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Remarks on the state of the art of
a posteriori error control of elliptic
PDEs in energy norms in practise

Carsten Carstensen and Christian Merdon

Abstract. Five classes of up to 9 a posteriori error estimators compete
in three second-order model problems, namely the conforming and non-
conforming first-order approximation of the Poisson-Problem plus some
conforming obstacle problem. Our numerical results provide sufficient
evidence that guaranteed error control in the energy norm is indeed
possible with efficiency indices between one and three. The five classes
of error estimator consist of the standard residual-based error estima-
tors, averaging error estimators, equilibration error estimators, e.g. the
ones of Braess or Luce and Wohlmuth, least-square error estimators and
the localisation error estimator of Carstensen and Funken. For the error
control for obstacle problems, Braess considers Lagrange multipliers and
some resulting auxiliary equation to view the a posteriori error control
of the error in the obstacle problem as computable terms plus errors and
residuals in the auxiliary equation. Hence all the former a posteriori er-
ror estimators apply to this benchmark as well and lead to surprisingly
accurate guaranteed upper error bounds. This approach allows an exten-
sion to more general boundary conditions and a discussion of efficiency
for the affine benchmark examples. The Luce-Wohlmuth and the least-
square error estimators win the competition in several computational
benchmark problems. Novel equilibration of nonconsistency residuals
and novel conforming averaging error estimators win the competition
for Crouzeix-Raviart nonconforming finite element methods. Further-
more, accurate error control is slightly more expensive but pays off in
all applications under consideration while adaptive mesh-refinement is
sufficiently pleasant as accurate when based on explicit residual-based
error estimates.
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1. Introduction

A posteriori finite element error control for second-order elliptic boundary
value problems involves the computation of guaranteed upper bounds of some
residual Res in the dual H−1(Ω) of H1

0 (Ω) with respect to the dual norm.
The majority of applications in computational PDEs [19, 20] applies to the
residual

Res(v) =
∫

Ω

(fv − σh ·Dv) dx

with some given Lebesgue integrable functions f and σh. Traditional equili-
bration techniques compute some q ∈ H(div,Ω) such that (via an integration
by parts) the residual becomes

Res(v) =
∫

Ω

(f + div q)v dx+
∫

Ω

(q − σh) ·Dv dx

and leads to the error estimate

|||Res|||? := sup
v∈H1

0 (Ω)

Res(v)/|||v||| ≤ η(q) := |||f + div q|||? + ‖q − σh‖L2(Ω).

This paper concentrates on three model problems to support the obver-
vation of published and ongoing error estimator competitions [11, 22, 24, 23]
that accurate error control is possible with efficiency between 1 and 2. Sec-
tion 2 introduces the setting for the Poisson model problem and Section 3
recalls the five classes of error estimators from Table 1 to control |||Res|||? .

Table 1. Classes of a posteriori error estimators used in this paper.

No Classes of error estimators Class representatives
1 explicit residual-based ηR

2 averaging ηMP1, ηA1

3 equilibration ηB, ηMFEM, ηLW, ηEQL

4 least-square ηLS

5 localisation ηCF

Subsection 4.1 explains our adaptive mesh-refinement algorithm. In this
paper the adaptive mesh-refinement is driven by local error estimator con-
tributions from any estimator from Table 1 to observe that mesh refinement
with the standard residual-based error estimator ηR is suitable and does not
need to be replaced by any other marking strategy.

Section 5 deals with nonconforming Crouzeix-Raviart approximations
uCR for the Poisson model problem. The Helmholtz decomposition allows a
split of the error in the broken energy norm into

|||e|||2NC ≤ η2 + |||ResNC|||2? .

The first term η on the right-hand side involves contributions of the right-
hand side f and is directly computable (up to quadrature errors). The second
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term in the upper error bound is the dual norm of some residual ResNC that
enjoys Galerkin orthogonality properties,

|||ResNC|||? = min
v∈H1(Ω)

v=uD on ∂Ω

‖∇NCuCR −∇v‖L2(Ω).

Upper bounds of |||ResNC|||? are computed by the error estimators of Table 1
or by the design of some v ∈ H1(Ω) with Dirichlet data v = uD along ∂Ω.

