We present comparative numerical results (the number of iterations and the CPU time in
s) of the previous minimal residual algorithm with: symmetric Gauss-Seidel preconditioning
(SGS-Minres), polynomial preconditioning (PMinres[n]) with n denoting the order of the
truncated Neumann series, and SAS iterations using α = α∗ and α = αt + c. There are
two sets of tests: one at fixed σ and the other at fixed c. As shown in Figs. 4.1 to 4.7, all
the methods converge. At fixed σ = 50 and σ = 100, we compare the c−dependence of the
iterative methods used here. Figs. 4.1 and 4.2 plot the number of iterations and the CPU
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time of the methods as a function of c, respectively, for c ∈ [0.1, 0.99] and c ∈ [0.98, 0.99999]
with σ = 50, using α = α∗. We observe that the PMinres[n] iterations (n = 1, 2, 10] are
faster than the SGS-Minres one which is faster than the SAS, particularly for values of c
closed to 1 (Fig. 4.2). As can be seen from Figs. 4.3 and 4.4, these observations remain
true in performing the same tests for σ = 100. Next, we compare the σ−dependence of the
iterative methods. Figures 4.5 and 4.6 plot the number of iterations of the methods and
the CPU time as a function of the total cross section (σ ∈ [1, 100]) at fixed c = 0.5 and
c = 0.99 respectively. We can see that the PMinres[n] method is still more efficient than the
SGS-Minres one which is faster than the SAS method. The same observations hold for large
values of σ at c = 0.99 (see Fig. 4.7) and for the critical case where c = 1 (see Table 4.1). We
set α = σ(1 − c) + c. Table 4.2 and Table 4.3 present comparative numerical results of the
methods for 1 6 σ 6 1000 at fixed c = 0.98 and for 0.98 6 c 6 1 at fixed σ = 5, respectively.
The SAS method remains slower than the preconditioned minimal residual methods. We
also remark that for α = α∗, PMinres[n] is more and more efficient with increasing n. This
confirms the theoretical convergence results obtained.

We now consider another set of tests where the mesh size decreases : ∆x = ∆y = h,
with h ∈ {1

4
, 1
8
, 1
16
, 1
32
, 1
64
, 1
128

}. At fixed σ = 100, we test the behavior of the methods with
decreasing mesh size, for c = 0.5 and c = 0.99. The Table 4.4 presents the number of
iterations of each method for c = 0.5. It can be observed that for each method the number
of iterations remains roughly constant with decreasing mesh size. For c = 0.99, we set
α = σ(1− 23c/32). Table 4.5 presents the number of iterations for each method. The tested
methods converge for a mesh size less than 1

64
. For h = 1

128
, a convergence of SGS-Minres

and PMinres[1] is noted. For the other methods, we observe a divergence of the SAS method
at the second iteration and a stagnation of the residual for Pminres[2] and Pminres[10]. This
drawback is essentially due to the fact that the discretization method applied to the first
subproblem of the SAS iteration generates a negative flux for fixed values of σ, c, and α.
This drawback is overcome by setting α = σ. Table 4.6 gives the number of iterations of
the methods tested here. It can be observed that for each method the number of iterations
is roughly constant for h >

1
16

and the preconditioned Minres methods accelerate the SAS
iterations. The convergence behavior (relative error as a function of the iteration) of the
SAS, SGS-Minres, PMinres[n] (n = 1, 2, 10) is plotted in Fig. 4.8 for h = 1

128
, σ = 100 and

c = 1 with α = σ. The efficiency of the preconditioned minimal residual methods can be
observed.

Additionally, we present comparative convergence behaviors of the preconditioned Minres
methods and the spatial multigrid method using the bi-conjugate gradient stabilized method
as a smoothing method MG(n1,n2), with n1 and n2 denoting the number of pre-smoothing
and post-smoothing steps, respectively. Iterations are stopped when the relative residual
error ‖B − GU‖/‖B‖ is less than 1E − 05, where G and B denote respectively, the matrix
and the right hand side of the discrete system . The convergence history of the multigrid and
the SGS-Minres methods for σ = 100 and c = 0.5 with h = 1

16
is plotted in Fig. 4.9. It can

be seen that the MG(1,1) method diverges and the MG(20,20) method converges but is less
efficient than the SGS-Minres method. We set c = 0.99. It is seen from Fig. 4.10 that for the
mesh size h = 1

16
, the MG(1,1) method diverges and the preconditioned Minres methods are

efficient compared to the MG(20,20) method. Figure 4.11 plots the convergence behavior of
the methods tested here for the mesh size h = 1

32
at fixed c = 0.99 and σ = 100. Divergence

of the MG(1,1) and MG(20,20) methods can be observed. We note the efficiency of the
preconditioned Minres methods compared to the spatial multigrid methods considered.
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Table 4.1. Number of iterations and CPU time in s (in brackets) for c = 1 (α = 1, ǫ = 1E − 08)

σ 1 10 50 100 500 1000
SAS 42(3.97) 86(7.16) 290(24.45) 418(34.95) 648(55.11) 696(58.03)

SGS-Minres 14(1.30) 61(6.27) 191(19.97) 271(28.22) 416(40.59) 446(44.41)
PMinres[1] 8(1.41) 28(4.95) 91(15.92) 112(20.06) 193(34.34) 204(35.42)
PMinres[2] 5(1.22) 19(4.80) 53(13.23) 71(17.69) 105(26.37) 112(28.86)
PMinres[10] 2(1.78) 4(3.37) 9(7.75) 10(8.45) 12(10.37) 12(10.16)

Table 4.2. Number of iterations and CPU time in s (in brackets) for c = 0.98 (α = σ(1 − c) + c,
ǫ = 1E − 08)

σ 1 10 50 100 500 1000
SAS 38(3.53) 46(4.11) 43(3.70) 59(4.85) 185(15.97) 276(23.69)

SGS-Minres 14(1.44) 39(4.06) 42(4.17) 40(3.92) 24(2.28) 19(1.89)
PMinres[1] 8(1.56) 18(3.44) 21(3.61) 27(5.01) 70(12.06) 95(16.94)
PMinres[2] 5(1.36) 12(3.44) 14(3.48) 18(4.48) 23(5.87) 24(6.23)
PMinres[10] 2(1.98) 3(2.90) 3(2.59) 5(4.31) 15(12.80) 18(16.56)

Table 4.3. Number of iterations and CPU time in s (in brackets) for σ = 5 (α = σ(1 − c) + c,
ǫ = 1E − 08)

c 0.98 0.99 0.995 0.9975 0.999 0.9999 1

SAS 39(3.72) 42(4.62) 49(5.61) 56(6.26) 60(6.56) 62(6.92) 63(6.80)
SGS-Minres 31(3.31) 33(4.20) 35(4.70) 36(4.70) 36(4.81) 36(4.73) 37(4.94)
PMinres[1] 14(2.81) 15(3.62) 17(4.20) 18(4.33) 19(4.39) 20(4.80) 20(4.87)
PMinres[2] 9(2.55) 10(3.31) 11(3.69) 11(3.72) 11(3.67) 11(3.64) 11(3.69)
PMinres[10] 3(2.83) 3(3.58) 3(3.39) 3(3.44) 3(3.47) 3(3.55) 3(3.43)
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Table 4.4. Number of iterations for σ =
100, c = 0.5 (α = α∗, ǫ = 1E − 06)

h 1
4

1
8

1
16

1
32

1
64

1
128

SAS 8 8 8 8 8 8
SGS-Minres 6 6 7 7 7 7
PMinres[1] 3 3 3 3 3 3
PMinres[2] 2 2 2 2 2 2
PMinres[10] 0 0 0 0 0 0

Table 4.5. Number of iterations for σ = 100, c =
0.99 (α = σ(1− 23c/32), ǫ = 1E − 06)

h 1
4

1
8

1
16

1
32

1
64

1
128

SAS 182 184 186 186 186 -
SGS-Minres 49 78 91 99 128 205
PMinres[1] 26 32 35 37 46 88
PMinres[2] 18 19 20 21 24 -
PMinres[10] 6 6 6 7 7 -

Table 4.6. Number of iterations for σ =
100, c = 0.99 (α = σ, ǫ = 1E − 06)

h 1
4

1
8

1
16

1
32

1
64

1
128

SAS 633 637 640 641 642 643
SGS-Minres 20 34 46 51 49 53
PMinres[1] 7 21 32 32 33 33
PMinres[2] 7 18 26 26 26 26
PMinres[10] 7 13 14 14 13 13
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5. Conclusions

We have presented a symmetric Gauss-Seidel and polynomial preconditioning of a minimal
residual method for solving a class of linear operator equations, with a positive definite op-
erator admitting self-adjoint and m-accretive splitting in a Hilbert space H. Theoretical
analysis shows that these methods converge unconditionally to the solution of the equation.
Theoretical proof of the convergence of methods is independent of the discretization. Pre-
vious numerical results illustrate the feasibility and efficiency of these methods in solving a
2-D neutron transport problem. The methods converge for critical cases (c close to 1 and/or
large σ). Moreover, the above preconditioned Minres methods give better results than the
SAS iteration method does.
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27. O. Nevanlinna, Convergence of Krylov methods for sums of two operators, BIT, 36 (1996), no. 4,

pp. 775–785.
28. S. Oliveira and Y. Deng, Preconditioned Krylov subspace methods for transport equations. Prog.

Nucl. Energy, 33 (1998), no. 1/2, pp. 155–174.
29. B. W. Patton and J. P. Holloway, Application of Preconditioned GMRES to the numerical solution

of the neutron transport equation. Ann. Nucl. Energy, 29 (2002), no. 2, pp. 109–136
30. A. G. Ramm, Iterative solution of linear equations with unbounded operator, J. Math. Anal. Appl.,

330 (2007), pp. 1338-1346.
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ANALYSIS OF A CLASS OF PENALTY METHODS

FOR COMPUTING SINGULAR MINIMIZERS
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Abstract — Amongst the more exciting phenomena in the field of nonlinear partial
differential equations is the Lavrentiev phenomenon which occurs in the calculus of
variations. We prove that a conforming finite element method fails if and only if the
Lavrentiev phenomenon is present. Consequently, nonstandard finite element methods
have to be designed for the detection of the Lavrentiev phenomenon in the computa-
tional calculus of variations.
We formulate and analyze a general strategy for solving variational problems in the
presence of the Lavrentiev phenomenon based on a splitting and penalization strategy.
We establish convergence results under mild conditions on the stored energy function.
Moreover, we present practical strategies for the solution of the discretized problems
and for the choice of the penalty parameter.
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1. Introduction

The calculus of variations is concerned with the minimisation problem

inf E(A1) := inf
v∈A1

E(v), (1.1)

where E : A1 → R ∪ {+∞} and where A1 (or more generally Ap) is the first-order Sobolev
space

Ap := W 1,p
0 (Ω;Rm) = {v ∈ W 1,p(Ω)m : v|∂Ω = 0},

based on a bounded Lipschitz domain Ω ⊂ R
n with piecewise hyperplanar boundary ∂Ω.

We shall assume throughout that E is proper on A∞, i.e., there exists v ∈ A∞ so that
E(v) < +∞. In particular, A∞ ⊂ A1 always implies

−∞ 6 inf E(A1) 6 inf E(A∞) < +∞.

The Lavrentiev phenomenon, named after its first occurence in the literature [18], is the
surprising property that, in some some variational problems,

inf E(A1) < inf E(A∞). (L)
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Other well-known examples are the one-dimensional examples of Mania [23] and of Ball and
Mizel [7, 6], or the convex example of Foss, Hrusa and Mizel [16]. In nonlinear elasticity, the
Lavrentiev phenomenon is closely related to the occurence of cavitation [4].

For the conforming finite element discretization of (1.1) assume we are given a family of
finite element spaces

V0, V1, V2, · · · ⊂ ∪∞
ℓ=0Vℓ ⊆ A∞,

to solve the discrete minimization problem

inf E(Vℓ) := inf
v
ℓ
∈V

ℓ

E(vℓ). (1.2)

The respective infimal energies are possibly convergent towards some limit

inf E(A∞) 6 lim inf
ℓ→∞

inf E(Vℓ).

We say that the finite element method (FEM) is convergent if E and the sequence of discrete
subspaces V0, V1, V2, . . . allow for

inf E(A1) = lim
ℓ→∞

inf E(Vℓ). (C)

Therein, the convergence of the entire sequence of energy minima (not merely of some
subsequence but for all subsequences) is part of the statement as well as the equality of that
limit to inf E(A1).

However, since conforming finite element functions are always Lipschitz continuous any
finite element space Vℓ is contained in A∞ and hence standard finite element methods cannot
compute singular minimisers, that is, if (L) holds then

inf E(A1) < inf E(A∞) 6 inf E(Vℓ).

In particular, it follows that (C) implies that (L) is false. Section 2 below provides a general
framework that allows for the converse and establishes

(C) ⇐⇒ NOT (L),

under natural assumptions on the energy density.
A consequence of this equivalence is that conforming finite element methods are inappro-

priate tools for detecting the singular minimisers associated to the Lavrentiev phenomenon
(L).

Several classes of numerical schemes have been introduced in the literature to allow for a
numerical detection of (L), including the penalty method of Ball and Knowles [5, 17] and its
extension to polyconvex integrands by Negron–Marrero [24], the element-removal method of
Li [19, 20], and the truncation method of Li, and Bai and Li [1, 2, 21].

Section 3 introduces a general concept for the construction of a new class of splitting and
penalty methods. We establish general convergence results in Sections 4 and 5. In Section
6 we discuss some connections of our results with the theory of Γ-convergence.

Similarly as in the methods of Ball & Knowles [5] and of Negron–Marrero [24] we decouple
a problematic variable, for example the gradient ∇u, by introducing a new variable η in its
place and then penalizing the difference ∇u− η. The main difference between the methods
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[5, 24] and our approach is how this penalization is achieved. While [5, 24] use a constraint
of the form

‖∇u− η‖Lp 6 ε,

we add a penalization term

ε−1Ψ(∇u, η),

to the total energy functional. Moreover, we design this penalization term with practical
implementation issues in mind. For example, by choosing a non-differentiable penalty func-
tional (similar to an L1-norm), we obtain the desirable property that the difference ∇u− η
is non-zero only in a small subregion of the computational domain.

As a result of our careful design of the penalty functional our method is potentially easier
to use and more efficient in practise. In particular, we also include a detailed description of
a practical implementation and various computational examples in the final section of the
paper.

In [25, 26] non-conforming finite element methods were analyzed as an alternative to
the penalty methods discussed in the present paper. The main advantage of non-conforming
methods is that they require no penalty parameter. However, even though this is a promising
new direction, it is at present entirely unclear how to generalize the results in [25, 26] to the
vectorial non-convex case. By contrast, our convergence results in the present paper hold
under far less restrictive conditions on the stored energy functions.

2. Finite Element Failure is Equivalent to the Lavrentiev Phe-

nomenon

This section is devoted to the proof of the equivalence of (C) and NOT (L), in a general
setting which is entirely free of growth conditions and notions of convexity. However, we
assume uniform convergence of the mesh-size to zero in the finite element methods as well
as global continuity of the energy density.

Suppose that T1, T2, T3, . . . is a sequence of regular triangulations into simplices of a
Lipschitz domain Ω ⊂ R

n with piecewise flat boundary ∂Ω that is perfectly matched by the
triangulations. Suppose that the triangulation is shape regular in the sense that the largest n
dimensional ball inside each simplex T and the smallest ball outside have uniformly bounded
ratios: There exists a universal positive constant Cshaperegular, which does not depend on T
or ℓ, such that one finds midpoints mT and MT , and radii rT and RT , satisfying

B(mT , rT ) ⊂ T ⊂ B(MT , RT ) and RT/rT 6 Cshaperegular.

We assume throughout that the mesh-size tends to zero, written hℓ → 0, by which we mean
that

lim
ℓ→∞

max
T∈T

ℓ

RT = 0.

The finite-dimensional space Vℓ of piecewise affine finite element functions (piecewise with
respect to the triangulation Tℓ),

Vℓ := {vℓ ∈ C0(Ω;R
m) : ∀T ∈ Tℓ, vℓ|T affine },
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belongs to A∞. For future reference we also define

P0(Tℓ) := {vℓ ∈ L1(Ω) : ∀T ∈ Tℓ, vℓ|T constant },
P1(Tℓ) := {vℓ ∈ C(Ω;Rm) : ∀T ∈ Tℓ, vℓ|T affine }, and

P1
0(Tℓ) := {vℓ ∈ C0(Ω;R

m) : ∀T ∈ Tℓ, vℓ|T affine }.

Note that with this notation, Vℓ = P1(Tℓ) ∩ A∞ = P1
0(Tℓ). In the following sections we will

redefine Vℓ in order take into account nonhomogeneous boundary conditions.
Let the energy density W : Ω× R

m × R
m×n → R be continuous and define the energy

E(v) :=

∫

Ω

W (x, v(x), Dv(x))dx,

for all v ∈ A∞. In fact, if v is Lipschitz continuous, then the set of triples {(x, v(x), Dv(x)) :
x ∈ Ω̄} as well as the set {W (x, v(x), Dv(x)) : x ∈ Ω̄} are contained in compact sets.
Consequently, E(v) ∈ R and E : A∞ → R is well defined. For an arbitrary function v ∈ A1

this is no longer clear. Throughout this section we simply assume that

E : A1 → R ∪ {+∞},

is some extension of E|A
∞

. In applications, this may be guaranteed by growth control
from below and we refer to the literature (e.g., [12]) for this well-understood argument in
the direct method of the calculus of variations. The question of attainment of a global
or discrete minimum is irrelevant here and bypassed by a consequent discussion of infima
instead of minima, e.g., for any ℓ = 0, 1, 2, . . . ,

Eℓ := inf E(Vℓ) := inf
v
ℓ
∈V

ℓ

E(vℓ) ∈ R ∪ {±∞}.

We emphasize that there is no nestedness assumption on the finite element spaces and so the
convergence of the infimal energies Eℓ does not follow automatically. In fact, it is stated in
the following theorem as a conclusion. We remark that an extension of the following result
to non-homogeneous Dirichlet conditions is not straightforward since, by approximating the
boundary condition, the discrete admissible set would not be contained in A∞ any more.

Theorem 2.1 Finite Element Failure ⇔ Lavrentiev Phenomenon. If W : Ω̄ ×
R

m × R
m×n → R is continuous then limℓ→∞Eℓ = inf E(A∞) and, in particular,

lim
ℓ→∞

Eℓ = inf E(A1) ⇐⇒ inf E(A1) = inf E(A∞).

The direction =⇒ in the theorem’s assertion is obvious from the introduction and Vℓ ⊂
A∞:

inf E(A∞) 6 lim inf
ℓ→∞

Eℓ = inf E(A1) 6 inf E(A∞).

The converse ⇐= requires a density argument stated in terms of the nodal interpolation
operator. Given a continuous function v : Ω → R

m and a triangulation Tℓ the nodal inter-
polation vℓ := Iℓv of v is defined on each simplex T ∈ Tℓ with vertices z1, . . . , zn+1 through
linear interpolation of the values v(zj) at the n+ 1 vertices zj.
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Lemma 2.1. There exists a constant C, which depends only on Cshaperegular, such that,
for any v ∈ W 1,∞(Ω;Rm), the piecewise affine function vℓ = Iℓv satisfies

‖vℓ‖W 1,∞(Ω) 6 C‖v‖W 1,∞(Ω) for all ℓ = 0, 1, 2, . . . .

Moreover, vℓ → v in L∞(Ω;Rm), and Dvℓ → Dv pointwise a.e. in Ω, as ℓ→∞.

Proof. The stability of the nodal interpolation operator as well as the convergence in the
L∞-norm are standard results and can, for example, be found in [10].

The theorem of Rademacher implies that, for almost all x in some simplex T , Dv(x)
exists in the sense of a Fréchet derivative, i.e.,

Dv(x)(y − x) = v(y)− v(x) + o(|x− y|),

for some function y 7→ o(|x− y|) with

lim
y→x

o(|x− y|)/|x− y| = 0.

Fix some x ∈ Ω so that, for any ℓ ∈ N0, x lies in the interior of an element T ∈ Tℓ then

Dv(x)(zj − zk) = vℓ(zj)− vℓ(zk) + o(|x− zj|) + o(|x− zk|)
= Dvℓ(x)(zj − zk) + o(|x− zj|) + o(|x− zk|) for all j, k = 1, . . . , n+ 1,

where | · | denotes the ℓ2-norm of a vector, or as below, the Frobenius norm of a matrix. Since
the tangential vectors are linearly independent and the interior angles do not deteriorate we
have

sup
j,k=1,...,n+1

(Dv(x)−Dvℓ(x))(zj − zk) > c|Dv(x)−Dvℓ(x)|rT ,

where c depends only on Cshaperegular. It now follows easily that

lim
ℓ→∞
|Dv(x)−Dvℓ(x)| = 0.

Proof of Theorem 2.1. Given v ∈ A∞ and its nodal interpolant vℓ := Iℓv for all ℓ ∈ N0,
the previous lemma shows that

lim
ℓ→∞

(vℓ(x), Dvℓ(x)) = (v(x), Dv(x)) ∈ R
m × R

m×n for a.e. x ∈ Ω.

Since W is continuous this yields pointwise convergence of the energy density

lim
ℓ→∞

W (x, vℓ(x), Dvℓ(x)) = W (x, v(x), Dv(x)) for a.e. x ∈ Ω.

Furthermore, the boundedness of vℓ in W
1,∞(Ω) and the assumption that W is continuous

implies that W (x, vℓ(x), Dvℓ(x)) is bounded uniformly in x and ℓ. Consequently, Lebesgue’s
dominated convergence theorem shows

lim
ℓ→∞

∫

Ω

W (x, vℓ(x), Dvℓ(x))dx =

∫

Ω

W (x, v(x), Dv(x))dx = E(v).
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Therefore,
inf E(A∞) 6 lim inf

ℓ→∞
Eℓ 6 lim sup

ℓ→∞
Eℓ 6 lim

ℓ→∞
E(vℓ) = E(v).

Since v was an arbitrary element in A∞, we deduce

lim inf
ℓ→∞

Eℓ = lim sup
ℓ→∞

Eℓ = inf E(A∞).

In particular, we can conclude that limℓEℓ = inf E(A∞) exists. From this, the assertion of
Theorem 2.1 follows immediately.

3. Penalisation and Discrete Scheme

In many examples there exists a coupling function

γ : Ω× R
m × R

m×n →M,

where M ≡ R
µ is a space of matrices, and an extended energy density

φ : Ω× R
m × R

m×n ×M→ R,

such that the energy density W is given by

W (x, v, F ) := φ(x, v, F, γ(x, v, F )),

for all x ∈ Ω, v ∈ R
m, F ∈ R

m×n. In this case, we also define

Φ(v, η) :=

∫

Ω

φ(x, v(x), Dv(x), η(x))dx for (v, η) ∈ A1 × L1(Ω;M),

and, with the abbreviation γ(·, v,Dv)(x) := γ(x, v(x), Dv(x)) for x ∈ Ω, we observe that

E(v) = Φ(v, γ(·, v,Dv)). (3.1)

Example 3.1 Polyconvex Materials. By definition, at almost all material points x ∈
Ω and all v ∈ R

m, a polyconvex energy density W (x, v, ·) : Rm×n → R can be written in the
form

W (x, v, F ) = φ(x, v, γ(F )),

where φ is convex in its third component (with x, v fixed), and γ : Rm×n → M maps a
deformation gradient F to the vector of minors (sub-determinants) of F and M is the space
of all those minors (e.g. M = R

19 for m = n = 3 and M = R
5 for m = n = 2).

Example 3.2 Decoupling the Gradient. For stored energy functions W : Ω×R
m ×

R
m×n → R where no obvious coupling mechanism is present, it is sometimes useful to let

M = R
m×n and consider

φ(x, v, F, η) := W (x, v, η) and γ(x, v, F ) := F.

This decoupling of the gradient variable will help us to overcome the Lavrentiev gap phe-
nomenon.
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On the continuous level this looks as a trivial complication of the formulation but the
point is that the discretisation relaxes the condition

η = γ(x, v, F ) in W (x, v, F ) = φ(x, v, F, η).

Since the immediate substitution cannot detect singular minimisers with a Lavrentiev phe-
nomenon the ‘coupling’ η = γ(x, v(x), Dv(x)) will be weakened by introducing a penalty
functional,

Ψℓ : L
1(Ω;M)× L1(Ω;M)→ R ∪ {+∞},

which is written, via some density ψℓ : Ω×M×M→ [0,∞], as

Ψℓ(η, ζ) :=

∫

Ω

ψℓ(x, η(x), ζ(x))dx for η, ζ ∈ L1(Ω;M).

The proposed discrete minimisation problem reads: Minimise the discrete energy

Eℓ(v, η) := Φ(v, η) + Ψℓ(η, γ(·, v,Dv)),

over (v, η) ∈ Vℓ × Yℓ where Vℓ and Yℓ are suitable finite element spaces.

Example 3.3 Penalisation. A typical class of distance functionals is given for 1 6 p <
∞ and positive parameters εℓ which possibly depend on the position x in the spatial domain
(e.g., piecewise constant with respect to the triangulation Tℓ) and

ψℓ(x, η, ζ) := ε−1
ℓ |η − ζ|p,

for all x ∈ Ω and η, ζ ∈M.

4. Polyconvex Energy Densities

An important class of energy functionals, especially in the field of nonlinear elasticity, are
those where the stored energy density is polyconvex. As a prototypical model problem, we
consider the stored energy density

W (x, u, F ) = φ(x, F, detF )− f(x) · u, (4.1)

where f ∈ Lq(Ω)n for some q > 1, and φ : Ω × R
n×n × R → [0,+∞], n > 2. We assume

throughout this section that φ satisfies

|F |n + Γ(η) . φ(x, F, η) . 1 + |F |n + Γ(η), and

φ(x, ·, ·) is convex and l.s.c. in R
n×n × R for a.a. x ∈ Ω,

(4.2)

where Γ : R→ [0,+∞] is convex and has superlinear growth, i.e., lim inf |s|→∞ Γ(s)/s = +∞
[3, 11]. We remark that the growth condition |F |n +Γ(η) may be replaced by |F |p for some
p > n. In fact, the latter implies the former.

The space of admissible functions is defined as

V = uD +W 1,n
0 (Ω)n,
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where uD ∈ W 1,n(Ω)n and E(uD) < +∞. Under these conditions the minimization problem

u ∈ argminE(V ), (4.3)

has at least one solution [12, Theorem 2.10].
To discretize the problem we fix a sequence uD,ℓ ∈ P1(Tℓ)n such that uD,ℓ → uD strongly

in W 1,n(Ω)n, and we discretize V and L1(Ω), respectively, by

Vℓ = uD,ℓ + P1
0(Tℓ)n, and Yℓ = P0(Tℓ).

