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This paper proposes a quadrilateral finite element method of the lowest order for Reissner-Mindlin (R-
M) plates on the basis of Hellinger-Reissner variational principle, which includes variables of displace-
ments, shear stresses and bending moments. This method uses continuous piecewise isoparametric
bilinear interpolation for the approximation of transverse displacement and rotation. The piecewise-
independent shear stress/bending moment approximation is constructed by following a self-equilibrium
criterion and a shear-stress-enhanced condition. A priori and reliable a posteriori error estimates are
derived and shown to be uniform with respect to the plate thickness t. Numerical experiments confirm
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1. Introduction

The Reissner-Mindlin (R-M) model describes the deformation
of an isotropic homogeneous plate, with the thickness t, subject
to a transverse loading g. More precisely, for a clamped R-M plate,
the rotation g of the fibers normal to the midplane and the trans-
verse displacement w of the midplane € minimize over

H}(Q)* x H}(Q) the plate energy
dx+—/|Vw BIPdx — /gw dx.

7 2/
(1.1)
)

Here Q e R? is, for simplicity, assumed to be a convex polygon. €(f
denotes the symmetric part of the gradient of . DQ, for any 2 x 2
symmetric matrix Q, is defined by

E

P = 12(1-12)

(1 -v)Q + vtr(Q)I],
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Q: M Y 1<ijaQMy for any two 2 x 2 matrices Q and M and
A =545 with Young's modulus E, Poisson’s ratio 0 <v <1, and
the shear correction factor x = 2.

To avoid the C'-continuity difficulty, the R-M plate today be-
comes the dominant two-dimensional model used to calculate
the bending of a thick/thin three-dimensional plate.

Standard low-order finite elements usually fail the approxima-
tion for a plate thickness t close to zero (cf. [2,29]). The reason for
this phenomenon, called shear locking, is that when the plate
thickness becomes small, the shear energy term degenerates to im-
pose (within the limit t = 0) the Kirchhoff constraint, which is too
severe for low-order elements.

To avoid the shear locking difficulty, the most common ap-
proach is to modify the variational formulation so as to weaken
the Kirchhoff constraint, where some reduction operator is used
[5,9,12,15,18,19,25,26,28,31,32,36,46]. An alternative approach is
to employ an equivalent formulation of the original problem. For
example, in [17], the Helmholtz decomposition was used which in-
volves two additional unknowns. In [1], an equivalent mixed for-
mulation was introduced by decomposing the bending moment
and by dualizing its symmetry. One can also work with the stan-
dard variational formulation and use more expensive continuous
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finite elements [39,41] for the discretization. One may also refer to
[24,27,30,35] for stabilization methods, to [13,20] for least-square
methods and to [3,4,16,44] for discontinuous Galerkin methods.

When introducing the shear stress vector y = it~%(Vw — g) and
the bending moment tensor M = —De(p), the Euler equations for
the Reissner-Mindlin plate problem (1.1) read as:

divM —y=0in Q, (1.2)
divy+g=0in @, (13)
M +De(p) =0 in @, (1.4)
y—At2(Vw—$)=0in Q, (1.5)
w=0,8=0o0n 0Q. (1.6)

This system leads to some alternative mixed/hybrid finite element
discretization on the basis of the Hellinger-Reissner energy
functional

H:%a(M,y;M,'y)+b(M,y;W,[f)+/gwdx., (1.7
Q

where the bilinear forms

a(,50,0) s (D52 x IP(Q)%) x (LX(Q)4e x I*(Q)°) — R,

sym sym
b(-,-,) + (LP(Q)5m x L(R)%) x (Hy(Q) x Hy(Q)%) — R
are defined by
0 — [ M.D1 el
aM,y;Q,7) .7/QM.D QdQ+)v /Qy Tdx, (1.8)
b(Q,7;v,0) ::/pQ:e(C)dx—/Q‘n(Vv—C)dx. (1.9)

The main features of the mixed/hybrid formulations above are
as follows:

o (Y continuity is required for kinematic variables.

e C ! or I? continuity is required for bending moment and shear
stress variables. This ensures the use of piecewise independent
approximation of the bending moment and shear stress vari-
ables, and will finally lead to a discretization system with the
only unknowns being displacements.

e With some rational choice of bending moment and shear stress
approximation, one can derive locking-free methods without
the introduction of some reduction operator.

This work shall propose and analyze a low order locking-free
quadrilateral hybrid finite element method for the R-M plate
based on the functional (1.7). We use continuous isoparametric
bilinear interpolation for the approximation of transverse displace-
ment w and rotation g, and impose, on the approximation of bend-
ing moment M and shear stress y, the bending equilibrium relation
(1.2) as well as a shear-stress-enhanced condition. It should be
mentioned that in [7] a hybrid quadrilateral element was con-
structed and shown numerically to be locking-free, where contin-
uous isoparametric bilinear displacement interpolation and
equilibrious bending moment/shear stress approximation plus
the same technique of shear interpolation as in the element MITC4
[9] were used.

We arrange the rest of this paper as follows. In Section 2 we
provide the weak formulation of the model (1.2)-(1.6) and show
its well posedness. Section 3 proves locking-free a priori error esti-
mates for finite element discretization under some general
assumptions. Section 4 is devoted to construction of locking-free
quadrilateral finite element method. We derive residual-based a
posteriori error estimates which are reliable in Section 5. Finally,
we give some numerical results in Section 6 to verify the theoret-
ical results.

2. Weak formulations and well posedness

First we introduce some notations. Let HYT) be the usual
Sobolev space consisting of functions defined on T with all deriva-

tives of order up to k square-integrable; H°(T) = L*(T), Hy(T) :=
{veHY(T): v|,; =0}. We denote the norm on HYTX) by

vz . . .
| ller == (Zoggk\ . |j2_T) with || the semi-norm derived from

the partial derivatives of order equal to k. When there is no conflict,
we may abbreviate |||k and || respectively to |-|x and |-|. Let

LZ(Q)ganf be the space of square-integrable symmetric tensors with

the norm |-||o defined by |Q|2 := /2 Q : Qdx. We denote by Pi(T)
and Py the set of polynomials of degree less than or equal to k
and the set of polynomials of degree less than or equal to k in each
variable, respectively.

For convenience, throughout the paper we use the notation
a < b to represent that there exists a generic positive constant C,
independent of the mesh parameter h and the plate thickness ¢,
such that a < Ch. We also abbreviatea < b < aasa=~bh.

We set M :=L* Q)% I':=1*(Q)°, W :=Hy(Q), @ = Hy(Q)".
Then the variational formulation of Eqs. (1.2)-(1.6) reads: Find
(M,y,w,B) € M x I' x W x @ such that

a(M,y;Q,7)+b(Q,7;w,p) =0 forall (Q,7)eM xT, (2.1)
bM,y;v,¢) = — /gvdx forall (2,{)) e Wx © (2.2)
Q

with a(-,-;+,-) and b(.,;-,-) from (1.8) and (1.9).
For our analysis we introduce the following norms for the space
pairs M x I'and W x ©:

Q. Dllsr = 1Qllo + tlillo + I/l 4 +|7ly  forall (Q,7) e M x T,

(2.3)
(2, Ollwxe = lI¢ll + 12ll; forall (v,¢) e W x @, (2.4)
where
I7ll-y o= sup fo? S0 |tl, := sup JoT - Vvdx
teH) (@) ¢l veH)(@) Il

With the above norms, we easily have the following uniform
boundedness: forall Q.M e M, y,t eI, ve W, ¢ € 0, it holds

a(M. 7; Q. T) < [|(M, 1)l [1(Q: Tl g cr (2.5)
b(Q,7; 2,0 < 1(Q Dllr 12, O llw o (2:6)
‘/ngdX‘ < llgll izl < llglh-1 (2, Ollwxe- (2.7)

Define the kernel subspace
Z={Q,1)eMxTI:bQ,rt;v,{) =0 forall (v,{) e W x O}.
Then we have the kernel coercivity result.
Lemma 2.1. Forall (Q 7)€ Z,
1@, D)lffsr < a(Q,7:Q,7). (28)
Proof. We already have

Q5 +tlzll; < a(Q,7;Q,7) forall (Q,7) e MxI.
For (Q,7) € Z, it holds

/Q:e(C)dx+/1-Cdx:0 forall{ e @ (2.9)
Q Q

and
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/1~V1/dx: 0 forall veW. (2.10)
Q

The equality (2.9) indicates

— : d
“JeQe@®dx Qe
[P

and the equality (2.10) yields |t|« = 0. Therefore, the kernel coerciv-
ity (2.8) follows. O

[zl 10 = sup
teHy (@)

We have the following inf-sup inequality.

