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Abstract A new finite element method computes conductivity in some unstructured
particle-reinforced composite material. The 2-phase material under consideration is
composed of a poorly conducting matrix material filled by highly conducting circular
inclusions which are randomly dispersed. The mathematical model is a Poisson-type
problem with discontinuous coefficients. The discontinuities are huge in contrast and
quantity. The proposed method generalizes classical continuous piecewise affine finite
elements to special computational meshes which encode the particles in a network
structure. Important geometric parameters such as the volume fraction are preserved
exactly. The computational complexity of the method is (almost) proportional to the
number of inclusions. This is minimal in the sense that the representation of the under-
lying geometry via the positions and radii of the inclusions is of the same complexity.
The discretization error is proportional to the distance of neighboring inclusions and
independent of the conductivity contrast in the medium.
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74 D. Peterseim, C. Carstensen

1 Introduction

Composite materials (or composites for short) are engineered materials made from
two or more constituents with significantly different physical properties. In a typical
configuration, randomly distributed filler particles (inclusions) are surrounded by a
second material (matrix) which binds the filler particles together.

The numerical simulation of material properties aims at a better understanding
how conductivity depends on controllable variables (e.g., thermal conductivities of
the material components, relative volumes, and particles shapes) and hence provides
the opportunity to develop materials with enhanced performance for the particular
application.

The design of efficient and reliable numerical methods for such problems is chal-
lenging. The complexity of the underlying geometry makes classical approaches hardly
feasible (cf. Sect. 1.2); in the typical geometric setting, the inclusions are too big for
any perturbation analysis or homogenization method, and they are too many or they
are packed too densely to resolve them easily with standard finite element meshes.
We face this difficulty even for simple continuum models of some material property
of interest, e.g. the linear elliptic model problem of heat conduction considered in this
paper (see Sect. 1.1).

Based on an efficient treatment of the microscopic geometry, the new method
described in this paper (cf. Sect. 1.3) allows reliable numerical simulation of the
model problem with many inclusions independent of the degree of disorder in the
geometry.

1.1 Model problem

This paper considers a representative 2-dimensional model of a particle-reinforced
composite occupying the nonempty open bounded convex polyhedral domain Ω ⊂
R

2. Let Binc be a set of closed, pairwise disjoint disks of positive radii (inclusions)
contained in a domain Ω ⊂ R

2, i.e.,

B ⊂ Ω and dist
(

B, B̃
)

> 0 for all B, B̃ ∈ Binc with B �= B̃. (1.1)

In the present context, the number N := #Binc of inclusions is a very large parameter.
The two material phases are represented by the union of the inclusions Ωinc, and by
the so called matrix (the perforated domain) Ωmat,

Ωinc :=
⋃

B∈Binc

int(B) and Ωmat := Ω\Ω inc.

The outer boundary Γ := ∂Ω is partitioned into two parts ΓD and ΓN , where ΓD is
closed and has a positive surface measure while its relative complement ΓN := Γ \ΓD

is relatively open, and the number of contact points ΓD ∩ Γ N is finite.
The material geometry enters the problem through a coefficient function c ∈

L∞(Ω) which jumps between the material components. For simplicity c is chosen to
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FE network approximation in particle composites 75

be constant with respect to each of the two phases and normalized with respect to the
matrix material, i.e.,

c(x) =
{

1 if x ∈ Ωmat,

ccont if x ∈ Ωinc.
(1.2a)

The constant ccont ≥ 1 represents the conductivity contrast in the medium.
Consider the set of admissible temperature distributions

A := u D + V with V := {u ∈ H1(Ω) | u = 0 on ΓD} (1.2b)

for u D ∈ H1(Ω) ∩ C0(Ω). Given some force density f ∈ V ∗, the effective conduc-
tivity of the composite

ceff := min
u∈A

E(u) (1.2c)

minimizes the energy functional E,

E(v) := 1

2

∫

Ω

c(x)|∇v(x)|2 dx −
∫

Ω

f (x)v(x) dx for all v ∈ H1(Ω). (1.2d)

1.2 Challenges to numerical simulations

In practical applications, the parameter ccont 
 1 is very large. In addition, the coef-
ficient function, which is the output of certain (random) production processes (e.g.
mixing of the particles within a liquid matrix material followed by hardening), has to
be regarded as a statistical parameter. Corresponding to Berlyand [3], the latter two
issues, random micro-structures on multiple scales and high contrast in physical prop-
erties, are the two characteristic features of general composites. They lead to major
difficulties for a numerical approximation of problem (1.2).

Classical FEM A classical method for the approximate solution of (1.2) is the finite
element method. However, in the present context, standard finite element approaches
suffer from the fact that the material interface ∂Ωinc needs to be resolved by the
underlying mesh in order to get satisfactory results. The required resolution of the
coefficient geometry forces even the coarsest available meshes to be very fine, i.e.,
the minimal mesh size has to be at most of order of the inclusion radii. Additionally,
finite element methods often require high quality meshes (shape regularity) which puts
even more constraints on mesh generation. Thus, the minimal number of nodes in a
reasonable mesh depends critically on the distribution of the holes and their distances;
Fig. 1 illustrates the problem in a model situation, which is eased for visualization
purposes.

Minimal complexity Since the underlying geometry is of stochastic nature problem
(1.2), typically, needs to be solved many times for different coefficient configurations
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76 D. Peterseim, C. Carstensen

Fig. 1 Model domain (unit square) containing 133 circular inclusions with radius r = 0.02 (left) and
“coarse” shape regular triangulation with 33903 elements (right)

within a statistical investigation of material properties (by a Monte Carlo method). For
example, the accuracy of the approximation of the expected temperature distribution
subject to a to random distribution of particles in the material, is of order M−1/2, where
M denotes the number of samples. Since the coefficient is different for different sam-
ples, meshes cannot be re-used but need to be re-computed for every single sample of
the particle distribution. Hence, the computation of the finite element mesh is crucial
in all complexity discussions and cannot be neglected as a precomputation (cf. Fig. 1).
With regard to the possibly huge number of instances of problem (1.2) that need to
be considered, this paper aims at a reasonable discrete model of minimal complexity.
Minimality is determined by the data of the problem and therefore mainly by its geom-
etry. The geometry representation requires storing the pairs of centers and radii of the
N inclusions (the complexity of the representation of the outer boundary is supposed
to be small compared to N ). A model is considered to have minimal complexity if
it provides an approximate solution in time and space complexity O(N ). The finite
element method to be presented in this paper satisfies the complexity requirement up
to logarithmic factors (cf. Section below).