We remark that, throughout, V denotes the admissible set, Vℓ the discrete admissible set,
and Yℓ the discrete admissible set for the penalty variable.

Further, we assume that we have a penalty functional Ψ : L1(Ω)2 → [0,+∞] such that,
for all sequences (ηℓ) and (ζℓ) ⊂ L1(Ω),

Ψ(ηℓ, ζℓ)→ 0 ⇔ ‖ηℓ − ζℓ‖L1 → 0. (4.4)

Given a sequence εℓ ց 0, we discretize (4.3) by

(uℓ, ξℓ) ∈ argminEℓ(Vℓ, Yℓ),

where

Eℓ(vℓ, ηℓ) = Φ(vℓ, ηℓ) + ε−1
ℓ Ψ(detDvℓ, ηℓ)

=

∫

Ω

(

φ(x,Dvℓ, ηℓ)− f · vℓ
)

dx+ ε−1
ℓ Ψ(detDvℓ, ηℓ).

Theorem 4.1. Assume that (4.1), (4.2), and (4.4) hold. Then there exists a sequence
εℓ ց 0 such that, for any sequence (uℓ, ξℓ) ∈ Vℓ ×Xℓ of approximate minimizers, that is,

|Eℓ(uℓ, ξℓ)− inf Eℓ(Vℓ, Yℓ)| → 0 as ℓ→∞,

we have
Φ(uℓ, ξℓ)→ inf E(V ) and ε−1

ℓ Ψ(detDuℓ, ξℓ)→ 0.

Moreover, the family {uℓ; ℓ ∈ N} is precompact in the weak topology of W 1,n(Ω)n and each
accumulation point u is a minimizer of E in V . In particular, there exists a subsequence
ℓk ր∞ such that

uℓ
k
⇀ u weakly in W 1,n(Ω)n,

ξℓ
k
⇀ detDu weakly in L1(Ω),

where u solves (4.3).

The proof of Theorem 4.1 is contained in the following three lemmas.

Lemma 4.1. Assume that (4.1), (4.2) and (4.4) hold. For every v ∈ V there exists a
sequence (vℓ, ηℓ) ∈ Vℓ × Yℓ such that

vℓ → v strongly in W 1,n(Ω)n, (4.5)

lim
ℓ→∞

Ψ(detDvℓ, ηℓ) = 0, and (4.6)

lim
ℓ→∞

Φ(vℓ, ηℓ) = Φ(v, detDv) = E(v). (4.7)
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Proof. Let v ∈ V . If E(v) = +∞, then we take an arbitrary sequence vℓ ∈ Vℓ converging
strongly in W 1,n(Ω)n to v, and ηℓ = detDvℓ. From the lower semicontinuity of E we obtain
that E(vℓ) = Φ(vℓ, ηℓ) → ∞ as ℓ → +∞, since, otherwise, E(v) would be finite. Moreover,
we have Ψ(detDvℓ, ηℓ) = 0.

We may now assume that E(v) < ∞. We take an arbitrary sequence vℓ ∈ Vℓ such that
vℓ → v strongly in W 1,n(Ω)n which also implies detDvℓ → detDv strongly in L1(Ω). The
variable ηℓ ∈ Yℓ is defined as

ηℓ(x) = |T |−1

∫

T

detDv dx x ∈ T ∈ Tℓ.

It follows that ηℓ → detDv strongly in L1(Ω) and in particular that Ψ(detDvℓ, ηℓ) → 0.
Thus, we have shown (4.5) and (4.6).

To prove (4.7) we first use Jensen’s inequality to estimate, for x ∈ T ∈ Tℓ,

Γ(ηℓ(x)) = Γ
(

|T |−1

∫

T

detDv dx
)

6 |T |−1

∫

T

Γ(detDv)dx =: Γℓ(x),

i.e., Γℓ is a majorant for Γ(ηℓ). From its definition, and since Γ(detDv) ∈ L1(Ω) (which
follows from the fact that E(v) is finite), it follows immediately that Γℓ → Γ(detDv) strongly
in L1(Ω).

Hence, we obtain that

φ(x,Dvℓ, ηℓ) . 1 + |Dvℓ|n + Γℓ =: aℓ,

where aℓ is strongly convergent in L1(Ω). For any subsequence we can extract a further
subsequence such that (Dvℓ, ηℓ) → (Dv, η) pointwise, and hence we can use a variant of
Lebesgue’s dominated convergence theorem [15, Sec. 1.3, Th. 4] to deduce (4.7).

Lemma 4.2. Assume that (4.1), (4.2), and (4.4) hold. There exists a sequence εℓ ց 0
such that

lim sup
ℓ→∞

minEℓ(Vℓ, Yℓ) 6 minE(V ). (4.8)

Proof. Let u ∈ argminE(V ) and let (uℓ, ξℓ) be the sequence constructed in Lemma 4.1
(for v = u). Then

Ψ(detDuℓ, ξℓ)→ 0,

and chosing εℓ = Ψ(detDuℓ, ξℓ)
1/2 we obtain

lim sup
ℓ→∞

inf Eℓ(Vℓ, Yℓ) 6 lim sup
ℓ→∞

Eℓ(uℓ, ξℓ) = E(u).

In the previous lemma, we showed that it is possible to choose a sequence εℓ such that
the upper bound (4.8) holds. It remains to show that the limit is in fact equal.

Lemma 4.3. Assume that (4.1), (4.2), and (4.4) hold. Suppose that a sequence εℓ ց 0
is fixed. Suppose furthermore that uℓ ∈ Vℓ, ξℓ ∈ Yℓ such that

lim sup
ℓ→∞

Eℓ(uℓ, ξℓ) 6 inf E(V ), (4.9)
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then there exists a subsequence ℓk ↑ ∞ and u ∈ argminE(V ) such that

uℓ
k
⇀ u weakly in W 1,n(Ω)n

ξℓ
k
⇀ detDu weakly in L1(Ω),

and moreover, we have separate convergence of the entire sequences of energy contributions:

Φ(uℓ, ξℓ)→ E(u), and ε−1
ℓ Ψ(detDuℓ, ξℓ)→ 0.

Proof. It follows from (4.9) that Eℓ(uℓ, ξℓ) is bounded by some constant M . Using (4.2)
and the assumption that uD has finite energy, we obtain

M > Eℓ(uℓ, ξℓ) & ‖∇uℓ‖nLn − C‖uℓ‖Lq
′ +

∫

Ω

Γ(ξℓ)dx+ ε−1
ℓ Ψ(detDuℓ, ξℓ),

and since W 1,n(Ω)n is continuously embedded in Lq′(Ω)n, there exists M ′ ∈ R such that

‖uℓ‖nW 1,n +

∫

Ω

Γ(ξℓ)dx+ ε−1
ℓ Ψ(detDuℓ, ξℓ) 6M ′.

We can therefore deduce the existence of a subsequence ℓk ր ∞, and of functions u ∈
W 1,n(Ω)n and ξ ∈ L1(Ω) such that

uℓ ⇀ u weakly in W 1,n(Ω)n and ξℓ ⇀ ξ weakly in L1(Ω).

(We note that the superlinear bound implies equi-integrability of the sequence (ξℓ) which
implies its precompactness in the weak tolopogy of L1(Ω) [14, Cor. IV.8.11].)

Since detDuℓ ⇀
′ detDu in the sense of distributions [12, Sec. 4.2, Th. 2.6, (5)], and

using (4.4), it follows that ξ = detDu. Using sequential weak lower semi-continuity of
energies with convex integrands [12, Sec. 3.3, Th. 3.4] we can estimate

E(u) 6 lim inf
k→∞

∫

Ω

(

φ(x, uℓ
k
, ξℓ

k
)− f · uℓ

k

)

dx

6 lim inf
k→∞

∫

Ω

(

φ(x, uℓ
k
, ξℓ

k
)− f · uℓ

k

)

dx

+ lim sup
k→∞

ε−1
ℓ
k

Ψ(detDuℓ
k
, ξℓ

k
)

6 lim sup
ℓ→∞

Eℓ(uℓ, ξℓ) 6 inf E(V ).

It follows therefore that E(u) = inf E(V ). Moreover, this implies that all inequalities in the
above chain of estimates must be equalities, and hence,

lim sup
k→∞

ε−1
ℓ
k

Ψ(detDuℓ
k
, ξℓ

k
) = 0.

Since the proof applies also if we begin with an arbitrary subsequence, it follows that the
energy of the entire sequence converges in this sense.
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Proof of Theorem 4.1. Lemma 4.2 guarantees the existence of a sequence εℓ ց 0 such
that the conditions of Lemma 4.3 are satisfied. Hence, Lemma 4.3 guarantees the existence of
a weakly convergent subsequence of approximate minimizers Eℓ and establishes the various
convergence statements in the theorem.

Remark 4.1. 1. In practise, the condition that Ψ is continuous in the strong topology
of L1(Ω;Rn) requires that Ψ takes the form

Ψ(η, ζ) =

∫

Ω

ψ(|η − ζ|)dx,

where ψ has 1-growth at infinity. Typical penalty densities ψ are ψ(t) = |t|, or, if one prefers
a smooth functional, ψ(t) = (t2+1)1/2−1. The condition (4.4) can be obtained, for example,
by requiring that ψ > 0 and ψ(t) = 0 if and only if t = 0.

2. If φ satisfies a stronger growth condition, for example φ(x, F, g) & |F |p for some
p > n then this additional integrability allows us to use a penalty functional which is only
continuous in Lp/n(Ω;Rn).

3. We have only shown the existence of some sequence εℓ for which we obtain convergence
of the penalty method. We will show in Section 7 below how this sequence can be constructed
in practise.

4. More general polyconvex material models where φ depends on all minors of the gradient
can be easily incorporated in our analysis. One would then have to decouple all minors which
appear in the definition of the functional. Similar convergence can then be obtained whenever
the growth conditions from above and below are the same and are sufficiently strong so that
the direct method can be applied.

5. Examples with Lavrentiev Phenomenon

In many problems decoupling the gradient is sufficient, and it is the goal of this section to
make this precise. This is possible whenever W is convex in the third component, but it is
also a useful approach if it is unclear which variable should be relaxed. We begin again with
a more general discussion which we then make precise at two classes of problems, general
one-dimensional functionals with continuous integrands, and higher-dimensional examples
with mild v-dependence of the integrand.

We assume throughout that W = φ : Ω × R
m × R

m×n → (−∞,+∞] is lower semi-
continuous in all three variables, continuous at every point (x, v, η) where φ(x, v, η) < ∞,
and that it satisfies the lower bound

φ(x, v, η) & −1− |v|q, (5.1)

where 1 6 q < n/(n− 1) if n > 2 and 1 6 q < ∞ if n = 1. This implies in particular that,
for v ∈ W 1,1(Ω)m and η ∈ L1(Ω)m×n, the functionals

Φ(v, η) =

∫

Ω

W (x, v, η)dx, and E(v) = Φ(v,Dv),

are well-defined in (−∞,+∞]. Let uD ∈ W 1,1(Ω)m such that E(uD) < ∞ and define
V = uD +W 1,1

0 (Ω)m.
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We will assume that the penalty has 1-growth, namely, that there exists a continuous
penalty density ψ : Rm×n → [0,∞) satisfying

|η| − 1 . ψ(η) . |η|+ 1 for all η ∈ R
m×n, and

ψ(η) = 0 if and only if η = 0,
(5.2)

such that the functional Ψ is of the form

Ψ(η, ζ) =

∫

Ω

ψ(η − ζ)dx for all η, ζ ∈ L1(Ω)m×n. (5.3)

To discretize the problem of minimizing E over V we take uD,ℓ ∈ P1(Tℓ) such that
uD,ℓ → uD strongly in W 1,1(Ω)m, and define

Vℓ = uD,ℓ + P1
0(Tℓ)m and Yℓ = P0(Tℓ)m×n,

to discretize, respectively, the variables u and η. We approximate Φ using the midpoint rule:
For vℓ ∈ P1(Tℓ)m, we set v̄ℓ(x) = (vℓ)T := |T |−1

∫

T
vℓ dx for x ∈ T ∈ Tℓ, and for vℓ ∈ Vℓ and

ηℓ ∈ Yℓ, we define

Φℓ(vℓ, ηℓ) =

∫

Ω

φ(x̄ℓ, v̄ℓ, ηℓ)dx =
∑

T∈T
ℓ

|T |φ
(

(x)T , (vℓ)T , ηℓ|T
)

.

The functional Φℓ is extended in an obvious way to Vℓ × L1(Ω)m×n.

Remark 5.1. We could have included a quadrature approximation in our analysis in
Section 4 as well. For the sake of simplicity, we decided not to do so. In the present case,
we are in fact unable to prove convergence of the penalty method without the quadrature
approximation. The reason for this is essentially that we have chosen ηℓ ∈ P0(Tℓ)m×n and
hence we can only adjust its value to a single point within each element. Since we assume
no control on φ from above we cannot control an integral over an element from information
at a single quadrature point.

Our first aim is an approximation result akin to Lemma 4.1. In Lemma 5.1 below we
reduce this task to the following general condition which can be quite easily checked for
different problems: for all v ∈ V there exists a function ζ ∈ L1(Ω)m×n and a sequence
vℓ ∈ Vℓ such that the following conditions are satisfied:

(i) φ(x, v, ζ) ∈ L1(Ω),

(ii) vℓ → v strongly in W 1,1(Ω)m, and (5.4)

(iii) lim sup
ℓ→∞

Φℓ(vℓ, ζ) 6 Φ(v, ζ).

Example 5.1 1D Examples. Suppose that n = 1, that φ : Ω × R
m × R

m → R is
globally continuous, and assume that uD,ℓ = uD for all ℓ. This class includes in particular
problems of Maniá type [7, 23].

We now prove that (5.4) holds under this assumption. Let v ∈ V and let vℓ be its
piecewise affine nodal interpolant. Then vℓ → v strongly inW 1,1(Ω)m, (x̄ℓ, v̄ℓ(x))→ (x, v(x))
uniformly in Ω and, since φ is globally continuous,

Φℓ(vℓ, ζ)→ Φ(v, ζ),

for any fixed ζ ∈ R
m. �
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Example 5.2 Weak Coupling of u and Du. Suppose that, in addition to (5.1),

φ(x, v, η) . |v|q + Γ(η), (5.5)

where Γ : Rm×n → [0,+∞] is proper. We note that this class includes in particular the
example of Foss, Hrusa, and Mizel [16] and Ball’s example of cavitation [4].

We now prove that (5.4) holds under this assumption. Let v ∈ V and take vℓ ∈ Vℓ
converging strongly inW 1,1(Ω)m∩Lq(Ω)m to v. In particular, we also have v̄ℓ → v strongly in
Lq(Ω)m by Lebesgue’s differentiation theorem. Further, let ζ ∈ R

m×n such that Γ(ζ) < +∞.
In view of the growth condition imposed in (5.5) we obtain φ(x, v(x), ζ) ∈ L1(Ω). Let
ℓj ր∞ be a subsequence such that

lim sup
ℓ→∞

Φℓ(vℓ, ζ) = lim
j→∞

Φℓj(vℓj , ζ).

Upon extracting a further subsequence we may assume that (x̄ℓj , v̄ℓj)→ (x, v) pointwise a.e.
in Ω. Since φ(x, v(x), ζ) ∈ L1(Ω) it is finite for a.a. x ∈ Ω and hence continuous at those
points. We therefore obtain

lim
j→∞

φ(x̄j, v̄j , ζ) = φ(x, v, ζ) pointwise a.e. in Ω.

The majorant
φ(x̄ℓj , v̄ℓj , ζ) 6 |v̄ℓj |q + Γ(ζ),

is strongly convergent in L1(Ω) and hence we can use Fatou’s Lemma to obtain (5.4) (iii).
�

Having shown that (5.4) indeed holds for several interesting problem classes we establish
the basic approximation result, which it implies.

Lemma 5.1. Fix ε > 0 and suppose that (5.2), (5.3) and (5.4) hold; then, for every
v ∈ V there exists a sequence (vℓ, ηℓ) ∈ Vℓ × Yℓ such that

lim sup
ℓ→∞

[

Φ(vℓ, ηℓ) + ε−1Ψ(Dvℓ, ηℓ)
]

6 E(v).

Moreover, the sequence vℓ can be chosen independent of the value of ε.

Proof. We take the sequence vℓ specified in (5.4). For every T ∈ Tℓ and x ∈ T we define

φ̄ℓ(x) = inf
ξ∈Rm×n

[

φ(x̄ℓ(x), v̄ℓ(x), ξ) + ε−1ψ(ξ −Dvℓ(x))
]

.

Since v̄ℓ and x̄ℓ are piecewise constant φ̄ℓ may also be chosen as a piecewise constant function
and it follows from the growth condition on φ from below that it is finite. In particular, it
is measurable and its integral is well-defined with a value in (−∞,+∞].

There exists a subsequence ℓj ր∞ such that

lim sup
ℓ→∞

∫

Ω

φ̄ℓ dx = lim
j→∞

∫

Ω

φ̄ℓj , and

(v̄ℓj , Dvℓj)→ (v,Dv) pointwise a.e. in Ω.
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From the definition of φ̄ℓ, we have

φ̄ℓ 6 φ(x̄ℓ, v̄ℓ, Dv) + ε−1ψ(Dv −Dvℓ) for a.a. x ∈ Ω,

and since we assumed that φ is continuous at every point where it is finite, and that ψ is
globally continuous, we obtain

lim sup
j→∞

φ̄ℓj(x) 6 φ(x, v(x), Dv(x)) for a.a. x ∈ Ω. (5.6)

Again using the definition of φ̄ℓ we obtain the majorant

φ̄ℓ 6 φ(x̄ℓ, v̄ℓ, ζ) + ε−1ψ(ζ −Dvℓ) =: mℓ,

where ζ ∈ L1(Ω)m×n is taken from (5.4). Since φ is continuous at (x, v(x), ζ(x)), for a.a.
x ∈ Ω, it follows from (5.4) (ii) that

mℓj(x)→ m(x) := φ(x, v(x), ζ(x)) + ε−1ψ(ζ(x)−Dv(x)) for a.a. x ∈ Ω.

Condition (5.4) (iii) translates as

lim inf
j→∞

∫

Ω

mℓj dx 6

∫

Ω

mdx.

Applying Fatou’s lemma to the sequence mℓ − φ̄ℓ gives

∫

Ω

lim inf
j→∞

(mℓj − φ̄ℓj)dx 6 lim inf
j→∞

∫

Ω

(mℓj − φ̄ℓj)dx,

which can, equivalently, be written as

∫

Ω

(

m− lim sup
j→∞

φ̄ℓj

)

dx 6

∫

Ω

mdx− lim sup
j→∞

∫

Ω

φ̄ℓjdx,

and hence we obtain, using (5.6) in the last inequality,

lim sup
ℓ→∞

∫

Ω

φ̄ℓ dx = lim sup
j→∞

∫

Ω

φ̄ℓj dx 6

∫

Ω

lim sup
j→∞

φ̄ℓj dx 6 E(v).

It remains to show that there exists a sequence ηℓ ∈ Yℓ such that

lim sup
ℓ→∞

∫

Ω

φ̄ℓ dx = lim sup
ℓ→∞

Φℓ(vℓ, ηℓ).

To this end we choose ηℓ ∈ Yℓ, such that

φ(x̄ℓ, v̄ℓ(x), ηℓ(x)) 6 φ̄ℓ(x) + 1/ℓ for a.e. x ∈ Ω.

The existence of such functions follows from the definition of φ̄ℓ.
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Next, we will deduce from Lemma 5.1 the existence of a sequence εℓ ց 0 for which the
same upper bound still holds.

Lemma 5.2. Suppose that (5.2), (5.3) and (5.4) hold; then there exists a sequence εℓ ց 0
such that

lim sup
ℓ→∞

inf Eℓ(Vℓ, Yℓ) 6 inf E(V ).

Proof. Let vk ∈ V such that E(vk) 6 inf E(V )+1/k. According to Lemma 5.1, for every
k ∈ N, there exists ℓk ∈ N such that, for all ℓ > ℓk,

inf
(u

ℓ
,ξ

ℓ
)∈V

ℓ
×Y

ℓ

[

Φℓ(uℓ, ξℓ) + kΨ(ξℓ, Duℓ)
]

6 E(vk) + 1/k 6 inf E(V ) + 2/k.

We may assume that ℓk 6 ℓk+1 for all k. If we define

εℓ = 1/k for ℓk 6 ℓ < ℓk+1, k = 1, 2, . . . ,

and εℓ = 1 for 1 6 ℓ < ℓ1, then εℓ ց 0 and

inf Eℓ(Vℓ, Yℓ) 6 inf E(V ) + 2εℓ for all ℓ > ℓ1.

We only need to prove a lower bound now. Here, we distinguish two cases: whether φ is
convex in the third component or only quasiconvex.

We adopt assumption (ii) in the following theorem as an abstract compactness assump-
tion that we found difficult to verify for examples where we observe it in practise, such as
the Foss/Hrusa/Mizel example in Section 7.5. Failure of this assumption will normally be
displayed as an instability in the numerical calculation.

Theorem 5.1 Convex Energies. Suppose that (5.2), (5.3) and (5.4) hold, and assume
in addition that φ is convex in its third component. Let εℓ ց 0 be the sequence established
in Lemma 5.2, and let (uℓ, ξℓ) ∈ Vℓ × Yℓ be a sequence satisfying the following conditions:

(i) (uℓ, ξℓ) are approximate minimizers, i.e.,

|Eℓ(uℓ, ξℓ)− inf Eℓ(Vℓ, Yℓ)| → 0 as ℓ→∞. (5.7)

(ii) There exists u ∈ V such that

uℓ ⇀ u weakly in W 1,1(Ω)m. (5.8)

Then u ∈ argminE(V ),

lim
ℓ→∞

Φℓ(uℓ, ξℓ) = E(u),

lim
ℓ→∞

ε−1
ℓ Ψ(ξℓ, Duℓ) = 0, and (5.9)

ξℓ ⇀ Du weakly in L1(Ω)m×n.
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Proof. By the construction of εℓ and assumption (5.7) we have

lim sup
ℓ→∞

Eℓ(uℓ, ξℓ) 6 inf E(V ).

In particular, Ψ(ξℓ, Duℓ) . εℓ → 0 which implies ξℓ ⇀ Du weakly in L1(Ω)m×n. We can
therefore deduce that

E(u) 6 lim inf
ℓ→∞

Φℓ(uℓ, ξℓ).

Using the same arguments as in the proof of Lemma 4.3 we can conclude the proof of the
theorem.

In addition to assumption (ii) in Theorem 5.1 we require another stability assumption in
the quasiconvex case. Assumption (iii) in the following theorem will be satisfied whenever
singularities occur only in localized regions. This is again observed in typical numerical
experiments but would be very difficult to prove rigorously.

Theorem 5.2 Quasiconvex Energies. Suppose that (5.2), (5.3) and (5.4) hold, and
assume in addition that φ is quasiconvex in its third component. Let εℓ ց 0 be the sequence
established in Lemma 5.2 and let (uℓ, ξℓ) ∈ Vℓ × Yℓ be a sequence satisfying (i) and (ii) in
Theorem 5.1, as well as:

(iii) There exists a monotone family of subsets Ωk ր Ω such that

lim
ℓ→∞

∥

∥φ(x̄ℓ, ūℓ, Duℓ)− φ(x̄ℓ, ūℓ, ξℓ)
∥

∥

L1(Ω
k
)
= 0 and (5.10)

∀k ∈ N sup
ℓ>k

‖uℓ‖W 1,∞(Ω
k
) <∞. (5.11)

Then u ∈ argminE(V ) and the conclusion (5.9) remains true as well.

Proof. In view of the bound (5.11), for fixed k ∈ N, we have

uℓ
∗
⇀ u weakly-∗ in W 1,∞(Ωk)

m.

Since φ is quasiconvex in its third component it follows from (5.10) that
∫

Ω
k

φ(x, u,Du)dx 6 lim inf
ℓ→∞

∫

Ω
k

φ(x̄ℓ, ūℓ, Duℓ)dx

= lim inf
ℓ→∞

∫

Ω
k

φ(x̄ℓ, ūℓ, ξℓ)dx.

Using the lower bound (5.1), the compactness of the embedding W 1,1(Ω)m ⊂ Lq(Ω)m, and
setting Ω′

k = Ω \ Ωk, we obtain
∫

Ω
k

φ(x, u,Du)dx 6 lim inf
ℓ→∞

(

Φℓ(uℓ, ξℓ)−
∫

Ω′

k

φ(x̄ℓ, ūℓ, ξℓ)dx
)

6 lim inf
ℓ→∞

Φℓ(uℓ, ξℓ) + lim sup
ℓ→∞

C(|Ω′
k|+ ‖uℓ‖qLq(Ω′

k
))

= lim inf
ℓ→∞

Φℓ(uℓ, ξℓ) + C(|Ω′
k|+ ‖u‖qLq(Ω′

k
)).
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Setting δk = C(|Ω′
k|+ ‖u‖qLq(Ω′

k
)) we can further estimate

∫

Ω
k

φ(x, u,Du)dx 6 lim inf
ℓ→∞

Φℓ(uℓ, ξℓ) + δk

6 lim inf
ℓ→∞

Φℓ(uℓ, ξℓ) + lim sup
ℓ→∞

ε−1
ℓ Ψ(Duℓ, ξℓ) + δk

6 lim sup
ℓ→∞

Eℓ(uℓ, ξℓ) + δk

6 inf E(V ) + δk for all k ∈ N. (5.12)

Adding the term C(1 + |u|q) to the integral on the left-hand side the integrand becomes
non-negative and the bound becomes

∫

Ω
k

[

φ(x, u,Du) + C(1 + |u|q)
]

dx 6 inf E(V ) +

∫

Ω

C(1 + |u|q)dx.

Taking the supremum over k on the left-hand side (employing, for example, the Beppo-Levi
theorem), it follows that φ(x, u,Du) is integrable and that u ∈ argminE(V ). Furthermore,
we can let k → ∞ and thus δk → 0 in (5.12) from which we can deduce the separate
convergence of the energy contributions (compare also with the proof of Lemma 4.3).

6. Connection with Γ-Convergence

Our main results, Theorems 4.1, 5.1 and 5.2, can be understood as Γ-convergence (also
known as epi-convergence) results. The purpose of the present section is to briefly explain this
connection. We refer to the monographs of Braides [9] and Dal Maso [13] for an introduction
to Γ-convergence.