Lemma 2.2. Forall (v, {)e W x 6O,
bQ,7;2,0)

V,0llwee < SU —= 2 2.11
1@ Olweo = o U @D @11)
Proof. The desired result follows from

Q:€Q)dx
1€l = le@)l, < sup 1oL €)X

aecw 11Qllg
and
JoT-Vodx JoT-Vodx

V|, = ||VV|, <sup =*=—— <
121l > V2l < SUP === < SUP g S el + el

forveWand (e ®. O

In view of the conditions (2.5)-(2.11), and from the theory for
saddle-point problems [14,18], we obtain the following well
posedness result.

Theorem 2.1. The problem (2.1) and (2.2) admits a unique solution
(M,y,w,B) e M x I' x W x © and it holds

M) s + (W, Bllwo < 11811 (212)

Moreover, the bilinear form A(;-): (M xT xW x ©) x (M x I'x
W x ©) — R, defined by

AM,y,w,B:Q,7,2,0) :==aM,y;Q,7) + b(Q,7;w, §) + b(M, y; v,{)
(2.13)

for all (M,y,w,B),(Q,7,v,{) e M x I' x W x O, provides an isomor-
phism between M x I' x W x @ and its dual with equivalent norms
Sup A(M‘,’Y7W~p; Q‘, Tﬂ y7 C)
@r.00emxrxwxo [ (Q, Dy (2.0 lwwo
(2.14)

(M) g + 1w, B) w0 =

for M,y,w,B) e M x I' x W x ©.

To get further regularity of the solution (M, y, w, B), we intro-
duce a weak problem: find (w, B, y) € W x ® x I such that

./Qe(lf):De(C)dx+/g;y-(va§)dx:/(;gz,dx

forall ve W, { €O, (2.15)

2 .
/t-(VW—ﬁ)dx—%/y-rdx:O forallter. (2.16)
JQ v JQ

Remark 2.1. In fact, the variational formulations (2.1) and (2.2)
can also be derived from (2.15) and (2.16) by introducing the
bending moment tensor M = —De(f), which yields

M: D*‘de+/ Q:e(p)dx=0 forall QM.
Q Q

We recall the following result (see [5,17]).

Lemma 2.3. The problem (2.15) and (2.16) admits a unique solution
with

Wiz + 11811z + 17l + Y1 < [18llo- (2.17)

In addition, if Q is a smoothly bounded domain and g € H'(Q), then it
holds

wl; < lgll;- (2.18)

With the above lemma, we obtain some further results.

Theorem 2.2. Let (w, B, y)e W x @ x I' be the solution of the
problem (2.15) and (2.16). Then the following three conclusions (i)-
(iii) hold.

(i) The quadruple (M = —De(B),y,w,B) € M x I' x W x O is the
unique solution of the problem (2.1) and (2.2);

(i) If M € H(div, Q) := {Q € [*(Q)%2 : divQ € L*(Q)*}, then the
equilibrium relation (1.2) holds;

(iii) Provided that g € [?(Q), regularity holds in the sense of

Wllz + 1181l + 1Ml + [[Vllo + El[Ylly < [18llo- (2.19)

Proof

(i) Existence and uniqueness follows from Theorem 2.1. It will
be shown that (M, y, w, B) satisfies (2.1) and (2.2). In fact,
from (2.16) and M = —De(g), Eq. (2.2) is obvious. On the
other hand, by D'"M = —€e(p) and (2.16), one obtains (2.1).

(ii) From (2.2) we have

/M:e(c)dx+/y-1;dx:0 for all ¢ € H)(Q)*.
Q Q

Then (1.2) follows from integration by parts.
(iii) The regularity result (2.19) follows from (2.17) and
M= -De(p). O

3. General assumptions and locking-free a priori error estimates
for finite element discretization

Let T, be a regular family of finite element subdivisions of the
polygonal domain Q. Let M, c M, I'hcI', Wy, c W, and ®,Cc ®
be finite dimensional spaces for the bending moment, shear stress,
transverse displacement, and rotation approximation. Then the
corresponding finite element scheme for the problem (2.1) and
(2.2) reads as: seek (Mg, v, Wi, B,) € My x I'y x Wy, x @y with

a(My, yy; Qy, Th) + b(Qy, Th; W, By) = 0 for all (Qp, Th) € My, x Ty,
(3.1)

B(My. yy: U, ) — f/gvhdx for all (v4,8) € Wi x O, (3.2)
Q

Notice thatin the continuous level the bending moment M and the
shear stress y satisfy the equilibrium condition (1.2). To avoid ‘lock-
ing’ in the discretization problem (3.1) and (3.2), we assume (H1).

(H1) The bending moment and shear stress approximation are
coupled in the sense that

I'y = dth Mp (33)
and
(Qp, Th) == (Qp, div, Qy) (34)
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for Q, € M. Here div, denotes the divergence operator piecewise
defined with respect to Tj.

Remark 3.1. With assumption (H1), we have an equivalent form
of the discrete scheme (3.1) and (3.2): seek (My,wp, B;) € Mpx
Wh X @h with

a(My, divy My; Qp,, divy, Q) + b(Qy, divy Qs Wy, By) =
for all Q; € My, (3.5)

b(My, divy My,; vy, &) = — /.gyhdx for all (vy,¢,) € Wy x Oy,
JQ

(3.6)

For the sake of convenience, we shall use the formulations (3.1) and
(3.2) instead of (3.5) and (3.6) for the following discussion.

We introduce two mesh-dependent norms for the finite dimen-
sional spaces My x I'y and Wy x @p: for (Q,Th) € My x I,
(Un,Cn) € Wh x O,

2 2
(€ +h%)Tllos

1(Qu, w1 = QI3 + :
+ (2 + 1) [V on — Gl (3.8)

1w, )l = l€@n)lo

Lemma 3.1. Under the assumption (H1
condition

1@ )1 < a(Qy: Th: Qns Th) (3.9)
holds for all (Qy,,th) € My x I

), the discrete coercivity

Proof. We only need to show

hiclenllox < 1Qullox  for all (Qu,Th) € M x Iy, (3.10)

In fact, since 1, = div,Qy, the above inequality follows from the in-
verse inequality, namely

-1
Qulix sh [1Qullox- O

We further assume (H2) and (H3).

ITnllox = Ndivh Qpllox <

(H2) The energy-orthogonality condition

/rh-VvIdx:O forall t, € I'y, v, €By, KTy (3.11)
K

holds, where B, is some bubble function space.

Remark 3.2. In fact, for B, we will assume in (H5) that W}, @ By, has
a higher order accuracy of approximation than the discrete
transverse displacement space W which is essential to the
desired convergence order (cf. Theorem 3.2).

(H3) For all (v, &n) € Wi x Oy, the following discrete inf-sup con-
dition holds,

b(Qy, Th; vh, &h) .

1@ 7)1y (3.12)

I(@h, E)llnz < sup
(QpTh)eMpxTy

Remark 3.3. With the norms defined in (3.7) and (3.8), the inf-sup
condition

bQ,1;2,0)
(2, O)llh2 < Qfg,&xr 10Q, 7l

immediately follows for all (7, {) e W x ©.

(3.13)

We now state the first main result of this section.