1.3 The new structural finite element approach

In this paper ideas from network approximations [3–5,19] are combined with non-
standard finite element methods to derive a new structural finite element method of
almost minimal complexity. In particular, a special geometry treatment inspired by
networks is combined with the flexibility of finite element methods. As in discrete
network methods, the inclusions are modeled in a network structure. They appear
as elements of the computational mesh, supplemented by channel-like objects that
connect neighboring inclusions and, finally, triangles. The mesh generalizes stan-
dard Delaunay triangulations of points in the plane to sets of disks. It can be com-
puted and represented efficiently. A generalization of continuous first-order finite ele-
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FE network approximation in particle composites 77

ments based on the new, problem-adapted subdivisions is introduced. Its realization is
conceivably simple and it provides accurate numerical approximations at almost mini-
mal complexity. More precisely, for the solution u ∈ A∩ H2(Ωmat ∪Ωinc) of (1.2) and
its structural finite element approximation uS it holds (see Theorem 3.1, Corollaries
3.1 and 3.2).

‖√c∇(u − uS)‖L2(Ω) ≤ C f,u D,Binc‖h‖L∞(Ω),

where h is a local mesh size parameter. The constant does not depend on contrast. Its
dependencies on the geometry of the material (e.g., touching inclusions) are discussed
in detail.

The overall motivation for the novel network approximation is its optimal com-
plexity in the sense that the cost for a meaningful approximation remains proportional
to the number of inclusions.

1.4 Numerical upscaling

The number of degrees of freedom might be reduced further by using multiscale
methods, e.g., [7,11,16,17,20,21]. These methods are based on arbitrary coarse
meshes that, more or less, ignore the geometric scales of the coefficient. The influ-
ence of the coefficient is instead coded in the finite element basis functions or some
modified discrete operator. For this, multiscale methods require some preprocessing
that involves the solution of the original problem on subdomains. The solution of
these local problems, however, faces the same difficulties as the original problem,
i.e., it requires submeshes fine enough to capture the heterogeneities (the influence of
the microscopic geometry on macroscopic material properties can only be studied if
the microscopic geometry enters the discretization). In this regard, the method pre-
sented here might be employed as an efficient fine scale solver within some multiscale
numerical framework.

1.5 Outline

Section 2 defines a problem adapted generalization of triangular meshes modeling the
inclusions as (vertex-like) elements of a subdivision. Based on this new type of meshes
a generalized nodal basis defining a generalized conforming first-order approximation
space is introduced. Contrast-independent a priori error estimates for the proposed
new finite element method are given in Sect. 3. Section 4 discusses open problems
and future generalizations of the method.

1.6 Notation

In this paper, capital letters A, B, C, . . . indicate sets. Calligraphic capital letters
B,P, . . . denote sets of sets. For a given set of sets B the union of its elements is
denoted by ∪B := ⋃

B∈B B. Basic topological notations are used: For any subset X
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of a metric space its closure is denoted by X , its interior by int(X), and its boundary by
bnd(X). In what follows, dist(·, ·) denotes the Euclidean distance in R

2. The measure
| · | is context-sensitive and refers to the volume of a set relative to its dimension,
i.e., | · | denotes the length of a curve, or the area of a domain. The distance between
nonempty subsets A, B ⊂ R

2 reads

dist(A, B) := inf
x∈A,y∈B

dist(x, y) . (1.3)

Given some bounded domain Ω , standard notation for (fractional) Sobolev spaces
W m

p (Ω), m ≥ 0, p ∈ N ∪ {0}, and their corresponding norms ‖ · ‖W m
p (Ω) and

seminorms | · |W m
p (Ω) is used; Hm(Ω) abbreviates W m

2 (Ω) (m ∈ N) and L p(Ω)

abbreviates W 0
p(Ω). Given two disjoint bounded Lipschitz domains Ω1 and Ω2, the

space Hm(Ω1 ∪ Ω2) denotes the space of all functions u ∈ L2(Ω1 ∪ Ω2) with
u|Ω1 ∈ Hm(Ω1) and u|Ω2 ∈ Hm(Ω2). The dual space of a Hilbert space V is indi-
cated by V ∗. The space of R-valued continuous functions on a set Ω is denoted by
C0(Ω).

2 A minimal conforming finite element space

This section introduces a conforming finite element space which can be regarded as
a generalization of the classical continuous piecewise affine finite element space on a
special mesh.

2.1 Geometric preliminaries

Cyclic polygons A convex polygon T is the closed convex hull of 2 or more distinct
points. The set of vertices (corners) V(T ) is the minimal set of points x1, x2, . . . , xk ∈
R

2, such that T = conv({x1, x2, . . . , xk}). According to the number of its vertices, a
convex polygon is denoted as a convex k-gon. The boundary of a convex k-gon can
be described by the union of at most k line segments called edges. The set of edges
of a convex polygon T is denoted by E(T ). A convex polygon T is called cyclic if its
vertices (corners) V (T ) are located on the boundary of a (closed) disk CD = CD(T )

which is denoted as the circumdisk of T . Examples of cyclic polygons are line segment,
triangles, or rectangles.

Infinite Delaunay Triangulations A regular (possibly infinite) triangulation of a domain
Ω ⊂ R

2 into cyclic polygons is a set of cyclic polygons T such that

∪T = Ω

and any two distinct cyclic polygons are either

a) disjoint, T1 ∩ T2 = ∅, or
b) share exactly one vertex z, T1 ∩ T2 = V (T1) ∩ V (T2) = {z}, or
c) have one edge E = bnd(T1) ∩ bnd(T2) = E(T1) ∩ E(T2) in common.
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FE network approximation in particle composites 79

The set of all edges resp. vertices of a triangulation T is written as

E(T ) :=
⋃

T ∈T
E(T ) resp. V(T ) :=

⋃
T ∈T

V(T ).

A regular triangulation T is called Delaunay [10] if every element T ∈ T satisfies the
Delaunay criterion

CD(T ) ∩ V(T ) = V(T ), (2.1)

that is, the circumdisc of T does not contain any vertices of T except those of T . Given
a set of vertices V , the Delaunay triangulation of conv(V) is uniquely determined (if
cyclic polygons are considered). It can be constructed, e.g., by exploiting duality with
respect to the Voronoi diagram [27] of V . The uniqueness is due to the consideration
of cyclic polygons instead of just triangles. In the subsequent paragraph, cyclic k-gons
with k > 3 will further be decomposed into triangles.

2.2 Geometric modeling of particle composites

The geometry of model problem (1.2) is represented by a finite set B of closed disks.
Every B ∈ B is described by its center cB = mid(B) and its radius rB = diam

(
B

)
/2 ≥

0. The elements of B are denoted as generalized vertices and partitioned into the two
subsets Binc and Bmat, i.e.,

B = Binc ∪ Bmat and Binc ∩ Bmat = ∅.