We will demonstrate this point of view at the example of the polyconvex case. To this
end, suppose that (4.1), (4.2), (4.4) and (5.2) hold, and define, for v ∈ W 1,n(Ω)n, η ∈ L1(Ω)
and ε ∈ [0,∞),

F (v, η, ε) =







E(v) if v ∈ V, η = detDv, ε = 0,
Φ(v, η) + ε−1Ψ(detDv, η) if v ∈ V, ε ∈ (0,∞),
+∞ otherwise;

Fℓ(v, η, ε) =

{

Φ(v, η) + ε−1Ψ(detDv, η) if v ∈ Vℓ, η ∈ Yℓ, ε ∈ (0,∞),
+∞ otherwise.

A minor modification of Lemma 4.2 shows that, for each u ∈ V , ξ = detDu, there exists a
sequence uℓ → u strongly in W 1,n(Ω)n, ξℓ → ξ strongly in L1(Ω), and εℓ → 0 such that

lim sup
ℓ→∞

Fℓ(uℓ, ξℓ, εℓ) 6 F (u, ξ, 0). (6.1)

If ξ 6= detDu then F (u, ξ, 0) = +∞ and hence (6.1) is trivially satisfied.
On the other hand, in Lemma 4.3, we have proven that, whenever uℓ ⇀ u weakly in

W 1,n(Ω)n, ξℓ ⇀ ξ weakly in L1(Ω), and εℓ → 0, then

F (u, ξ, 0) 6 lim inf
ℓ→∞

Fℓ(uℓ, ξℓ, εℓ). (6.2)



154 C. Carstensen and C. Ortner

Strictly speaking we have shown this for the case ξ = detDu, but we have also shown that
all accumulation points of families with bounded energy satisfy this. Hence, (6.2) is indeed
correct.

In the language of Γ-convergence (6.1) and (6.2) are, respectively, called the limsup and
liminf conditions (here only for ε = 0), and together they can be written as

Γ−lim
ℓ→∞

Fℓ(v, η, 0) = F (v, η, 0) for all v ∈ V, η ∈ L1(Ω), (6.3)

where Γ-convergence is understood with respect to the weak W 1,n(Ω)n × L1(Ω) × [0,∞)-
topology. In fact, it is straightforward to verify that

Γ−lim
ℓ→∞

Fℓ = F,

holds in the entire space W 1,n(Ω)n × L1(Ω) × [0,∞), however, this is less relevant for our
purposes.

Thus, Theorem 4.1 can be interpreted as a Γ-convergence result in the sense of (6.3). In
an obvious way, Theorems 5.1 and 5.2 can also be written in this way. We note however,
that our original statements are slightly stronger in that we obtain separate convergence of
the different contributions to the energy.

To conclude, we note that the statement

Γ−lim
ℓ→∞

Fℓ(·, ·, εℓ) = F (·, ·, 0),

for a fixed sequence εℓ → 0, is in general false. To see this, observe that to obtain (6.1), the
choice of the sequence (εℓ) may strongly depend on the limit point u which we are aiming
to approximate.

7. Algorithms and Numerical Examples

In the preceding sections we have formulated a general class of numerical methods for the
solution of problems of the calculus of variations. The purpose of the present section is to
demonstrate how they can be efficiently implemented and to demonstrate their practicality
at several examples. We aim to give as much detail as possible so that our numerical results
may be easily reproduced.

7.1. Optimization of non-differentiable energies

We begin by describing the implementation of the non-differentiable functionals which arise
in our penalization procedure. Recall that we are aiming to minimize an energy which can
be written in the form

E(v) =

∫

Ω

W (x, v,Dv)dx

=

∫

Ω

φ
(

x, v,Dv, γ(Dv)
)

dx,

over a convex and closed subset V ⊂ W 1,1(Ω)m, where φ(x, v, F, η) and γ(F ) are assumed
to be smooth (at least twice differentiable) in v, F , and η. For the sake of simplicity we do
not consider γ = γ(x, v,Dv), but this is not a true restriction.



Penalty methods for computing singular minimizers 155

We shall consider general penalty functionals of the type

Eε(v, η) =

∫

Ω

φ(x, v,Dv, η)dx+ ε−1

∫

Ω

∣

∣γ(Dv)− η
∣

∣

1
dx, (7.1)

defined for v ∈ Vℓ = uD,ℓ+P1(Tℓ)m, η ∈ Yℓ = P0(Tℓ)µ, and where |·|1 denotes the ℓ1-norm. We
will see in numerical experiments that the L1-type penalty functional guarantees a compact
support of the difference γ(Dv)− η. This gives us information about the location of the sin-
gularities and also significantly reduces the complexity of the optimization (the optimization
software TRON [22] automatically removes the unnecessary degrees of freedom).

By a simple variable transformation, we can replace η by η + γ(F ) to obtain a new
functional

∫

Ω

φ
(

x, v,Dv, γ(Dv) + η
)

dx+

∫

Ω

|η|1dx.

Next, we split the variable η into η = η+−η− where η+j = max(ηj, 0) and η
−
j = −min(ηj, 0),

j = 1, . . . , µ, and hide γ(F ) within a newly defined energy density

˜φ(x, u, F, η) = φ
(

x, u, F, γ(F ) + η
)

,

to rewrite the functional as

˜Eε(v, η
+, η−) =

∫

Ω

˜φ(x, v,Dv, η+ − η−)dx+ ε−1

∫

Ω

|η+|1 + |η−|1dx. (7.2)

Upon making η+ and η− independent variables but imposing the bound constraints η+ > 0
and η− > 0 we have thus turned the original non-differentiable problem to minimize (7.1)
into a smooth but constrained optimization problem. In particular, we define (7.2) for all
v ∈ Vℓ and for all η+, η− ∈ Y +

ℓ , where

Y +
ℓ = {η ∈ Yℓ : ηj > 0 in Ω, j = 1, . . . , µ}.

The uunctionals in (7.2) can be easily implemented with its gradient and hessian provided
exactly. Our own implementation uses the trust region software TRON [22] to solve the local
minimization problem

min
u∈V

ℓ

ξ±∈Y +

ℓ

˜Eε(u, ξ
+, ξ−). (7.3)

7.2. Adaptive mesh refinement for the penalty method

At several points in the continuation algorithm for the penalty method, described in the
following section, we have to refine the mesh based on one of two principles: (i) either to
reduce the overall energy or (ii) to reduce the contribution from the penalty term.

(i) To reduce the overall energy we use a DWR-type idea [8]. Let (uℓ, ξ
+
ℓ , ξ

−
ℓ ) be a local

minimum of ˜Eε, computed using the method described above. We then define the error
indicators

ηe =
∑

T∈T
ℓ

ηT , where

ηT =

∣

∣

∣

∣

∣

∫

T

∂F ˜φ(x, uℓ, Duℓ, ξ
+
ℓ − ξ−ℓ ) : (Duℓ −Gℓ)dx

∣

∣

∣

∣

∣

,
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where Gℓ ∈ P1(Tℓ)m×n is a gradient recovery defined at each node z of the mesh Tℓ by

Gℓ(z) = −
∫

∪{T∈T
ℓ
:z∈T}

Duℓ dx.

The value ηe gives an indication how much the “elastic” energy may be lowered by local
mesh refinement. On the other hand, the value of the penalty integral

ηp = ε−1

∫

Ω

|ξ+ε |1 + |ξ−ε |1dx,

indicates how much the “penalty” energy can be lowered. If ηe > Ce,pηp then the mesh
is refined by marking a fraction of all elements which have the largest indicators ηT for
refinement. Otherwise all those elements are marked where ξ+ + ξ− is non-zero (up to a
threshhold which takes round-off errors and premature termination of the optimization into
account).

(ii) To reduce the penalty energy we use the very same procedure. All those elements
are marked for refinement where ξ+ + ξ− is non-zero.

7.3. Continuation algorithm

A major difficulty one encounters when solving problems involving the Lavrentiev phe-
nomenon is the so-called repulsion property. For example, if uj → x1/3 strongly in L1(0, 1),
but uj ∈ W 1,∞(0, 1) for all j, then

1
∫

0

|uj,x|6(u3j − x)2dx→ +∞.

We can imagine this effect as a huge energy barrier that needs to be overcome (or a compli-
cated path to be found) when moving from a Lipschitz function to the global minimum. In
our computations, we see this effect in that even for sufficiently small meshes it is often dif-
ficult to find the correct minimizers and that the penalty method converges to the Galerkin
solution instead. (By “Galerkin solution”, we mean any P1-minimizer of the original non-
penalized functional.) In particular, we observed that a local minimum when ε is chosen
too small in relation to the current mesh since in that case the penalty method becomes in
effect a Galerkin method again.

Thus the problem may be overcome by, either increasing ε, or decreasing the mesh
size. The former is clearly not desirable while the latter may be prohibitively expensive.
Our solution therefore was to consider a continuation with respect to the parameter ε. By
initially choosing ε very large the Galerkin solution is automatically discarded even for coarse
meshes. We then gradually decrease ε and adapt the mesh whenever there is a danger that
we may “fall out” of the basin of attraction of the exact minimizer because ε has become
too small for the current mesh. This may be controlled by requiring that at all times the
total energy ˜Eε must be below a critical value which should be less than the energy of the
Galerkin solution.

(1) Choose εdec ∈ (0, 1), Egoal ∈ R, ε0, an initial mesh T0, and two bounds N1
opt, N

2
opt (see

remarks below how to coose them) for number of iterations of the optimization. Set
ℓ = 0 and Nopt = N2

opt.
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(2) Minimize ˜Eε
ℓ
, allowing at most Nopt iterations.

(3) Determine next action:

(3.1) If the optimization converged and ˜Eε
ℓ
6 Egoal accept the step, set ℓ ← ℓ + 1,

εℓ = εℓ−1 · εdec, Tℓ = Tℓ−1, Nopt = N1
opt and continue at (2).

(3.2) If the optimization converged but ˜Eε
ℓ
> Egoal use refinement strategy (i) of the

previous section to obtain a new mesh Tℓ, set Nopt = N2
opt, and redo step (2).

(3.3) If the optimization did not converge use refinement strategy (ii) of the previous
section to obtain a new mesh Tℓ, set εℓ = εℓ−1, Nopt = N2

opt, and redo step (2).

Some further comments to refine the continuation algorithm are required.

• The initial parameters for step (1) have to be chosen in such a way that the first step
is always succesful.

• The algorithm terminates unsuccesfully when a maximum number of elements is reached,
and succesfully when a prescribed goal εgoal for εℓ is achieved.

• If the algorithm has terminated succesfully we usually “postprocess” the solution by
performing a few additional mesh refinements (but fixing ε) using strategy (i) to confirm
that the penalty energy and support of ξ+ℓ + ξ−ℓ tend to zero.

• After εℓ is decreased in step (3.1) we only expect a small change in the solution. There-
fore the optimization should essentially behave like Newton’s method and terminate
in few steps. We therefore set the maximum number of iterations to a relatively small
number (say N1

opt = 20). This setting prevents us from spending many iterations on
finding an entirely new equilibrium when εℓ becomes too small for the current mesh
and the penalty solution ceases to be a local minimizer.

• On the other hand, after the mesh is refined in either step (3.2) or (3.3) we expect
a large change in the solution because the support of ξ+ + ξ− may shrink and we
therefore allow a larger number of iterations (say N2

opt = 106, but we usually observe
termination in far fewer iterations).

We have not addressed the question under which the algorithm is considered to have
failed. When no Lavrentiev phenomenon occurs, we observe, in general, that for large ε
a state satisfying the requirement ˜Eε

ℓ
6 Egoal is found but that eventually, the algorithm

will keep refining the mesh without being able to uphold this bound. We have therefore
implemented a safety check which terminates the algorithm when a prescribed number of
elements is reached.

As a warning, we also note that for sufficiently large ε it is sometimes possible to find
reasonably looking solutions which indicate a Lavrentiev gap, but which may disappear as ε
becomes small. It is therefore crucial to be able to drive ε as close to zero as possible.
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7.4. Maniá-type examples

In this section we present numerical results for one-dimensional problems of the type

E(v) =

1
∫

0

(

|vx|n(vm − xk)2 + ν|vx|2
)

dx (7.4)

V =
{

v ∈ W 1,1(0, 1) : v(0) = 0, v(1) = 1
}

= id +W 1,1
0 (0, 1),

where k,m, n ∈ N and ν > 0. This class includes in particular Maniá’s original example [23]
(n = 6,m = 3, k = 1, ν = 0), and the regular example of Ball and Mizel [6, 7] (n = 14,m =
3, k = 2, 0 < ν < 2.4×10−3). The idea behind these examples is that, for ν = 0 the infimum
of the energy is always zero with exact solution u∗(x) = xk/m, but that the power n can be
chosen large to make approximation difficult. Moreover, if m and k are chosen such that
u∗ ∈ H1(0, 1) then a perturbation of the functional with sufficiently small positive ν does
not change whether E exhibits a Lavrentiev phenomenon or not [6, 7].

The x1/3 singularity for the original Maniá example is expensive (though not impossible)
to resolve and so we have chosen to compute the solution for n = 8,m = 2, k = 1, ν = 0
instead. We have plotted an accurate Galerkin solution, the solution of the penalty method
for ε = 10−1 and ♯T = X in Fig. 7.1, and the iterations of the contributions to the energy
of the penalty method as well as the support of ξ+ℓ + ξ−ℓ in Fig. 7.2.

In addition, we also computed the solution for the regular example of Ball and Mizel with
n = 14,m = 3, k = 2, ν = 10−3, and we have plotted the solution in Fig. 7.3. The evolution
of the energy and of the support of the penalty variable is similar as in the previous example.

F i g. 7.1. Final solutions of the Galerkin and the Penalty methods for the
Maniá problem (7.4) with parameters n = 8,m = 2, k = 1, ν = 0 before

the reduction step. The error of the penalty solution in the L∞-norm is
‖uℓ − u∗‖L∞ ≈ 7.83× 10−5
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F i g. 7.2. Evolution of the contributions to the penalty energy ˜Eεℓ
and of the support

of the penalty variables at each step of the continuation algorithm outlined in Section
7.3. The clear convergence of |supp(ξ+ + ξ−)| to zero is a strong indicator for the
convergence of the method

F i g. 7.3. Final solution of the Galerkin and Penalty methods for Ball and Foss’ [7]
version of the Maniá problem (7.4) with parameters n = 17,m = 3, k = 2, ν = 10−3

before the reduction step. The different orders of the singularity at the origin are a
clear indication for a Lavrentiev gap

7.5. A convex example in 2D

In this section, we present numerical results for a modification of the example provided by
Foss, Hrusa and Mizel [16]. In their original example a semi-circle Ω is transformed into a
quarter-circle y(Ω) with stored energy

E(y) =

∫

Ω

[

(

|Dy|2 − 2 detDy
)4

+ ν
( κ

detDy
+ 32−κ2(1 + |Dy|2)κ/2

)

]

dx,

where κ and ν are parameters, creating a singularity at the origin. The idea of the exam-
ple is similar as in the regular examples of Ball and Mizel. For ν = 0 the map y∗(x) =
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r1/2(cos(θ/2), sin(θ/2)) gives zero energy but the large power makes approximation difficult
and it can be shown that the problem exhibits the Lavrentiev phenomenon. Further, the
deformation y∗ has finite energy for ν > 0 and hence, for ν sufficiently small the Lavrentiev
effect remains [16].

We note that the map F 7→ (|F |2 − 2 detF ) is a non-negative quadratic form and hence
the stored energy density

W0(F ) =
(

|F |2 − 2 detF
)4
,

is convex. The polyconvex terms are fairly unimportant for the Lavrentiev effect and hence
we decided to ignore them completely (though we should mention that we also performed
succesful computations with the full Foss/Hrusa/Mizel example). Instead, upon noting that
y∗ ∈ H1(Ω) we regularize W0 by a quadratic and define

E(v) =

∫

Ω

[

W0(Dy) + ν|Dy|2
]

dx, (7.5)

V =
{

v ∈ W 1,1(Ω) : v(x) = r(cos(θ/2), sin(θ/2)) if |x| = 1,

v1({x2 = 0, x1 < 0}) = {0} and v2({x2 = 0, x1 > 0} = {0}
}

.

The solution and the evolution of the energy during optimization for the case ν = 0 are
plotted in Fig. 7.4, 7.5 and 7.6. For the case ν = 10−3, we have only plotted the radial
component of the solution in Fig. 7.7. The evolutions of energy and support of the penalty
variables during the optimization is similar as in Fig. 7.6.

F i g. 7.4. Radial components of the solution of the Galerkin and the Penalty methods
for the modified Foss/Hrusa/Mizel problem (7.5) with ν = 0 before the reduction
step. The different orders in the singularities at the origin are a clear indicator for a
Lavrentiev gap. The error of the penalty solution before reduction is ‖uℓ − u∗‖L∞ ≈
1.07× 10−1
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F i g. 7.6. Evolution of the contributions to the penalty energy ˜Eεℓ
and of the support of the

penalty variables at each step of the continuation algorithm outlined in Section 7.3. The apparent
convergence of |supp(ξ+ + ξ−)| to zero is a strong indicator for the convergence of the method

F i g. 7.5. Plot of the deformation given by the solution of the Penalty method for the
Foss/Hrusa/Mizel problem (7.5) with ν = 0. The shade of the elements represents the
size of the penalty variables ξ+ + ξ−
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F i g. 7.7. Radial components of the solution of the Galerkin and the Penalty methods for the modified
Foss/Hrusa/Mizel problem (7.5) with ν = 0 before the reduction step. The different orders in the
singularities at the origin are a clear indivator for a Lavrentiev gap. For comparison, the exact solution
for the case ν = 0 is plotted as well

To conclude, we briefly outline the result of an experiment that does not exhibit a Lavren-
tiev gap. We modify (7.5) as follows:

E(v) =

∫

Ω

[

W0(Dy) + ν|Dy|p
]

dx,

keeping the same admissible set V . We choose ν = 1/60 and p = 6 a case for which numerical
experiments in [25, 26] indicate the absence of a Lavrentiev gap.

An adaptive Galerkin solution suggests that the infimum of the energy in the space of
Lipschitz functions is approximately inf E(V ∩W 1,∞(Ω;R2)) ≈ 0.0093+O(3× 104). Hence,
we try to minimize the penalty functional with target energy Egoal = 0.0085. We observe
that up to ε ≈ 2 the algorithm behaves similar as in the case p = 2 above. However, at this
point it stagnates and is unable to lower the penalty parameter further without increasing
the energy above Egoal. This is strong indication that no Lavrentiev gap exists or, more
precisely, that no gap larger than 10−3 exists, which is consistent with [25, 26].

Next, we considered the case ν = 1/40 and p = 4. This is a borderline case that is
particularly difficult to resolve. In this case the adaptive Galerkin solution suggests that
inf E(V ∩W 1,∞(Ω;R2)) ≈ 0.0212+O(3× 104). We tried to minimize the penalty functional
with Egoal = 0.02. Our algorithm once again managed to decrease the penalty parameter
to approximately ε ≈ 1.8 but not further, thus indicating the absence of a Lavrentiev gap.
However, this is in contradiction with the numerical experiments shown in [26]. Due to the
relative simplicity of the method used in [26] it is conceivable that their results are correct,
and thus shows that in particularly difficult borderline cases our method may still require
some improvements.
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ADDITIVE AVERAGE SCHWARZ METHODS FOR

DISCRETIZATION OF ELLIPTIC PROBLEMS

WITH HIGHLY DISCONTINUOUS COEFFICIENTS

M.DRYJA1 AND M. SARKIS2

Abstract — A second order elliptic problem with highly discontinuous coefficients
has been considered. The problem is discretized by two methods: 1) continuous fi-
nite element method (FEM) and 2) composite discretization given by a continuous
FEM inside the substructures and a discontinuous Galerkin method (DG) across the
boundaries of these substructures. The main goal of this paper is to design and ana-
lyze parallel algorithms for the resulting discretizations. These algorithms are additive
Schwarz methods (ASMs) with special coarse spaces spanned by functions that are
almost piecewise constant with respect to the substructures for the first discretization
and by piecewise constant functions for the second discretization. It has been estab-
lished that the condition number of the preconditioned systems does not depend on the
jumps of the coefficients across the substructure boundaries and outside of a thin layer
along the substructure boundaries. The algorithms are very well suited for parallel
computations.

2000 Mathematics Subject Classification: 65F10; 65N20; 65N30.

Keywords: domain decomposition methods, additive Schwarz method, finite element
method, discontinuous Galerkin method, elliptic problems with highly discontinuous
coefficients, heterogeneous coefficients.

1. Introduction

In this paper, a second order elliptic problem with a highly discontinuous coefficient ̺(x) in
a 2-D polygonal region Ω is considered. For simplicity of the presentation we assume Dirich-
let homogeneous boundary conditions. The region Ω is partitioned into disjoint polygonal
substructures Ωi,Ω = ∪iΩi, i = 1, · · · , N, and we denote by ̺i(x) the restriction of ̺(x) to
Ωi. For this partition, let us denote by Ωh

i the layer around ∂Ωi with width hi and define
αi = supx∈Ωh

i

̺i(x) and αi = infx∈Ωh

i

̺i(x). We say that the coefficient ̺i(x) has moderate

variations on Ωh
i if αi/αi = O(1). The coefficient ̺ can be highly discontinuous in Ωi\Ωh

i

and across ∂Ωi.
We consider two discretization methods: the standard continuous finite element method

(FEM), see [3], and a composite discretization FEM with discontinuous Galerkin (DG)
(see [1, 10]. The latter means that in each Ωi the problem is discretized by a continuous
FEM inside Ωi and a DG method across ∂Ωi, see [4, 5]. This discretization is determined by
the regularity of ̺(x) and the regularity of the solution.
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The main goal of this paper is to design and analyze parallel algorithms for these two
considered discretizations. They are additive Schwarz methods (ASMs) with coarse space
functions which are piecewise constant on each Ωi\Ωh

i for the first discretization and piecewise
constant on each Ωi for the second one. The unknowns associated with these coarse spaces
are related to the average values on ∂Ωi. These algorithms are called additive average
Schwarz methods (AASMs) and they are generalizations of the algorithms considered in [2]
for the case of continuous FEMs and for regular coefficients.

In this paper, we have proved that the condition number of the preconditioned systems
obtained by AASMs for the first discretization is bounded by Cmaxi(

Hi

hi

)2 αi

α
i

, where C is inde-

pendent of the jumps of ̺, the size of the substructures Hi := diam(Ωi) and the triangulation
parameters hi in Ωi, i = 1, · · · , N . For the second discretization (the composite discretiza-

tion), we have proved that the condition number is bounded by Cmaxi maxj∈Ii(
H2

i

hihij

)αi

α
i

where Ii is a set of indices j such that |∂Ωi ∩ ∂Ωj| 6= 0 and hij := 2hihj/(hi + hj), as the
harmonic average of hi and hj. These estimates can be improved when αi and αi are of the
same order and αi 6 ̺i(x) on Ωi\Ωh

i . In this case, we get estimates with Cmaxi(Hi/hi) for
the first discretization and Cmaxi maxj∈Ii(Hi/hij) for the second one.

The discussed algorithms can be straightforwardly extended to the 3-D case. In this
paper, the 2-D case is considered only for the simplicity of the presentation.

Parallel algorithms for the considered discretizations in the case of piecewise constant
coefficients with respect to Ωi have been discussed in many papers (see [11] and the references
therein). The case of coefficients with highly discontinuous coefficients inside Ωi and across
∂Ωi has been discussed only in a few papers. For the first discretization, the standard Schwarz
method with overlap and the FETI method were considered in [8] and [9], respectively.
In [6], the FETI-DP was discussed, where the estimate of the condition number of the
preconditioned system is better than in [9]. In the present paper, we consider simpler coarse
spaces and smaller local problems than in the papers mentioned above and with better
condition number estimates. For the second discretization, parallel algorithms have not
been discussed in the literature to our knowledge, i.e., in the case where the coefficients are
highly discontinuous inside of Ωi and across ∂Ωi. In the literature, only the case where ̺(x)
is piecewise constant with respect Ωi has been discussed (see for example [7], [5] and the
references therein).

This paper is organized as follows. In Section 2, the differential problem and assumptions
about the triangulations and coefficients are introduced. In Section 3, the continuous finite
element discretization on matching triangulation is formulated, and in Section 4, an additive
average Schwarz method (AASM) for the resulting discrete problem is designed and analyzed.
The main result is Theorem 4.1, where we establish the estimate of the condition number of
the preconditioned system. In Section 5, the original problem is discretized on nonmatching
triangulation across ∂Ωi by a continuous FEM in each Ωi and DG with an interior penalty
term across ∂Ωi, and in Section 6, we design and analyze an AASM for the resulting discrete
problem. The main result is Theorem 6.1, where we estimate the condition number of the
preconditioned system. In Section 7, we discuss the implementation of these preconditioned
systems.
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2. Differential problems and assumptions

In this section, we formulate a differential problem with discontinuous coefficient and describe
some of the assumptions about the coefficients and triangulations.

2.1. Differential problem

Find u∗ ∈ H1
0 (Ω) such that

a(u∗, v) = f(v), v ∈ H1
0 (Ω), (2.1)

where

a(u, v) := (̺(·)∇u,∇v)L2(Ω), f(v) :=

∫

Ω

fvdx. (2.2)

We assume that ̺ ∈ L∞(Ω) and ̺(x) > ̺0 > 0, f ∈ L2(Ω), and Ω is a 2-D polygonal region.
Under these assumptions the problem has a unique solution (see, e.g., [3]).

2.2. Assumptions

We suppose that Ω is decomposed into disjoint polygonals Ωi, Ω = ∪iΩi, i = 1, · · · , N .
Inside each Ωi we introduce a shape regular and quasi-uniform triangulation T h(Ωi) with
mesh parameter hi andHi := diam(Ωi). For the first discretization we assume that the global
mesh is regular (no hanging nodes) while for the second discretization we allow nonmatching
meshes across substructure boundaries. Denote Ωh

i as the layer around ∂Ωi which is a union

of e
(i)
k triangles of T h(Ωi) which touch ∂Ωi, and we introduce

αi := sup
x∈Ω

h

i

̺(x), αi := inf
x∈Ω

h

i

̺(x). (2.3)

3. Discrete continuous problem

To define the first discretization, the continuous finite element method for problem (2.1), we
introduce the space of piecewise linear continuous functions as

Vh(Ω) := {v ∈ C0(Ω); v|e
k

∈ P1(x)},

where ek are the triangles of T h(Ω) and P1(x) is a set of linear polynomials.