Theorem 3.1. Assume the conditions (H1)-(H3) hold. Let
(M,y,w,B) e M x I' x W x © be the solution of the problem (2.1)

and (2.2). Then the discretization problem (3.1) and (3.2) admits a
unique solution (My, 7y, = div, My, wy, B,) € My, x I'y x Wy, x @y
such that
1M ~Milo+ (h 0y ~ilo < o inf (1M =Qullg+ (h+0)lly~Tallo)
. -1 —
+inf (le(B~2)lo-+h -t + oot VW= oy 2o,
(3.14)
lle(B—Bullo < I\M—Mhl\o+fl\v—m|o+Chig(§h(\|€(ﬁ—Ch)|\o+h4 18— ¢hllo)
. -1

gt BV = o), (3.15)
V(W —wh) = (B=By)lo = (h+t)HM—MhH9+f2\|v—vh|\o

+nf (h+0)l€(B=)lo +18~Gllo)+ inf IVw=2y)llp.  (3.16)

Proof. Existence of the discrete solution (Mp, yn, Wh, Bn) is easy. The
estimates (3.14)-(3.16) follow from a standard line as in [14,18],
except that the energy orthogonality relation (3.11) is included
in the analysis. For completeness we sketch the proof.

Subtracting Eq. (3.1) from (2.1), we have for all (Q;, 7)) € M, x
Iy,

a(M — My, y — 7 Qp, Th) + b(Qp, Th; W — Wiy, — B) = 0

Denote

(3.17)

Zy(g) = {(Qh:rh) € M x I : b(Qy, Th; n, Cn)
- / gyydx for all (vp,8,) € Wy x @h}.
JQ

Due to the discrete inf-sup condition (3.12) and Remark 3.3, by
Proposition 11-2.5 in [18] (Chapter II, p. 55), we obtain

mf M — T < inf M-Q,,y-7 .
QA0 M =@y =Tl S o if (M= Q)

(3.18)

Taking (Qy.Th) = (Qn — My, %y —y,) in (3.17) with (Qa,n)

€ Z;(g), from Lemma 3.1 we deduce

1(Qn — My, % — ¥y)llhy S a(Qn— M, % — 9 Qu— My, T — 7))
+a(M - Quy— T Qun— My T -7
=a(Qyn—M. %~y Qn— Myt -,
~b(Qn— My T~y W— W, B~ By)
=a(Q M3~y Qu—My T —7,)
~b(Qp — My, T — yiW — v — 01, B — &),

where (v, 2, {p) € Wi x Bp x @y, and in the last equality we have
used the fact (Qn,Tn) € Z4(g) and the relation

b(Q;,th; 21,0) /1:,1 Vv =0 forall (Q,ty) e My x 'y, v, €By

which is inferred from the assumption (H2). A combination of the
above inequality, Cauchy-schwarz inequality and arbitrariness of
the triple (v, v, ¢n) yields

H(éh ~ My, T = Y)llns S| (6.!1 —M, T —Y)lps +Czi2£’ (Ile(B—En)llo

+(h+ 07 B~ Cllo) +  inf  (h+ )7 V(w

v+ WL EB),

= Un = U)llo-

Then the estimate (3.14) follows from triangle inequality, arbitrar-
iness of (Qp,7h) € Zy(g) and the conclusion (3.18).
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Next we estimate ||€(f — Br)|lo and || V(w — wy) — (B — Br)llo- The
discrete inf-sup inequality (3.12), together with Eq. (3.17) and the
assumption (H2), indicates, for any (v, v, {) € Wy, x By x @y,

b(Qy,th; Uh — Wi, Ly — Br)

(2h —Wn, = Br)lla S Sup

(Qp.Th)EMy X Ty H(Qhath)Hh,l
—  sup —a(M — M,y — 7@y, Th) — b(Qp, Th; W — v — 01, B— )
(Qp.Th)eMy =Ty H(thrh)Hh,l

S [IM =Ml +[[€(B—En)llo

2 o =) ThdX— [, Th (V(W— 2 — 01) — (B—{p))dX
Toup (h+6)][Tllo

S IIM =Ml + [ €(B—En)llo+ (h+0)"" (7= Pullo + 18— Eallo
FIVW—2n=v1)]lp)-

The desired estimates (3.15) and (3.16) then follow from the above
inequality, triangle inequality and arbitrariness of (z,,
() eWpxByx @p O

We assume the following approximation results (H4)-(H5) hold
for the finite dimensional spaces My x I'y, Wy, B, and ©y,.
(H4) Suppose that
inf — (|Q, —Mljp+ (h+1t)]Th

(Qn.Th)EMpxTy

= Vllo) < h(IMIly + [17llo + tlYll1); (3.19)
(H5) Suppose that
vigvay IV(w = vp)llo < hlIwl,, (3.20)
. 2
o VW= 2wl < B W, (3.21)
C’iggh(llﬁ = Cullo + hllB = Cully) < H(1BI- (3.22)

Remark 3.4. Recall that 7, = div,Q,, y =divM. When t < h, (H4)
can be simplified as

o1 (1@ = Mily + h]divi (@, — M) o) < h(|M]|, + | divM], ).

As a result, from Theorem (3.1) we have the following uniform a
priori results.

Theorem 3.2. Under the assumptions (H1)-(H5), the discretization

problem (3.1) and (3.2) admits a unique solution
(Mh,’yh = dthMh,Wh,ﬂh) e My x I'y x Wy x O such that
IM — Myl + (h+ )1y = Vallo + 1B — Bully

+w = wally < h(IM[ly + VIl + 1Yo + 1812 + IWl5). (3.23)

Proof. The desired estimate follows from the estimates (3.14)-
(3.16), the approximation properties (3.19)-(3.22), and equiva-
lence between the norms ||V-||o and ||||; on Hj(Q) due to Poincare
inequality and equivalence between the norms ||€(-)|lo and ||-||; on
H})(Q)2 due to Korn’s inequality. O

In the final part of this section, we shall propose a sufficient
condition for the approximation assumption (H4). We state the fol-
lowing assumption.

(H4') Suppose there exists Ml ¢ Mj, with

div,Q, =0 for all Q, € M} (3.24)
and

inf |Q, — M|, < h|[M]|;. (3.25)
QpeMy

Lemma 3.2. If the plate is sufficiently thin,
t <h, (3.26)

then assumptions (H1) and (H4') imply (H4).

Proof. Since M} x {0} ¢ My, x Iy, from the approximation result
(3.25) and the condition (3.26) we immediately have

inf  (/|Qy — Mo + (h + )][Tn — ¥llo)

(QpTh)EMp X T,

< Qi“{mh 1Q, — Mllg + (h+ O)[IYll < h(IMIly +[17llp). O
hEMy

Remark 3.5. In fact, one can avoid the numerical thinness condi-
tion (3.26) by using a more complicated space My. Namely, My, is
such that there exists m,M € My with

[7M — M|y < h[M];, |divy(m,M — M) < h||/divM]],.

Then (H4) follows from assumption (H1).

(3.27)

4. Construction of locking-free quadrilateral FEMs
4.1. Geometric properties of quadrilaterals

Let T, be a conventional quadrilateral mesh of Q. We denote by
hx the diameter of a quadrilateral KeT, and denote
h := maxger, hg. Let Zi{x;yi), 1 <i< 4 be the four vertices of K, and
T; be the sub-triangle of K with vertices Z;_1, Z; and Z;.; (the index
on Z; is modulo 4). Define

Pk = ]m‘il}{diameter of circle inscribed in T;}.
SIS

Throughout the paper, we assume that the partition T, satisfies the
following shape-regularity hypothesis: there exists a constant g > 2
independent of h such that for all K € T,

hi < opi- (4.1)

Remark 4.1. As shown in [33], this shape regularity condition is
equivalent to the following one which has been widely used in
literature (e.g. [23]): there exist two constants ¢’ >2 and 0<y<1
independent of h such that for all K € Tj,

he < 0'py, |cosbi] <y, 1<i<4, (4.2)

where p), and 6, denote the maximum diameter of all circles con-
tained in K and the angles associated with vertices of K,
respectively.

Let K =[~1,1] x [-1,1] be the reference square with vertices
Z; (1 <i<4). There exists a unique invertible mapping Fy that
maps K onto K with Fy (&, 1) € P2, (&, 1) and Fx(Z) =Z;, 1<i<4
(Fig. 1). Here &, n € [—1, 1] are the local isoparametric coordinates.