The set Binc contains the inclusions of model problem (1.2), i.e., closed disks of positive
radius. The set Bmat contains closed disks of radius zero with

conv(∪Bmat) = Ω and ΓD ∩ Γ N ⊂ ∪Bmat.

Thus Bmat contains the corners of ∂Ω and all points where the type of boundary
condition switches between Dirichlet and Neumann; but Bmat might contain additional
points (disks with vanishing radii) in the interior of the matrix Ωinc, which offers
the possibility of refinement and increased local resolution within the finite element
framework.

By Tmat we denote the Delaunay triangulation of Ωmat such that

V(Tmat) = Bmat ∪
⋃

B∈Binc

∂ B.

Figure 2 displays a detail of Tmat for some set of disks B. Obviously, Tmat consists of
two classes of cyclic polygons (see [24]), namely,

a) (possibly infinitely many) cyclic 2-gons T |
mat, i.e., line segments whose vertices

are located on the circumference of exactly two distinct disks, and
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(a) Generalized Delaunay triangulation (b) Genrealized Delaunay triangulation and 
dual Voronoi tessellation

Fig. 2 Generalized Delaunay triangulation with respect to disks in the plane

b) (finitely many) cyclic k-gons T �
mat for k ≥ 3.

For simplicity we assume that T �
mat contains exclusively triangles. This assumption

can always be fulfilled if we consider a triangulation T̃mat in which the 4, 5, . . . -gons
of Tmat are further decomposed into triangles; T̃mat is not Delaunay in the sense of
(2.1) but fulfills the weaker Delaunay criterion

int(CD(T )) ∩ V(T̃mat) = ∅ for all T ∈ T̃mat, (2.2)

that is, there are no vertices of T̃mat in the interior of the circumdisk of T ∈ T̃mat. The
subset T �

mat of triangles of Tmat provides structural (combinatorial) information about
the set of inclusions Binc. It induces a neighborhood relation N ⊂ Binc ×Binc defined
by the rule: (B1, B2) ∈ N if there exists a T ∈ T �

mat such that V (T ) ⊂ B1 ∪ B2 and
V (T ) ∩ B1 �= ∅ and V (T ) ∩ B2 �= ∅. For every pair (B1, B2) ∈ N of neighboring
disks we define the channel-like object (a bundle of line segments)

E(B1, B2) := ∪{T ∈ Tmat : V (T ) ⊂ B1 ∪ B2}.

Since E(B1, B2) is an object that connects exactly two generalized vertices (disks) we
denote E(B1, B2) a generalized edge.

A finite subdivision G of Ω , which will serve as the finite element mesh later, is
given by

G = Binc ∪ E ∪ T ,

where Binc is the given set of disks, E := {E(B1, B2) : (B1, B2) ∈ N } is the set of
generalized edges and T := T �

mat is the set of triangles.

Remark 1 a) The subdivision G can be regarded as a generalization of classical
Delaunay triangulations in the sense that disks might assume the classical role
of vertices while edges (i.e., objects that connect two neighboring vertices) might
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FE network approximation in particle composites 81

generalize to channels. In the special case of equally sized inclusions such subdi-
visions have been used in discrete network approximations [3]. Apart from minor
technical details regarding the treatment of element boundaries, the subdivision G
fits into the framework of generalized Delaunay partitions for multidimensional
sets of convex inclusions introduced in [23].

b) The subdivision G covers Ω while the intersection of any two of its elements is of
measure zero.

c) The number of elements in G is proportional to the cardinality of B and thus is
quasi minimal.

d) There is a duality concept which links generalized Delaunay triangulations to
Voronoi tessellations with respect to the set of disks (see Fig. 2(b) and the next
subsection). It generalizes straight-line duality between classical Voronoi tessel-
lation and Delaunay triangulation of point sets. We refer to [23] for more insights
about geometric duality and further references.

e) The generalized Delaunay triangulation D can be computed fast as explained
subsequently. There exist algorithms of orderO(#B×log(#B)) for the computation
of Voronoi diagrams with respect to a set of disks B; see, e.g., [13,14,18]. These
algorithms, by duality, can also be employed for the computation of the generalized
Delaunay subdivision.

We refer to the recent preprint [12] for an algorithmic presentation of this construc-
tion.

2.3 Element parametrization and local mesh size

The generalized vertices Binc and the triangles T form affine families and can easily
be represented by reference elements and affine mappings.

A parametrization of a generalized edge can be given as follows. Let E = E(B1, B2)

in E be a generalized edge that connects two generalized vertices B1, B2 ∈ B and let

ΣE :=
{

y ∈ R
2 : dist(y, B1)=dist(y, B2) and dist(y, B1) ≤ dist(y,B\{B1, B2})

}

denote the corresponding dual Voronoi edge, the set of points with equal distance to
both B1 and B2. Without loss of generality we assume rB1 ≥ rB2 , cB1 = (0, 0), cB2 =
(0, δ), δ > 0. Note that the Voronoi dual edge might not be connected (see Fig. 4a). The
same applies to the generalized edge as it can be seen in Fig. 4b. We denote the number
of connected components of E by K (E). The projection πB1 := argminy∈B1

dist(·, y)

defines angles

−π
2 ≤ α1

E ≤ β1
E < α2

E ≤ β2
E < · · · < α

K (E)
E ≤ β

K (E)
i j ≤ π

2

such that

πB1(ΣE ) =
K (E)⋃
k=1

rB1

[
sin([αk

E , βk
E ]), cos([αk

E , βk
E ])

]T
.

123
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In other words, the parameters α1
E , . . . , α

K (E)
E , β1

E , . . . , β
K (E)
E are the angular values

of the projections of the Voronoi vertices which are connected by ΣE , onto B1. Those
Voronoi vertices are simply the circumcenters of triangles adjacent to E . With the
reference element

E ref = E ref(B1, B2) :=
(
]α1

E , β1
E [ ∪ · · · ∪ ]αK (E)

E , β
K (E)
E [

)
×]0, 1[, (2.3)

the mapping JE : E ref → intE , given by

JE (s, λ) = (1 − λ)rB1

(
sin(s)
cos(s)

)
+ λπB2

(
(πB1 |ΣE )−1

(
rB1

(
sin(s)
cos(s)

)))

=
(

((1 − λ)rB1 + λrB2) sin(s)
((1 − λ)rB1 − λrB2) cos(s) + δλ

)
,

parametrizes E . Figure 3a visualizes the mapping JE . Note that a generalized edge
E(B1, B2) is uniquely determined by the inclusion centers and radii, and the values
of αE , βE , and δ.