The discrete problem is defined as: Find u∗
h ∈ Vh(Ω) such that

a(u∗
h, v) = f(v), v ∈ Vh(Ω). (3.1)

4. Additive average Schwarz method for (3.1)

In this section, we design and analyze an additive average Schwarz method for the discrete
problem (3.1). For that we use the general theory of additive Schwarz methods (ASMs)
described in [11].
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4.1. Decomposition of Vh(Ω)

Let us decompose
Vh(Ω) = V0(Ω) + V1(Ω) + · · ·+ VN(Ω), (4.1)

where for i = 1, · · · , N , we define Vi(Ω) = Vh(Ω) ∩ H1
0 (Ωi) on Ωi and extended by zero

outside of Ωi. The coarse space V0(Ω) is defined as the range of the following interpolation
operator IA. For u ∈ Vh(Ω), let IAu ∈ Vh(Ω) be defined so that on Ωi

IAu :=

{

u(x), x ∈ ∂Ωih

ūi, x ∈ Ωih
, (4.2)

where

ūi :=
1

ni

∑

x∈∂Ω
ih

u(x). (4.3)

Here Ωih and ∂Ωih are the sets of nodal points of Ωi (interior) and ∂Ωi, respectively, and ni

is the number of nodal points of ∂Ωih.

4.2. Inexact solvers

For i = 1, · · · , N , let us introduce

bi(u, v) := ai(u, v), u, v ∈ Vi(Ω), (4.4)

and ai(·, ·) is the restriction of a(·, ·) to Ωi.
For i = 0, let us introduce

b0(u, v) :=
N
∑

i=1

∑

x∈∂Ω
ih

αi(u(x)− ūi)(v(x)− v̄i), u, v ∈ V0(Ω). (4.5)

Note that (4.5) reduces to

b0(u, v) =
N
∑

i=1

αi

∑

x∈∂Ω
ih

(u(x)− ūi)v(x). (4.6)

4.3. Operator equation

For i = 0, · · · , N, we define the operators T
(A)
i : Vh(Ω) → Vi(Ω) by

bi(T
(A)
i u, v) = a(u, v), v ∈ Vi(Ω). (4.7)

Of course, each of these problems has a unique solution. Let us introduce

TA := T
(A)
0 + T

(A)
1 + · · ·+ T

(A)
N . (4.8)

We replace (3.1) by the operator equation

TAu
∗
h = gh, (4.9)

where

gh =
N
∑

i=0

gi, gi = T
(A)
i u∗

h, (4.10)
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and u∗
h is the solution of (3.1). Note that to compute gi we do not need to know u∗

h, see
(4.7). We note also that the solutions of (3.1) and (4.9) are the same. This follows from the
first main result of this paper:

Theorem 4.1. For any u ∈ Vh(Ω) the following holds:

C1β
−1
1 a(u, u) 6 a(TAu, u) 6 C2a(u, u), (4.11)

where β1 = maxi(αi/αi)(Hi/hi)
2 and the positive constants C1 and C2 do not depend on ̺i,

αi/αi, Hi, and hi, i = 1, · · · , N .

Remark 4.1. The estimate (4.11) can be improved when αi and αi are of the same order
and αi 6 ̺i(x) on Ωi\Ωh

i . In this case, β1 = maxi(Hi/hi).

Remark 4.2. The layer Ωh
i can be replaced by Ωδ

i , the layer around ∂Ωi with width δi.

In this case, β1 = maxi(
αi

α
i

H2
i

hiδi
) where αi and αi here are defined on Ωδ

i (see [6]).

Proof. of Theorem 4.1. To this end, we need to check the three key assumptions of
the general theory of ASMs (see Theorem 2.7 of [11]).

Assumption(i) We need to show that η(ε), the spectral radius of ε = {εij}i,j=1,··· ,N ,
defined by

a(ui, uj) 6 εija
1/2(ui, ui)a

1/2(uj, uj) ∀ui ∈ Vi and ∀uj ∈ Vj,

is bounded by a constant that does not depend on the jumps of ̺i(x), Hi and hi. In our
case, Vi and Vj are orthogonal for i, j = 1, · · · , N and i 6= j, therefore, η(ε) = 1.

Assumption (ii) We need to show that for i = 0, · · · , N,

a(u, u) 6 ωibi(u, u), u ∈ Vi,

with ωi 6 C where C is independent of the jumps of ̺i(x), Hi and hi.
For i = 1, · · · , N , it is obvious that ωi = 1. For i = 0 and u ∈ Vh(Ω) we have

a(IAu, IAu) =
N
∑

i=1

ai(IAu, IAu),

and (see (4.2))

ai(IAu, IAu) ≡ (̺i(·)∇IAu,∇IAu)L2(Ωi) =

= (̺i(·)∇(IAu− ūi),∇(IAu− ūi))L2(Ωi) =

= (̺i(·)∇(IAu− ūi),∇(IAu− ūi))L2(Ωh

i
) 6

6 C
∑

x∈∂Ω
ih

αi(ui(x)− ūi)
2,

(4.12)

where αi is defined in (2.3). We have used the inverse inequality. Hence

a(IAu, IAu) 6 Cb0(u, u),

with ω0 6 C. Thus maxNi=0 ωi 6 C.
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Assumption(iii) We prove that for u ∈ Vh(Ω) there exist ui ∈ Vi, i = 0. · · · , N, such
that u =

∑N

i=0 ui and
N
∑

i=0

bi(ui, ui) 6 Cβ1a(u, u). (4.13)

Let u0 := IAu for u ∈ Vh(Ω) and ui := u− u0 on Ωi and ui = 0 outside of Ωi. Of course,
ui ∈ Vi(Ω) for i = 0, · · · , N , and u =

∑N

i=0 ui. We have

N
∑

i=1

bi(ui, ui) =
N
∑

i=1

ai(u− u0, u− u0) 6 2
N
∑

i=1

{ai(u, u) + ai(u0, u0)} = 2{a(u, u) + a(u0, u0)}.

(4.14)

To obtain β1 in (4.13), we only need to estimate a(u0, u0). We have

ai(u0, u0) 6 C
∑

x∈∂Ω
ih

αi(u(x)− ūi)
2

6 C
αi

hi

‖ u− ūi ‖2L2(∂Ωi)
6 C

H2
i

hi

αi|u|2H1(∂Ωi)
,

(4.15)

where we have used (4.12) and Friedrich’s inequality. Note that

αi|u|2H1(∂Ωi)
6

αi

αihi

(̺i(·)∇u,∇u)L2(Ωh

i
). (4.16)

Using this in (4.15) we obtain

N
∑

i=1

ai(u0, u0) 6
N
∑

i=1

C
αi

αi

H2
i

h2
i

ai(u, u) 6 Cβ1a(u, u). (4.17)

Using this in (4.14), we obtain (4.13). This completes the proof of Theorem 4.1.

5. Discrete discontinuous Galerkin problem

In this section, the original problem (2.1) is discretized by a composite discretization. We
decompose Ω into disjoint polygonals Ωi, i = 1, · · · , N , so Ω = ∪iΩi as in Section 4 and
define Hi = diam(Ωi). The problem (2.1) is discretized by a continuous FEM in each Ωi and
by a DG across ∂Ωi.

Let us introduce a triangulation T h(Ωi) in each Ωi with triangular elements e
(i)
k and a

mesh parameter hi. We assume that this triangulation is shape-regular on Ωi. The resulting
triangulation is nonmatching across ∂Ωi. Let Xi(Ωi) be the finite element space of piecewise
linear continuous functions on Ωi. We do not assume that the functions of Xi(Ωi) vanish on
∂Ωi ∩ ∂Ω. Let us introduce

Xh(Ω) := X1(Ω1)× · · · ×XN(Ω). (5.1)

The functions v of Xh(Ω) are represented as v = {vi}Ni=1 with vi ∈ Xi(Ωi). Note that
Xh(Ω) * H1(Ω) but Xh(Ω) ⊂ L2(Ω).
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The coefficients ̺(x) on the introduced triangulation can be discontinuous. We assume

that ̺(x) on each element e
(i)
k ⊂ Ωi is a constant ̺

(i)
k , which can be defined, for example, by

|e(i)k |−1
∫

e
(i)

k

̺(x)ds. It means that this is done in the formulation of the original problem.

Let Ωh
i , as in Section 2, denote a layer with width hi around ∂Ωi which is the union of

e
(i)
k triangles that touch ∂Ωi. We will use also αi and αi defined in (2.3). Note that this time
̺(x) is piecewise constant on the triangles of Ωh

i .
A discrete problem for (2.1) is obtained by a composite discretization, i.e., a regular

continuous FEM in each Ωi and a DG across of ∂Ωi (see [1, 10, 4, 5]). The discretization is
defined as follows: Find u∗

h ∈ Xh(Ω) such that

âh(u
∗
h, vh) = f(vh), vh ∈ Xh(Ω), (5.2)

where

âh(u, v) :=
N
∑

i=1

âi(u, v), f(v) :=
N
∑

i=1

∫

Ωi

fvidx. (5.3)

Each bilinear form âi is given as a sum of three bilinear forms:

âi(u, v) := ai(u, v) + si(u, v) + pi(u, v), (5.4)

where

ai(u, v) :=

∫

Ωi

̺i(x)∇ui∇vidx, (5.5)

si(u, v) :=
∑

Eij⊂∂Ωi

1

lij

∫

Eij

̺ij(x)(
∂ui

∂ni

(vj − vi) +
∂vi
∂ni

(uj − ui))ds, (5.6)

and

pi(u, v) :=
∑

Eij⊂∂Ωi

δ

lijhij

∫

Eij

̺ij(x)(uj − ui)(vj − vi)ds. (5.7)

Here, the bilinear form pi is called the penalty term with a positive penalty parameter δ. In
the above equations, we set lij = 2 when Eij := ∂Ωi ∩ ∂Ωj is a common edge (or part of
an edge) of ∂Ωi and ∂Ωj. On Eij we define ̺ij(x) = 2̺i(x)̺j(x)/(̺i(x) + ̺j(x)), i.e., as the
harmonic average of ̺i(x) and ̺j(x) on Eij. Similarly, we define hij = 2hihj/(hi + hj). In
order to simplify notation we include the index j = ∂ when Ei∂ := ∂Ωi∩∂Ω is an edge of ∂Ω
and set li∂ = 1, v∂ = 0 for all v ∈ Xh(Ω), ̺i∂(x) = ̺i(x) and hiδ = hi. The outward normal
derivative on ∂Ωi is denoted by ∂/∂ni. Note that when ̺ij(x) is given by the harmonic
average, then min{̺i, ̺j} 6 ̺ij 6 2min{̺i, ̺j}.

We also define the positive local bilinear form di with weights ̺i(x) and δ̺ij(x)/(lijhij)
as

di(u, v) = ai(u, v) + pi(u, v), (5.8)

and introduce the global bilinear form dh(·, ·) on Xh(Ω) defined by

dh(u, v) =
N
∑

i=1

di(u, v). (5.9)
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For u = {ui}Ni=1 ∈ Xh(Ω) the associated broken norm is then defined by

‖ uh ‖2h:= dh(u, u) =
N
∑

i=1

{‖ ̺
1/2
i ∇ui ‖2L2(Ωi)

+
∑

Eij⊂∂Ωi

δ

lijhij

∫

Eij

̺ij(x)(ui − uj)
2ds}. (5.10)

The discrete problem (5.2) has a unique solution for a sufficiently large penalty parame-
ter δ. This follows from the following lemma:

Lemma 5.1. There exists δ0 > 0 such that for δ > δ0 and for all u ∈ Xh(Ω),

γ0di(u, u) 6 âi(u, u) 6 γ1di(u, u), (5.11)

and

γ0dh(u, u) 6 âh(u, u) 6 γ1dh(u, u), (5.12)

hold, where γ0 and γ1 are positive constants independent of ̺i, hi and Hi.

Proof. This proof is a slight modification of the proof given in [4, 5], therefore, it is
omitted here.

We will assume below that δ > δ0; i.e., that (5.11) and (5.12) are valid. The a priori
error estimates for the discussed method are optimal for regular coefficients and when hi and
hj are of the same order (see, e.g., [1], [10]). For piecewise constant coefficients ̺i and/or
when the mesh sizes hi and hj are not of the same order, the error estimates depend on the
ratio hi/hj. There is also the question of regularity of the solution of (2.1). Assuming the
regularity of the solution, we have the following result:

Lemma 5.2. Let u∗ and u∗
h be the solutions of (2.1) and (5.2). For u∗ ∈ H1

0 (Ω) and
u∗
|Ω

i

∈ H1+r(Ωi)), i = 1, · · · , N , we have

‖ u∗ − u∗
h ‖2h6 C

N
∑

i=1

(h1+r
i +

h2+r
j

hi

)|u∗|2H1+r(Ωi)
,

with r ∈ [1/2, 1] and C which is independent of hi, Hi and u∗.

For the proof see [1, 10] and [4, 5].

6. Additive average Schwarz method for (5.2)

In this section, we design and analyze an additive average Schwarz method for the discrete
problem (5.2). To this end, we use the general theory of additive Schwarz methods (ASMs)
described in [11].



172 M.Dryja and M. Sarkis

6.1. Decomposition of Xh(Ω)

Let us decompose
Xh(Ω) = V (0)(Ω) + V (1)(Ω) + · · ·+ V N(Ω), (6.1)

where for i = 1, · · · , N

V (i)(Ω) := {v = {vk}Nk=1 ∈ Xh(Ω) : vk = 0 for k 6= i}. (6.2)

This means that V (i)(Ω) is the zero extension of Xi(Ωi) to Ωj for j 6= i. The coarse space
V (0) is defined as

V (0)(Ω) = span{φ(i)}Ni=1, (6.3)

where φ(i) = {φ(i)
k }Nk=1 ∈ Xh(Ω) with φ

(i)
k = 1 for k = i and φ

(i)
k = 0 for k 6= i. This is a space

of piecewise constant functions with respect to Ωi, i = 1, · · · , N . Note that the introduced
spaces V (i)(Ω) satisfy (6.1).

6.2. Inexact solver

For u(i) = {u(i)
k }Nk=1 and v(i) = {v(i)k }Nk=1 belonging to V (i)(Ω), i = 1, · · ·N , we set

bi(u
(i), v(i)) = di(u

(i), v(i)), (6.4)

where in this case (see (5.8)),

di(u
(i), v(i)) = (̺i(·)∇u

(i)
i ,∇v

(i)
i )L2(Ωi) +

∑

Eij⊂∂Ωi

δ

lij

1

hij

(̺ij(·)u(i)
i , v

(i)
i )L2(Eij). (6.5)

For the coarse space V (0) and u(0) = {u(0)
i }Ni=1 and v(0) = {v(0)i }Ni=1 belonging to V (0)(Ω) we

set
b0(u

(0), v(0)) = dh(u
(0), v(0)). (6.6)

Note that in this case

b0(u
(0), v(0)) =

N
∑

i=1

∑

Eij⊂∂Ωi

δ

lij

1

hij

(̺ij(·)(u(0)
j − v

(0)
i ), (u

(0)
j − v

(0)
i ))L2(Eij), (6.7)

since u(0) and v(0) are piecewise constant functions with respect to Ωi, i = 1, · · · , N .

6.3. The operator equation

For i = 0, · · · , N , let us define the operators T
(DG)
i : Xh(Ω) → V (i)(Ω) by

bi(T
(DG)u, v) = âh(u, v), v ∈ V (i)(Ω). (6.8)

Of course, each of these problems has a unique solution. Let us define

TDG = T
(DG)
0 + T

(DG)
1 + · · ·+ T

(DG)
N . (6.9)

We replace (5.2) by the following operator equation:

TDGu
∗
h = gh, (6.10)
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where

gh =
N
∑

i=0

gi, gi = T
(DG)
i u∗

h, (6.11)

and u∗
h is the solution of (5.2). Note that to compute gi we do not need to know u∗

h (see
(6.8)). The solutions (5.2) and (6.10) are the same. This follows from the following theorem,
the second main result of this paper.

Theorem 6.1. For any u ∈ Xh(Ω) the following holds:

C3β
−1
2 âh(u, u) 6 âh(TDGu, u) 6 C4âh(u, u), (6.12)

where β2 = maxi maxj∈Ii(αi/αi)(
H2

i

hihij

) and the positive constants C3 and C4 do not depend

on ρi, αi/αi, Hi, and hi, i = 1, · · · , N .

Proof. We need to check three key assumptions of the general theory of ASMs (see
Theorem 2.7 of [11]).

Assumption(i) We check it in the same way as Assumption(i) in the proof of Theo-
rem 4.1. Thus η(ε) = 1.

Assumption(ii) We need to prove that for i = 0, 1, · · · , N

âh(u, u) 6 ωibi(u, u), u ∈ V (i)(Ω), (6.13)

with ωi 6 C, where C is independent of the jumps of ̺i(x), ̺ij(x), Hi and hi. Using Lemma
5.1 it is enough to prove (6.13) for dh(·, ) (see (5.9)). For i = 1, · · · , N and u(i) ∈ V (i)(Ω) we
have

dh(u
(i), u(i)) = (̺i(·)∇u

(i)
i ,∇u

(i)
i )L2(Ωi) +

∑

Eij⊂∂Ωi

δ

lij

1

hij

(̺ij(·)u(i)
i , u

(i)
i )L2(Eij) = bi(u

(i), u(i)).

(6.14)

For the coarse space V (0)(Ω) and u(0) ∈ V (0)(Ω)

dh(u
(0), u(0)) =

N
∑

i=0

∑

Eij⊂∂Ωi

δ

lij

1

hij

(̺ij(·)(u(0)
i − u

(0)
j ), (u

(0)
i − u

(0)
j ))L2(Eij) = b0(u

(0), u(0)).

Thus ωi 6 C for i = 0, · · · , N in view of Lemma 5.1.
Assumption(iii) We need to show that for u ∈ Xh(Ω) there exist u(i) ∈ V (i)(Ω), i =

0, · · · , N , such that u =
∑N

i=0 u
(i) and

N
∑

i=0

bi(u
(i), u(i)) 6 Cβ2âh(u, u). (6.15)

Using Lemma 5.1, it is enough to prove (6.15) for dh(·, ·).
For u = {ui}Ni=1 ∈ Xh(Ω), let

u(0) = {ūi}Ni=1, ūi :=
1

|∂Ωi|

∫

∂Ωi

ui(x)ds, (6.16)



174 M.Dryja and M. Sarkis

and set

u = u(0) + (u− u(0)) = u(0) +
N
∑

i=1

u(i),

where u(i) := {u(i)
k }Nk=1 with u

(i)
k := ui − ūi for k = i and u

(i)
k = 0 for k 6= i. Of course,

u(i) ∈ V (i)(Ω) and u =
∑N

i=0 u
(i).

We now check (6.15) for dh(., .). For i = 0, see (6.7), we have

b0(u
(0), u(0)) =

N
∑

i=1

∑

Eij⊂∂Ωi

δ

lij

1

hij

(̺ij(·)(ūj − ūi), ūj − ūi)L2(Eij). (6.17)

Note that

(̺ij(·)(ūj − ūi), ūj − ūi)L2(Eij) 6C

{

‖ ̺
1/2
ij (·)(ūj − uj) ‖2L2(Eji)

+ ‖ ̺
1/2
ij (·)(ūi − ui) ‖2L2(Eij)

+ ‖ ̺
1/2
ij (·)(ui − uj) ‖2L2(Eij)

}

,

(6.18)

where Eij = Eji, Eij ⊂ ∂Ωi, Eji ⊂ ∂Ωj. By Friedrich’s inequality we have

1

hij

‖ ̺
1/2
ij (·)(ūi − ui) ‖2L2(Eij)

6 C
αi

hij

‖ ui − ūi ‖2L2(∂Ωi)

6 C
αiH

2
i

hij

|ui|2H1(∂Ωi)

6 C
αi

αi

H2
i

hihij

‖ ̺
1/2
i ∇ui ‖2L2(Ωh

i
)

6 C
αi

αi

(
H2

i

hihij

)(̺i(·)∇ui,∇ui)L2(Ωi),

(6.19)

since ̺ij(x) 6 2̺i(x) 6 2αi on ∂Ωi. In the same way we show that

1

hij

‖ ̺
1/2
ij (·)(ūj − uj) ‖2L2(Eij)

6 C
αj

αj

(
H2

j

hjhji

)(̺j(·)∇uj,∇uj))L2(Ωj). (6.20)

Substituting (6.19), (6.20) into (6.18) and the resulting inequality into (6.17), we obtain

b0(u
(0), u(0)) 6 Cβ2dh(u, u) 6 Cβ2âh(u, u). (6.21)

We have by (6.5) that

N
∑

i=1

bi(u
(i), u(i)) =

N
∑

i=1

(̺i(·)∇ui,∇ui)
2
L2(Ωi)

+
N
∑

i=1

∑

Eij⊂∂Ωi

δ

lij

1

hij

(̺ij(·)(ui − ūi), (ui − ūi)L2(Eij).

(6.22)

Using (6.19) and Lemma 5.1, we obtain

N
∑

i=1

bi(u
(i), u(i)) 6 Cβ2dh(u, u) 6 Cβ2âh(u, u). (6.23)

Adding estimates (6.21) and (6.23), we get (6.15). This completes the proof of Theorem 6.1.
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Remark 6.1. Estimate (6.12) can be improved when αi and αi are of the same order
and αi 6 ̺i(x) on Ωi\Ωh

i . In this case, β2 = maxi maxj∈Ii(Hi/hij).

Remark 6.2. The layer Ωh
i can be replaced by Ωδ

i , the layer around ∂Ωi with width δi.

In this case, β2 = maxi maxj∈Ii(
αi

α
i

H2
i

hijδi
) where αi and αi here are defined on Ωδ

i (see (2.3)).

7. Implementation

To find the solution of (3.1) for the first discretization and (5.2) for the second discretization,
we need to solve Eqs. (4.9) and (6.10), respectively. The operators TA and TDG are symmetric
positive definite and relatively well conditioned (see Theorem 4.1 and Theorem 6.1). To solve
these equations a conjugate gradient method is used. We next discuss the implementation
of the method for Eq. (6.10) (for (4.9) it is similar). For simplicity of the presentation, we
discuss only the Richardson method.

Problem (6.10) is solved by the method

un+1 = un − τ(TDGu
n − gh) = un − τTDG(u

n − u∗
h),

where the relaxation parameter τ can be chosen using the estimates of Theorem 6.1.
To compute

rn := TDG(u
n − u∗

h) =
n

∑

i=0

T
(DG)
i (un − u∗

h),

we need to find rni := T
(DG)
i (un − u∗

h) by solving the following equations (see (6.8)):

bi(T
(DG)
i rni , v) = âh(r

n
i , v) = âh(u

n, v)− f(v), v ∈ V (i)(Ω),

for i = 0, · · · , N . Note that these problems are independent of each other, therefore, they can
be solved in parallel. The problems for i = 1, · · · , N are local and defined on Ωi and reduce
to discrete problems with continuous FEM and piecewise linear functions. The problem
for i = 0 has local and global component, where the local problem involves a diagonal
preconditioning while the global problem has the number of unknowns equal to the number
of subregions Ωi and reduces to a system with a mass matrix.

The above implementation shows that the proposed algorithm is very well suited for
parallel computations.

Acknowledgments. Part of this work was supported by the Polish Sciences Foundation
under grant NN201006933.
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A REGULARIZING PARAMETER FOR SOME

FREDHOLM INTEGRAL EQUATIONS

L. FERMO1

Abstract — The regularizing parameter appearing in some Fredholm integral equa-
tions of the second kind is discussed. Theoretical estimates and the results of numerical
tests confirming the theoretical expectations are given.
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1. Introduction

In [5], the author introduced a particular procedure to regularize the following Fredholm
integral equation of the second kind:

f(y)− µ

G2(y)

∞
∫

0

k(x, y)f(x)wα(x)dx =
g(y)

G1(y)
, (1.1)

where wα(x) = xαe−xβ

, α > −1, β > 1
2
is a generalized Laguerre weight, f is the unknown,

µ ∈ R, g and k are given smooth functions, and G1 and G2 are functions with zeros at
the origin of the type yλ with 0 < λ < 1. The suggested approach consists in “moving”
the singularities into the kernel and then regularizing the equation by applying a smoothing
transformation depending on the parameter q ∈ N. Hence, the Nyström method is used to
approximate the solution of the equation in a suitable Banach weighted space Cv equipped
with a uniform norm.

In this paper, we discuss the choice of the parameter q. Indeed, the approximate solution
F ∗
m tends to the exact solution F ∗ with an error of the type

‖F ∗ − F ∗
m‖Cv

= O
(

1

m

)σ

,

where σ depends on q and increases with increasing q. Consequently, it would appear natural
to take q very large to have a good order of convergence. But when the parameter q increases,
the speed of convergence slows down compromising the numerical results. Then, the aim of
this paper is to propose a suitable choice of the parameter q in order to approximate the
solution of the considered equation with a satisfactory theoretical order of convergence and
with positive numerical results.

The paper is organized as follows. In Section 2, the regularizing procedure proposed in
[5] is described. Section 3 presents the main results including some numerical tests. Section
4 gives proofs to conclude the paper.

1Department of Mathematics and Computer Science, University of Basilicata, v.le dell’Ateneo Lucano,

10 85100 Potenza, Italy E-mail: luisa.fermo@unibas.it
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2. Preliminaries: a regularizing procedure

Let us consider Eq. (1.1) in the weighted space Cu, u(x) = (1 + x)ρxγe−xβ/2, x, ρ, γ > 0,
defined as

Cu =

{

f ∈ C((0,∞)) : lim
x→∞
x→0

(fu)(x) = 0

}

, (2.1)

where C(J) denotes the collection of all continuous functions on J ⊆ [0,∞). If γ = 0, then
the space Cu consists of all continuous functions on [0,∞) such that lim

x→∞
(fu)(x) = 0.

This space equipped with the following norm

‖f‖Cu
= ‖fu‖∞ = sup

x>0
|(fu)(x)|

is a Banach space.
In order to approximate the solution of Eq. (1.1) in Cu (if it exists), we could apply the

Nyström method or the projection method based on orthogonal polynomials with respect to
the weight wα appearing in the integral (see, for instance, [12]). Nevertheless, it is possible to
see (see, for instance, [5], [7], [6]) that, in virtue of the low smoothness of the given functions,
these methods lead to very poor numerical results.

Hence the necessity arises to introduce a regularizing procedure that would allow us
to improve the smoothness properties of the given functions in order to approximate the
solution of (1.1) with a satisfactory order of convergence. In [5], an alternative numerical
approach was proposed in this direction. The suggested procedure consists mainly of three
steps which we now summarize.

The aim of the first step is to reduce the given equation to a regularized equation. To
this end we consider (1.1) and for the sake of simplicity, but without loss of generality, we
assume

G1(y) = yδ, G2(y) = yǫ, 0 < ǫ < δ < 1.