Section 6 extends applications to obstacle problems with affine obstacles
by introduction of some auxiliary Poisson problem after [12].

2. Model Poisson problem

This section specifies the setting in the Poisson model problem.

2.1. Discrete problem

Given a bounded Lipschitz domain Ω and right-hand side f ∈ L2(Ω), the
Poisson model problem seeks the exact solution u ∈ H1(Ω) with u = 0 along
∂Ω and

−∆u = f in Ω.

Given a regular triangulation T of Ω ⊆ R2 into triangles with edges E , nodes
N , and free nodes K, let Pk(T ) denote the polynomials of degree ≤ k on
T ∈ T and

Pk(T ) := {vh ∈ L2(Ω) | ∀T ∈ T , vh|T ∈ Pk(T )}.
The first-order Courant finite element method computes the discrete solution
uh ∈ V (T ) := P1(T ) ∩ C0(Ω) with gradient σh := ∇uh as∫

Ω

∇uh · ∇vh dx =
∫

Ω

fvh dx for all vh ∈ V (T ). (2.1)

2.2. Residual

The related residual Res ∈ V ? is a linear and bounded functional

Res(v) :=
∫

Ω

fv dx−
∫

Ω

σh · ∇v dx

for the Sobolev functions v in the Hilbert space V := H1
0 (Ω) endowed with

the (semi-) norm |||·||| := ‖∇·‖L2(Ω). It is clear from the Riesz representation
theorem that the energy norm |||e||| of the error e := u− uh equals the norm
of |||Res|||? of the residual Res (cf., e.g., [15, Section 5.1.2, p. 86] and [20,
Section 3.3]). A posteriori equilibration error estimators derive computable
upper bounds of |||Res|||? through the introduction of some equilibrated q ∈
H(div,Ω). An integration by parts shows

Res(v) =
∫

Ω

(f + div q)v dx+
∫

Ω

(q − σh) · ∇v dx

and therefore leads to

|||Res|||? ≤ |||f + div q|||? + ‖q − σh‖L2(Ω).
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The equilibration error estimator of Braess [13, 26] is one modern example
for a proper choice of q in RT0(T ) ⊆ H(div,Ω),

RT0(T ) :=
{

q(x) = aT x +
(
bT , cT

)
∈ H(div,Ω) | aT , bT , cT ∈ P0(T )

}
.

Earlier examples of Ladeveze [29, 3] and [21] also provide a source of a
posteriori error estimators compared in [11, 22]. If the local problems therein
are solved exactly, they also yield guaranteed upper bounds. It is unrealistic
to assume an exact solve of those local problems in practise and so the dis-
played numbers in [21, 11, 22] are only lower bounds for the guaranteed upper
bounds. This fundamental difficulty is circumvented by modern equilibration
error estimators, like the ones of Braess and Luce-Wohlmuth.

2.3. Inhomogenous Dirichlet boundary conditions

In case of inhomogenous boundary conditions u = uD along the boundary
edges E(∂Ω) := {E ∈ E | E ⊂ ∂Ω}, the discrete solution uh satisfies uh =
IuD :=

∑
z∈N uD(z)ϕz. Since e = u−uh = uD−IuD /∈ H1

0 (Ω), the equation
|||e||| = |||Res|||? does not hold.

Theorem 2.1. Assume that uD ∈ H1(Ω) ∩ C(Ω) satisfies uD ∈ H2(E) for
all E ∈ E(∂Ω). Let ∂2

EuD/∂s2 denote the edgewise second partial derivative
of uD along ∂Ω. Then there exists wD ∈ H1(Ω) and some constant Cγ . 1
(which depends only on the interior angles of T ) with

wD|∂Ω = uD|∂Ω − IuD|∂Ω,

supp(wD) ⊂
⋃
{T ∈ T | T ∩ ∂Ω 6= ∅},

‖wD‖L∞(Ω) = ‖uD − IuD‖L∞(∂Ω),

|||wD||| ≤ Cγ‖h3/2
E ∂2

EuD/∂s2‖L2(∂Ω).

Furthermore it holds

|||e|||2 ≤ |||Res|||2? + |||wD|||2.