. /I . y Z3
Zy 1 Z3 7,
-1 1 Fg
; )
Z1
N ] N x
A 7y

Fig. 1. The mapping F.
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This isoparametric bilinear mapping (x, y) = Fi{(¢, 17) is given by

4 4
X = xNi(&m),y = yiNi(&,n), (4.3)
i=1 i=1

where

1 B 1 B
Nliz(l—C)(l—”I): Nzizﬂ"r@)(]—’?%

1 1
N324—1(1+€V)(]+”I)7 N4Zz(1—§)(1+’7)-
We can rewrite (4.3) as
X =0+ ¢+ an +apén, y=bo+bié+bn+bnin, (4.4)
where

ap  bo 1 1 1 1 X1 W

a; by 1—1 1 1 -1 X2 Y,
a by | A1 -1 1 1 ||x y
a;; by 1 -1 1 -1 X4 Yy
The Jacobi matrix of the transformation F is
. 3_); o a1+ a2 a2 +a12¢
DF(&m) = <§{ 22) N (b1 +b1zZ b, +b12€y>7
and the Jacobian of Fg equals
Ji = det(DFx) = Jo + 1 &+ 121,
where
Jo= aib, — axbq,

Ji =aibyy —apby, J, =apby — abys.

Denote by F,' the inverse of Fx. Then we compute

VS . .
5 71( by + b1xé *(127012§>
% Z—Z Jk \ by — blz’? a, +ann

Remark 4.2. Notice that a;; = b;> =0 and Fx is an affine mapping
when K is a parallelogram. Especially, when K is a rectangle,
a; = b1 =0.

Let the midpoint of edge ZiZ;.; be M; fori=1,...,4, and let the
midpoints of Z,Z4, Z1Z3 be 04, O,, respectively. It is easy to verify
that

MaM; = (Xm, — Xy, Y, — Ym,) = 2(ay, by),
MiMs = (Xm, — Xm,,Ym, — Yu,) = 2(a2, b2), (4.6)
010z = (X0, — X0, Yo, = Yo,) = 2(a12, b12).

Then it follows

20/a +b? = [MyM,|, 24/ +b; = |MiMs|, 2\/a?, + b2, =[0,0,].

(4.8)

It holds the following element geometric properties.

Lemma 4.1 (See [45]). For any K € Ty, under the hypothesis (4.1), we
have

Mkl Mg ¢ (4.9)
mln@.mgk]K 2p2 27

1o eiplplp gopclp (4.10)
4p1< 1 1<7 K74pl( 2 T 0y < 7 Mk .
@, b < I, (4.11)

16"

In view of the choice of node order (cf. Fig. 1), the shape-regular
hypothesis (4.1) and the relations (4.5) and (4.6), without loss of
generality we assume

Ibi| < a1, |az| b, (4.12)
Together with (4.10), this leads to

ay ~ by ~ hy, max{az, b1} = O(hy). (4.13)
Notice also that (4.9) implies

Jx ~Jo ~ hy. (4.14)

4.2. Construction of finite element subspaces

In this subsection, we will construct the spaces My, I',, W, and
®}, on quadrilateral meshes in accordance with the assumptions
(H1)-(H5).

For the transverse displacement and rotation approximation we
use continuous isoparametric bilinear element, i.e. we take
Wy = {ﬂh EH&(Q)HC(E) (U= yh‘KOFK EP]\] (R) forallK Th},

(4.15)

Oni={th e Hy((C@) :E =Gl oFx € Pra(K)* forall Ke Ty }.

(4.16)
Let B, be the Wilson bubble function space defined as
By :={v € [*(Q): ¥y = vj|y o Fx € span{1 — &, 1 — n?}
for all K € T, }. (4.17)

Introduce the modified local coordinates &, as in [43] by

E _:l{bzx—azy—aob2+a2bo }: 5"”%5”
n ' ]0 —bix + a1y + aoby — aibg n+ albIZ]:)alzbl &n '

(4.18)
It is easy to see that
X _ a0+alé+02ﬁ} 419
{Y} {b0+b15+b271 . (4.19)
We define
Iy = {‘ch € [*(Q)* : © = 13| o Fx € span{1, &7}’
and /rh -Vuvdx=0 forall v;€By,Kc¢c Th}. (4.20)
K

Some calculations show that, for any t, € I'y, T = Tyl o Fx has
the form

forall ¢;eR.

(4.21)
Thus, the assumption (H2) is fulfilled for I'p.

Remark 4.3. It is easy to see that div,Tp|x = 0 holds for 7, € I'p.

Remark 4.4. When K is a rectangle, the stress form (4.21) is
reduced to

10 g 0"
A n
T= {O 10 g’} (4.22)

Cy
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For the approximation of bending moment tensor, we define

My = M} & Mh (4.23)
with
Mb .= {Qh e LX(Q)%2: Q = Qg o Fy is of the form (4.25)
for all K € Ty, i,j:l,Z}, (4.24)
~ 100 7 %¢
Qn b G G
Q={Qu|=f01 0% ¢ = @
Q2 00 1 27:,7] ,%E Cs Cs
for all ¢; € R. (4.25)
The finite-dimensional space M" will be defined such that
M (\Mg = {0} and divyM} = I's. (4.26)

Here and in the sequel, we use the Voigt notation Q = (Q11, Q22, Q12)"

to denote a symmetric tensor Q = (8“ 8‘2> for the sake of
12 22

convenience.

Remark 4.5. In the following we also simplify a strain tensor
P “2)  gr 2@\ T
€Q)=3(V+V) as €)= (L” o f”.@“)M#z’) . Then, for a

ox ° 9y 9y oX

symmetric moment tensor Q = (Q;j)2x2 we have

{}g(”
ox

5r(2)
(Qi1,Q22,Q12) OST

dg + K (@)
1223

Q:e())=Q €)=

It is easy to verify

div,Q,|, =0 for all Q, € M}. (4.27)
Then from (4.26) it follows
dithh My = T'p. (428)

Remark 4.6. Similar to [42,43,48], we can rewrite the subspace M}
in an equivalent form, namely

= {Qu e (@32 Q= Qulo e e span(1.E )3, 1 =1.2

and /K(Q,I Q) :€(¢)dx=0forall § e (By)* K e Th}

with Q. being the constant part of Q.

Remark 4.7. One can also choose a larger space

My = {Qy € (D : @ = Qul o Fi
€ span {1,&, 7} and div, Q| = 0 for all K € Ty, i,j = 1,2},

Q| o Fx has the form
Qn 1 0 & ] 0 0 €1

Q=|[Qxn|=]0 0 o0 0 g i

QIZ 0 0 1 —bzf] b]f] aZf2 _ale o

with fi := L (bié+baoh), fr =1 (a1 +ad), and ¢ € R. However,
some numerlcal results show that the choice of MP, cannot lead
to better stability or accuracy than the choice of M},

to replace M", where Q =
0
1

The construction of Mf and M" in (4.23) is, on the one hand, to
satisfy the relation (4.28); on the other hand, as far as analysis is
concerned, it should be made convenient for verifying the discrete
inf-sup condition (3.12). To this end, for {, € ®, we denote

Gl =8 +8 =G +&)oF! (4.29)
with
R g —]lu(b1¢+bzi1+b12517)26
=1 _ 1, (4.30)
(s +]l0 (1€ + axn + a12én) e
0 14 4
. ¢ ¢nén 00
L=[7|:= ( ) | = (4.31)
§<22> 00 0 n & B )
5 (s
for any ¢; € R. Then it follows €(¢;) =0 and
ol _
o G
a?
€yl = €(&y) = # =B (4.32)
y X
with
bz +b12§ 7b1 7b1217 7b]f+b21’] 0 0
B:Jl 0 0 0 a1 +a]  Gé—an
K
—G—apé a1+apn  Gé—an —bi—bny —bié+bay

Besides (4.26), we shall enhance a constraint on M", namely for all
Q] € M'; with 7, = dthQ1 ey,

/Q1 :e(Cz)dx+/‘nl L, dx=0 forall ¢, given in (4.31).
K K
(4.33)

This condition indicates that, for all Q, = Q,+Q, € M! ® Mm"
with 1, = div,Q; € I'}, it holds

b(Qp, Th; Un, Cn)lk = /’;Qh:E(Ch)dxf /Krh-(Vvhfch)dx

:/Qo:e(cz>dx—/rh-(wh—mdx
K K

for all (vy,¢,) € Wy x O, (4.34)

Remark 4.8. Notice that Qy and 7, are uncoupled in (4.34), while
Q;, and 7y, are coupled. This uncoupled formulation is helpful to the
verification of the inf-sup inequality (3.12) (see Section 4.3).