We multiply both sides of (1.1) by yδ and setting λ = δ − ǫ we get

(yδf)(y)− µyλ
∞
∫

0

k(x, y)xδf(x)xα−δe−xβ

dx = g(y), δ < α + 1. (2.2)

Now, in order to improve the smoothness of the kernel, we introduce the following one-
to-one map γq : [0,∞) → [0,∞) defined as

γq(t) = tq/λ, 1 6 q ∈ N (2.3)

and we change the variables x = γq(t) and y = γq(s) in (2.2).
In this way we obtain

F (s)− µ

∞
∫

0

h(t, s) F (t) wη(t)dt = G(s), (2.4)

where F (s) = f(γq(s))s
qδ

λ is the new unknown,

G(s) = g(γq(s)) and h(t, s) =
q

λ
k(γq(t), γq(s)) t

[η] sq, (2.5)
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are the new given functions, and wη(t) = tη−[η]e−tqβ/λ is the new Laguerre weight with
η = q

λ
(1 + α− δ)− 1, δ < α + 1, β > 1

2
and [η] is its integer part.

We immediately note that the new equation, which we will call the regularized equation,
has smooth given functions.

Now we have to fix the space in which we will study the regularized equation to assure
its being unisolvent. This is the second step.

To this end, we introduce the weighted space Cv, with

v(s) = u(γq(s))s
− qδ

λ = (1 + s
q

λ )ρs
q

λ
(γ−δ)e−

s

qβ

λ

2 (2.6)

and study the smoothness properties of the new functions and the characteristics of the
integral operator associated with the regularized equation

(KF )(s) = µ

∞
∫

0

h(t, s) F (t) wη(t)dt. (2.7)

We denote by kx (respectively by ky) the function k(x, y) as a function of the only variable
y (respectively x).

Moreover, we define the Zygmund type space

Zs,r(v) =

{

f ∈ Cv : sup
τ>0

Ωr
ϕ(f, τ)v

τ s
< ∞, r > s > 0

}

, (2.8)

equipped with the norm

‖f‖Zs,r(v) = ‖fv‖∞ + sup
τ>0

Ωr
ϕ(f, τ)v

τ s
,

where [17]

Ωr
ϕ(f, τ)v = sup

0<h6τ

‖(∆r
hϕf)v‖Irh

denotes the main part of modulus of smoothness with r > 1, ϕ(x) =
√
x, ‖ · ‖I

rh
is the

uniform norm on the interval Irh = [8r2h2, Ch∗], h∗ = h−2/(2β−1), and C is a fixed constant
and

∆r
hϕf(x) =

r
∑

i=0

(−1)i
(

r
i

)

f
(

x+
(r

2
− i
)

hϕ(x)
)

.

For the sake of brevity, we will set Zs,r(v) := Zs(v).
The following two propositions hold true.

Proposition 2.1. Let u(x) = (1 + x)ρxγe−xβ/2 and v as in (2.6) with β > 1
2
, ρ > 0 and

γ > δ. If the known functions of the original equation are such that

g ∈ Zr(u), (2.9)

sup
x>0

u(x)‖kx‖Zr(u) < ∞, (2.10)
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sup
y>0

u(y)‖ky‖Zr(u) < ∞, (2.11)

with r > 2δ, then the known functions of the regularized equation are such that

G ∈ Zσ1
(v), (2.12)

sup
t>0

v(t)‖ht‖Zσ2
(v) < C D, (2.13)

sup
s>0

v(s)‖hs‖Zσ3
(v) < C A , (2.14)

where σ1 =
q

λ
(r− 2δ), σ2 =

q

λ
(r− 2δ)+2q, σ3 =

q

λ
(r− 2δ)+2[η], q and λ are the parameters

appearing in the transformation γq defined in (2.3), C is a positive constant independent of
the given functions and of q and λ, while A and D are constants depending on q and λ.

Remark 2.1. We note that the choice of q as a natural number is closely related to the
smoothness properties of the given functions (on which the order of convergence depends, as
we will see in Section 3). Indeed, if q is not necessarily a natural number, the kernel ht has a
worse smoothness because of the factor sq. In fact, in this case we have ht ∈ Z2 q

λ
(γ−δ)+2q(v).

As an example, consider k(x, y) = (x2/3 + y7/2), γq(t) = t
3

2
q, λ = δ = 2/3, γ = 0.7. Then, if

q ∈ N, we have ht(s) ∈ Z12.6q(v), otherwise ht(s) ∈ Z2.1q(v).

Proposition A [5]. Let u(s) = (1 + s)ρsγe−
s
β

2 , β > 1
2
, v as in (2.6) with ρ and γ such

that

ρ >
1

2
, max

{

δ,
δ + α

2

}

< γ <
α + 1

2
. (2.15)

Then, if the kernel kx satisfies (2.10), the operator K : Cv → Cv defined in (2.7) is compact
and for (2.4) the Fredholm Alternative Theorem holds true in Cv.

We remark that if α < δ, find the value of γ, it is essential that 0 < δ < α+1
2
.

Now by means of the previous propositions it is possible to determine the conditions
under which the regularized equation (2.4) is unisovent in Cv.

Proposition B [5]. Let u and v be as in Proposition A and let (2.10) be satisfied. Then
the original equation (1.1) has a unique solution f ∗ ∈ Cu for each given right-hand side in
Cu if and only if the regularized equation (2.4) has a unique solution F ∗ ∈ Cv for each given
right-hand side G ∈ Cv. Moreover the following relation holds true:

(f ∗u)(t) = (F ∗v)(γ−1
q (t)) (2.16)

for each point t ∈ [0,∞).

The last step consists in applying the Nyström method to the regularized equation (2.4)
in order to approximate its solution.

To this end, we first approximate the integral KF by using the following truncated
Gaussian rule (see, e.g., [14],[15],[4]):

∞
∫

0

h(t, s)F (t)wη(t)dt =

j
∑

k=1

λk(wη)h(xk, s)F (xk) + e∗m(hyF ), (2.17)
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where xk = xm,k(wη), k = 1, ..., j, are the zeros of the polynomial pm(wη) which is orthonor-
mal with respect to the weight wη, λk, k = 1, ..., j are the Christoffel numbers corresponding
to wη,

xj = min
16k6m

{xk : xk > θam}, 0 < θ < 1, (2.18)

am = 4
Γ( q

λ
β)

2λ

qβ

Γ(2 q

λ
β)

λ

qβ

m
λ

qβ , (2.19)

denotes the Mhaskar-Rahmanov-Saff number (see, e.g., [11]) and e∗m(hyF ) is the remainder
term.

Thus, setting

(KmF )(s) = µ

j
∑

k=1

λk(wη)h(xk, s)F (xk),

we go to consider the operator equation

(I −Km)Fm = G,

where Fm is unknown.
Then, multiplying this equation by the weight v chosen as in Proposition A and collo-

cating on the zeros xi, i = 1, ..., j, we obtain the following linear system:

j
∑

k=1

[

δi,k − µλk(wη)
v(xi)

v(xk)
h(xk, xi)

]

bk = (Gv)(xi), i = 1, . . . , j, (2.20)

where δi,k is a Kronecker symbol and bk = Fm(xk)v(xk), k = 1, . . . , j are the unknowns. Now,
if the above system has a unique solution [b∗1, . . . , b

∗
j ]

T , then we can construct the following
weighted Nyström interpolant:

F ∗
m(s)v(s) = µ

j
∑

k=1

λk(wη)
v(s)

v(xk)
h(xk, s)b

∗
k +G(s)v(s). (2.21)

Hence, in order to obtain an approximate solution of (2.4), we have to solve a linear
system of j equations in j unknowns rather than a system of m equations in m unknowns
and this implies a significant economy in computations. Moreover, we remark that system
(2.20) can easily be constructed because it only requires the computation of the zeros xk,
k = 1, ..., j and of the Christoffel Numbers λk(wη), k = 1, ..., j. To this end, one can use,
in the Laguerre case, the routine gaussq (see [8]) or routines recur and gauss (see [9] and
[10]), and in the general case, the Mathematica Package “OrthogonalPolynomials” (see [3]).

The stability and the convergence of the proposed method is stated in the following
theorem proved in [5].

Theorem A [5]. Assume that Eq. (1.1) has a unique solution f ∗ in Cu and that the
hypotheses of Proposition 2.1 are satisfied. Then for m sufficiently large, system (2.20) is
unisolvent and its matrix Bj is well conditioned holding

cond(Bj) 6 C, (2.22)

where C does not depend on m and cond(Bj) = ‖Bj‖∞‖B−1
j ‖∞.
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3. Main Results

3.1. Why the choice of q? The error estimate.

The regularizing procedure and the Nyström method summarized in the previous section
do not impose any restriction on the parameter q. Indeed, until now we have seen that, for
each value of q, the given functions of Eq. (2.4) are smooth , the regularized equation is
unisolvent in the space Cv, and system (2.20) has a unique solution and is well conditioned.
Nevertheless, we need an optimal choice of q. In order to understand the reason of this
necessity, let us estimate the error.

To this end, we denote by F ∗ the unique solution of (2.4) in Cv and by F ∗
m the Nyström

interpolant defined in (2.21).
By the well-known argument (see, e.g., [1])

‖[F ∗ − F ∗
m]v‖∞ ∼ ‖[KF ∗ −KmF

∗]v‖∞

= sup
s>0

v(s)

∣

∣

∣

∣

∣

∣

∞
∫

0

h(x, y)F ∗(x)wη(x)dx−
j
∑

k=1

λk(wη)h(xk, s)F
∗(xk)

∣

∣

∣

∣

∣

∣

= sup
s>0

v(s)|e∗M(hsF
∗)|, (3.1)

where e∗M(hsF
∗) is the remainder term of the Gaussian rule (2.17).

Now, since in virtue of the assumptions about the parameters of the weight v it results

in

∞
∫

0

wη(t)

v2(t)
dt < ∞, we have [12]

|e∗m(hyF )| 6 C[EM(hyF )v2 + e−Am‖hyFv2‖∞], (3.2)

where the constants C and A are independent of m and F , M = [( θ
1+θ

)βm] and En(f)v =
inf

Pn∈Pn

‖(f − Pn)v‖∞ denotes the error of the best approximation of f ∈ Cv by polynomials

of degree n at most (Pn ∈ Pn).

Hence, choosing M = am, 0 < a < 1 and taking into account that for all f, g ∈ Cv, we
get

Em(fg)v2 6 C[ ‖fv‖Em(g)v + 2‖gv‖∞Em(f)v ], (3.3)

by (3.1) we have

‖[F ∗ − F ∗
m]v‖∞ 6 C

[

‖F ∗v‖∞ sup
s>0

v(s)E[M
2
](hs)v + sup

s>0
v(s)‖hsv‖∞E[M

2
](F

∗)v

]

.

By Proposition 2.1 we deduce that h, g ∈ Zσ(v), with σ = q

λ
(r−2δ) and then F ∗ ∈ Zσ(v),

too. Moreover, since ∀f ∈ Zs(v) (see, e.g., [17])

Em(f)v 6 C
(√

am
m

)s

‖f‖Zs(v), m > s C 6= C(m, f), (3.4)

we have

‖[F ∗ − F ∗
m]v‖∞ 6 C

(√
am
m

)σ

‖F ∗‖Z
σ(v)

sup
s>0

v(s)‖hs‖Zσ3
(v). (3.5)

We have proved the following result.
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Theorem 3.1. Assume that the assumptions of Theorem A are satisfied. Then if F ∗

denotes the unique solution of Eq. (2.4) and F ∗
m is the Nyström interpolant defined in (2.21),

then

‖[F ∗ − F ∗
m]v‖∞ 6 C

(√
am
m

)σ

‖F ∗‖Z
σ(v)

sup
s>0

v(s)‖hs‖Zσ3
(v), (3.6)

where C 6= C(m,F ∗) and σ = q

λ
(r − 2δ).

Hence, the theoretical order of convergence depends on the smoothness properties of the
given functions. Consequently, we emphasize again the importance of choosing q as a natural
number. And if it is not natural, then, by Remark 2.1, we obtain that the theoretical order

of convergence is worse O
(

(√
am

m

)
q

λ
(γ−δ)+2q

)

.

From estimate (3.6) it follows that for any constant C independent of m the error tends

to zero as
(√

am

m

)σ

, since theoretically we can choose m sufficiently large. Moreover, the rate

of convergence increases with increasing q. Consequently, we tempt to take q very large to
have a good order of convergence. But now we linger over the Zygmund norms appearing
on the right hand side of (3.6). By Proposition 2.1 it follows that

sup
s>0

v(s)‖hs‖Zσ3
(v) 6 C A,

where A is a constant depending on q. Moreover, using the same argument we can see that
‖F ∗‖Z

σ(v)
also has the same behavior.

The error estimate is of the following type:

‖[F ∗ − F ∗
m]v‖∞ = CA2O

((√
am
m

)σ)

, (3.7)

i.e., a constant A depending on a parameter (which can be changed) appears. Consequently,
it is necessary to analyze the behavior of this constant when the parameter varies. Indeed,
if it becomes large as q does, the numerical convergence can be compromised even if the
theoretical one is ensured.

In the following subsection we will make an evaluation of this constant and study its
behavior. Here we only observe that in the approximation theory an error estimate in which
a parameter-dependent constant frequently appears. For instance, in [−1, 1], if we consider
the function f(x) = log (1 + x), it is possible to prove that there exists a polynomial P (see,
e.g., [16]) such that

‖[f − P ]vγ,δ‖∞ 6 C(r − 1)!
logm

mr
, vγ,δ(x) = (1− x)γ(1 + x)δ.

Then also in this case a constant A = (r−1)! appears. Moreover, here the numerical problem
we have is evident: if r increases, then the order of convergence becomes large but the speed
of convergence slows down because the constant A increases. This will be our problem.

3.2. Constant A and the crucial problem of choosing the regularizing parameter

In [5], to give an idea of the constant A, the following estimate was proved in the case where
the parameter η appearing in (2.5) is equal to zero.
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Proposition C [5]. Let q > 1 and 0 < λ < 1. Then

A 6

([ q

λ

]

+ 1
)[ q

λ
]

W
([ q

λ

])

,

where W
([

q

λ

])

denotes the
[

q

λ

]

th Bell number.

Now we will make an evaluation for A.
By the proof of Proposition 2.1, setting ℓ = min{[ q

λ
], [r]} it follows that

A =



































































ℓ
∑

i=0

(

ℓ
i

)

[η]!

([η]− ℓ+ i)!
i
∑

m=0

Bi,m

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− i+m

))

, ℓ 6 [η];

ℓ
∑

i=ℓ−[η]

(

ℓ
i

)

[η]!

([η]− ℓ+ i)!

i
∑

m=0

Bi,m

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− i+m

))

, ℓ > [η]

(3.8)

where Bi,m denotes the partial Bell polynomials defined in (4.1) with B0,m = 1 for all m =
0, · · · , i and Bi,0 = 0 for all i = 1, · · · , ℓ.

Now, from the theory of Bell’s polynomials it is known that
n
∑

k=1

Bn,k(x1, x2, ..., xn−k+1) = Bn(x1, x2, ..., xn),

where Bn(x1, x2, ..., xn) are the so-called complete Bell polynomials which satisfy the follow-
ing property:

Bn(x1, x2, ..., xn)

:= det































x1

(

n− 1
1

)

x2

(

n− 1
2

)

x3 . . .

(

n− 1
n− 2

)

xn−1 xn

−1 x1

(

n− 2
1

)

x2 . . .

(

n− 2
n− 3

)

xn−2 xn−1

0 −1 x1 . . .

(

n− 3
n− 4

)

xn−3 xn−2

...
...

. . . . . .
...

...
0 0 0 . . . x1 x2

0 0 0 . . . −1 x1































. (3.9)

Then, in virtue of this relation, in order to compute the constant A we have only to
compute special sums of determinants of a particular matrix. Indeed, since B0,m = 1 for all
m = 0, · · · , i and Bi,0 = 0 for all i = 1, · · · , ℓ, by (3.8) and (3.9), the constant A can be
rewritten as

A =























[η]!

([η]− ℓ)!
+

ℓ
∑

i=1

(

ℓ
i

)

[η]!

([η]− ℓ+ i)!
det(Ai), ℓ 6 [η];

ℓ
∑

i=ℓ−[η]

(

ℓ
i

)

[η]!

([η]− ℓ+ i)!
det(Ai), ℓ > [η]

(3.10)
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where det(Ai) denotes the determinant of the matrix defined in (3.9) with n = i and with

(x1, x2, ..., xn) =
( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− i+ 1

))

.

Note that in the simple case where η = 0 we have in A = det(Aℓ).
We also underline that in order to compute the determinant of the matrix Ai, one can

use the following formula:

det(Ai) =
i−1
∑

k=0

(

i− 1
k

)

xk+1 det(Ai−k−1), i > 2,

with det(A0) = 1 and det(A1) = x1.
Now by (3.10) the behavior of the constant is evident: as q increases, it becomes very

large. Moreover, we note that since the constant depends on the ratio q

λ
, when λ is close to

zero, this constant becomes large even when q is small (see Fig. 3.1). On the contrary, if λ
is close to one, it becomes large when q is large (see Table 3.4). Figure 3.1 shows the trend
of the constant when q changes in the case where ℓ = [ q

λ
], λ = 2/9, δ = 2/9 and α = −1/3.

The problem announced in the previous subsection is confirmed: when q becomes large
the numerical convergence is compromised even if the theoretical one is assured. Indeed, by
the error estimate (3.7)

‖[F ∗ − F ∗
m]v‖∞ = CA2O

(

(√
am
m

)
q

λ
(r−2δ)

)

,

we deduce that if q becomes large, then the order of convergence increases but the speed of
convergence slows down because of the presence of the constant A. Consequently, we need
a very large number of points m to obtain the required convergence. For instance, assume
λ = δ = 2/9, r = 2. According to (3.10), if q = 8, then A = 3.351200611656362e + 086.
Therefore, to have the approximate solution with, e.g., 7 correct digits, we need a number
of points m > 1899. But this is not realistic. In fact, in order to construct the Nyström
interpolant F ∗

m defined in (2.21), we have to solve system (2.20). Thus, we have to compute
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the zeros xk and the Christoffel numbers λk of a polynomial of degree m > 1899. And this
requires a computational effort.

Then, for this reason, an optimal choice of the parameter q is necessary. To this end, we
suggest to proceed in the following way:

1. Regularize the given equation as shown in Section 2.

2. Compute the order of convergence according to (3.6).

3. Compute the constant A according to (3.10) for different values of q. Now, as men-
tioned above, the constant A becomes very large as q increases. Consequently, after a
certain value q0 of q, the constant A2 (we need it later to compute the optimal param-
eter q) cannot be computed numerically. Among the highest values A2 ∼ 10292. After
this value it is impossible to know A2. Because of this, in this phase we fix the range
[1, q0] in which we can choose our optimal parameter q.

4. Fix the correct digits we want to be exact in the approximate solution and then compute
the number of points m we need to obtain it. For instance, if we want to have an
approximate solution with a correct digits, taking into account (3.7) and (2.19), it has
to be

m >



A22σ

(

Γ( q
λ
β)

√

Γ(2 q

λ
β)

)
λσ

qβ

10a+1





1

(1− λ

2qβ
)σ

, 1 6 q 6 q0. (3.11)

5. Choose the optimal parameter q ∈ [1, q0], that is the natural number which minimize
the right-hand side of (3.11).

6. Solve system (2.20) and construct the Nyström interpolant (2.21).

7. Compute the solution of the original equation according to (2.16).

Proceeding in this way, we will approximate the solution of the considered equations with
a satisfactory theoretical order of convergence and with positive numerical results.

We note that theoretically the parameter q0 can be large (it depends on the other pa-
rameters involved in the computation of A). Consequently, the optimal parameter q can be
large. On the other hand, it is very difficult to give an analytical expression of the mini-
mal point of the right-hand side of (3.11). In any case, if q ∈ [1, q0] is large, then we have
no numerical problem: system (2.20) is well conditioned for each value of q. However, we
underline that in all the examples tested the optimal parameter q has always been small.

In the following subsection we will carry out some numerical tests confirming our theo-
retical expectations.

3.3. Numerical Tests

In this subsection, we will give the numerical results obtained for some Fredholm integral
equations.

To this end, we will follow the procedure suggested in the previous subsection. Thus,
first of all, we will regularize the given equation as shown in Section 2. Subsequently, we
will choose the optimal parameter q to avoid a compromise of the numerical convergence.
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Then with fixed q, we will construct the Nyström interpolant (2.21) of Eq. (2.4) and finally
we will compute the approximate solution f ∗

m of the original equation according to (2.16).

In each numerical test, we take, as a reference solution, the approximated solution ob-
tained atm = 256 and in all the tables we will give em = maxi |(f256u)(yi)−(fmu)(yi)|, where
{yi}20i=1 denotes 20 equispaced points on the interval (0,∞) and the condition number in the
infinity norm of system (2.20). All computations were performed in 16-digit arithmetics.

Example 3.1. Consider the equation

f(y)− 1

5y2/3

∞
∫

0

(x2 + y2 + 8) f(x) x4/5e−x3/4

dx =
(y3/2 + 2)

y7/9
.

It has a unique solution in the weighted space Cu with u(x) = (1+x)0.6x0.85e−
x
3/4

2 . Note that
the function k(x, y) = x2 + y2 +8 is an analytical function while g(y) = (y3/2 +2) ∈ Z4.7(u).
Now, applying the regularizing procedure shown in Section 2, we obtain

F (s)− 9

5
qsq

∞
∫

0

(t18q + s18q + 8) t[η] F (t) wη(t)dt = (s
27q

2 + 2),

with η = 46
5
q−1 and wη(t) = tη−[η]e−t

27q
4 . The new equation has a unique solution in Cv with v

as in (2.6), according to Proposition B. We note that the new kernel is an analytical function
while the right-hand side pertains to Z28.30q(v). Consequently, the order of convergence is

O
(

(
√
am

m
)σ
)

with σ = 28.30q according to (3.6). Now, we choose the optimal parameter q.

Then, first of all, we compute the constant A according to (3.10) for different values of q.
Thus we fix the greatest value of q, namely q0, for which we can compute numerically A2.
In this case, we have q0 = 5. Now, we would like to know the approximate solution with 6
correct digits and we compute the optimal parameter q, that is the value of q ∈ [0, 5] which
minimize the right hand side of (3.11). The following graph shows the behavior of (3.11)
when q changes.
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Hence we deduce that the optimal parameter is q = 1 in accordance with which we have
the required convergence with a number of points m > 19. Table 3.3 shows the weighted
approximate solution obtained with this optimal parameter (θ = 0.9).

Table 3.1. q=1

m j em cond(Bj)
16 16 4.31192e-007 24.63689043040089
32 31 1.88633e-007 29.56259271555317
64 60 1.04805e-013 32.56276574794698
128 120 7.10542e-015 34.42444895667656

If the parameter q increases, for instance, q = 4, then the numerical results are poor.
Indeed, as shown in Table 3.2, in order to have 6 correct digits we have to solve a system of
order 63 rather than 16 as done in the case q = 1. From the last table we can also see that
if the parameter q increases, the condition number in the infinity norm of system (2.20) is
still bounded.

Table 3.2. q=4

m j em cond(Bj)
32 32 4.05913e-006 25.04999125397745
64 63 7.50975e-007 29.87180783730457
128 126 2.27320e-011 32.77334652130129

Example 3.2. We consider the following Fredholm integral equation:

f(y)− 1

2

∞
∫

0

(x2 + y + 3)f(x)x4/3e−xdx =
y + 1

y1/3
− 3

2
(13 + y),

whose exact solution is f(y) = 1+y

y1/3
.

The considered equation has a unique solution in the weighted space Cu with u(x) = (1 +
x)0.7x9/8e−x/2. Using the regularizing procedure shown in Section 2, we get

F (s)− 3q

2
sq

∞
∫

0

(t6q + s3q + 3)t6q−1F (t)e−t3qdt = s3q + 1− 3

2
(13 + s3q)sq,

which has a unique solution in Cv according to Proposition B. We immediately notice that
all given functions are polynomials for each q and the convergence is very fast. Table 3.3
shows the numerical results obtained at q = 1 (θ = 0.7). Note that in this case A = 132. If
the parameter q increases the given functions are still polynomials and we expect the same
numerical results but they are poor. Indeed, since the constant A increases, the speed of
convergence slows down compromising the numerical results. Table 3.4 shows what happens
in the case where q = 8 (θ = 0.96). Note that in this case A = 8.321415742355469e+ 050.
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Table 3.3. q=1

m j em cond(Bj)
8 8 5.68434e-014 21.78681961756113

Table 3.4. q=8

m j em cond(Bj)
16 16 1.16761e-001 16.75283784307782
32 31 2.57434e-002 25.56426459953316
64 61 6.02116e-005 31.11032195144892
128 122 9.02389e-013 33.82723852547484
256 242 4.26325e-014 37.34898825173112

Example 3.3. Consider the equation

f(y)− 1

7

∞
∫

0

(x7/2 + y2/3 + 7) f(x)
√
xe−xdx =

2

y2/3e(1+y4/3)
.

It has a unique solution in the weighted space Cu with u(x) = (1+x)0.6x0.7e−x/2. Applying
the procedure shown in Section 2, the given equation is equivalent to

F (s)− 3q

14
sq

∞
∫

0

(t
21q

4 + sq + 7)t[η] F (t) wη(t)dt =
2

e(1+s2q)

with η = 5
4
q− 1 and wη(t) = tη−[η]e−t

3
2
q

. The new equation has a unique solution in Cv with
v as in (2.6), in virtue of Proposition B.

Note that the right-hand side and the kernel with respect to the variable s of the new
equation are analytical functions while the kernel with respect to the variable t pertains to
Z6.45q(v). Consequently, the order of convergence is O( 1

m5.37q ), according to (3.6) and (2.19).

Now we choose the optimal parameter q to obtain an approximate solution with 7 correct
digits. Computing expression (3.10), we can see that we can determine numerically A2 if
q ∈ [1, q0] with q0 = 32. Then, taking into account (3.11), we can construct Table 3.5.

Hence we deduce that the optimal parameter is q = 5. Table 3.6 shows the obtained
numerical results (θ = 0.9).

Example 3.4. Consider the equation

f(y)− 1

12

∞
∫

0

sin (xy)e−xy f(x) x−1/5e−x3/2

dx =
log (1 + y)√
y(y2 + 4)

.
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Table 3.5

q A m >

1 1.5 381
2 132 27
3 7012.6875 13
4 13610520 14
5 1.769577199804688e+009 11
6 1.190512570851900e+013 13
...

...
...

25 2.134477512167769e+090 26
...

...
...

32 7.851241025230311e+125 33

Table 3.6. q=5

m j em cond(Bj)
16 16 3.41507e-006 28.78177615020002
32 31 2.94802e-010 34.21321407988217
64 62 2.02615e-015 37.37669660028023

It is unisovent in the weighted space Cu with u(x) = (1 + x)0.8x0.35e−x3/2/2. Using the
regularizing procedure described in Section 2, we find that it is equivalent to

F (s)− q

6
sq

∞
∫

0

sin (ts)2q e−(st)2q F (t) t
3

5
q−1e−t3qdt =

log (1 + s2q)

(s4q + 4)
,

which has a unique solution in Cv with v as in (2.6) according to Proposition B.
We immediately notice that all given functions are analytical for each value of q. Conse-

quently, the convergence is very fast as shown in Table 3.7 in which the results were obtained
with q = 1 and θ = 0.7. Note that in this case the constant A = 6.