Proof. For the proof of the existence of wD see [9]. For the proof of the last
equation, assume the optimal w ∈ H1(Ω) with w|∂Ω = u|∂Ω − Iu|∂Ω and
div∇w ≡ 0. Then, it holds the orthogonality from [9],

|||e|||2 = |||e− w|||2 + |||w|||2 ≤ |||Res|||2? + |||w|||2 ≤ |||Res|||2? + |||wD|||2.
This concludes the proof. �

Remark 2.2. More explicit calculations in [24] show Cγ ≤ 0.7043 for trian-
gulations with right isosceles triangles. However, for the numerical examples
in this paper, we use Cγ = 1.

3. Five types of a posteriori error estimators

This section recalls some representatives of the five classes of error estimators
from Table 1.



State of the art of PDE error control 277

3.1. Notation

Consider a regular triangulation T of Ω ⊆ R2 into triangles with nodes N ,
free nodes K := N \∂Ω, edges E , Dirichlet boundary edges E(∂Ω) := {E ∈
E | E ⊆ ∂Ω}. Each node z in N is associated with its nodal basis functions
ϕz and node patch ωz := {ϕz > 0} with diameter hz := diam(ωz). Each
triangle T ∈ T is the closed convex hull of the set N (T ) of its vertices and
associated to its element patch ωT :=

⋃
z∈N (T ) ωz. The set E(T ) denotes the

edges of T in T and the set E(z) denotes all edges connected to z ∈ N .

3.2. Standard residual error estimator

The standard residual error estimator

ηR := ‖hT f‖L2(Ω) +

(∑
E∈E

hE‖[σh · νE ]E‖
2
L2(E)

)1/2

is a guaranteed upper bound of |||u− uh|||. In all our examples, T consists of
right isosceles triangles and then the generic reliability constant is even 1, i.e.
|||u− uh||| ≤ ηR [21]. Here, [σh · νE ]E denotes the jump of [σh · νE ]E across
E ∈ E , which is set to zero along any Dirichlet edge E ∈ E(∂Ω).

3.3. Minimal P1(T ; R2) averaging

The error estimator

ηMP1 := min
q∈P1(T ;R2)∩C(Ω;R2)

‖σh − q‖L2(Ω)

shows very accurate results for the Laplace equation, but only yields an upper
bound for |||u− uh||| up to some reliability constant Crel [18], which is not
displayed and expected to be too large to be competitive. Simple averagings
qA ∈ P1(T ; R2) compute approximations of ηMP1, e.g.

ηA1 := ‖σh − qA1‖L2(Ω) with qA1(z) =
∫

ωz

σh dx /|ωz| for all z ∈ N .

3.4. Least-square error estimator

An integration by parts yields, for any q ∈ H(div,Ω) and with elementwise
integral mean fT ∈ P0(T ), that∫

Ω

(∇u− σh) · ∇v dx

=
∫

Ω

(f − fT )v dx+
∫

Ω

(fT + div q)v dx+
∫

Ω

(σh − q) · ∇v dx .

After [33, 35, 22], this results in the error estimator

ηLS := min
q∈RT0(T )

CF ‖fT + div q‖L2(Ω) + ‖σh − q‖L2(Ω) + osc(f, T )/π

with Friedrichs’ constant CF := supv∈V \{0}‖v‖L2(Ω)/|||v|||, and oscillations

osc(f, T ) := ‖hT (f − fT )‖L2(Ω).
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Our interpretation of Repin’s variant (without the oscillation split) reads

ηREPIN := min
q∈RT0(T )

CF ‖f + div q‖L2(Ω) + ‖σh − q‖L2(Ω).

This paper studies the least-square variant ηLS rather than Repin’s majorant
ηREPIN for reasons discussed in [22, Subsection 4.2]. Supercloseness results
from [14] show that asymptotically the minimiser qLS equals the gradient
qMFEM of the mixed finite element method with lowest-order Raviart-Thomas
finite elements RT0(T ). In practise ηLS is approximated by a series of least-
square problems as in [37].