We are now at a position to construct M%. We first set

Ql=Q"+Q? =(Q"+Q?)oF (4.35)
with

Q" < (span{Z, &2}, span{7, 7%}, span{&,i*})",

QY = @o(cr,....E)". (4.36)

Here the matrix &g is the same as in (4.25), and the parameters ¢;
are to be determined. Notice that Q” € M} and it holds
div, Q' = 0. Then, by the assumption (H1) and the relations

(4.26) and (4.27), we set
div, Q" = 1, for 7, € I'y. (4.37)

In view of the stress form (4.21), some calculations yield
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fe-me  mp o B2\
le):JO 12%;7]2 %7]7%17]2 0 Z_%*z
0 0 21711’72 leZEZ Cq
C1
=: ¢, , (4.38)
Cq
where (Cq,...,C4) are the same parameters as in (4.21) for t, € I'p.

Remark 4.9. In fact, to fulfill the equilibrium relation (4.37) one
may choose a different kind of basis function from that in (4.36) for
Q)

From (4.33) and (4.37), we have

/ QY / Q\": €(gy)dx — / Ty - &y dX (4.39)
K K
Jo _Gb) e @b Gy adg o
(bz Joba <t Jo Ui Jo 6= Jo 3
b, = bbzv azb Jo ab _ biby by
2 To 9 + 1/] -2 6 + (aul jou] n 311112 311%0
_ab} a;b? ab, . b b
A S St A Tk B

for all ¢, given in (4.31). This, together with (4.31), (4.32), (4.38) and
(4.21), leads to a linear system like

Hi(E1,...,C5)" = —Hy(C1,...,Ca)" (4.40)

with

1 1
Hy = [ B'®ydx = / / JB ®odédn,
-1J41

K
sz/K(BTtI)]-i-(I)ZcDS)dx:/: [1],<<BT¢1+¢Z¢S)dédn‘

Remark 4.10. Some simple calculations show

4b, 0 —4a, 0 4%
2
_ _4h
4b1 0 4a, 3q 0
4o 4 %Jo
Hi= 0 0 0 3, 3R |
4byJ
0 4(1] *4b1 7§;7%1 0
4bijo 4o
0 0 0 30 35,
4 _2beldi e ¥ _pakd 20, 3034
1735 Jo 3by 3o 3a1 Jo b, 3o
3242 2.2 p3RL 2.2
é}] +Zh1b12 fotls  _ 2apbiJoth Gloth) 2Jo—azb; Jg+)3
271352 3 302 Jo 3o 3 I
H, = _ 4biotbia)y 4 a12)p %lj 40y,
375, 375, 1 3D,
2by; 3343 4 _2apfit by 30T ab 30T 2 by fi+
a 3o 3a Jo 3@ 3o 34 3 3by Jo
4 bip)y _ 4 9o+an) 4byJ; 42byJ;+3a1);
3 0 3 a; 9 0 3 344

In applications, it is not necessary to use these explicit forms of H;
and H.
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In view of (4.13), it follows det(H;) =% ]O : >0, and (4.40)

implies

,85) = —H;'Hy(Cy,...,c0)". (4.41)
To sum up (4.23)-(4.25)(4.35), (4.38) and (4.41), a coupled mo-
ment/stress field (Q,,t, =div,Q,) € My, x I'; has the following

forms, for K € Ty,

e, (4.42)

Q

=Tyl o Fx =divd;(Cy,...,Cq)" = D5(Cy,...,Ca)", (4.43)

where @, := &; — GoH;'Hy, ¢;,¢;eR(i=1,...,5; j=1,...,
@y, D1, P are defined respectively in (4.25), (4.38), (4.21).

4), and

Remark 4.11. When K is a parallelogram, it holds a;, = b;» = 0 and
J1=J2=0. Then it is to show &, has the form

(4.44)

4.3. Verification of the assumptions and uniform results

From the construction of the spaces M, x I', (cf. (4.20), (4.23-
4.26), (4.35) or their equivalent forms (4.42) and (4.43)), we see
that the assumptions (H1), (H2), (H4') are fulfilled. The first and
third approximation results of (H5), i.e., (3.20) and (3.22), are stan-
dard for the piecewise bilinear approximation spaces W}, in (4.15)
and @}, in (4.16) at shape-regular meshes.

To verify the remaining assumptions, we introduce an addi-
tional mesh condition.

Condition (B) [40]. The distance dx = |0,0,|(|010z| = \/a2, + b]2.
cf. (4.8)) between the midpoints of the diagonals of K € Ty, is of order

O(h,%) uniformly for all elements K< Ty, as h — O.

Since P := {# = vl o Fx : v € Wy@PBy} 2 P2(&,17) and P2Q, (&, 1)
for K € Ty, the second approximation result of (H5), namely the esti-
mate (3.21), only holds for asymptotically parallelogram, shape reg-
ular meshes [6,37]. Here, a family of quadrilateral meshes is called
asymptotically parallelogram if it satisfies the angle condition
oy = O(hg), namely if o/hk is uniformly bounded for all the elements
in all the meshes, where gy:=max(|m — 64|, | — 6,|) denotes the
deviation of a quadrilateral from a parallelogram with 0; the angle
between the outward normals of two opposite sides of K and 0, the
angle between the outward normals of the other two sides. In [22]
the Angle Condition, under the shape regular condition (4.2) and
assuming h is sufficiently small, was shown to be equivalent to Con-
dition (B), or the Bi-section Condition. The Angle Condition or Condi-
tion (B) ensures that the mesh subdivisions will converge to a set of
parallelograms, and they will automatically hold when mesh subdi-
visions are constructed by bisections. We also refer to [33] for equiv-
alence of several well-known shape regular mesh conditions.

It remains to verify the assumption (H3).

Theorem 4.1. Under Condition (B), the assumption (H3) holds,
namely for all (v, ¢n) € Wy x @y, the following discrete inf-sup
condition (3.12) holds.
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Remark 4.12. Notice that Condition (B) states

max{|aral, bral} = O(h%),  max{ljs], [} = O(hg).
Recall the element geometric properties (4.13) and (4.14), namely
Jo = hi. (4.46)

This allows us to view all the terms involving one of the factors ay,,
b12,J1,J> as higher-order terms. Thus, under Condition (B) it remains
to prove Theorem 4.1 in the case of parallelogram meshes.

According to Remark 4.12, in the analysis below we assume
K € Ty, is a parallelogram, and it follows:

a2 =b=0, J;=J,=0
Then, for any ¢, € @, from (4.29)-(4.32) we have |, = {1+ & =

(& + &) o Fr! with
)7 £y — (wf_—&- LN+ éaCW) for & € R

s C7——(b16+b2’7)
' Q8+ (@& + azi) e {an +sén

(4.45)

a; ~ by, ~ hy, max{a,, b1} = O(hy),

U\ﬂ \/\q\

(4.47)
and
byt ibliz —(by&- bg’?)Za
a1 {s+ (a1 é—an)is

—aG + @b+ (a1 E—an)ls —bila— (b1 E—ban)is
(4.48)

@l =€) =+

Lemma 4.2. For any parallelogram K € T, and ¢, from (4.47), it holds

12
hill€@n)llox = hill€@)llox = IE2llox = (Z C?) . (4.49)
1<i<5

Proof. In light of (4.46), we deduce
6ol = [ & -tadx

—]o/ [(515 + 0 +Gén? + Can + Zsf”l)z]did;']

2 w2 172 w2 1
:§]0 1165 +§C3+ 4+3
~ @+ B+ BB+ D), (4.50)

hlle@) 15 x ~Joll€()IIE ¢ :]o/Kf(Cz) 1 €(Ly)dx
= /E {(bz& —bi15o—(bi1é— bzﬂ)Z3)2 +(a1la+ (alf—azf’l)Zs)z
1 _ ~ ~ _ ~
+5(—b+a1G+ (a1 é—an)z—bils— (blf*bzf’l)és)z}

2

- - 1
xdédn=4 {(szl —bi)? +§

b% + b’ Cl]Jraz a%Jra2
+4KT R

(@G —a1lo+ b124)2 +G%Zi}

H+V>2

5

_‘%ﬂ2325] = 4(o +0). (4.51)
A combination with (4.46) and Cauchy inequality leads to
hell€@2)llox < 12llox-
In what follows, it suffices to prove
1€2llox < hxll€()llok- (4.52)

- bIZL Zy = 0221 — (1122 + b1Z4 to obtain

(2) -5 ) 5e)
e Jo\az —by)J\z—bils)"

These relations, together with (4.46), some Cauchy inequality, and
the definition of o7 in (4.51), yield

Tothis end, we setz; := b,(;

7 - z “
(@G +8) sZ+5 +aiG=u
On the other hand, the inequality abXY <1(a?+b*)(X*

implies

(4.53)

+Y?)