Table 3.7. q=1

m j em cond(Bj)
8 8 8.87958e-007 1.045102472850763
16 14 1.03388e-010 1.046930825888115
32 27 6.92534e-018 1.048257667797889

If the parameter q increases, the order of convergence remains the same because the
functions are still analytic but the speed of convergence slows down because the constant
increases. Indeed, if, for instance, q = 7, we have A = 1.257542760359232e+ 024. Table 3.8
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Table 3.8. q=7

m j em cond(Bj)
16 15 2.16707e-005 1.044237627930557
32 28 1.00269e-005 1.046535459802606
64 56 3.66678e-008 1.047805484514525
128 110 4.82443e-011 1.048941221806483
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Fig. 3.3. (f∗

32
u)(y)

shows the results obtained at q = 7 (θ = 0.9). Note that the condition number of system
(2.20) is also small in the case where the parameter q increases.

Figure 3.3 shows the graph of the weighted approximate solution f ∗
32u.

4. Proofs

Proof of Proposition 2.1.

We begin by proving (2.12). Let ℓ = min{[ q
λ
], [r]}. By the Faá di Bruno Formula we have

G(ℓ)(s) =
ℓ
∑

k=1

g(k)(γq(s)) Bℓ,k(γ
(1)
q (s), γ(2)

q (s), ..., γ(ℓ−k+1)
q (s)),

where Bℓ,k denotes the partial Bell polynomials defined as (see, e.g., [2, p. 134])

Bℓ,k(x1, x2, ..., xℓ−k+1) =
∑ ℓ!

k1!k2!...kℓ−k+1!

(x1

1!

)k1
(x2

2!

)k2

· ... ·
(

xℓ−k+1

(ℓ− k + 1)!

)k
ℓ−k+1

, (4.1)

where the sum is extended to all positive integers k1, k2, ..., kℓ−k+1 such that k = k1 + k2 +
...+ kℓ−k+1 and k1 + 2k2 + ...+ (ℓ− k + 1)kℓ−k+1 = ℓ.

Developing Bℓ,k(γ
(1)
q (s), γ

(2)
q (s), ..., γ

(ℓ−k+1)
q (s)) leads to

G(ℓ)(s) =
ℓ
∑

k=1

g(k)(γq(s))s
q

λ
k−ℓBℓ,k

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− ℓ+ k

))

.
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Then denoting by ϕ(s) =
√
s, u(s) = (1 + s)ρsγe−sβ/2 and v(s) = u(γq(s))s

− q

λ
δ, we deduce

|(G(ℓ)ϕℓv)(s)|

6

ℓ
∑

k=1

|(g(k)ϕku)(γq(s))|s
q

λ
( k
2
−δ)− ℓ

2Bℓ,k

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− ℓ+ k

))

. (4.2)

Now, by the assumption g ∈ Zr(u). Therefore, taking into account that

Ωk
ϕ(g, t)u 6 C sup

0<h6t

hk‖g(k)ϕku‖I
hk
, (4.3)

with Ihk = [8k2h2, Ch−2] by some computations we have

|(g(k)ϕku)(γq(s))| < Cs q

λ
( r
2
− k

2
)(1 + sq/λ)ρ e−sq/λ/2M(s),

where M is a smooth function.
Thus, by (4.2) taking the supremum on Ihℓ, we have

‖G(ℓ)ϕℓv‖I
hℓ
6 Ch q

λ
(r−2δ)−ℓ

ℓ
∑

k=1

Bℓ,k

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− ℓ+ k

))

,

from which by using (4.3) and some properties of the main part of modulus of smoothness
(see, e.g., [13]) we deduce

sup
τ>0

Ωn
ϕ(g, τ)u

τ
q

λ
(r−2δ)

6 C sup
τ>0

Ωℓ
ϕ(g, τ)u

τ
q

λ
(r−2δ)

< ∞, n >
q

λ
(r − 2δ).

Now we prove (2.13). As for the uniform norm, it is easy to see that

sup
t

v(t)‖htv‖∞ = sup
t

v(t) sup
s>0

|k(γq(t), k(γq(s))sqv(s)|

6 sup
x>0

u(x)‖kxu‖∞ < sup
x>0

u(x)‖kx‖Zr(u), (4.4)

which is bounded by the assumptions. Moreover, by applying the Leibnitz formula we have

h
(ℓ)
t (s) =























ℓ
∑

i=0

(

ℓ
i

)

q!

(q − ℓ+ i)!
sq+i−ℓ[k(γq(t), γq(s))]

(i), ℓ 6 q;

ℓ
∑

i=ℓ−q

(

ℓ
i

)

q!

(q − ℓ+ i)!
sq+i−ℓ[k(γq(t), γq(s))]

(i), ℓ > q.

Hence, by using the Bruno di Fáa formula for computing [k(γq(t), γq(s))]
(i) according to

which we have

[k(γq(t), γq(s))]
(i) =

i
∑

m=0

s
q

λ
m−iBi,m

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− i+m

))

k(m)(γq(t), γq(s)),

with B0,m = 1 for all m = 0, ..., i and Bi,0 = 0 for all i = 1, ..., ℓ and proceeding as already
done for the function G, we get

sup
t

v(t) sup
τ>0

Ωj
ϕ(ht, τ)v

τ
q

λ
(r−2δ)+2q

< C D,
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where D is a constant depending on q and λ. Then (2.13) is proved. Proceeding in the same
way, it is possible to prove (2.14), i.e.,

sup
s

v(s) sup
τ>0

‖hs‖Z q

λ
(r−2δ)+2[η]

(v) < C A,

where

A =



































































ℓ
∑

i=0

(

ℓ
i

)

[η]!

([η]− ℓ+ i)!
i
∑

m=0

Bi,m

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− i+m

))

, ℓ 6 [η];

ℓ
∑

i=ℓ−[η]

(

ℓ
i

)

[η]!

([η]− ℓ+ i)!

i
∑

m=0

Bi,m

( q

λ
,
q

λ

( q

λ
− 1
)

, ...,
q

λ
· ... ·

( q

λ
− i+m

))

, ℓ > [η].
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RUNGE-KUTTA NYSTROM METHOD OF ORDER

THREE FOR SOLVING FUZZY DIFFERENTIAL

EQUATIONS

K.KANAGARAJAN1 AND M. SAMBATH1

Abstract — In this paper we present a numerical algorithm for solving fuzzy differ-
ential equations based on Seikkala’s derivative of a fuzzy process. We discuss in detail
a numerical method based on a Runge-Kutta Nystrom method of order three. The
algorithm is illustrated by solving some fuzzy differential equations.

2000 Mathematics Subject Classification: 34A12, 34K28, 65L05.

Keywords: numerical solution, fuzzy differential equation, Runge-Kutta Nystrom
method of order 3.

1. Introduction

The fuzzy set theory is a tool that makes it possible to describe vague and uncertain notions.
The concept of the fuzzy derivative was first introduced by Chang and Zadeh [4]. Later
Dubois and Prade [5] defined and used the extension principle. Other methods have been
discussed by Puri and Ralescu [12]. Fuzzy differential equations have been suggested as
a way of modelling uncertain and incompletly specified systems and were studied by many
researchers [7, 8, 9]. The existence of solutions of fuzzy differential equations has been studied
by several authors [2, 3]. It is difficult to obtain an exact solution for fuzzy differential
equations and, therefore, several numerical methods were proposed [10, 11]. Abbasbandy
and Allahviranloo [1] developed numerical algorithms for solving fuzzy differential equations
based on Seikkala’s derivative of the fuzzy process introduced in [14]. In this paper, we apply
the Runge-Kutta Nystrom method of order three to solve fuzzy differential equations and
have established that this method is better than the Euler method. The structure of the
paper is organized as follows:

In Section 2, we give some basic definitions and results. In Section 3, we define the initial
value problem and discuss the Runge-Kutta Nystrom method of order three. In Section 4,
we apply the third order Runge-Kutta Nystrom method to solve the initial value problem
and give the convergence result. Finally, in Section 5, we give some examples to illustrate
our results.

1Department of Mathematics, Sri Ramakrishna Mission Vidyalaya, College of Arts and Science, Coim-

batore 641 020, India. E-mail: kanagarajank@gmail.com
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2. Preliminaries

Consider the initial value problem

{

y′(t) = f(t, y(t)); a 6 t 6 b,

y(a) = α.
(2.1)

The point of all Runge-Kutta method is to express the difference between the value of y
at tn+1 and tn as

yn+1 − yn =
m
∑

i=1

wiki, (2.2)

where wi’s are constants and for i = 1, 2, · · ·m,

ki = hf

(

tn + cih, yn + h

i−1
∑

j=1

aijkj

)

. (2.3)

Equation (2.2) must be exact for powers of h through hm, because it must be coincident
with Taylor series of order m. Therefore, the truncation error Tm, can be writtern as

Tm = γmh
m+1 +O(hm+2).

The true value of γm will generally be much less than the bound of Theorem 2.1. Thus, if
the O(hm+2) term is small compared to γmh

m+1 for small h, then the bound on γmh
m+1 will

usually be a bound on the error as a whole. The famous nonzero constants ci, aij in the
Runge-Kutta Nystrom method of order three are

c1 = 0, c2 = 2/3, c3 = 2/3, a21 = 2/3, a32 = 2/3,

where m = 3. Hence we have (see [6])

k1 = hf
(

ti, yi

)

,

k2 = hf
(

ti +
2h
3
, yi +

2
3
k1
)

,

k3 = hf
(

ti +
2h
3
, yi +

2
3
k2
)

,

yi+1 = yi +
1
8
(2k1 + 3k2 + 3k3),

(2.4)

where

a = t0 6 t1 6 · · · 6 tN = b and h =
(b− a)

N
= ti+1 − ti. (2.5)

Theorem 2.1. Let f(t, y) belong to C3[a, b] and its partial derivatives be bounded and
let us assume that there exist positive constants L,M, such that

|f(t, y)| < M,

∣

∣

∣

∣

∂i+jf

∂ti∂yj

∣

∣

∣

∣

<
Li+j

M j−1
, i+ j 6 m,

then in the Runge-Kutta Nystrom method of order three, we have (see [13])

y(ti+1)− yi+1 ≈ γ3h
4 + O(h5),

y(ti+1)− yi+1 ≈ 25

108
h4ML3 + O(h5).
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The triangular fuzzy number v is defined by three numbers a1 < a2 < a3, where the graph
of v(x) (a membership function of the fuzzy number v) is a triangle with the base on the
interval [a1, a3] and vertex at x = a2. We specify v as (a1/a2/a3). We will write (2.1) v > 0
if a1 > 0; (2.2) v > 0 if a1 > 0; (2.3) v < 0 if a3 < 0; and (2.4) v 6 0 if a3 6 0.

Let E be the set of all upper semicontinuous normal convex fuzzy numbers with bounded
r−level intervals. This means that if v ∈ E, then the r−level set

[v]r = {s | v(s) > r}, 0 < r 6 1,

is a closed bounded interval denoted by

[v]r = [v1(r), v2(r)].

Let I be a real interval. The mapping x : I → E is called a fuzzy process and its r−level
set is denoted by

[x(t)]r = [x1(t; r), x2(t; r)], t ∈ I, r ∈ (0, 1].

The derivative x′(t) of the fuzzy process x(t) is defined by

[x′(t)]r = [x′
1(t; r), x′

2(t; r)], t ∈ I, r ∈ (0, 1],

provided that this equation defines a fuzzy number, as in [14].

Lemma 2.1. Let v, w ∈ E and s be a scalar, then for r ∈ (0, 1]

[v + w]r = [v1(r) + w1(r), v2(r) + w2(r)],

[v − w]r = [v1(r)− w1(r), v2(r)− w2(r)],

[v · w]r = [min{v1(r) · w1(r), v1(r) · w2(r), v2(r) · w1(r), v2(r) · w2(r)},
max{v1(r) · w1(r), v1(r) · w2(r), v2(r) · w1(r), v2(r) · w2(r)}],

[sv]r = s[v]r.

3. Fuzzy Cauchy Problem

Consder the fuzzy initial value problem

{

y′(t) = f(t, y(t)); t ∈ I = [0, T ],

y(a) = y0,
(3.1)

where f is a continuous mapping from R+ ×R onto R and y0 ∈ E with r-level sets

[y0]r = [y1(0; r), y2(0; r)], r ∈ (0, 1].

The extension principle of Zadeh leads to the following definition of f(t, y) when y = y(t) is
a fuzzy number:

f(t, y)(s) = sup{y(τ)|s = f(t, r)}, s ∈ R.

It follows that
[f(t, y)]r = [f1(t, y; r), f2(t, y; r)], r ∈ (0, 1],

where
f1(t, y; r) = min{f(t, u)| u ∈ [y1(r), y2(r)]},
f2(t, y; r) = max{f(t, u)| u ∈ [y1(r), y2(r)]}.

(3.2)



198 K. Kanagarajan and M. Sambath

Theorem 3.1. [14] Let f satisfy

|f(t, v)− f(t, v)| 6 g(t, |v − v|), t > 0, v, v ∈ R,

where g : R+ × R+ is a continuous mapping such that r → g(t, r) is nondecreasing and the
initial value problem

u′(t) = g(t, u(t)), u(0) = u0, (3.3)

has a solution on R+ for u0 > 0 and that u(t) = 0 is the only solution of (3.3) for u0 = 0.
Then the fuzzy initial value problem (3.1) has a unique solution.

4. Third-order Runge-Kutta Nystrom method

Let the exact solution [Y (t)]r = [Y1(t; r), Y2(t; r)] be approximated by some [y(t)]r =
[y1(t; r), y2(t, r)]. From (2.2),(2.3) we define

y1(tn+1; r)− y1(tn; r) =
3
∑

i=1

wiki,1(tn, y(tn; r)),

y2(tn+1; r)− y2(tn; r) =
3
∑

i=1

wiki,2(tn, y(tn; r)),

(4.1)

where wi’s are constants and

[ki(t, y(t; r))]r = [ki,1(t, y(t; r), ki,2(t, y(t; r))], i = 1, 2, 3

ki,1(tn, y(tn; r)) = hf

(

tn + cih , y1(tn) +
i−1
∑

j=1

aijkj,1(tn, y(tn; r))

)

,

ki,2(tn, y(tn; r)) = hf

(

tn + cih , y2(tn) +
i−1
∑

j=1

aijkj,2(tn, y(tn; r))

)

,

(4.2)

and

k1,1(t, y(t; r)) = min
{

hf (t, u) |u ∈ [y1(t; r), y2(t; r)]
}

,

k1,2(t, y(t; r)) = max
{

hf (t, u) |u ∈ [y1(t; r), y2(t; r)]
}

,

k2,1(t, y(t; r)) = min
{

hf
(

t+ 2
3
h, u
)

∣

∣

∣
u ∈ [z1,1(t, y(t; r)), z1,2(t, y(t; r)]

}

,

k2,2(t, y(t; r)) = max
{

hf
(

t+ 2
3
h, u
)

∣

∣

∣
u ∈ [z1,1(t, y(t; r)), z1,2(t, y(t; r)]

}

,

k3,1(t, y(t; r)) = min
{

hf
(

t+ 2
3
h, u
)

∣

∣

∣
u ∈ [z2,1(t, y(t; r)), z2,2(t, y(t; r)]

}

,

k3,2(t, y(t; r)) = max
{

hf
(

t+ 2
3
h, u
)

∣

∣

∣
u ∈ [z2,1(t, y(t; r)), z2,2(t, y(t; r)]

}

,

(4.3)
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where in the third-order Runge-Kutta method

z1,1(t, y(t; r)) = y1(t; r) +
2
3
k1,1(t, y(t; r)),

z1,2(t, y(t; r)) = y2(t; r) +
2
3
k1,2(t, y(t; r)),

z2,1(t, y(t; r)) = y1(t; r) +
2
3
k2,1(t, y(t; r)),

z2,2(t, y(t; r)) = y2(t; r) +
2
3
k2,2(t, y(t; r)).

(4.4)

Define

F [t, y(t; r)] = 2k1,1(t, y(t; r) + 3k3,1(t, y(t; r)) + 3k3,1(t, y(t; r)),

G[t, y(t; r)] = 2k1,2(t, y(t; r) + 3k3,2(t, y(t; r)) + 3k3,1(t, y(t; r)).
(4.5)

The exact and approximate solutions at tn, 0 6 n 6 N are denoted by [Y (tn)]r =
[Y1(tn; r), Y2(tn; r)] and [y(tn)]r = [y1(tn; r), y2(tn; r)], respectively. The solution is calcu-
lated by the grid points (2.5). By (4.1),(4.5) we have

Y1(tn+1; r) ≈ Y1(tn; r) +
1

8
F [tn, Y (tn; r)] ,

Y2(tn+1; r) ≈ Y2(tn; r) +
1

8
G [tn, Y (tn; r))] .

(4.6)

We define

y1(tn+1; r) = y1(tn; r) +
1
8
F [tn, y(tn; r)] ,

y2(tn+1; r) = y2(tn; r) +
1
8
G [tn, y(tn; r)] .

(4.7)

The following lemmas will be applied to show the convergence of these approximations.
That is

lim
h→0

y1(t; r) = Y1(t; r),

lim
h→0

y2(t; r) = Y2(t; r).

Lemma 4.1. [10] Let the sequence of numbers {Wn}Nn=0 satisfy

|Wn+1| 6 A|Wn|+ B, 0 6 n 6 N − 1,

for some given positive constants A and B. Then

|Wn| 6 An|W0|+ B
An − 1

A− 1
, 0 6 n 6 N.

Lemma 4.2. [10] Let the sequence of numbers{Wn}Nn=0, {Vn}Nn=0 satisfy

|Wn+1| 6 |Wn|+ Amax{|Wn|, |Vn|}+ B,

|Vn+1| 6 |Vn|+ Amax{|Wn|, |Vn|}+ B,

for some given positive constants A and B, and denote

Un = |Wn|+ |Vn|, 0 6 n 6 N.

Then

Un 6 A
n
U0 + B

A
n − 1

A− 1
, 0 6 n 6 N,

where A = 1 + 2A and B = 2B.
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Let F (t, u, v) and G(t, u, v) be obtained by substituting [y(t)]r = [u, v] into (4.5),

F [t, y(t; r)] = 2k1,1(t, y(t; r) + 3k3,1(t, y(t; r)) + 3k3,1(t, y(t; r)),

G[t, y(t; r)] = 2k1,2(t, y(t; r) + 3k3,2(t, y(t; r)) + 3k3,1(t, y(t; r)).

The domain where F and G are defind is therefore

K = {(t, u, v)|0 6 t 6 T, −∞ < v < ∞ , −∞ < u 6 v}.

Theorem 4.1. Let F (t, u, v) and G(t, u, v) belong to C3(k) and let the partial deriva-
tives of F and G be bounded over K. Then, for arbitrary fixed r, 0 6 r 6 1, the approximate
solutions (4.6) converge to the exact solutions Y1(t; r) and Y2(t; r) uniformly in t.

Proof. It suffices to show
lim
h→0

y1(tN ; r) = Y1(tN ; r),

lim
h→0

y2(tN ; r) = Y2(tN ; r),

where tN = T . For n = 0, 1, · · · , N − 1, by using the Taylor theorem we get

Y1(tn+1; r) = Y1(tn; r) +
1
8
F [tn, Y (tn; r)] +

25
108

h4ML3 +O(h5),

Y2(tn+1; r) = Y2(tn; r) +
1
8
G [tn, Y (tn; r))] +

25
108

h4ML3 +O(h5),
(4.8)

Wn = Y1(tn; r)− y1(tn; r),

Vn = Y2(tn; r)− y2(tn; r).

Hence from (4.7) and (4.8)

Wn+1 = Wn +
1

8
{F [tn, Y1(tn; r), Y2(tn; r)]− F [tn, y1(tn; r), y2(tn; r)]}

+
25

108
h4ML3 +O(h5),

Vn+1 = Vn +
1

8
{G [tn, Y1(tn; r), Y2(tn; r)]−G [tn, y1(tn; r), y2(tn; r)]}

+
25

108
h4ML3 +O(h5).

Then

|Wn+1| 6 |Wn|+
1

4
Ph ·max{|Wn|, |Vn|}+

25

108
h4ML3 +O(h5),

|Vn+1| 6 |Vn|+
1

4
Ph ·max{|Wn|, |Vn|}+

25

108
h4ML3 +O(h5),

for t ∈ [0, T ] and P > 0 is a bound for the partial derivatives of F and G. Thus, by Lemma 4.2

|Wn| 6 (1 +
1

2
Ph)n|U0|+

(

25

54
h4ML3 +O(h5)

)

(1 + 1
2
Ph)n − 1
1
2
Ph

,

|Vn| 6 (1 +
1

2
Ph)n|U0|+

(

25

54
h4ML3 +O(h5)

)

(1 + 1
2
Ph)n − 1
1
2
Ph

,



Runge-Kutta Nystrom method of order three for solving fuzzy differential equations 201

where |U0| = |W0|+ |V0|. In particular

|WN | 6 (1 +
1

2
Ph)N |U0|+

(

25

28
h3ML3 +O(h4)

)

(1 + 1
2
Ph)

T

h − 1

P
,

|VN | 6 (1 +
1

2
Ph)N |U0|+

(

25

28
h3ML3 +O(h4)

)

(1 + 1
2
Ph)

T

h − 1

P
.

Since W0 = V0 = 0, we obtain

|WN | 6
25

28
ML3

(

e
1

2
Ph − 1

P

)

h3 +O(h4),

|VN | 6
25

28
ML3

(

e
1

2
Ph − 1

P

)

h3 +O(h4),

and if h → 0, we get WN → 0 and VN → 0 which completes the proof.

5. Numerical Examples

Example 5.1. Consider the fuzzy differential equation

{

y′(t) = −y(t), t > 0,

y(0) = [0.96 + 0.04r, 1.01− 0.01r].
(5.1)

The exact solution is given by

Y (t; r) =
[

(0.96 + 0.04r)e−t, (1.01− 0.01r)e−t
]

.

At t = 0.1 we get

Y (0.1; r) =
[

(0.96 + 0.04r)e−0.1, (1.01− 0.01r)e−0.1
]

.

With the use of the third-order Runge-kutta Nystrom method the approximate solution is

y1(tn+1; r) = y1(tn; r)

(

1− h+
h2

2!
− h3

3!

)

,

y2(tn+1; r) = y2(tn; r)

(

1− h+
h2

2!
− h3

3!

)

.

The exact and approximate solutions obtained by the Euler method and by the third-orde
Runge-Kutta Nystrom method are compared and plotted in Fig. 5.1.

Example 5.2. Consider the fuzzy differential equation

{

y′(t) = ty(t), t ∈ [0, 1]

y(0) =
[√

e− 0.5(1− r),
√
e+ 0.5(1− r)

]

.
(5.2)
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Fig. 5.1. (h=0.2)

The exact solution is given by Y (t; r) =
[

(
√
e− 0.5(1− r))e

t
2

2 , (
√
e+ 0.5(1− r))e

t
2

2

]

.

At t = 0.1 we get Y (0.1; r) = [(
√
e− 0.5(1− r))e0.005, (

√
e+ 0.5(1− r))e0.005] . The exact

and approximate solutions obtained by the third-order Runge-Kutta Nystrom method (Eqs.
(4.3) - (4.7)), are compared and plotted in Fig. 5.2.
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Fig. 5.2. (h=0.5)

6. Conclusions

In this work, we have used the third-order Runge-Kutta Nystrom method to find a numerical
solution of fuzzy differential equations. Taking into account the convergence order of the
Euler method is O(h) (as given in [10]), a higher order of convergence O(h3) is obtained by
the proposed method. Comparison of the solutions of examples 5.1 and 5.2 shows that the
proposed method gives a better solution than the Euler method does.
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COMPUTATION OF THE HARTREE-FOCK

EXCHANGE BY THE TENSOR-STRUCTURED

METHODS

V.KHOROMSKAIA1

Abstract — We propose a novel numerical method for fast and accurate evalua-
tion of the exchange part of the Fock operator in the Hartree-Fock equation which
is a (nonlocal) integral operator in R

3 × R
3. Usually, this challenging computational

problem is solved by analytical evaluation of two-electron integrals using the “ana-
lytically separable” Galerkin basis functions, like Gaussians. Instead, we employ the
agglomerated “grey-box” numerical computation of the corresponding six-dimensional
integrals in the tensor-structured format which does not require analytical separability
of the basis set. The point of our method is a low-rank tensor representation of arising
functions and operators on an n× n× n Cartesian grid and the implementation of the
corresponding multi-linear algebraic operations in the tensor product format. Linear
scaling of the tensor operations, including the 3D convolution product, with respect to
the one-dimension grid size n enables computations on huge 3D Cartesian grids thus
providing the required high accuracy. The presented algorithm for evaluation of the
exchange operator and a recent tensor method for the computation of the Coulomb
matrix are the main building blocks in the numerical solution of the Hartree-Fock equa-
tion by the tensor-structured methods. These methods provide a new tool for algebraic
optimization of the Galerkin basis in the case of large molecules.

2000 Mathematics Subject Classification: 65F30, 65F50, 65N35, 65F10.

Keywords: Hartree-Fock operator, exchange matrix, canonical model, discrete tensor
convolution, tensor-structured methods, tensor-product basis functions.

1. Introduction

In recent decades great progress has been made in the development of canonical and Tucker-
type decomposition algorithms as applied to problems of independent component analysis,
signal processing and higher order statistics (see [3, 4]) and a comprehensive survey on tensor
decomposition methods [18].

Theoretical analysis of the multilinear tensor product approaches for the treatment of
some multivariate operators and functions arising in scientific computing was performed in
[5, 6, 8, 12]. The application of tensor decomposition algorithms to discretized multivariate
functions and operators [10, 14, 13, 11] showed that methods of multi-way analysis can be ap-
plied to the numerical solution of basic equations of mathematical physics placing stringent
requirements upon the accuracy of results. In particular, the Tucker and canonical tensor
product approximations allow to reduce dramatically the complexity of accurate function
and operator calculus in R

d, d > 3, realized on large Cartesian grids [15]. Tensor-structured

1Max-Planck-Institute for Mathematics in the Sciences, Inselstr. 22-26, D-04103 Leipzig, Germany. E-
mail: vekh@mis.mpg.de
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algorithms acting as “grey-box” schemes, appear to be efficient in electronic structure cal-
culations [11, 15, 16, 17].