The projection πB1,B2(·) := πB2(π
−1
B1

(·)) may be rewritten as

πB1,B2(x) := argmin
y∈∂ B2

dist(x, y)

max{〈(y − x)/‖y − x‖, νB1(y)〉, 0} , (2.4)

where νB1 denotes the outer normal of B1.
With

H(s) :=
(
δ2 − 2 cos(s) δ rB1

) + r2
B1

− r2
B2(

2 rB2 − 2 rB1

) + 2 δ cos(s)
.

the parametrization JE assumes the form

JE (s, λ) =
(

(1 − λ)r1 + λr2
rB1 + H(s)

rB2 + H(s)

) [
sin(s)
cos(s)

]

+δλ

(
1 − rB2

rB2 + H(s)

) (
0
δ

)
. (2.5)

We finally introduce some (Tmat ∪ B)-piecewise constant meshsize function h :
Ω →]0,∞[ by

h|K = hK := diam
(
K

)
for K ∈ Tmat ∪ B

to be used in the forthcoming finite element analysis. Note that h is not constant with
respect to a generalized edge (of positive measure) but captures the distance between
neighboring inclusions (see (2.4)).
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(a)

(b) (c)

B
1

(0,0)

B
2

(0,δ)

J
E

E

Eref=[α,β]×[0,1]

Σ
E

α β

Fig. 3 Edge parametrization and nodal basis function

2.4 Finite element spaces

The degrees of freedom of the finite element spaces are assigned to the entries of B.
Every B ∈ B defines a (local) Tmat-affine basis function λB : R

2 → [0, 1] with

λB ≡ 1 in B while λB ≡ 0 in Ωinc\B.

More precisely,λB is unique continuous function with constant values on the inclusions
as above and whose restriction to each element T ∈ Tmat is affine. This means that λB

is affine on all triangles T ∈ T . However, λB is not affine on generalized edges. Recall
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(a) Part of a Voronoi tessellation with a multiply
connected Voronoi edge (black)

(b) Part of the generalized Delaunay triangula-
tion with a multiply connected generalized edge
(black shaded)

Fig. 4 Voronoi tessellation and Generalized Delaunay triangulation of a set of disks in the plane
emphasizing possible non-connectivity of its elements

that a generalized edge E ∈ E is the agglomeration of line segments. The restriction
of λB to all those line segments is supposed to be affine. On the global level of the
generalized edge E , this implies that λB |E is the image of an affine function on the
rectangular reference element E ref (cf. (2.3)) under the coordinate transformation JE

(cf. (2.5)). After suitable rotation of the edge as in Sect. 2.3 (with B1 = B), λB |E may
be written as

λB(x) = (1 − (J−1
E (x))2) for all x ∈ E,

where (J−1
E (x))2 refers to the second component of the vector J−1

E (x).
Those basis functions generalize nodal basis functions on classical triangular

meshes. In the special case of equally sized inclusions, those basis function have
been used in the analysis of a network method [4]. The support of λB , denoted by ωB ,
is given by

ωB := B ∪ (∪{E ∈ E : E ∩ B �= ∅}) ∪ (∪{T ∈ T : T ∩ B �= ∅}) .

Figure 3b depicts a nodal basis function. Note that the set of nodal basis functions
Λ := {λB : B ∈ B} forms a partition of unity in Ω . The generalized nodal basis
functions which are not related to vertices on the Dirichlet boundary ΓD span the finite
element space

S∞ := span(Λ) ∩ V . (2.6)

Obviously S∞ has dimension #B which is minimal in comparison to data complexity
and will be the space of choice for very large contrast and the special case of perfectly
conducting inclusions ccont = ∞. In the latter case the solution is necessarily constant
with respect to every single inclusion (see Sect. 3.1), which is captured by S∞.

If ccont < ∞ then the solution is not constant on the inclusions. Further basis
functions (defined below) shall preserve sufficiently high accuracy in this setting, too.
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Fig. 5 Basis function λ1
B

Every B ∈ Binc defines (local) Tmat-affine basis functions λ1
B, λ2

B : R
2 → [0, 1] with

λk
B(x) = xk − (cB)k

rB
if x ∈ B while λk

B ≡ 0 inΩinc\B.

The subscript k refers to the kth component of a 2-dimensional vector.
This means that λk

B is affine on all inclusions B ∈ Binc and all triangles T ∈ T .
After suitable rotation of the edge as in Sect. 2.3 (with B1 = B), λB |E may be written
as

λk
B(x) = (1 − (J−1

E (x))2)λ
k
B(JE ((J−1

E (x))1, 0)) for all x ∈ E,

where the coordinate transformation JE is given in (2.5). Note that JE ((J−1
E (·))1, 0)) ∈

∂ B and, hence, the values λk
B(JE ((J−1

E (·))1, 0)) are given by (2.4). It holds
supp

(
λk

B

) = ωB . Figure 5 illustrates λ1
B .

The enlarged finite element space is then given by

S := span
(
Λ ∪ {λ1

B : B ∈ B} ∪ {λ2
B : B ∈ Binc}

)
∩ V . (2.7)

Remark 2 a) If the radii of all inclusions are zero, the spaces S resp. S∞ reduce
to the classical conforming P

1 finite element space with respect to the Delaunay
triangulation.

b) The number of degrees of freedom in S is 3 per inclusion B ∈ Binc, and 1 per any
other vertex B ∈ Bmat away from ΓD . The overall number of degrees of freedom
is bounded by 3#Binc + #Bmat and, hence, proportional to data complexity.

c) Further basis functions could easily be designed by considering any continuous
function on B and its Tmat-affine or a more general Tmat-polynomial extension
to ωB .

3 Galerkin approximation and a priori error analysis

This section considers the variational formulation of (1.2) and its Galerkin approxi-
mation and presents error estimates which are independent of the contrast parameter
ccont.
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3.1 Variational formulation and solvability

Any minimizer u∗ ∈ A of (1.2) solves the variational problem

∫

Ω

c〈∇u∗,∇v〉dx =
∫

Ω

f vdx for all v ∈ V . (3.1)

The left-hand side of (3.1) defines a symmetric bilinear form a,

a(u, v) :=
∫

Ω

c〈∇u,∇v〉dx .