(a1b1 + a2b2) 505 < <f11 +b2+a2 +b )(Z% +23).

N4
Then from (4.46) and the definition of o, in (4.51), it follows:

1 -
@+ 3) ~gz (@ +0+ @B +0)) (B +8) <o (4.54)
A combination of (4.50), (4.51), (4.53) and (4.54) yields (4.52). O

In view of (4.23)-(4.25) (4.35), (4.42), (4.43) and Remark 4.11,

for Q; € M = M) @ M" with 1, = div,Q,, € I', we have
Qil = Qo+ Q; € M| & MY,
where
2
100 n 3 ¢
~ X ;
Q=Qyofk=[0 10 Z—%r] ¢ P
0 0 1 2y fc)\®
C1
Qi =Q,0Fc=9, ( : (4.55)
Cs
with @, from (4.44) and
C c
1 ,1 O ;1 Z—Zgy 1
T :‘Eh|KOFK=diV(p2 = by ZV
_ 01 2ty ¢ _
Csq Cq
(4.56)

Lemma 4.3. For any parallelogram K € T,, and (ty, Q;) with (4.55)
and (4.56), it holds

12
2 _
hillThllox = 11Qillox = hic ( Z sz) .

1<i<4

(4.57)

Proof. Since 7, = div, Q) = div, Q;, an inverse inequality implies

b3 hI<|Q1|1,K b ||Q1 ||0.1<~
Then it suffices to prove
1Qillox =

Some simple calculations plus (4.46) yield

2
o _a,
||rh\\§,K:/rh-rhdx:JO/ ((c +c3n+c4b_2g>
K K 2

b 2
+(C2 4G a—ln + 644“) )dc’dn
1

2 2
_4jo<cf+c2 ;<1+b> +%<1+g—§>cﬁ>
2

~hp (G +E+6+E)

hicllTnllox

hillThllok- (4.58)
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and
2 420 =2 =2 =

HQ]HO.K:/KQI 'Q]dx$h1<(C%+C§+C§+szt)'

Hence (4.58) follows. O

Lemma 4.4. For any {, € @, and any parallelogram K € Ty, there
exists Q, € M|, such that

/K Qo : €()dx = Qo ~ [l € Pk (4.59)

Proof. From the decomposition (4.29) of ¢, € ®), the relations
(4.59) are equivalent to

[ @ eltrax=1Qulx ~ et (4.60)
with ¢, given by (4.47).
In view of (4.55) and (4.56), some calculations show
4 00 0
I 0
) “ 00 8 0
Qollox = J 5\2 |, (1)
ollox 1o 0 0 §(1+2(2) (%)
Cs
000 0 §<1+2(
4b, -4b; O 0 0
a\'l 0o 0o 0 4a o &
/ Q,: €(,)dx— —4a, 4a;, O —4b; O
K 4] 4by J
s 0 0 5w 0 saa|\g
0 o gk o g
The substitution of
c
) (1113 a3 b
. 0 4’4’84 g4 1 2a2b3 + by 4 ad + 2a2b5 + b,
5
4b, —4b, 0 0 0
0 0 0 4a O Z
% —4(12 4a1 0 —4b1 0 :
b :
0 0 %{17] 0 §a—1]{?1 7,
o o gzk o ik
b, -b; 0 0 0
0 0 [¢F} 0 _
1 T A SR
=71 Jo@3 Joa3by
Joazb? Job3
0 0 a‘2‘+zoa§2b§2+bg 0 a‘2‘+2c?§l§§+b‘2‘
bZZl __blzZ
arls ?
Y—ayty + a18 — biC 4
:l 5 ( 221 172 174) |z (4.61)
(@85 + bils)
0 a;‘+2a%b$+b? 163 165 Z3
2 — —
Mﬁ(az@ + by(s) %
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into (4.55) leads to

100 5 %\ (7
b3 > Zy
Q=(010 Z—En ¢ 2
b] a 23
001 By )\
and

/K Qo - €(G) dx = Qo (4.62)

On one hand, the element geometry properties (4.46) and the rela-
tions (4.49) and (4.50) imply

IQollox ~hi >- 2 < Y T~ [l€)llgx- (4.63)
1<i<5 1<i<5
Moreover, (4.61) implies
0
0
0 €
0 bl
Cs

_ - b . b
% :{1_024, L=z +b <222 +a—124>, G =az1+b; (222 +a—124)7
1 1 !
at+2a2b? + b} a3 +2a3b; +b)
4’3 b27223—b1—2 55
Joas Job3
s g @r2abivbl i 263b] 4Dy
Jo@? Job3

Then from (4.46) it follows

SN lshgd 2

1<i<5 1<i<5

A combination of the above inequality and (4.62) and (4.63) yields
the desired conclusion. [

Lemma 4.5. For any v, € Wy, ¢n € @y with ¢; from (4.47), and for
any parallelogram K € Ty, there exists T, € I'y, such that

/K T (Vo — 0)dx = — (2 + h%) |22

1
N ap v

~ &l (4.64)

Proof. We follow the same line as in the proof of Lemma 4.4. For

v € Wy, we assume wyly = (0o + 1 & + van + v3én) o Fx'. Then
from (4.47) it follows:
Vot - ((Ulbz — by *1057) —(v3 *Ze)b1§+(y3 +C6)b2”l>
1= - o - .
]0 (v2a1 — 10, —Jols) + (V3 —Le) & — (v3+(6)a2n

Denote 7, := vy — 187 = bils, V2= vy — @07 — byls, V3 :=v3 — (s,
V4 := v3 + (5, we then have
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2
_ ,l b, -by -bi¢ by .
Vv Cl’]0<—az o @i —an)| |
Vs
This, together with the element geometric properties (4.46), yields
IVo=Gllx = [ (To-t)-(To-t)dx

4 _ _ _ _
=T <(b2 U1 —b1 1)’ + (= 01 + a1 12)°
0

1 51 _ _
+§(af+bf)v§+§(a§+b§>vﬁ)zz;uiz. (4.65)
On the other hand, for z;, € I'y, from (4.56) we have
\|1h|\é:/rh~rhdx
K
T 1 0 _
C1 a C1
0 1 10 n ¢ ded
= : | £
; JO./K moan{\o1 by ¢ g
C nr ¢ c
. 10 0 0
G 01 0 0 G
= olo0i(1+48) 0
Cq 1 @ Cs
00 0 i(1+3)
zh,z( Z for
1<i<4
[ (Vo-tdx
K
1 0
o\’ 0 1 7
b, —-b; —b b
. /\ , < 2 1 —bi& bap )d dy
B x| M E’/’ - a1 @¢ —mn R
“ ze ¢ V4
_ T b2 _bl 0 0 -
C1 (41
—a; 0 0
= 4 0 0 0 %Lo (4.66)
aq
C .
4 0 0 %-]L_Z 4
The substitution of
10 0 O
¢ b, by 0 O 7
- 01 0 O 0 0 -
G| _ 1 1 00 2% o — I 2
G| (E+hho a}-+bi 0 00 %é_? U3
Cy 00 O ﬂ?ﬁz 0 0 %{,—g 0 Uy
b, -by 0 O 7,
1 —a; dap 0 0 7
[ —— 0 0 0 ]olh2 B 4.67
(2 +h*)Jo aj-+by U3 (467)
0 o0 aféoj;% 0 V4
into (4.56) leads to
/T’T (Vo —)dx = —(t + h?)||zll5. (4.68)
K

Notice that (4.67) also implies
2~
1<Z:<4 (2 + h2 12< 1;4

Finally, a combination of (4.65), (4.66), (4.68) and the above relation
ends the proof. O

In light of Lemma 4.2, 4.3, 4.4, 4.5, we deduce the following inf-
sup result for parallelogram meshes.