Here, we develop a grid-based tensor-structured method for computing the exchange
operator in the Hartree-Fock equation using the low-rank representation of the functions and
operators involved on an n×n×n Cartesian grid. Numerical complexity of the corresponding
algorithm scales linearly in the univariate grid size n, O(n).

The Hartree-Fock model provides a meanfield approximation for the ground state of
many-electron systems. This implies the solution of a nonlinear eigenvalue problem in R

3

(

−1

2
∆ + Vnuc + VH − Vx

)

ϕa(x) = λa ϕa(x), x ∈ R
3, (1.1)

for Norb lowest eigenvalues λa and spatial eigenfunctions ϕa (a = 1, ..., Norb); in the case of a
closed-shell N electron system, N = 2Norb. Equation (1.1) corresponds to a nonlinear single-
particle Schrödinger equation in R

3, where the potentials VH and Vx represent a meanfield
acting on a single electron generated by the remaining N − 1 electrons in the system. Here,
the external potential Vnuc contains bare Coulomb- or pseudopotentials of the nuclei.

The tensor-structured (TS) methods developed in [14, 10, 13, 15] have been successfully
used for highly accurate grid-based numerical computations of the Hartree potential and
the Coulomb matrix in the Hartree-Fock equation [15, 17]. For efficient computation of the
Hartree potential in (1.1),

VH(x) :=

∫

R3

ρ(y)

‖x− y‖ dy, x ∈ R
3, (1.2)

which corresponds to the convolution of the Coulomb potential with the electron density,

ρ(y) = 2

N
orb
∑

a=1

ϕa(y)ϕ
∗
a(y), (1.3)

we used the low-rank tensor product representation of the electron density ρ and the con-
volving kernel on an n × n × n Cartesian grid and performed multilinear operations in the
tensor-product format.

In the present paper, we consider the tensor product approximation of the nonlocal
(integral) exchange operator Vx in the Hartree-Fock equation. Note that the calculation of
the exchange Galerkin matrix in the Hartree-Fock equation is a challenging problem due to
the nonlocal character of the exchange operator

(Vxψ) (x) :=

N
orb
∑

b=1

∫

R3

ϕb(x)ϕ
∗
b(y)

‖x− y‖ ψ(y) dy, x ∈ R
3, (1.4)

leading to the integration in six dimensions (see (3.1)). This problem is usually solved
analytically by evaluating the so-called two-electron integrals using separable basis sets like
Gaussians (see [27, 20] and the references therein).

Here, we propose and implement an agglomerated grid-based method for evaluating the
Hartree-Fock exchange (1.4). We apply the tensor product approximation of arising oper-
ators and functions on an n × n × n Cartesian grid and use multilinear tensor operations
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providing linear scaling with respect to the one-dimension grid size n, O(n)2. We use the
fast tensor product convolution for the multivariate functions in R

d, d > 3, already employed
in [15] for evaluating VH , which provides the complexity O(d n log n); in our case, d = 3.
The tensor product convolution developed in [13] considerably outperforms the benchmark
algorithm based on the 3D Fast Fourier Transform (FFT) having the cost O(n3 log n).

To cover the general case of molecular geometries, in the numerical examples, we use
equal grid sizes n for three spatial dimensions (a cubic computational box) and do not
employ information on molecular symmetry. Therefore, our scheme works as a “grey-box”
algebraic algorithm, where as the input data only the discrete representation of the Galerkin
basis functions is used. However, the algorithm works as well with arbitrary n1 × n2 × n3

grids.

Our initial algorithm for evaluating (1.4) has the complexity O(n log nR2
0 + nef R

4
0Norb),

where nef ≪ n is the “effective” univariate grid size, and R0 is the number of Galerkin basis
functions. Here we reduce the constant in the linear complexity scaling in n by truncating
the regions of computation intervals, where the values of rapidly decaying basis functions (in
particular, Gaussians) are less than the threshold controlling the accuracy of computations.
Thus, we have for the number of grid points in effective support of the interacting vectors,
nef = αn, with α much less than 1.

To reduce the R0-asymptotics to O(R3
0), we further apply the canonical-to-Tucker al-

gorithm for decreasing the ranks of intermediate results after every convolution step. The
corresponding rank reduction algorithms are considered in [15].

The main advantage of the proposed computational scheme is the ability to avoid “an-
alytically separable” rank-1 basis sets like Gaussians, which are obligatory for the standard
approaches. It is well known that the sizes of Gaussian basis sets grow significantly for larger
molecules, which makes the related Hartree-Fock problem with the complexity scaling as R3

0

computationally unfeasible. Here, we use the discretized Gaussians mostly for the sake of
convenient comparison of the accuracy of computations with the benchmark results of the
standard MOLPRO package [26]. Indeed, we can employ, as the Galerkin basis any appropri-
ate set of functions which are separable algebraically (say, using the Tucker decomposition),
with ranks larger or equal to 1 and complying with the approximation requirements. There-
fore, the tensor-structured method proposed in this paper provides a new means for algebraic
optimization of the Galerkin basis in the case of large molecules.

The accuracy of the computation on a particular grid is estimated by O(h2), where
h = O(n−1) is the stepsize of the grid. We achieve O(h3) accuracy in our evaluation of the
exchange matrix by using the Richardson extrapolation on a couple of consequent grids. The
univariate size of the computational box for small organic molecules is in the range of 14÷20
◦

A. Since the TS methods enable computations on huge 3D Cartesian grids, the univariate

stepsizes of applied grids range from h ≈ 2 · 10−2
◦

A for n = 1024, up to h ≈ 8 · 10−4
◦

A for
the benchmark grids with the number of entries n3 = 163843.

The rest of the paper is organized as follows. In Section 2, we recall the definitions of
the basic rank-structured formats and describe the multilinear tensor-product operations in
the rank-R canonical format. In Section 3, we discuss the representation of the exchange
operator in the particular Galerkin basis and the discrete computational scheme. The latter
does not depend on the character of the basis finctions and allows arbitrary vectors of the

2Note that the commonly used attribute “linear in the problem size” for the problems in three spatial
dimensions often means linear complexity with respect to the volume size which is V = n3.
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canonical agglomerated representation of a given 3D tensor. We give a detailed description
of the algorithm and provide a complexity estimate. Section 4 describes the numerical results
of computations of the Hartree-Fock exchange matrix for the pseudopotential case of some
organic molecules and the all electron case of water molecule using huge 3D Cartesian grids.
The figures illustrate the accuracy O(h3) and the linear scaling of the computation time
in the univariate grid size n. Numerical experiments were performed in Matlab 7.6 on a
standard SUN station. The results of computations are given in comparison with the output
of the standard quantum chemistry package MOLPRO [26].

The tensor-structured computations of the Hartree-Fock exchange, along with the tensor-
based algorithms for calculating the Coulomb matrix considered in [15], are the main building
blocks in the recent grid-based numerical solution of the Hartree-Fock equation by the TS
methods (see the 3D nonlinear EVP solver [16]).

2. Tensor-structured representation of multivariate functions and

operators

2.1. Rank-structured tensor approximation

A tensor of order d is a multidimensional array of real/complex data whose elements are
referred by using a tensor-product index set I = I1 × . . .× Id. We use the common notation

A = [ai1,...,id : iℓ ∈ Iℓ] ∈ R
I , Iℓ = {1, ..., nℓ}, ℓ = 1, ..., d,

to denote the dth order tensor, and n for the d-tuple (n1, ..., nd). The tensor A is an element
of the tensor-product linear space Vn = ⊗d

ℓ=1Vℓ with Vℓ = R
I
ℓ equipped with the Euclidean

scalar product 〈·, ·〉 : Vn × Vn → R, defined as

〈A,B〉 :=
∑

(i1,...,id)∈I

ai1,...,idbi1,...,id for A ,B ∈ Vn. (2.1)

Assume for simplicity that dimVℓ = #Iℓ = n for all ℓ = 1, ..., d, then the number of
entries in V amounts to nd, hence growing exponentially in d.

To get rid of exponential scaling in the dimension, approximate data-sparse “rank struc-
tured” representations of tensors in Vn can be applied. As the simplest rank structured
ansatz, we make use of rank-1 tensors. Specifically, the tensor product of vectors uℓ =
{uℓ,i

ℓ
}i

ℓ
∈I

ℓ
∈ Vℓ (ℓ = 1, ..., d) forms the canonical rank-1 tensor

A ≡ [ui]i∈I = u1 ⊗ ...⊗ ud ∈ Vn with entries ui = u1,i1 · · · ud,id ,

which requires only dn numbers to store it.
We define a tensor in the canonical format

A(R) =
R
∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , ck ∈ R, (2.2)

with normalised vectors u
(ℓ)
k ∈ Vℓ (ℓ = 1, ..., d), where the minimal parameter R ∈ N in (2.2)

is called the rank (or canonical rank) of the tensor. In our tensor-structured computations,
we use the rank-R canonical representation for multilinear operations.
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Given the rank parameter r = (r1, ..., rd), we can represent the initial tensor A in the
so-called Tucker format

A ≈ A(r) =
∑r1

ν1=1
. . .
∑r

d

ν
d
=1
βν1,...,νd v

(1)
ν1

⊗ . . .⊗ v(d)ν
d

, (2.3)

with some vectors v
(ℓ)
ν
ℓ

∈ Vℓ = R
I
ℓ (1 6 νℓ 6 rℓ), which form the orthonormal basis of

span{v(ℓ)ν }rℓν=1 (ℓ = 1, ..., d). Here we call the parameter

r = max
ℓ

{rℓ}

the maximal Tucker rank. For classes of function related tensors, the choice r = O(log n)
ensures the approximation order O(1/n) [5, 6, 10]. The coefficients tensor β = [βν1,...,νd ],
that is an element of the tensor space

Br = R
J1×...×J

d , Jℓ = {1, . . . rℓ}, ℓ = 1, . . . d, (2.4)

is called the core tensor.
Introducing the (orthogonal) side matrices V (ℓ) = [v

(ℓ)
1 ...v

(ℓ)
r
ℓ
], we then use a tensor-by-

matrix contracted product to represent the Tucker decomposition of A(r),

A(r) = β ×1 V
(1) ×2 V

(2)...×d V
(d). (2.5)

In the present computations, we also use the mixed Tucker-canonical format,

A(r) =

(

R
∑

k=1

bku
(1)
k ⊗ . . .⊗ u

(d)
k

)

×1 V
(1) ×2 V

(2) ×3 . . .×d V
(d),

that is visualized in Fig. 2.1. In this case, the Tucker core is represented by a rank-R
canonical tensor. A more detailed description of the tensor decomposition algorithms and
of the multigrid rank reduction scheme based on the canonical-to-Tucker approximation is
given in [15].

A

r3

I3

I2

r
2

(3)

(2)

I
1

I

I

I

2

3

1
r
2

r
3

r
1

+ . . . +
1
(3) (3)

r

1

1
(2)

(1)
r
2

r
3

r
1

+ d r n
r1 rdnd

(1)

u

u

u u

b1 b
R (2)

r
u

u
(1)
r

2R < = r
V

V

V β

β β

F i g. 2.1. Mixed Tucker-canonical format
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2.2. Multilinear operations in the tensor product format

In our numerical scheme, we apply the following linear operations with dth order tensors:

1. summation of tensors;

2. scalar product of tensors;

3. Hadamard product of tensors;

4. convolution product of tensors.

A comprehensive description of the multi-linear tensor-product operations for the multidi-
mensional tensors is presented in the survey [18] (see also [14, 13, 22] for details on function
related tensors).

Let us consider tensors A1, A2, represented in the rank-R canonical format, (2.2),

A1 =

R1
∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k , A2 =

R2
∑

m=1

bmv
(1)
m ⊗ . . .⊗ v(d)m , (2.6)

with normalized vectors u
(ℓ)
k , v

(ℓ)
m ∈ R

I
ℓ . (For simplicity of notation, we consider nℓ = n.)

1. The sum of two canonical tensors given by (2.6) can be written as

A1 + A2 =

R1
∑

k=1

cku
(1)
k ⊗ . . .⊗ u

(d)
k +

R2
∑

m=1

bmv
(1)
m ⊗ . . .⊗ v(d)m , (2.7)

resulting in a canonical tensor with the rank RS = R1+R2. This operation has no cost since
it is simply a concatenation of two tensors.

2. For given canonical tensors A1, A2, the scalar product (2.1) can be computed by

〈A1, A2〉 :=
R1
∑

k=1

R2
∑

m=1

ckbm

d
∏

ℓ=1

〈

u
(ℓ)
k , v(ℓ)m

〉

. (2.8)

The calculation of (2.8) includes R1R2 scalar products of vectors in R
n, leading to the overall

complexity
N〈·,·〉 = O(dnR1R2).

3. The Hadamard product A ⊙ B ∈ R
I of two tensors A,B ∈ R

I , A = [ai], B = [bi], of
the same size I is defined componentwise

(A⊙B)
i
= ai bi, i ∈ I.

Hence, for A1, A2 given by (2.6) we tensorize the Hadamard product by

A1 ⊙ A2 :=

R1
∑

k=1

R2
∑

m=1

ckbm

(

u
(1)
k ⊙ v(1)m

)

⊗ . . .⊗
(

u
(d)
k ⊙ v(d)m

)

. (2.9)

This leads to the complexity O(dnR1R2).
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4. In electronic structure calculations, the three-dimensional convolution transform with
the Newton convolving kernel, p(x − y) = 1

‖x−y‖
, is the most computationally expensive

operation. We employ the discrete version of the multidimensional convolution transform
[13]

w(x) =

∫

R3

f(y)p(x− y)dy, x ∈ R
3, supp f ⊂ [−b, b]3,

by applying the standard collocation scheme to discretise the convolution product on the
tensor grid

ω3,n := ω1 × ω2 × ω3, ωℓ := {−b+ (m− 1)h : m = 1, ..., n+ 1}, ℓ = 1, ..., 3, (2.10)

with a mesh-size h = 2b/n, with n being an even number. We denote the grid points
by {xm}, m ∈ M := {1, ..., n + 1}3. For given piecewise constant basis functions {φi},
i ∈ I := {1, ..., n}3, associated with ω3,n, and a given continuous density function f , let
fi = f(yi) be the representation coefficients of f in {φi},

f(y) ≈
∑

i∈I

fiφi(y), (2.11)

where yi is the midpoint of the grid-cell (voxel) δi := δi1 × δi2 × δi3 numbered by i ∈ I, with
δi

ℓ
:= [−b+ (iℓ − 1)h,−b+ iℓh] (ℓ = 1, ..., 3). Now the collocation scheme reads as

f ∗ p ≈ {Wm}m∈M, Wm :=
∑

i∈I

fi

∫

R3

φi(y)p(xm − y)dy, xm ∈ ω3,n.

As a first step, we precompute the coefficients

pi =

∫

R3

p(y)φi(y)dy, i ∈ I.

The coefficient tensor P = [pi] ∈ R
I for the Coulomb potential p(x − y) = 1

‖x−y‖
is ap-

proximated in the rank-RN canonical tensor format using the optimised sinc-quadratures
[2], where the rank parameter RN = O(| log ε| log n) depends logarithmically on both the
required accuracy ε > 0 and the grid size n. The 3rd order coefficient tensor F = [fi] ∈ R

I

is approximated either in the rank r = (r, r, r) Tucker format or via the canonical model
with tensor rank R.

Following [13, 14], the resultant discrete convolution tensor [Wm] can be obtained by
copying the corresponding portion of the tensor convolution in Vn,

F ∗ P := [zj], zj :=
∑

i∈I

fipj−i+1, j ∈ J := {1, ..., 2n− 1}3, (2.12)

centred at j = n, where the sum is over all i, j ∈ I, which leads to legal subscripts for vj−i+1,
i.e., j− i+ 1 ∈ I.

Approximating F in the rank-R canonical format (see (2.2)) enables us to compute F ∗P
in the form (for two canonical tensors as in (2.6))

F ∗ P := A1 ∗ A2 =

RN
∑

k=1

R
∑

m=1

ckbm

(

u
(1)
k ∗ v(1)m

)

⊗
(

u
(2)
k ∗ v(2)m

)

⊗
(

u
(3)
k ∗ v(3)m

)

. (2.13)
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Assuming that one-dimensional convolutions u
(ℓ)
k ∗ v(ℓ)m ∈ R

2n−1 can be computed in
O(n log n) operations, the complexity estimate takes the form

N·∗· = O(n log nRNR).

As mentioned above, the tensor product convolution considerably outperforms the conven-
tional 3D FFT having the complexity O(n3 log n) (see the numerics in [15]).

3. Calculation of the Hartree-Fock exchange

3.1. Agglomerated representation of the exchange operator

The exchange Galerkin matrix Kex with respect to the normalized basis set {gk}k=1,...R0
is

given by

Kex = {Kij}R0

i,j=1, Kij := −1

2

∫

R3

∫

R3

gi(x)
τ(x, y)

‖x− y‖gj(y)dxdy, i, j = 1, . . . R0, (3.1)

where the density matrix τ(x, y) is defined as

τ(x, y) =

N
orb
∑

a=1

ϕa(x)ϕa(y),

over all occupied orbitals a.
The low cost of the three-dimensional convolution using the canonical representation of

the convolving tensors makes possible the agglomerated numerical evaluation of the exchange
matrix in the Fock operator. For this purpose, we divide the integration in (3.1) into the
following steps. First, we compute the convolutions of the pointwise products of molecular
orbitals with the vectors from the normalized Gaussian basis set

Waj(x) =

∫

R3

ϕa(y)gj(y)

‖x− y‖ dy a = 1, . . . , Norb, j = 1, . . . , R0. (3.2)

These are further used for the calculation of contributions to the Galerkin matrix elements
from every orbital a,

Vij,a =

∫

R3

ϕa(x)gi(x)Waj(x)dx, i, j = 1, . . . R0. (3.3)

The entries of the exchange matrix are then the sums of the corresponding values over all
orbitals

Kij =

N/2
∑

a=1

Vij,a, i, j = 1, . . . N/2. (3.4)

We compute the exchange matrix (3.1) using the discrete tensor product representation of
arising functions and operators.

The orbital of the molecule is considered as an expansion over the basis set of well
separable continuous functions gk(x),

ϕa(x) =

R0
∑

k=1

ca,kgk(x), x = (x1, x2, x3) ∈ R
3, (3.5)
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where the basis functions gk, k = 1, . . . , R0, are represented as the rank-R canonical tensor
products,

gk(x) =
R
∑

ν=1

g
(1)
k,ν(x1) g

(2)
k,ν(x2) g

(3)
k,ν(x3), (3.6)

with 1, 2, 3 designating spatial dimensions.

3.2. Discrete computational scheme

GTOs are used as conventional basis sets in electronic structure calculations due to their
separability in spatial variables which is used in the analytical evaluation of the integrals in
the calculation of the Hartree and exchange potentials.

In the following, for numerical illustrations, we choose the discretized Gaussians as vec-
tors in the rank-1 canonical representations of the basis functions, mainly for the sake of
convenient verification of the results of computations (the corresponding Galerkin matrix)
with the standart MOLPRO output [26].

The rank-1 GTO basis functions gk(x), k = 1, . . . R0, are given by (3.6) with R = 1, where

g
(ℓ)
k,1(xℓ) denotes the generalized univariate Gaussians. The univariate Gaussians g

(ℓ)
k (xℓ) =

g
(ℓ)
k,1(xℓ), ℓ = 1, 2, 3, are functions with an infinite support given as

g
(ℓ)
k (xℓ) = (xℓ − Aℓ,k)

p
ℓ,k exp(−αk(xℓ − Aℓ,k)

2), xℓ ∈ R, αk > 0,

where pℓ,k = 0, 1, . . . is the polynomial degree, and the points (A1,k, A2,k, A3,k) ∈ R
3 specify

the positions of nuclei in a molecule. In our scheme, we use the discrete basis functions (given
by vectors of the canonical tensor representation (2.2)) which are constructed by discretizing
the Gaussians on the given tensor grid by using the associated piecewise constant basis
functions.

Assume that the molecule is embedded in a certain fixed computational box [−b, b]3 with
a suitable b > 0. For simplicity of notation, we take nℓ = n equal for all dimensions. We
introduce the equidistant tensor grid ω3,n (see (2.10) in §2). The grid points are denoted by
{xm}, m ∈ M := {1, ..., n + 1}3. We use a representation like (2.11) with f(x) = gk(x),

where the rank-1 coefficients tensor Gk is given by the values of ℓ-mode functions g
(ℓ)
k at

the centers y
(ℓ)
i
ℓ

of intervals of the univariate grid [x
(ℓ)
i
ℓ

, x
(ℓ)
i
ℓ
+1], iℓ = 1, . . . , n. This results in

canonical vectors of length n with entries {g(ℓ)k (y
(ℓ)
i
ℓ

)}ni
ℓ
=1,

γ
(ℓ)
k = {g(ℓ)k (y

(ℓ)
i
ℓ

)}ni
ℓ
=1 ∈ R

n, for ℓ = 1, 2, 3, k = 1, . . . R0, (3.7)

such that Gk = γ
(1)
k ⊗ γ

(2)
k ⊗ γ

(3)
k . By summing the tensor products of the canonical vectors

with the corresponding weights ca,k as in (2.2) we obtain the discrete representation of the
orbital ϕa, a = 1, . . . Norb, in the rank-R0 canonical format,

Ua =

R0
∑

k=1

ca,kγ
(1)
k ⊗ γ

(2)
k ⊗ γ

(3)
k , ca,k ∈ R, (3.8)

where R0 is the number of basis functions. This discretization can be considered as a
representation in the Galerkin set of basis functions {Gk} obtained by representing the
initial continuous basis set {gk} via piecewise constant basis functions {φi} on the uniform
grid (see (3.7)).
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We use the rank-RN canonical tensor product representation of the coefficient tensor P
for the Newton potential 1

‖x−y‖
, on the same grid. This tensor is precomputed by using the

optimized sinc-quadratures [2, 13], where the rank parameter RN = O(| log ε| log n) depends
logarithmically on both the required accuracy ε > 0 and the univariate grid size n. In
particular, for our computations the tensor P , representing the Newton potential has the
canonical rank in the range 20 6 RN 6 30, depending on the one-dimension grid size n and
the accuracy requirements ε > 0.

We present Algorithm 1 describing the computational scheme for evaluating (3.2) - (3.4)
in the tensor product format3.

Algorithm 1 Computation of the Exchange Matrix in Tensor Arithmetics

Input data: rank-R0 canonical tensors Ua ∈ Vn, a = 1, . . . , Norb, rank RN tensor P ∈ Vn,
rank-1 canonical tensors Gk = γ

(1)
k ⊗ γ

(2)
k ⊗ γ

(3)
k , k = 1, . . . R0, and the filtering threshold

εF > 0.
(A0) Find effective supports σj ⊂ [−b, b] for γj, j = 1, . . . , R0, by εF -thresholding,

σj = σ
(1)
j × σ

(2)
j × σ

(3)
j , where σ

(ℓ)
j = {i : |γ(ℓ)j (xi)| > εF} ⊂ {1, . . . , n}, ℓ = 1, 2, 3.

for a = 1, . . . , Norb

for k = 1, . . . , R0

(A) Compute the Hadamard product θa,k = Ua ⊙Gk of tensors Ua and Gk by using (2.9).
(B) Compute the tensor convolution Θa,k = θa,k ∗ P by using (2.13).
for j = 1, . . . , R0

(C) Compute the restricted scalar products in the window σj,

Ka,k,j = 〈θa,j,Θa,k〉|σj
,

end for j
end for k
end for a.
(D) Sum matrix elements over all orbital indices, Kkj =

∑N
orb

a=1 Ka,k,j, for k, j = 1, . . . , R0.
Output data: the exchange matrix K = {Kkj}R0

k,j=1.

Lemma 3.1. The complexity of Algorithm 1 for the computation of the exchange Galerkin
matrix Kex in the Hartree-Fock equation using the discretized GTO basis is estimated by

WKex
= O(NorbRN(R

2
0n log n+R4

0nef )).

Proof. This estimate includes the cost of the evaluation of convolutions in (3.2) for
every orbital, O(NorbRNR

2
0n log n), and the scalar product (3.3) of the tensor Θa,k with the

products of the orbitals and Gaussians, O(NorbRNR
4
0nef ).

Since the canonical rank RN of tensor P corresponding to the Coulomb potential depends
only logarithmically on n, it can be treated as a constant.

3The Hadamard product θa,j = Ua ⊙Gj in the Algorithm 1 can be either (1) stored for all vectors γk at
step (A) or (2) recomputed before evaluating the scalar products at step (C) . Due to the very low cost of
this operation, and large storage requirements for the case of large grids, O(R2

0
n), we prefer the case (2).
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Table 3.1. Rank reduction for Θa,k in the computation of the ex-
change matrix for the pseudopotential case of some molecules

CH4 CH3OH C2H5OH

RΘ 1250 1875 2775

rT = 12, ǫT 6 10−7, RRED 80 90 110
coefR 15 20 23

rT = 10, ǫT 6 10−6, RRED 50 70 100
coefR 25 26 27

Remark 3.1. Notice that the rank reduction of the canonical tensor Θa,k after step (3.2)
reduces the complexity to

WKex,red = O(NorbR
3
0nef ). (3.9)

In the case of large molecules, further optimization up to the O(NorbR
2
0nef )-complexity is

possible due to the rank reduction applied to the rank-R0 orbitals (tensors Ua).

Remark 3.2. The rank-R0 tensors Ua, a = 1, . . . , Norb representing the orbitals can be
chosen as the Galerkin basis set {Ga}, a = 1, . . . , Norb, where Norb is usually much smaller
than R0. This may relax the critical dependence O(R4

0) as in Lemma 3.1 above (see also
Lemma 3.1 in [16]).

3.3. Rank reduction

The maximal initial rank of tensor Θa,k at the step (B) in Algorithm 1 is given by RΘ =
RNR0. We perform the rank reduction for this tensor by the canonical-to-Tucker (C2T)
and Tucker-to-canonical (T2C) algorithm introduced and discussed in details in [9, 15]. In
particular, it is shown that the multigrid version of the C2T algorithm applied to 3-rd order
rank-R canonical tensors has a linear complexity with respect to all parameters of the input
tensor: the canonical rank R, the Tucker rank r, and the univariate grid size n. Thus, we
can reduce the complexity of Algorithm 1 to (3.9) solely by multilinear algebraic methods
which do not take into account any previous knowledge on the molecular structure.

Table 3.1 shows the average rank reduction by the C2T and T2C algorithms applied to
the tensor Θa,k in the calculations for CH4, CH3OH and C2H5OH molecules. We present
the approximate canonical ranks RRED (and respective Tucker ranks rT ) of the tensors
corresponding to the largest value, over the parameters a = 1, . . . , Norb, k = 1, . . . R0, to
achieve the prescribed approximation error ǫT ,

RRED = max
16a6N

orb
, 16k6R0

RRED(a, k),

where RRED(a, k) denotes the reduced canonical rank of Θa,k, for given ϕa and gk. Table 3.1
gives also the corresponding reduction coefficient, coefR = RΘ

RRED

.