3.5. Luce-Wohlmuth error estimator

Luce and Wohlmuth [30] suggest to solve local problems around each node on
the dual triangulation T ? of T and compute some equilibrated quantity qLW.
The dual triangulation T ? connects each triangle center mid(T ), T ∈ T , with
the edge midpoints mid(E(T )) and nodes N (T ) and so divides each triangle
T ∈ T into 6 subtriangles of area |T |/6.

Consider some node z ∈ N (T ) and its nodal basis function ϕ?
z with the

fine patch ω?
z := {ϕ?

z > 0} of the dual triangulation T ? and its neighbouring
triangles T ?(z) := {T ? ∈ T ? | z ∈ N ?(T )}. Since σh ∈ P0(T ) is continuous
along ∂ω?

z ∩ T for any T ∈ T , q · ν = σh · ν ∈ P0(E?(∂ω?
z)) is well-defined on

the boundary edges E?(∂ω?
z) of ω?

z . With fT,z := −
∫

T
fϕz dx /|T ?| and the

local spaces

Q(T ?(z)) :=
{
τh ∈ RT0(T ?(z)) | div τh|T ? + fT,z = 0 on T ? ∈ T ? with

N ?(T ?) ∩N (T ) = {z} and q · ν = σh · ν along ∂ω?
z \ ∂Ω

}
,

the mixed finite element method solves

q|ω?
z

:= argmin
τh∈Q(T ?(z))

‖qh − τh‖L2(ω?
z ).

This choice of the divergence [25] differs from the original one of [30]
for an improved bound for |||f + div qLW|||? with explicitly known constants,
namely

|||f + div qLW|||? ≤ ‖hT (f + div qLW)‖L2(Ω)/π.

For details cf. [25]. The remaining degrees of freedom permit proper boundary
fluxes and∫

Ω

qLW · Curlϕ?
z dx =

∫
Ω

σh · Curlϕ?
z dx for all z ∈ N .

Here, Curl denotes the rotated gradient Curlv := (−∂v/∂x2, ∂v/∂x1). Then,
the Luce-Wohlmuth error estimator reads

ηLW := ‖σh − qLW‖L2(Ω) + ‖hT (f + div qLW)‖L2(Ω)/π.
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Figure 1. Triangulation T (thick lines), fine triangulation
T ? (thin lines) and ω?

z (lightgray) around the reentering cor-
ner of the L-shaped domain for the Luce-Wohlmuth error
estimator.

3.6. Equilibration error estimator by Braess

Braess [13, 26] designs patchwise broken Raviart-Thomas functions rz ∈
RT−1(T (z)) that satisfy

div rz|T = −
∫

T

fϕz dx /|T | for T ∈ T (z)

[rz · νE ]E = −[σh · νE ]E/2 on E ∈ E(z) ∩ E(∂Ω)

rz · ν = 0 along ∂ωz \ E(∂Ω).

The solution rz of these problems is unique up to multiplicatives of Curlϕz

and may be chosen such that ‖rz‖L2(ωz) is minimal. Eventually, the quantity
qB := σh +

∑
z∈N rz ∈ RT0(T ) satisfies

div qB|T = −
∫

T

f dx /|T |.

and allows the dual norm estimate

|||f + div qB|||? ≤ osc(f, T )/π.

The estimator reads

ηB := ‖σh − qB‖L2(Ω) + osc(f, T )/π.

3.7. Equilibration error estimator by Ladeveze

The fluxes qL designed by Ladeveze-Leguillon [29] act as Neumann boundary
conditions for local problems on each triangle, cf. also [3] for details. Given
the local function space

H1
D(T ) =

{
H1(T )/R if |T ∩ ΓD| = 0 and else
{v ∈ H1(T ) | v = 0 on ∂T ∩ ΓD},
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seek φT ∈ H1
D(T ) such that, for all v ∈ H1

D(T ),∫
T

φT · ∇v dx =
∫

T

fv dx−
∫

T

σh · ∇v dx+
∫

∂T

qL · νT v ds .

Then the error estimate reads

|||u− uh||| ≤ ηEQL :=

(∑
T∈T

‖∇φT ‖2L2(T )

)1/2

.