Theorem 4.2. Let T, be a shape-regular triangulation of Q2 into
parallelograms. Then the assumption (H3) holds, namely for any
(Uh, Cn) € Wy x @y, it holds the discrete inf-sup condition

b(Qy, Th; Uk, &h)
1(Qn, Th)llna '

l(2h, E)lln2 < sup
(Qn.Th)EMp xT'y

Proof. For (v, {n) € Wi x Oy, let Qg and tj, = div, Q; be the same as
in Lemmas 4.4 and 4.5 with Qy|x = Qo + Q;. Notice that the relation
(4.33) leads to the simplified form (4.34). Recalling the norm defi-
nitions (3.7) and (3.8), it suffices to show

2 1 2 12
(1@l + 21991 - 6l
_ Yk, Qo t (@)~ (Von—C))dx
N (Y R S A
Lemmas 4.4 and 4.5 show
S, (1@l + (t2+h2>nrhn3,<)
(14l + (@ + h)ml2]
ery (1Qollg + (& + B zally )
T[S, (1Qx + 1@ 3+ @+ )ml )]
ker, (1Qolla + (2 + )1zl )

~ 172
[Ser, (1ol + (2 + 1)zl )|

(4.69)

1/2
{ > (Il + <t2+h2>|rh||é.,<)}
KeTy,

1 12
R Vo, - ¢ (ZJK>:|

1 N
+WHVW*QL”0> .

2
{ ll€(Cn) HOK ||C2||o,1< +
KeTy

> (||e(¢h)||é

This concludes the proof. O

Y E =10920; v =0.3:L =10
uniform loading: ¢ =1
Boundary conditions on BC & CD:
/2 For clamped plate: w = 3, = 3, =0
For SS2 plate: w =03, =0
Symmetry conditions:
By =0o0n AD and 3, = 0 on AB

A B X

Fig. 2. Quadrant of a square plate: geometry and 4 x 4 meshes.

Table 1

Results of central deflection w/(107°qL*/D) and central moment M/(10 “qL?)
computed by the new method for a clamped square plate with a uniform load
discretized into 6 x 6 in different thickness/span ratios.

t 10! 104 106 10°° 1014 Exact
W, 130.6 1304 1304 130.4 130.4 126.5
M. 240.5 240.5 240.5 240.5 240.5 231.0
Mc* 231.1 231.1 231.1 231.1 231.1

*Computed by De(By,).
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Table 2
Central deflection w(10~>qL*/D) and central moment M/10“qL?) for a simply-supported square plate with a uniform load discretized into 6 x 6 in different thickness/span
ratios.
t 2.5 2 0.5 107! 1074 10°¢ 10°° 10714
We DKQ 406.1 406.1 406.1 406.1 406.1 406.1 406.1 406.1
MITC4 537.6 490.0 410.6 405.5 405.3 417.0 0.000 0.000
New 541.0 493.4 414.0 408.9 408.7 408.7 408.7 408.7
Exact [10] 5179 490.8 410.8 406.4 406.2 406. 2 406.2 406.2
M. DKQ 481.0 481.0 481.0 481.0 481.0 481.0 481.0 481.0
MITC4 478.9 478.9 478.9 478.9 478.9 495.5 417.1 0.090
New 487.6 487.6 487.6 487.5 487.5 487.5 487.5 487.5
New™* 478.7 478.7 478.7 478.7 478.7 478.7 478.7 478.7
Exact [10] 479.0 479.0 479.0 479.0 479.0 479.0 479.0 479.0
Table 3 5. A posteriori error estimates

Central deflection w(10~>qL*/D), central moment M10~“qL?) for a clamped square
plate (uniform load, t = 0.1) and a posteriori ratio r for the new method.

We M:: r

DKQ MITC4 New DKQ MITC4 New New® New
2x2 146.1 1213 1574 2873 251.7 3065 2364
4x4 1319 1253 1352 2433 2331 2539 2333 0.66
8x8 1279 1264 1290 2326 2301 2356 2303 0.78
16 x 16 - - 127.3 2313 2297 2307 2294 0.87
32 %32 - - 1269 2313 2297 2295 2292 0.94
Exact 126.5 231.0

Theorem 4.1 follows from Theorem 4.2 and Remark 4.12.
In light of Lemma 3.2 and Theorem 3.2 we have the following
convergence result.

Theorem 4.3. Under Condition (B) and the condition (3.26), the
discretization problem (3.1) and (3.2) admits a unique solution
(My, Yy, Wh, Br) € My x I'y x Wy x @), such that the estimate (4.3)
holds, namely

IM — Mallo + (h+ )17 = Yullo + 1B = Bully + [lw — wall; < h(||M]};

+ Yl A+ 1Ylo + 11Bll2 + IWll5)-

We follow the version of [21] to derive residual-based a poste-
riori error estimates. Define the residuals, for all (Q,7) € M x I" and
(,)eWx 0O,
erF(Q7 1) = a(th yh; Q7 T) + b(Q7 T; Wh, ﬁh)7

Twxe(V,() ::—/ngdX—b(Mh,vh;v,C),

where the bilinear forms a(-,;-,-) and b(-,-;-,-) are given in (1.8) and
(1.9). Theorem 2.1 leads to the following lemma.

Lemma 5.1. For the solution (M,y,w,B) e M x I x W x © of the

problem (2.1) and (2.2) and the discrete solution (Mp, Y}, Wh, Br) €

My, x I', x Wy, x O, of the problem (3.1) and (3.2), it holds
(M =M,y = ¥i)llwgsr + 1(W = Wa, B = Bp)llwo
v (Q, T) Twxe(?,{)

A SUp ——————+ SUp .

@oevixr @ Dllvxr — woewxe (2, 0)llwxe

The following two computable error estimators

(5.1)

1
M = Y110 M+ €(B) o, + 1157 = 2 (YWh = B)llo

KeTy

(5.2)
Table 4
Central deflection w,, central moment M, and a posteriori ratio rfor the new method for a clamped square plate (uniform load).
2x2 4 x4 8x8 16 x 16 32 x32 Exact
t=0.01 Wc 1571 135.0 128.7 1271 126.7 126.5
M, 306.5 253.9 235.6 230.7 229.5 231.0
M; 236.5 2333 230.3 2294 229.1 231.0
r 0.69 0.79 0.88 0.93
t=0.0001 We 1571 135.0 128.7 127.1 126.7 126.5
M, 306.5 253.9 235.6 230.7 229.5 231.0
M; 236.5 2333 230.3 2294 229.1 231.0
r 112 1.04 1.01 1.00
Table 5
Central deflection w,, central moment M, and a posteriori ratio rfor the new method for a simply-supported square plate (uniform load).
2x2 4x4 8x8 16 x 16 32 x32 Exact
t=.01 We 428.2 412.0 407.8 406.8 406.5 406.5
M. 546.6 498.1 483.8 480.1 479.2 479.0
M; 474.0 478.5 478.8 478.8 478.9 479.0
r 0.55 0.84 0.93 0.97
t=0.0001 We 428.0 411.8 407.6 406.6 406.3 406.5
M. 546.6 498.1 483.8 480.1 479.2 479.0
M; 474.0 478.5 478.8 478.8 478.9 479.0
r 0.59 0.85 0.94 0.97
t=0.0001 We 428.0 411.8 407.6 406.6 406.3 406.5
M. 546.6 498.1 483.8 480.1 479.2 479.0
M; 474.0 478.5 478.8 478.8 478.9 479.0
r 0.99 1.00 1.00 1.00
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Mo = Z h,2<<|\divyh +gl2y + || divM, — ?h”é.z() The Cauchy-Schwarz inequality and (5.6) lead to
KeTy,
Twxo(¥:0) < Nw.oll(:Ollwxe- (5.7)
+ > el + | Man] ) (53)
Eeg) A combination of (5.1), (5.5), and (5.7) yields the reliable a posteri-

lead to a reliable a posteriori error estimate. ori error estimate (5.4). O

Theorem 5.1. Let (M,pw,B) e M xI'xW x O and
(Mp, Y4 Wh, Br) € Mp x I'y x Wy, x @ solve the problems (2.1),