3.4. Window technique for fast computation of inner products

We compute the algebraic tensor representation of the discrete electron orbitals Ua given
by (3.8) using the coefficients of their representation in the discrete Gaussian basis set γ

(ℓ)
k .
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It turns out by the construction that most of γ
(ℓ)
k have a local character (fast exponential

decay) with respect to the size of the whole computation domain [−b, b]3. Therefore, we

precompute the effective supports of the canonical vectors γ
(ℓ)
k by truncating their parts that

are lower than some predefined threshold ε > 0. We call this the “windowing” procedure
for finding an active interval for each Gaussian. In our case, the resulting effective vector
size of the canonical vectors is, on average, 3 times smaller than the corresponding grid size
n even for small molecules. The resulting “effective” univariate grid size is nef = αn, with
α = α(ε) < 1. For example, for small molecules α ∼ 0.2÷ 0.3 for ε = 10−5. This leads to a
reduced cost of the scalar products compared to the univariate grid size n.

We expect a much stronger windowing effect in the case of large molecules, since it can
be directly applied to Hadamard products Ua ⊙Gk.

4. Numerical experiments

We tested the presented tensor-structured method by computating the exchange Galerkin
matrix for the following molecules:

• all electron case : H2O (Norb = 5, R0 = 41), CH4 (Norb = 5, R0 = 55);

• pseudopotential case: CH4 (Norb = 4, R0 = 50), CH3OH (Norb = 7, R0 = 75) and
C2H5OH (Norb = 11, R0 = 111).

The calculations were performed on a standard SUN station using Matlab 7.6. Figures
present the absolute error of our computations compared with the corresponding exchange
matrix calculated by the benchmark package MOLPRO [26].

The computational box [−b, b]3 for small molecules is in the range of 2b = 14
◦

A for H2O,

and 2b = 20
◦

A for CH4, C2H5OH, and CH3OH. The developed tensor-structured algorithm
enables one to computate the Hartree-Fock exchange on huge n× n× n 3D Cartesian grids,
with the number of entries up to n3 = 163843. This corresponds to the usage of univariate

mesh-sizes from h ≈ 2 · 10−2 for grids with n = 1024 to h ≈ 8 · 10−4
◦

A for grids with
n = 16384.

F i g. 4.1. Left: entries of the exchange matrix for the all electron case of H2O. Right: absolute error
in the tensor-structured computation on n× n× n 3D Cartesian grids with n = 8192 and n = 16384
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F i g. 4.2. Left: entries of the exchange matrix for CH4. Right: absolute approximation error in
the tensor-structured computations on 3D grids with a one-dimension size n = 2048 and n = 4096

F i g. 4.3. Left: exchange matrix for the pseudopotential case of CH3OH. Right: absolute approx-
imation error in the tensor-product computation on n× n× n grids with n = 512 and n = 1024

F i g. 4.4. a) Absolute error in the tensor-product computation of the exchange
matrix for the pseudopotential case of CH4 (left) and C2H5OH (right) molecules

4.1. All electron case

For a molecules with a moderate size R0 of basis sets like CH4 or H2O grid-sizes up to
n = 16384 are computationally feasible for MATLAB, which is equivalent to computations
with 4.398 · 1012 nodes in the volume. These grids provide the resolution of the strong cusps
in basis functions corresponding to the core electrons in a molecule, thus enabling accurate
computations of the exchange matrix for the all electron case.
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Computation of the exchange Galerkin matrix for the all electron case of the H2O
molecule is a challenging problem due to the “sharp” Gaussians corresponding to the core
electrons of the Oxygen atom. Figure 4.1 (left) shows the absolute values of the exchange
matrix entries for H2O, Figure 4.1 (right) shows the absolute error in tensor-structured com-
putations of this matrix using the Richardson extrapolation on n×n×n 3D Cartesian grids
with n = 8192 and n = 16384. We achieve a high accuracy 1.89 · 10−5 in the “cusp area”,
the remaining entries are computed with the absolute error in the range of 10−6 ÷ 10−8.

Figure 4.2 (left) displays the absolute values of the exchange matrix of CH4 and Fig. 4.2
(right) shows the absolute error in tensor-structured computations reaching an accuracy of
10−4 by using the Richardson extrapolation on grids with n = 2048 and n = 4096. Again,
the matrix entries, apart from the “cusp area”, are computed with a much higher accuracy.

4.2. Pseudopotential case

We consider the pseudopotential case for larger molecules, achieving an accuracy of up to
10−6, using smaller 3D grids with a one-dimension size n = 1024. The Fortran version
of the loops including steps (C) – (D) in Algorithm 1 can improve dramatically the CPU
computation time.

Figure 4.3 (left) shows the entries of the exchange matrix of the CH3OH molecule and Fig.
4.3 (right) shows that tensor-structured computations for this molecule using the Richardson
extrapolation on grids with n = 512, 1024 yield an accuracy of ∼ 10−5.

Table 4.1. Comparison of the relative times

n3 643 1283 2563 5123 10243

H2O 1 1.3 2.0 3.2 8.0
CH4 (ps) 1 1.3 2.0 3.6 8.9
CH3OH (ps) 1 1.3 1.9 3.3 5.1

Figure 4.4 shows the absolute error in tensor-structured computations for the exchange
matrices in the pseudopotential case of the CH3OH (left) and C2H5OH (right) molecules,
respectively. For CH3OH the Richardson extrapolation on two consequent grids with n =
512, 1024 yields an accuracy of ∼ 10−5, while for C2H5OH we obtain 7 · 10−4, already on
small 3D grids with the one-dimension size n = 256, 512.

Table 4.1 presents the linear scaling of the relative computation times with respect to
the one-dimension grid size n, in respective units of the coarsest grid calculations (n = 64)
for one orbital.

Our calculations demonstrate that the TS methods give promising results for their appli-
cation in the computation of multivariate integrals in quantum chemistry. They appear to be
promising for computations for large molecules by either discretization on fine 3D Cartesian
grids or from the viewpoint of post-Hartree-Fock models.
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A FLUX-CORRECTED FINITE ELEMENT

METHOD FOR CHEMOTAXIS PROBLEMS

R. STREHL1 , A. SOKOLOV1, D. KUZMIN1, AND S. TUREK1

Abstract — An implicit flux-corrected transport (FCT) algorithm has been devel-
oped for a class of chemotaxis models. The coefficients of the Galerkin finite element
discretization has been adjusted in such a way as to guarantee mass conservation and
keep the cell density nonnegative. The numerical behaviour of the proposed high-
resolution scheme is tested on the blow-up problem for a minimal chemotaxis model
with singularities. It has also been shown that the results for an Escherichia coli

chemotaxis model are in good agreement with the experimental data reported in the
literature.
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1. Introduction

Chemotaxis, an oriented movement towards or away from regions of higher concentrations of
certain chemicals, plays a vitally important role in the evolution of many living organisms.
The chemotactical response gives numerous creatures, ranging from bacteria and protozoa
to tissue cells, a chance to find more favourable locations in their environments. This fea-
ture improves their ability to search for food, detect the location of mates or escape danger.
Chemotaxis finds many medical and biological applications, including bacteria/cells aggre-
gation and pattern formation processes, tumour growth, etc.

The first mathematical description of chemotactical processes was given by Keller and
Segel [14, 15], who modeled the aggregation of the slime mold amoeba Dictyostelium dis-
coideum. Their work was followed by the development of sophisticated models for various
chemotaxis problems [2, 5, 13, 20, 27]. The numerical treatment of chemotaxis equations has
also been addressed by many authors [7, 9, 10, 16, 23, 28]. However, some implementation
aspects still call for further research. In particular, it is difficult to design a robust, accurate,
and efficient numerical algorithm that does not produce negative densities or concentrations
[7]. In the present paper, positivity constraints for the Galerkin finite element discretization
are enforced using a generalized flux-corrected transport (FCT) algorithm [4, 17, 19, 29].

A representative class of chemotaxis models based on advection-reaction-diffusion equa-
tions is considered in what follows. Following the notation of [13], the nonlinear PDE systems
to be solved in a two-dimensional domain Ω ⊂ R

2 are written in the unified form

ut = ∇ · (D(u)∇u− A(u)B(c)C(∇c)) + q(u) in Ω, (1.1)

ct = d∆c− s(u) c+ g(u) u in Ω, (1.2)

1Institute of Applied Mathematics, LS III, TU Dortmund, Vogelpothsweg 87, D-44227 Dortmund, Ger-

many. E-mail: robert.strehl@math.uni-dortmund.de, asokolow@math.uni-dortmund.de
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where u(x, t) denotes the cell density and c(x, t) is the chemoattractant concentration. The
functional dependence of the involved coefficients on u and c defines a particular model. A
variety of complex chemotactical processes can be modelled in this way [2, 5, 16, 20, 27].

The above transport equation for u and the reaction-diffusion equation for c are endowed
with the initial conditions

u|t=0 = u0, c|t=0 = c0 in Ω, (1.3)

and homogeneous Neumann boundary conditions are prescribed on the boundary Γ of Ω

n · (D(u)∇u− A(u)B(c)C(∇c)) = n · ∇c = 0 on Γ. (1.4)

One of the numerical problems to be dealt with is due to the rapid growth of solutions
to system (1.1)–(1.2) in a small neighbourhood of certain points or curves. In particular,
the blow-up phenomenon, or a singular spiky behaviour of exact solutions, may give rise
to nonphysical oscillations if the employed numerical scheme is not guaranteed to satisfy
the discrete maximum principle (DMP). The available numerical techniques include various
positivity-preserving finite volume and finite element schemes [7, 11, 25], operator-splitting,
fractional step algorithms [23, 28], interior penalty discontinuous Galerkin methods [9, 10],
and cell-overcrowding prevention models [6, 8, 22]. The flux-corrected transport paradigm
described in Section 2 represents a promising new approach to the blow-up problem.

Another interesting application of the proposed methodology is the numerical prediction
of bacteria pattern formations. The nonlinear dependence of B(c) on the chemoattractant
concentration c can produce travelling waves [3, 24]. Attracting and repulsing substances
behave in different ways. As shown by the numerical study of Aida et al. [1, 2] and confirmed
experimentally, the pattern for small values of the parameter χ = B(c) = const resembles a
honeycomb, stripe or perforated stripe, while a chaotic spot pattern is observed for large val-
ues of χ. In Section 3, the proposed FEM-FCT algorithm is applied to 2D pattern formation
problems. The results presented are in good agreement with the available experimental data.

2. Flux-corrected transport

A segregated approach to the numerical solution of the nonlinear model problem (1.1)–(1.2)
was adopted. In each time step, the transport equation for the chemoattractant concentra-
tion c(x, t) is solved prior to that for the cell density u(x, t). Both equations are written
in weak form and discretized in space using (conforming) bilinear finite elements. The dis-
cretization in time is performed by the implicit Euler method; Crank-Nicolson and fractional
step schemes will be considered in a forthcoming paper. The system of linearized algebraic
equations consists of two decoupled subproblems for the unknowns un+1 and cn+1 at time
tn+1:

[M (1) + ∆tL(Dn)−∆tK(cn)] un+1 = M (1)un +∆tqn, (2.1)

[M (1) + ∆tL(d)−∆tM (sn)] cn+1 = M (1)cn +∆tM (gn)un, (2.2)

where M (·) denotes the (consistent) mass matrix, L(·) is a discrete diffusion operator, and
K(c) is a discrete transport operator due to the chemotactical flux A(u)B(c)C(∇c). The
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entries of M (·), L(·), K(c) and qn are defined in (2.3)–(2.6). In (2.1)–(2.2) the setting
Dn = D(un), sn = s(un) and gn = g(un) is used.

Given a set of piecewise-polynomial basis functions {ϕi}, the standard Galerkin dis-
cretization yields the following formulae for the coefficients of the matrices M , L, K and
the vector qn:

mij(ψ) =

∫

Ω

ϕiϕjψ dx, ψ ∈ {1, s(u), g(u)}, (2.3)

lij(ψ) =

∫

Ω

∇ϕi · ∇ϕjψ dx, ψ ∈ {D(u), d}, (2.4)

kij(c) =

∫

Ω

∇ϕi · A(ϕj)B(c)C(∇c) dx, (2.5)

qni =

∫

Ω

ϕiqj(u
n) dx. (2.6)

In formula (2.5), the discontinuous concentration gradient ∇c can be replaced by a super-
convergent approximation constructed using (slope-limited) reconstruction techniques [18].

As was shown by Kuzmin et al. [18, 19, 17], positivity constraints can be readily enforced
at the discrete level using a conservative manipulation of the matricesM andK. The former
is approximated by its diagonal counterpart ML constructed using row-sum mass lumping

ML := diag{mi}, mi =
∑

j

mij(1). (2.7)

Next, all negative off-diagonal entries of K are eliminated by adding an artificial diffusion
operator D. For conservation reasons, this matrix must be symmetric with zero row and
column sums. For any pair of neighbouring nodes i and j, the entry dij is defined as [18, 19]

dij = max{−kij , 0,−kji}, j 6= i. (2.8)

Note that dji = dij , so that the operator D is a symmetric matrix. The diagonal coefficients
dii are defined so that the row and column sums of D are equal to zero

dii = −
∑

j 6=i

dij. (2.9)

The result is a positivity-preserving discretization of low order. By construction, the added
perturbation to the discrete problem admits a conservative decomposition into a sum of
internodal fluxes. The mass lumping error and artificial diffusion received by the node i
satisfy

(M(1)u−MLu)i =
∑

j

mijuj −miui =
∑

j 6=i

mij(uj − ui), (2.10)

(Du)i =
∑

j

dijuj =
∑

j 6=i

dijuj + diiui =
∑

j 6=i

dij(uj − ui). (2.11)
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Let f denote the difference between the residuals of the low-order scheme and that of the
underlying Galerkin approximation. By virtue of the above flux decomposition, we have

fi =
∑

j 6=i

fij, fji = −fij , ∀j 6= i. (2.12)

To achieve a high resolution while keeping the scheme positivity-preserving, each flux is mul-
tiplied by a solution-dependent correction factor αij ∈ [0, 1] and inserted into the right-hand
side of the nonoscillatory low-order scheme. The original Galerkin discretization corresponds
to the setting αij := 1. It may be used in regions where the numerical solution is smooth
and well-resolved. The setting αij := 0 is appropriate in the neighborhood of steep fronts.

In essence, the off-diagonal entries of the sparse matrices M and K are replaced by

m∗
ij := αijmij, k∗ij := kij + (1− αij)dij,

while the diagonal coefficients of the flux-corrected Galerkin operators are given by

m∗
ii := mi −

∑

j 6=i

αijmij, k∗ii := kii −
∑

j 6=i

(1− αij)dij.

In implicit FEM-FCT schemes [17, 18, 19], the optimal values of αij are determined using
Zalesak’s algorithm [29]. The limiting process begins with cancelling all fluxes that are
diffusive in nature and tend to flatten the solution profiles. The required modification is

fij := 0 if fij(uj − ui) > 0,

where u is a positivity-preserving solution of low order [17, 18, 19]. The remaining fluxes are
truly antidiffusive, and the computation of αij involves the following algorithmic steps:

1. Compute the sums of positive/negative antidiffusive fluxes into node i

P+
i =

∑

j 6=i

max{0, fij}, P−
i =

∑

j 6=i

min{0, fij}.

2. Compute the distance to a local extremum of the auxiliary solution u

Q+
i = max{0,max

j 6=i
(uj − ui)}, Q−

i = min{0,min
j 6=i

(uj − ui)}.

3. Compute the nodal correction factors for the net increment to node i

R+
i = min

{

1,
miQ

+
i

∆tP+
i

}

, R−
i = min

{

1,
miQ

−
i

∆tP−
i

}

.

4. Check the sign of the antidiffusive flux and apply the correction factor

αij =

{

min{R+
i , R

−
j }, if fij > 0,

min{R−
i , R

+
j }, otherwise.
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In the context of chemotaxis problems, the above limiting strategy ensures that the cell
density u(x, t) and the concentration c(x, t) remain nonnegative. However, the resultant
algebraic systems are strongly nonlinear and must be solved iteratively. As a remedy, the
antidiffusive fluxes fij for an implicit FCT algorithm can be linearized about a low-order
predictor, as proposed by Kuzmin [17]. This linearized version of FEM-FCT is the method
that we use to solve our system (1.1)–(1.2) in the present paper. In contrast to nonlinear
FCT algorithms, antidiffusive flux correction is done explicitly after calculation of the low-
order solution. Therefore, it is readily applicable to linear and nonlinear problems alike.
For a detailed presentation of the FEM-FCT methodology, including theoretical analysis
(stability, positivity, convergence) and technical implementation details (data structures,
matrix assembly), we refer the interested reader to [17, 18, 19] and other publications by
Kuzmin et al.

3. Numerical results

In this section, the developed FEM-FCT algorithm is applied to chemotaxis models that call
for the use of positivity-preserving discretization techniques.

3.1. Blow-up in the center of the domain

The minimal Keller-Segel chemotaxis model

ut = ∆u−∇ · (u∇c), (3.1)

ct = ∆c− c+ u, (3.2)

can be written in the form (1.1)–(1.2). The corresponding parameter settings are as follows:

A(u) = u, B(c) = 1, C(∇c) = ∇c, D(u) = 1,

d = 1, s(u) = 1, g(u) = 1, q(u) = 0.

The following bell-shaped initial conditions [7] are prescribed in Ω = (0, 1)2 at t = 0

u0(x, y) = 1000 e−100((x−0.5)2+(y−0.5)2),

c0(x, y) = 500 e−50((x−0.5)2+(y−0.5)2).
(3.3)

The radially symmetric solution to the initial boundary value problem (3.1)–(3.3) has a peak
in the center of the domain Ω, where the blow-up of u and c occurs in finite time [12, 26]. The
numerical solutions to the blow-up problem are computed on a uniform grid of bilinear finite
elements. The mesh size and time step are given by h = 1/128 and ∆t = 10−6, respectively.
Snapshots of the results obtained with the standard Galerkin discretization of system (3.1)–
(3.2) are displayed in Fig. 3.1. The two diagrams in Fig. 3.2 show the distribution of the
cell density u along the horizontal line y = 0.5 at two time instants. Note that u becomes
negative at a certain intermediate time. The nonphysical negative values grow rapidly as
time evolves, which leads to an abnormal termination of the simulation run.
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(a) t = 10−5 (b) t = 4 · 10−5

(c) t = 6 · 10−5 (d) t = 1.2 · 10−4

F i g. 3.1. Blow-up in the center, standard Galerkin scheme, h = 1

128
, ∆t = 10−6.

(a) t = 6 · 10−5 (b) t = 1.2 · 10−4

F i g. 3.2. Blow-up in the center, Galerkin solution at y = 0.5, h = 1

128
, ∆t = 10−6.

Next, we apply the FCT correction to the discretized form of the minimal chemotaxis sys-
tem (3.1)–(3.2) and perform simulations with the same parameter settings as before. The
numerical solutions presented in Figs. 3.3 and 3.4 are seen to be positive and nonoscillatory.
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(a) t = 10−5 (b) t = 4 · 10−5

(c) t = 6 · 10−5 (d) t = 1.2 · 10−4

F i g. 3.3. Blow-up in the center, FEM-FCT scheme, h = 1

128
, ∆t = 10−6.

(a) t = 6 · 10−5 (b) t = 1.2 · 10−4

F i g. 3.4. Blow-up in the center, FEM-FCT solution at y = 0.5, h = 1

128
, ∆t = 10−6.

The accuracy of a finite element approximation can be easily improved by means of local
mesh refinement in underresolved regions. Since the solution of system (3.1)–(3.2) blows up
in the center of the square domain, it is worthwhile to refine the mesh around this point,
so as to achieve a higher resolution of the growing peak. For a fair comparison, the number
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of elements (degrees of freedom) should not exceed that for the uniform grid employed
previously. The FEM-FCT solution presented in Fig. 3.5 (b) was computed on a nonuniform
mesh constructed from that shown in Fig. 3.5 (a) using 5 levels of global refinement. The
total number of elements is 13, 312 < 1282. Due to the higher mesh density around the point
of blow-up, the peak of the cell density is approximately twice as high as that in Fig. 3.3 (d).
The peak heights variation with uniform and adaptive mesh refinement is illustrated by the
diagram in Fig. 3.6.

(a) adaptive mesh, level 3, h 6 1/8 (b) cell density u at t = 1.2 · 10−4

F i g. 3.5. Blow-up in the center, adaptive FEM-FCT scheme, 13, 312 elements, ∆t = 10−6.

F i g. 3.6. Peak heights variation with mesh refinement.
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3.2. Blow-up at the boundary of the domain

In the second example, the system of chemotaxis equations (3.1)–(3.2) is solved subject to
the initial conditions

u0(x, y) = 1000 e−100((x−0.75)2+(y−0.75)2),

c0(x, y) = 0.
(3.4)

Since the initial chemoattractant concentration is zero, the blow-up is expected to occur
much later than in the previous example. Therefore, simulations are performed with a
larger time step ∆t = 10−3. As time evolves, the solution of system (3.1)–(3.2) assumes a
spiky form and moves towards the upper right corner of the domain. The results obtained
with the standard Galerkin discretization are displayed in Fig. 3.7. Again, the cell density
becomes negative, and nonphysical oscillations are observed in the corner. These problems
can be cured using algebraic flux correction of FCT type, as demonstrated by the solutions
in Fig. 3.8.

(a) t = 0.01 (b) t = 0.05

(c) t = 0.07 (d) t = 0.1

F i g. 3.7. Blow-up in the corner, Galerkin scheme, h = 1

128
, ∆t = 10−3.
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(a) t = 0.01 (b) t = 0.05

(c) t = 0.07 (d) t = 0.1

F i g. 3.8. Blow-up in the corner, FEM-FCT scheme, h = 1

128
, ∆t = 10−3.

The point of blow-up may depend on the geometry on the computational domain, as
well as on the imposed boundary conditions [11]. For example, let Ω be a circle of radius
0.5 centered at the point (0.5, 0.5). A typical coarse mesh is depicted in Fig. 3.9 (a). The
purpose of the numerical experiment to be performed is to find out if the blow-up point
tends to any particular location. The peak of the initial profile u0 is placed at the point
(0.6, 0.6)

u0(x, y) = 1000 e−100((x−0.6)2+(y−0.6)2),

c0(x, y) = 0.
(3.5)

All other settings are the same as in the case of the square domain. The FEM-FCT results
in Fig. 3.9 (b,c,d) were obtained with 9216 bilinear elements. The distribution of the cell
density moves in the radial direction and blows up at the boundary of the circle in finite
time.
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(a) coarse mesh (b) t = 0.085

(c) t = 0.14 (d) t = 0.2

F i g. 3.9. Blow-up at a circular boundary, FEM-FCT scheme, ∆t = 10−3.

3.3. Pattern formation

In the last example, we consider a more complicated and realistic chemotaxis model. It
describes the complex space-time patterns formed by motile cells of Escherichia coli. There
are several different approaches to modeling the distribution of these bacteria. One of them
leads to the following system of differential equations [5]:

ut = D1∆u− α∇ ·
(

u

(1 + c)2
∇c

)

, (3.6)

ct = D2∆c+ β
w u2

σ + u2
. (3.7)

For theoretical analysis, numerical algorithms, and simulation results we refer to [7, 16, 27].
In another model, proposed by Mimura and Tsujikawa [21], only the diffusion, the chemo-

taxis, and the growth of bacteria are taken into account. The corresponding PDE system
reads

ut = D1∆u− χ∇ · (u∇c) + u2(1− u), (3.8)

ct = ∆c− βc+ u. (3.9)
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For a detailed presentation of this approach see, e.g., [1, 2]. Although both systems (3.6)–
(3.7) and (3.8)–(3.9) model the space-time patterns formed by motile cells of Escherichia coli
and fit the structure of (1.1)–(1.2), in this article we consider only the Mimura-Tsujikawa
model (3.8)–(3.9) with D1 = 0.0625, χ = 8.5, and β = 32. These parameter settings are
taken from [1, 2]. The initial conditions are given by

u0(x, y) = 1 + σ(x, y),

c0(x, y) = 1/32,

where σ(x, y) is a small perturbation defined as

σ(x, y) =

{

random, if ‖x− (8, 8)T‖ 6 1.5,

0, otherwise.

Numerical simulations are performed in the square domain Ω = (0, 16)2 discretized using
a uniform mesh of conforming bilinear finite elements. The employed mesh size h = 1/8
corresponds to 16384 cells. The time step is taken to be ∆t = 0.1. The solutions are
very sensitive to the choice of parameters, especially χ, σ, etc. Figure 3.10 illustrates the
temporal evolution of the cell distribution obtained with the implicit FEM-FCT algorithm.
The presented results are in quantitative agreement with those reported in [1, 2]. The same
formation patterns have been observed experimentally [5].

(a) t = 0.01 (b) t = 0.05

(c) t = 0.07 (d) t = 0.1

F i g. 3.10. Pattern formation simulated with the FEM-FCT algorithm, ∆t = 0.1, h = 1

8
.
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4. Conclusions

An implicit flux-corrected transport algorithm has been developed for the unified form (1.1)–
(1.2) of chemotaxis models. Positivity constraints were enforced using a nonlinear blend of
high- and low-order approximations. The employed limiting strategy is fully multidimen-
sional and applicable to (multi-)linear finite element discretizations on unstructured meshes.
The resultant scheme satisfies the discrete maximum principle and resolves steep gradients
without excessive smearing. The local order of accuracy varies between first (low-order
solution) and second (high-order solution), depending on the amount of artificial diffusion
retained at the flux correction step. The robustness and efficiency of the linearized FEM-
FCT algorithm make it an attractive alternative to other stabilization techniques for the
chemotaxis problems proposed in the literature [7, 9, 10, 16, 23, 28].

A preliminary numerical study of the implicit FEM-FCT scheme has been performed
for the minimal Keller-Segel model. The flux-corrected Galerkin approximation has been
shown to be sufficiently accurate and positivity-preserving, even in the case of solutions with
sharp peaks that blow-up in the center or at the boundary of the domain. An example
that illustrates the benefits of local mesh refinement was included. Furthermore, realistic
simulation results were obtained for a representative model of chemotactical pattern forma-
tion. The proposed methodology is suitable for a 3D implementation and seems to be a
promising approach to the numerical treatment of real-life chemotaxis problems in medicine
and biology. Further research will concentrate on the design of FCT algorithms for (1.1)–
(1.2) with stronger coupling. The implications of the time-stepping method also call for a
detailed investigation. Last but not least, a detailed quantitative comparison with exist-
ing numerical results [7, 9, 10, 25] is required to illustrate the pros and cons of different
discretization/stabilization techniques.
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