The sum u∗ := u + u D is the solution of problem (3.1); u D denotes some extension
(with finite energy) of the given inhomogeneous Dirichlet boundary data to Ω . After
shifting the inhomogeneous boundary data to the right-hand side, the problem reduces
to find u ∈ V such that

a(u, v) =
∫

Ω

f vdx − a(u D, v) =: F(v) for all v ∈ V . (3.2)

It is obvious that

1

1 + CF
‖v‖2

H1(Ω)
≤ a(v, v) and a(u, v) ≤ ccont‖u‖H1(Ω)‖v‖H1(Ω) (3.3)

for all u, v ∈ V with the constant from Friedrichs’ inequality CF. Inequality (3.3)
ensures the unique solvability of the variational problem (3.2) for finite contrast
ccont < ∞.

The Galerkin approximation of the solution of (3.2) with respect to the finite element
space S, denoted by uS ∈ S, is defined as the solution to the discrete variational system

a(uS, v) = F(v) for all v ∈ S. (3.4)

Remark 3 a) The assembling of the corresponding linear system is fairly standard.
It might be performed in a loop over all elements of the generalized finite element
mesh (including triangles, disks, and edges), the computation of the local stiffness
matrices and load vectors, and the sum of the local contributions to the global
matrices. The computation of the entries of the local stiffness matrices might be
done by transformation to the corresponding reference element. The only diffi-
culty is that the transformation on the generalized edges is not affine. Still the
entries of the local stiffness matrices might be precomputed as functions of the
angle parameters and δ. Alternatively, numerical quadrature can be used. If two
inclusions are close to each other, the basis functions are close to be singular and
the quadrature rule should take the singular behavior into account.
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b) The resulting stiffness matrix has a similar sparsity pattern as the stiffness matrix of
the classical P1 finite element method for the Poisson problem with respect to some
regular triangulation. Hence, in the present 2-dimensional setting, sparse direct
solvers offer robust, fast, and parallel solution of the linear system, even though
the asymptotic complexity is not optimal (e.g. O(N 3/2) for nested dissection [15]).
We refer to the textbook [9] for an overview on fast direct solvers for sparse linear
systems. For moderate contrast, [1] and [2] show that an iterative solver based
on hierarchical factorization performs almost optimal (i.e. O(N (log N )k)). In the
numerical examples in [1,2], theses methods give promising results also in the
high contrast regime.

This paper aims at a priori estimates of the error u − uS in energy norm
‖ · ‖a := √

a(·, ·) and therefore estimates of the error in the effective conductivity.
Since uS is the best approximation of u in energy norm we have

2(E(uS + u D) − E(u + u D)) = ‖(u + u D) − (uS + u D)‖2
a

= ‖u − uS‖2
a = inf

v∈S
‖u − v‖2

a. (3.5)

Sections 3.3 and 3.4 will present bounds of the right hand side in (3.5). A posteriori
bounds are presented in [12].

3.2 Perfectly conducting inclusions

Our analysis shall cover the case of perfectly conducting inclusions as well. The related
model is a variational problem with respect to the reduced space

V ∞ := {v ∈ V : v|B = const for all B ∈ Binc} ⊂ V .

We seek u∞ ∈ V ∞ such that

a∞(u∞, v) =
∫

Ω

f vdx − a∞(u∞
D , v) =: F(v) for all v ∈ V ∞, (3.6)

where a∞(u, v) := ∫
Ωmat

〈∇u,∇v〉dx for u, v ∈ H1(Ω) and u∞
D ∈ H1(Ω) with

u∞
D |ΓD = u D|ΓD and ∇u∞

D |B = 0 for all B ∈ Binc.
Since a∞(u, v) ≤ ‖u‖H1(Ω)‖v‖H1(Ω) and a∞(v, v) = ‖∇v‖2

L2(Ω)
for all u, v ∈

V ∞, the variational problem (3.6) has a unique solution.
The Galerkin approximation uS∞ ∈ S∞ of the solution of (3.6), with respect to the

finite element space S∞ defined in (2.6), satisfies

a∞(uS∞ , v) = F(v) for all v ∈ S∞. (3.7)

The error estimate (3.5) remains valid with u replaced by u∞ and uS replaced by uS∞ .
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Mathematical justification of the limiting problem We shall justify the model problem
(3.6). For fixed geometry Ωmat, Dirichlet data u D = 0, and force term f , let uccont

denote the solution of (3.2) associated with the contrast parameter ccont ≥ 1.
Define some function ũccont ∈ V as follows. On every B ∈ Binc, (ũccont )|B

equals uccont |B minus its mean value |B|−1
∫

B uccont dx . This defines (ũccont )|Ωinc .
Observe that Poicareé’s inequality yields ‖ũccont‖L2(Ωinc)

≤ C1‖∇ũccont‖L2(Ωinc)
=

C1‖∇uccont‖L2(Ωinc)
with some constant C1 independent of contrast and the positions

of the inclusions. In Ωmat, ũccont is chosen as some bounded extension of (ũccont )|Ωinc

in the sense of [26], i.e., there is some constant C2 that may depend on the geometry
but not on ccont such that ‖ũccont‖H1(Ω) ≤ C2‖uccont‖H1(Ωinc)

.
This construction and the classical jump relation at the interface ∂Ωinc,

ccont
∂

(
(uccont )|Ωinc

)

∂νΩinc

= −∂
(
(uccont )|Ωmat

)

∂νΩmat

in H−1/2(∂Ωinc), (3.8)

yield

‖∇uccont‖L2(Ωinc)

=
∫

Ωinc

〈∇uccont ,∇ũccont 〉dx =
∫

∂Ωinc

∂uccont

∂νΩinc

ũccont dx + c−1
cont

∫

Ωinc

f ũccont dx

≤ c−1
cont

⎛
⎜⎝

∣∣∣∣∣∣∣

∫

∂Ωmat

∂uccont

∂νΩmat

ũccont dx

∣∣∣∣∣∣∣
+ ‖ f ‖L2(Ωinc)

‖ũccont‖L2(Ωinc)

⎞
⎟⎠

≤ c−1
cont

(‖∇uccont‖L2(Ωmat)
‖∇ũccont‖L2(Ωmat)

+ ‖ f ‖L2(Ωmat)
‖ũccont‖L2(Ωmat)

+‖ f ‖L2(Ωinc)
‖ũccont‖L2(Ωinc)

)

≤ Cc−1
cont‖ f ‖L2(Ω)‖∇uccont‖L2(Ωinc)

,

where C depends only on C1 and C2 but not on ccont. This implies

‖c1/2∇uccont‖L2(Ωinc)
≤ Cc−1/2

cont ‖ f ‖L2(Ω).

Hence, the solution uccont of (3.2) converges (with respect to the energy norm) to the
solution u∞ of (3.6) as ccont → ∞.