3.8. Carstensen-Funken error estimator

The partition of unity property of the nodal basis functions (ϕz | z ∈ N )
leads in [21] to the solution of local problems on node patches ωz: Seek
wz ∈ Wz := {v ∈ H1

loc(ωz) | ‖ϕ1/2
z ∇v‖L2(ωz) < ∞, v = 0 on ∂Ω ∩ ∂ωz} if

z ∈ N (∂Ω), or wz ∈ Wz := {v ∈ H1
loc(ωz) | ‖ϕ1/2

z ∇v‖L2(ωz) < ∞}/R if
z ∈ N (Ω), such that∫

ωz

ϕz∇wz · ∇v dx =
∫

ωz

ϕzfv dx−
∫

ωz

σh · ∇(ϕzv) dx for all v ∈ Wz.

Then the error estimator reads

|||u− uh||| ≤ ηCF :=

(∑
z∈N

‖ϕ1/2
z ∇wz‖2L2(ωz)

)1/2

.

In the computations for ηCF and ηEQL, all the local problems are solved with
fourth-order polynomials for simplicity. The computed values are regarded as
very good approximations. However, strictly speaking the values displayed for
ηEQL or ηCF are lower bounds of the guaranteed upper bounds.

4. Conforming finite element method

4.1. Uniform and adaptive mesh refinement

Automatic mesh refinement generates a sequence of meshes T 0, T 1, T 2... by
successive mesh refining using local refinement indicators derived from some
ηxyz from Section 3.

Algorithm 4.1. INPUT coarse mesh T 0. For any level ` = 0, 1, 2, . . . do
COMPUTE discrete solution u` on T ` with ndof := |N `(Ω)| degrees of free-
dom, error estimator ηxyz, efficiency indices EI := ηxyz(k)/|||e|||, and refine-
ment indicators

η`(T )2 = ηxyz(T )2 + ‖h3/2
E ∂2

EuD/∂s2‖2L2(∂T∩∂Ω).

MARK minimal set (for adaptive mesh-refinement) M` ⊆ T ` of elements
such that

1/2
∑

T∈T `

η`(T )2 ≤
∑

T∈M`

η`(T )2.
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(For uniform mesh-refinement set M` = T `.)
REFINE T ` by red -refinement of elements in M` and red-green-blue-
refinement of further elements to avoid hanging nodes and compute T `+1.
od

4.2. Numerical example on L-shaped domain

The first benchmark problem employs f ≡ 0 and inhomogenous Dirichlet
data uD of the exact solution

u(r, ϕ) = r2/3 sin(2ϕ/3)

on the L-shaped domain Ω = (−1, 1)2\([0, 1]× [−1, 0]). The problem involves
a typical corner singularity and shows an empirical convergence rate of 1/3
for uniform mesh refinement. This can be improved by adaptive refinement
as shown in Figure 4. All error estimators induce meshes with the optimal
empirical convergence rate 0.5.
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Figure 2. History of efficiency indices ηxyz/|||e||| of various
a posteriori error estimators ηxyz labelled xyz in the figure
as functions of the number of unknowns on uniform meshes
in Subsection 4.2.

Figures 2 and 3 display the efficiency indices for uniform and adaptive
mesh refinement. The optimal averaging ηMP1 turns out to be asymptotic
exact, but ηMP1 as well as ηA1 yield no guaranteed upper bound as the other
estimators. While ηR takes efficiency indices of almost 4, all other error esti-
mators arrive at efficiency indices below 1.7. The localisation error estimator
ηCF is very accurate with values about 1.35 and is only beaten by ηLW for
adaptive mesh refinement.
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Figure 3. History of efficiency indices ηxyz/|||e||| of various
a posteriori error estimators ηxyz labelled xyz in the figure
as functions of the number of unknowns on adaptive meshes
in Subsection 4.2.
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Figure 4. Convergence history of the energy errpr
|||e|||(ηxyz) for uniform and adaptive mesh refinement driven
by various a posteriori error estimators ηxyz as functions of
the number of unknowns in Subsection 4.2.