(2.2) and (3.1). Then it holds D ¢ E—10920,v = 0.3
L =100
(M~ My = 3+ W = Wa B = Bl S Muser + o "1 "5 Uniform loading: ¢ = 1
(5-4) i Pa Boundary conditions
L on ABCD :w =0

Proof. By Lemma 5.1 we only need to estimate the terms

. AR . Fig. 4. Morley’s acute skew plate: geometry and 4 x 4 mesh.
uxr(Q,T) and ryw.e(?, {). The Cauchy inequality implies

Tuxr(Q, T) < Nyx , oI 5.5

(@ 7) S M| (@ Dl (5.5) T

Let (vh, ¢n) € Whp x ©n be the Clement-type interpolation of YT R =5

(v, ¢) e Wx © with A Uniform loading: g = 1

2 2 ) Boundary condition on AB
S (Il = vl + 1IE - Gulls ) W= B = By —0
KeT, S &
o Z ; 5 , Symmetry condition:
+ >0 (Il = ol + N - Gl o > on CB: B, =
Eeg, ' B X onCA:3, =0
2 2
Slvllie + HC”“? ~ (v, C)”WX@’ (5.6) Fig. 5. 12-Element mesh of symmetric quadrant of a circular plate.

The Galerkin orthogonality and an integration by parts imply

Twxo(0,8) = /gl/ vp)dX — /Mh (£—=¢nd
+/Q?h'(v(y—yh)—(5—5h))dx ’?\ %\
72 </ le’Yh"_g)(y Uh)dx N _— 3 N — 48
KeTy,

Fig. 6. Three meshes for quadrant of a circular plate.

+ / (divMy, —y,) - (¢~ &) dx
K

+Z</ [Vh] -0 (v~ ”h)dsf/[Mh]n'(C*Ch)dS) Table 7

Eeed Central deflection w(10~>qL*/D) for Moley’s skew plate (30°) (Kirchhoff solution [34]:
w° =0.408; 3D solution [8] at t=1: w = 0.424).

4x4 8x8 16 x 16 32 x32

DKQ 0760 0507 0443 0.426

t=1 w.  MITC4 0359 0357 0383 0.403

D & E—1002y — 03 New 0446 0434 0427 0.424

/ : _—0 11 _—1 00 r New 0.81 0.96 0.98

Y Unifo'n!n TR o] DKQ 0760 0507 0443 0.423

/ g 4= t=0.1 we  MITC4 0358 0343 0343 0.359

goe  Boundary conditions New 0445 0432 0424 0419

on AB & CD Cw o= 0 r New 0.82 0.96 0.97

Al I 1B X on BC & DA : free boundary We 0445 0432 0424 0419
t=0.001 New

r 0.83 0.96 0.98

Fig. 3. Razzaque's skew plate: geometry and 4 x 4 mesh.

Table 6
Results of central deflection w(10~>qL*/D) and central moment My(x10 3) for Razzaque’s skew plate (60°): L/t = 1000.
We M, r
DKQ MITC4 MiSP4 New MITC4 MiSP4 New New* New
2x2 0.6667 0.3856 0.5120 0.5655 0.3811 0.6066 0.9131 0.3636
4x4 0.7696 0.6723 0.7259 0.7399 0.7722 0.8774 0.9290 0.7807 0.35
8x8 0.7877 0.7592 0.7781 0.7826 0.9076 0.9423 0.9567 0.9210 0.87
16 x 16 - 0.7827 0.7894 0.7912 0.9473 0.9567 0.9609 0.9524 0.97
32 x32 - 0.7888 - 0.7928 0.9569 - 0.9613 0.9592 0.99

Exact 0.7945 0.9589
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Table 8
Central deflection w, and central moment M, for a clamped circular plate under uniform loading.
t=1 t=0.001
3 12 48 3 12 48 3 12 48
DKQ 10.756 10.064 9.854 10.756 10.064 9.854 - - -
wd(£) MITC4 10.755 11.431 11.525 9.068 9.699 9.765 9.051 9.681 9.747
New 12.635 12.079 11.701 10.899 10.286 9.930 10.881 10.267 9.912
Exact 11.551 9.784 9.766
DKQ 2.543 2.149 2.063 2.543 2.149 2.063 - - -
MITC4 1.927 2.038 2.033 1.883 2.049 2.032 1.883 2.050 2.032
M, New 2325 2.156 2.069 2.348 2.124 2.063 2.348 2.122 2.062
New* 1.578 1.968 2.015 1.578 1.981 2.018 1.577 1.981 2.018
Exact 2.031 2.031 2.031
r New 0.93 0.97 0.98 0.99 1.03 1.05

6. Numerical results

The practical performance of the new scheme is investigated for
a few benchmark tests in comparison with existing 4-node quadri-
lateral plate elements, namely the discrete Kirchhoff quadrilateral
plate DKQ element [10], the MITC4 element [9], and the MiSP4 ele-
ment [7].

6.1. Tests for locking

A clamped square plate and a simply supported plate with var-
ious range of thickness/span ratios subject to a uniform load
(Fig. 2) are used to test the shear locking phenomenon. The results
of central deflection and central moment presented in Tables 1 and
2 show that our method can avoid the shear locking phenomenon.
Notice that for the experiments here and below, we use * to denote
the corresponding bending moment result computed by De(g},).

6.2. A clamped/simply supported square plate under a uniform load

Fig. 2 also shows a clamped/simply supported square plate with
various range of thickness/span ratios subjected to a uniform load.
The results of central deflection, central moment and the a poste-
riori ratio

(nMxF + ’/,Wx@)|h
(Myaxr + Mwxo)lns2

between the mesh T, and its bisection-refined mesh Ty, are re-
ported in Tables 3-5. The new method gives convergent results
for any given plate thickness t, and yields uniform results with
the a posteriori ratio r close to 1 as t becomes small. Notice that
we have shown in Theorem 5.1 that the a posteriori estimator
Nuxr + Nwe 1S Teliable. So if it is also efficient, we can use r to de-
note the accuracy order of the new method. Theoretically, as shown
in Theorem 4.3, the latter one is first order.

r=log,

6.3. Razzaque’s skew plate (60°) with two free edges

Fig. 3 shows the mesh generated for Razzaque skew plate (60°)
subject to a uniform loading q [38]. The plate is simply supported
on two opposite sides and free on the other two. The results in Ta-
ble 6 shows that the new method is of good accuracy.

6.4. Morley’s simply supported rhombic plate (30°) under a uniform
loading

This test (Fig. 4) is a very critical one. Classically, Morley’s solu-
tion is obtained using Kirchhoff theory [34]. Two aspect ratios

(L/t=1000 and 100) are considered. The case L/t = 100 was investi-
gated by Babuska and Scapolla [8], in which it was considered as a
full 3D-elastic problem. The results in Table 7 show that the new
method is of uniformly good accuracy.

6.5. A clamped circular plate

Fig. 5 shows a clamped isotropic circular plate subjected to a
uniform loading, which is used to demonstrate the versatility of
the two proposed elements. A quarter of a plate with symmetry
conditions on x- and y-axis is considered. Fig. 6 shows the used
three kinds of finite element meshes.

The analytical solutions for displacement w and moment M, at
the center including transversal shear effects are obtained for axi-
symmetric clamped plates [11,47] as follows:

R R
Wer = ggs(1+9), Mep =T (v+3),

where

8 t\? Ef 5
¢:3K(1—V)<E>7 D=wa—w =%

The results are reported in Table 8. We can see that the new
method gives convergent results for a given plate thickness t, and
yields uniform results with the a posteriori ratio r being close to
1 as t becomes small.
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