3.3 Nodal interpolation and approximability

An upper bound for the right-hand side in (3.5) is derived through the design of
some finite element function based on a suitable interpolation of the solution u. The
conditions
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∫

B

(u − I u)vdx = 0 for all v ∈ P
1(R2) and for allB ∈ Binc, (3.9a)

u(b) − I u(b) = 0 for all B = {b} ∈ Bmat, (3.9b)

define a generalized nodal interpolation operator I : H2(Ωmat ∪ Ωinc) → S0. Since,
on any inclusion B ∈ Binc, I u is the L2(B) projection of u onto the space of affine
functions, we have that

‖∇m(u − I u)‖L2(B) ≤ CI diam
(
B

)2−m |u|H2(B) for m = 0, 1 (3.10)

with some universal constant CI independent of the diameter of the disk B and u ∈
H2(Ωmat ∪ Ωinc). The estimate (3.10) already provides approximation properties of
the finite element space on the inclusions. It remains to give local estimates for the
interpolation error on the triangles (see Lemma 3.1) and the generalized edges (see
Lemma 3.3).

As usual, the error on a triangle T depends on the aspect ratio ρT , i.e., the ratio
between the diameters of the largest circle that can be inscribed in T and the circum-
circle of T .

Lemma 3.1 Let u ∈ V ∩H2(Ωmat∪Ωinc) and let T ∈ T with vertices on B1, B2, B3 ∈
B. Then it holds

‖∇(u − I u)‖2
L2(T )

≤ C2
T ρ−2

T ‖h∇2u‖2
L2(T ∪B1∪B2∪B3)

(3.11)

with some universal constant CT which depends only on CI from (3.9).

Proof A key ingredient of the proof are standard estimates for the interpolation error
with respect to a triangle T . It is well known (see [8, Theorem 16.1]) that the nodal
(affine) interpolant IT u of u at the vertices of T satisfies

|u − IT u|Hm (T ) ≤ Cipρ
−1
T diam

(
T

)2−m |u|H2(T ) for all u ∈ H2(T ), m = 0, 1.

(3.12)

The difficulty is that I u defined by (3.9) does not interpolate u at the vertices of T
in general. Thus, the error is split into two components,

‖∇(u − I u)‖2
L2(T )

≤ ‖∇(u − IT u)‖2
L2(T )

+ ‖∇(IT u − I u)‖2
L2(T )

. (3.13)

The first term on the right-hand side of (3.13) can be estimated directly with (3.12)
while the second one requires further considerations.

Notice that ∇(IT u − I u)|T is constant on T and the inverse estimate

‖∇q‖L∞(T ) ≤ 2ρ−1
T diam

(
T

)−1‖q‖L∞(T ) (3.14)
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holds for all q ∈ P1(T ) on any triangle T . Thus

‖∇(IT u − I u)‖2
L2(T )

≤ |T ||∇(IT u − I u)|2L∞(T )

(3.14)≤ 4ρ−2
T ‖IT u − I u‖2

L∞(T ).

(3.15)

The maximal absolute value of the affine function q := (IT u − I u)|T on T is attained
in some vertex x0 = V (T ) ∩ BT for some BT ∈ {B1, B2, B3}. If BT ∈ Bmat, i.e.,
BT = x0, then (IT u − I u)|T = 0. Otherwise, let T̃ ⊂ BT be the equilateral triangle
with vertices on ∂ BT and one vertex at x0. For q ∈ P1(T ) and p ∈ P1(T̃ ) with
|p(x0)| ≥ |q(x0)| it holds

‖q‖2
L∞(T ) = |q(x0)|2 ≤ |p(x0)|2 ≤ 2

(
|T̃ |−1‖p‖2

L2(T̃ )
+ ‖∇ p‖2

L2(T̃ )

)
. (3.16)

With the special choices p = (IT u − I u)|T and q = (IT̃ u − I u)|T̃ this leads to

‖∇(IT u− I u)‖2
L2(T )

(3.15),(3.16)≤ 8ρ−2
T

(
|T̃ |−1‖IT̃ u− I u‖2

L2(T̃ )
+‖∇(IT̃ u− I u)‖2

L2(T̃ )

)

(3.12),(3.10)≤ 16ρ−2
T (C2

I + C2
ip)h

2
BT

‖∇2u‖2
L2(BT )

. (3.17)

Together with (3.13) and (3.12) this implies (3.11) with C2
T ≤ 5(CI + Cip). ��

The second step of the error analysis considers the a priori estimate of the inter-
polation error on the generalized edges. Every connectivity component Ek, k =
1, 2, . . . , K (E) of an edge E ∈ E is a curvilinear polygon, i.e., Ek is a simply-
connected, bounded domain with the boundary ∂ Ek = ⋃4

j=1 τ j , where τ j are circular
arcs. Note that all internal angles γ1(Ek), γ2(Ek), . . . , γ4(Ek) of Ek are bounded from
above by π/2. The subsequent error analysis depends on the smallest angle which is
denoted γEk . Correspondingly, γE := mink=1,2,...,K (E) γEk . The following lemma
shows that all these angles are bounded from below by a positive constant.

Lemma 3.2 There exist γE > 0 such that 0 < γE ≤ γE for all E ∈ E .

Proof Let E ∈ E be some generalized edge connected to the inclusion B ∈ Binc. Let
τ be one of the straight arcs that define the edge. By design, τ is an element of the
infinite Delaunay triangulation Tmat (see Sect. 2.1). Since its circumdisk C D(τ ) is
tangential to B (due to the Delaunay criterion (2.1)), τ by itself cannot be tangential to
B and the angle between τ and the circular arc E ∩ B is necessarily larger than zero.

Lemma 3.3 Let u ∈ V ∩ H2(Ωmat ∪ Ωinc) and let E = E(B1, B2) ∈ E be a gener-
alized edge that connects two generalized vertices (inclusions) B1, B2 ∈ Binc. Then

‖∇(u − I u)‖2
L2(E)

≤ CE
(
‖h∇2u‖2

L2(E)
+ CE‖h∇2u‖2

L2(B1∪B2)

)

holds with CE := maxk=1,2
∥∥hBk /h + h/hBk

∥∥
L∞(E)

and some universal constant CE
which depends only on γE .
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Fig. 6 Subdivisions Q5(E) and Q10(E) of some generalized edge E = E(B1, B2) ∈ E into quadrilaterals
in the proof of Lemma 3.3

Proof The proof consists of two parts. Part I proves the assertion for ccont = ∞ and
prepares the proof in the case ccont < ∞ which is complemented in part II.