5. Nonconforming finite element method

This section deals with error control for noncoforming approximation for the
Poisson model problem.
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5.1. Discrete problem and notation

With the elementwise first-order polynomials P1(T ), the nonconforming
Crouzeix-Raviart finite element spaces read

CR1(T ) := {v ∈ P1(T ) | v is continuous at mid(E)},
CR1

0(T ) := {v ∈ CR1(T ) | ∀E ∈ E(∂Ω), v(mid(E)) = 0.}

The Crouzeix-Raviart finite elements form a subspaces of the broken
Sobolev functions H1(T ) := {v ∈ L2(Ω) | ∀T ∈ T , v|T ∈ H1(T )} with
piecewise gradient (∇NCv)|T = ∇v|T for v ∈ H1(T ) and T ∈ T .

5.2. Error control via nonconforming residual

The error control dervied in [24] consists of two contributions. The first com-
ponent contains the right-hand side f and its elementwise oscillations,

osc(f, T ) := ‖hT (f − fT )‖L2(Ω),

with the piecewise integral mean fT and the piecewise constant mesh-size
hT , hT |T := hT for T ∈ T . It reads

η := ‖fT /2 (• −mid(T ))‖L2(Ω) + 1/π osc(f, T ). (5.1)

The second component derives from the residual defined, for any test function
v ∈ H1(Ω), by

ResNC(v) :=
∫

∂Ω

v ∂uD/∂s ds−
∫

Ω

∇NCuCR · Curl v dx .

Its dual norm reads

|||ResNC|||? := sup
v∈H1(Ω)
Curl v 6≡0

ResNC(v)/‖Curl v‖L2(Ω).

The Helmholtz decomposition allows a split of the error in the broken energy
norm

|||e|||2NC ≤ η2 + |||ResNC|||2? .

The dual norm |||ResNC|||? can be estimated with the error estimators from
Section 3 with the data f := 0 and σh := CurluCR and Neumann boundary
data g := ∂uD/∂s. On the other hand, there exists an alternative character-
isation of |||ResNC|||? ,

|||ResNC|||? = min
v∈H1(Ω)

v=uD on ∂Ω

|||uCR − v|||NC.

Any conforming interpolation v ∈ H1(Ω) with v = uD on ∂Ω gives an upper
bound for |||ResNC|||? .
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5.3. Interpolation after Ainsworth

This subsection introduces the interpolation operator after Ainsworth [1] that
designs some piecewise linear IAuCR ∈ H1

0 (Ω) with respect to the original
triangulation T .

(IAv) (z) :=

{
uD(z) if z ∈ N \K,∑

T∈T (z) uCR|T (z)/|T (z)| if z ∈ K .

The error estimator reads

µA := ‖∇NCuCR −∇(IAuCR)‖L2(Ω).

5.4. Modified interpolation operator

This subsection introduces an improved interpolation operator that designs
some piecewise linear IREDuCR ∈ H1

0 (Ω) with respect to the red refined
triangulation red(T ). The nodes of red(T ) consists of the nodes N and the
edge midpoints mid(E) of T . At the boundary the interpolation equals the
nodal interpolation of uD and on all edge midpoints it equals uCR.

(IREDv) (z) :=


uCR(z) for z ∈ mid(E) \mid(E(∂Ω)),
uD(z) for z ∈ (N ∪mid(E)) ∩ ∂Ω,

vz for z ∈ K .

z

P1 = P6

P2

P3P4

P5

Q1

Q2

Q3
Q4

Q5

T1

T2

T3

T4

T5

ω̂z

Figure 5. Interior patch

In this way, the interpolation equals uCR on all central subtriangles
like T4 in Figure 6 and it remains to determine the values vz at free nodes
z ∈ K. They may be chosen as in the design of IA, but we suggest to choose
them locally optimal as follows. Consider the node patch ω̂z with respect to
the red-refined triangulation as in Figure 5. Then minimise the contribution
‖∇NCuCR − ∇v)‖L2(ω̂z) under the side condition of the fixed values at the
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edge midpoints Qj of the adjacent edges. The value vz at z remains the only
degree of freedom in this local problem. The complete error estimator reads

P1

T1

T2

T4

T3

P2

T1

T2

T4

T3

P3
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T4

T3 Q1

T1

T2

T4

T3

Q2

T1

T2

T4

T3

Q3

T1

T2

T4

T3

Figure 6. Central subtriangle T4 = conv{mid(E(T ))} in
red(T ) for T ∈ T .