Part I. Without loss of generality, let E be connected, rB1 ≥ rB2 , and cB1 = 0,

cB2 = (0, δ) for some δ > rB1 + rB2 . The restriction E ∩ ∂ B1 = φ([α, β]) of E
to B1 shall be parametrized by some angle s ∈ [α, β] ⊂ [−π/2, π/2] with φ(s) :=
rB1(sin(s), cos(s)). The parameter interval [α, β] is subdivided by equidistributed
points

α = s1 < s2 < s3 < · · · < sL = β.

These points are mapped by φ onto B1 and by φ ◦ πB1 onto B2 (recall (2.4) for the
definition of πB1 ). Let

QL(E) := {Q� : � = 1, . . . , L − 1} with

Q� := conv
(
φ(s�), φ(s�+1), πB1(φ(s�+1)), πB1(φ(s�))

)

be a subdivision of E into quadrilaterals (see Fig. 6).
The union of quadrilaterals on level L provides a polygonal approximation E L :=⋃
Q∈QL (E) Q of E ⊂ E L ⊂ conv(E) for all L with |E L\E | → 0 as L → ∞.

A (bounded) extension operator (·)E : H2(E) → H2(Rd) (see, e.g., [26]) extends
u|E to conv(E). The extended function is denoted by uE .

The nodal (bilinear) interpolation operator with respect to Q ∈ QL is denoted by
JQ and its QL -piecewise version by JQL . Theorem 3.8 from [22] implies

‖∇(uE − JQuE )‖L2(Q) ≤ CQdiam
(
Q

)‖∇2uE‖L2(Q) (3.18)
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for all Q ∈ QL , L ∈ N. The constant CQ depends only on the interior angles of Q,
i.e., CQ can be bounded uniformly for all Q ∈ QL and all L ∈ N in terms of γE . Thus

‖∇(uE − JQL uE )‖2
L2(E L )

=
∑

Q∈QL

‖∇(uE − JQuE )‖2
L2(Q)

(3.18)≤
∑

Q∈QL

C1‖diam
(
Q

)∇2uE‖2
L2(Q)

(3.19)

with some constant C1 which depends only on γE . Let L tend to infinity in (3.19) to
verify

‖∇(u − ũ)‖2
L2(E)

≤ C1‖h∇2u‖2
L2(E)

(3.20)

for ũ := limL→∞ JQL uE . If ccont = ∞ then ũ = I u and the proof is finished.
Part II. If otherwise ccont < ∞ then, in general, ũ /∈ S and ‖∇(I u − ũ)‖L2(E)

needs to be estimated further. The sequence eL := JQL (I u)E − JQL uE converges (in
H1) to e := I u − ũ as L → ∞. Thus, bounds on ‖∇eL‖L2(EL ) will lead to a bound
on ‖∇(I u − ũ)‖L2(E). Let Q ∈ QL with

∂ Q = [x1, x2] ∪ [x2, x3] ∪ [x3, x4] ∪ [x4, x1]

and x1, x2 ∈ B1 and x3, x4 ∈ B2 and x5 = x1 as in Fig. 6 (left). The vector ∇eL |Q is
written as some linear combination of the vectors (xk+1 − xk)/|xk+1 − xk | such that

‖∇eL‖2
L2(Q)

≤ |Q|‖∇eL‖2
L∞(Q) ≤ C2|Q|

4∑
k=1

∣∣〈(∇eL)|[xk ,xk+1], xk+1 − xk〉∣∣2

|xk+1 − xk |2

with a constant C2 which depends only on the maximal angle in Q and can be bounded
uniformly in terms of γ −1

E . Using 〈(∇eL)|[xk ,xk+1], xk+1 − xk〉 = eL(xk+1) − eL(xk)

for k = 2 and k = 4, this yields

‖∇eL‖2
L2(Q)

≤ C2

(
‖h‖L∞(Q)‖∇eL‖2

L2([x1,x2]∪[x3,x4])

+‖h−1‖L∞(Q)‖e‖2
L2([x2,x3]∪[x4,x1])

)
. (3.21)

The summation of (3.21) over Q ∈ QL leads to

‖∇eL‖2
L2(EL )

≤ C2

(
‖h‖L∞(E)‖∇eL‖2

L2(∂ EL∩(B1∪B2))

+‖h−1‖L∞(E)‖eL‖2
L2(∂ EL∩(B1∪B2))

)
.
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In the limit L → ∞ it follows

‖∇e‖2
L2(E)

≤ C2

(
‖h‖L∞(Q)‖∇e‖2

L2(∂ E∩(B1∪B2))
+‖h−1‖L∞(Q)‖e‖2

L2(∂ E∩(B1∪B2))

)
.

(3.22)

Estimate (3.10) and the trace inequality

‖ f ‖L2(∂ B) ≤ 4
√

8
(
‖ f ‖L2(B) + ‖ f ‖1/2

L2(B)
‖∇ f ‖1/2

L2(B)

)
, (3.23)

valid for any disk B and f ∈ H1(B) (see [6, Proposition 1.6.3]), imply

|e|Hm (∂ B) = |ũ − I u|Hm (∂ B) = |u − I u|Hm (∂ B)

(3.23),(3.10)≤ 4
√

8CI r
2−m− 1

2
B |u|H2(B) for m = 0, 1. (3.24)

With a universal constant C3 which depends only on CI and γE (through C1 and C2),
this leads to

‖∇(I u − ũ)‖2
L2(E)

(3.21),(3.24)≤ C3‖h−1(h|Bk ) + h(h|Bk )
−1‖L∞(E)‖h∇2u‖2

H2(B1∪B2)
.

This concludes the proof of the lemma. ��

The constant CE reflects the fact that two inclusions might touch but the corre-
sponding affine approximations of the solution on the disks might not match at the
touching point. Thus, in rare cases for ccont < ∞, the discrete system might have
infinite energy whereas the continuous solution has not. Choosing sufficiently many
degrees of freedom (number of degrees of freedom per inclusion larger than or equal
to the number of neighbors per inclusion) this problem disappears.

3.4 A priori error estimates

The approximation property of the finite element space S reads as follows.

Theorem 3.1 Let u ∈ V ∩ H2(Ωmat ∪ Ωinc) be the solution of (3.2) and let uS ∈ S
be its Galerkin approximation that solves (3.4). Then it holds

‖u − uS‖2
a ≤ C2

S

⎛
⎝‖h∇2u‖2

L2(Ωmat)
+ ccont

∑
B∈Binc

CB‖h∇2u‖2
L2(B)

⎞
⎠

with CB := ‖hB/h + h/hB‖L∞(ωB ) and some universal constant CS which depends
only on CI , CT , and CE .
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Proof The proof is a straight forward consequence of (3.10), Lemma 3.1, Lemma 3.3,
and the equality

‖v‖2
a = ‖∇v‖2

L2(Ωmat)
+ ccont‖∇v‖2

L2(Ωinc)
for all v ∈ H1(Ω).

��
By (3.3) the estimate of Theorem 3.1 is also valid for the error measured in the

H1(Ω)-norm. The regularity results from [7, Appendix B] read

‖∇2u‖L2(Ωmat)
≤ Creg‖ f ‖L2(Ω), ‖∇2u‖L2(Ωinc)

≤ Creg

ccont
‖ f ‖L2(Ω). (3.25)

The constant Creg depends solely on the geometry of the set inclusions and Ω but not
on ccont. This implies that the contrast is not a critical parameter.

Corollary 3.1 Let u ∈ V ∩ H2(Ωmat ∪ Ωinc) be the solution of (3.2) and uS ∈ S its
Galerkin approximation that solves (3.4). Then it holds

‖u − uS‖a ≤ C̃S‖h‖L∞(Ω)(‖ f ‖L2(Ω) + ‖∇u D‖L2(Ω)) (3.26)

with some universal constant C̃S which depends only on Creg and the constants CS, CB

from Theorem 3.1.

The constant C̃S in (3.26) does not depend on the contrast parameter ccont > 1.
However, through the constants CB , it might depend on the term (cf. the Definition of
CB in Theorem 3.1)

max
E(B1,B2)∈E

max{rB1, rB2}
dist(B1, B2) ccont

. (3.27)

The latter constant is critical with regard to the geometry of the coefficient function.
The term may blow up, whenever the distance of two inclusions relative to their size
becomes very small. However, high contrast reduces this effect. In the case of perfectly
conducting inclusions (ccont = ∞) it even disappears. The generalized interpolation
operator from (3.9) fulfills (u − I u)|B = 0 for all B ∈ B and the proof of Lemma 3.3
consists only of part I. Lemma 3.1 can be simplified in a similar way which leads to
the following corollary.

Corollary 3.2 Let ccont = ∞ and let u∞ ∈ V ∞ ∩ H2(Ωmat ∪ Ωinc) be the solution
of (3.6) and uS∞ ∈ S∞ its Galerkin approximation that solves (3.7). Then it holds

‖∇(u∞ − uS∞)‖L2(Ω) = ‖u∞ − uS∞‖a ≤ CS∞‖h∇2u∞‖L2(Ωmat)

with a constant CS∞ independent of u∞, ccont, and the location of the inclusions.
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In the general case ccont < ∞ the critical constant shown in (3.27) can easily be
reduced with higher-order ansatz functions on the inclusions. We can therefore derive
error estimates whose constants are explicit in the underlying geometry. However, in
all cases the dependence on the H2-norm of the solution remains. This issue is briefly
discussed in the Sect. 4.3.

4 Concluding remarks

The main result of this paper is a numerical scheme to compute temperature distribu-
tions in composite materials with a large number of particles and high contrast. In the
model situation under consideration, the method is robust and does not depend on the
contrast ccont → ∞. Some of the results extend to a more general geometric setting
in a straight-forward way. However, some difficulties remain open.

4.1 General inclusion geometry

For the use in practical applications it is desirable to incorporate more general inclu-
sion shapes and 3-dimensional geometries. It is shown in [23] that the generalized
partitions of Sect. 2 nicely generalize to sets of convex inclusions, e.g., ellipsoids,
convex polyhedra, and line segments. Even more, the design allows inclusions to
intersect. Thus, generalized Delaunay triangulations are also available for non-convex
inclusions which can be represented by finite unions of convex ones. The design of
according finite element methods can be done similarly as presented here. However,
the complexity of the mesh and the corresponding finite element method will grow as
the number of shape parameters that define a single inclusion grows. For smooth inclu-
sions the corresponding analysis is straight-forward; non-smooth inclusions, however,
require new arguments which are able to cope with lack of regularity.

4.2 Convergence

By straight forward arguments it is easy to show that the finite element solutions (the
solutions of (3.2) and (3.6)) converge in H1 to the solution of (1.2) if the meshwidth
function h tends to 0.

In the matrix, the meshwidth function h can be decreased in the matrix Ωmat by
simply putting additional artificial inclusions (points) in the set Bmat. If ccont = ∞, this
suffices to be able to construct a convergent sequence of approximation because the
(energy-)error in the inclusions is always zero. The case, in which additional vertices
of radius zero are added to improve the approximability properties of the finite element
space, is already treated by the theory presented in this article. A different possibility
is to leave the initial partition as it is and increase the polynomial degree of the shape
functions. This strategy, the so-called p-refinement, is recommended for problems
where geometry and data are smooth. The definition of higher-order finite element
spaces is to some extent straight-forward, the corresponding analysis, however, appears
more involved.

If ccont < ∞, in addition, the error on the inclusions has to be decreased, e.g., by
increasing the polynomial degree.
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4.3 Geometry-explicit estimates

The method presented is stable with respect to contrast in the medium. However, the
error bounds might depend on geometric parameters of the material, e.g., the distance
between neighboring particles. Whether or not the dependence on the local distance
is critical depends on the global distribution of particles. This can be seen already in
the simplified situation of perfectly conducting (ccont = ∞) inclusions.

Consider first two inclusions that touch but are isolated from further inclusions.
Since the solution is found in H1 the (constant) values of the solution on the two
inclusions have to be equal. Provided the force term is sufficiently smooth (L2),
classical regularity theory ensures smoothness of the solution in some neighborhood
of the two inclusions and the constant in the regularity estimate depends only on the
distance to further inclusions or the boundary of the domain.

The critical scenario is the appearance of an almost conducting path of inclusions
which connects two parts of the outer boundary with different, prescribed temperature.
The temperature gap needs to be compensated in the small regions between the inclu-
sions of the path which might cause steep gradients in the solution. If the inclusions
of the path touch pairwise, the path is perfectly conducting and hence, the energy is
infinite. Depending on the volume fraction of particles, the material shows a phase
transition from moderate to high conductivity. Mathematically speaking, the solution
operator, which maps a pair the date u D and f to the solution of (1.2), is not uniformly
bounded with respect to the geometry of the set of inclusions I [25, Theorem 3.5]
shows that, though the energy of the solution might blow up, the error estimate in
Corollary 3.2 is bounded by some generic constant independent of the distance of
the particles. Thus, our method is robust with respect the such critical scenarios and
allows meaningful material simulation even in densely packed composites. We refer
to [12] for numerical experiments.

In the general case of high but finite contrast the situation appears more involved
and a corresponding regularity theory that is explicit (and sharp) with respect to both,
contrast and geometric parameters, is not yet available and has to be addressed in
future research.
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