µRED := ‖∇NCuCR −∇(IREDuCR)‖L2(Ω).

We distinguish between the optimal version µPMRED, where vz is chosen
patchwise minimal (PM) as described above, and µMARED with the subopti-
mal choice vz as in Subsection 5.3. This can be seen as a modification of IA

at the edge midpoints.

5.5. Optimal choices

The optimal v ∈ P1(T )∩C(Ω) is attained at the solution uC of the conform-
ing formulation of the Poisson problem, since the nodal basis functions are
included in CR1(T ) and hence∫

Ω

fv dx =
∫

Ω

∇NCuCR · ∇vC dx

=
∫

Ω

∇uC · ∇vC dx for all vC ∈ P1(T ) ∩H1
0 (Ω).

For comparison, we also compute the optimal vMP1RED ∈ P1(red(T ))∩C(Ω)
on the red-refined triangulation red(T ) and the optimal piecewise quadratic
vMP2 ∈ P2(T ) ∩ C(Ω). Note that they don’t have to equal the coresspond-
ing conforming solutions. To reduce the computational costs of vMP1RED one
might use IMAREDuCR as an initial guess for some iterative solver to draw
near the optimal value. We use a preconditioned conjugate gradients algo-
rithm and stop at the third iterate vMP1RED(3). For the preconditioner we
use the diagonal of the system matrix also known as Jacobi preconditioner.

5.6. Numerical example on L-shaped domain

Recall the data from the L-shaped problem from Section 4.2. Figures 7 and
8 show the efficiency indices of all estimators for uniform and adaptive mesh
refinement, respectively. They vary between 1.1 for ηMP2 and about 1.55 for
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as functions of the number of unknowns on uniform meshes
in Subsection 5.6.

10
1

10
2

10
3

10
4

10
5

10
6

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

 

 

A

MA

PMRED

MP1

MP1RED(∞)

MP1RED(3)

MP2

B

LW

LS

CF

Figure 8. History of efficiency indices ηxyz/|||e||| of various
a posteriori error estimators ηxyz labelled xyz in the figure
as functions of the number of unknowns on adaptive meshes
in Subsection 5.6.

ηA or ηB. The improved estimators ηMARED and ηPMRED perform signifi-
cantly better. Their overestimation decreases under 35 percent which is even
better than ηMP1 or ηLS. The estimator ηLW performs similar but slightly
worse compared to ηMARED. Figure 9 shows the convergence history of the
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Figure 9. Convergence history of the energy errpr
|||e|||(ηxyz) for uniform and adaptive mesh refinement driven
by various a posteriori error estimators ηxyz as functions of
the number of unknowns in Subsection 5.6.

energy error for the adaptive meshes. The quality of the adaptive meshes is
comparable for all error estimators.

6. Conforming obstacle problems

The unique exact weak solution u ∈ K of the obstacle problem inside the
closed and convex set of admissable functions,

K := {v ∈ H1(Ω) | v = 0 on ΓD and χ ≤ v a.e. in Ω} 6= ∅

satisfies ∫
Ω

∇u · ∇(u− v) dx ≤
∫

Ω

f(u− v) dx for all v ∈ K. (6.1)

6.1. Error control via auxiliary residual

After [12] and for a particular choice of Λh [23], the discrete solution of the
obstacle problem uh in

K(T ) := {vh ∈ P1(T ) ∩ C(Ω) | vh = 0 on ΓD and Iχ ≤ vh in Ω}

solves also the discrete version of the Poisson problem for w ∈ V with∫
Ω

∇w · ∇v dx =
∫

Ω

(f − Λh)v dx for all v ∈ V. (6.2)

The associated residual reads, for any v ∈ H1
0 (Ω),

ResAUX(v) :=
∫

Ω

(f − Λh)v dx−
∫

Ω

∇uh · ∇v dx .
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The energy norm difference |||w − uh||| = |||ResAUX|||? between uh and the
exact solution w of the Poisson problem (6.2) can be estimated by any a
posteriori error estimator from Section 3. In the conforming case χ ≤ Iχ, [23]
leads, for any a posteriori estimator η for |||w − uh|||, to the reliable global
upper bound (GUB) in the strict sense of

|||e||| ≤ GUB(η) := (η + |||Λh − JΛh|||?) /2

+

√∫
Ω

(χ− uh)JΛh dx+(η + |||Λh − JΛh|||?)2.

The patchwise oscillations

osc(Λh,N ) :=

(∑
z∈N

h2
z min

fz∈R
‖Λh − fz‖2L2(ωz)

)1/2

are a computable bound for

|||Λh − JΛh|||? := sup
v∈V \{0}

∫
Ω

(Λh − JΛh)v dx/|||v||| . osc(Λh,N ).

The competition in [23] compares five classes of error estimators from Sec-
tion 3.

6.2. Numerical example with constant obstacle on L-shaped domain

This benchmark example from [8] mimics a typical corner singularity on
the L-shaped domain Ω = (−2, 2)2\([0, 2] × [−2, 0]) with constant obstacle
χ = Iχ ≡ 0 and homogeneous Dirichlet data uD ≡ 0 along ∂Ω, with the
right-hand side

f(r, ϕ) := −r2/3 sin(2ϕ/3)
(
7/3 (∂g/∂r)(r)/r + (∂2g/∂r2)(r)

)
−H(r − 5/4),

g(r) := max{0,min{1,−6s5 + 15s4 − 10s3 + 1}}

for s := 2(r − 1/4) and the Heaviside function H. The exact solution reads

u(r, ϕ) := r2/3g(r) sin(2ϕ/3).

The experimental convergence rate for uniform refinement is about 0.4
and adaptive refinement improves it to the optimal value 0.5 as depicted
in Figure 12. Figures 10 and 11 monitor the efficiency of the upper bounds
GUB(ηxyz). The efficiency of the bound associated to the standard residual-
based error estimator GUB(ηR) is between 7 and 9, while all other error
estimators allow efficiency indices below 2. As observed in a posteriori error
estimation for Poisson Problems in Section 4.2, the upper bound GUB(ηMP1)
almost arrives at effiency index 1.

7. Conclusions

The theoretical and practical results of this paper support the following ob-
servations.
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Figure 11. History of efficiency indices GUB(ηxyz)/|||e||| of
various a posteriori error estimators ηxyz labelled xyz in the
figure as functions of the number of unknowns on adaptive
meshes in Subsection 6.2.

7.1. Explicit error estimators sufficient for effective mesh design

Adaptive mesh refinement may be steered by simple ηR-based refinement
rules. It does not appear to be favourable to spend more computational time
for more laborious refinement rules if the data are (relatively) smooth.
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7.2. Approximation of local problems

We found that fourth-order polynomials are sufficient enough to provide ac-
curate approximations of the guaranteed upper bounds. However, for full
reliability, this approximation error has to be controlled further. The nu-
merical experiments in this paper leave this out and therefore are not fully
reliable. This fundamental difficulty is circumvented by modern equilibration
error estimators like ηB and ηLW. This suffices to conclude, that the novel
techniques are superior to ηEQL or ηCF.

7.3. Robust error control via ηCF, ηLS, ηMFEM or ηLW

The estimators ηCF, ηLS or ηMFEM and ηLW seem to be the most robust esti-
mators and are recommended as a termination criterion for guaranteed error
control. The residual-based estimator ηR is too coarse and not appropriate
as termination criterion for guaranteed error control.

7.4. Accurate error control pays off

Averaging error estimators might be an very good exact error guess but they
do not guarantee to be an upper bound for the exact error to justify termina-
tion. On the other hand, relying only on cheap error estimators like ηR causes
overkill refinements and might be more expensive than the computation of
more laborious but sharper error estimators like the ones from Section 7.3.
That is why it is is favorable to have a variety of error estimators [11].

7.5. Recomandation in practise

In the end a combination of several error estimators is recommended, e.g., ηR

for generating refinement indicators and a simple averaging error estimator
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for the decision eighter to refine or to employ a fine error estimator to justify
termination or the need for further refinement.
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