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ADAPTIVE NONCONFORMING CROUZEIX-RAVIART
FEM FOR EIGENVALUE PROBLEMS

CARSTEN CARSTENSEN, DIETMAR GALLISTL, AND MIRA SCHEDENSACK

Abstract. The nonconforming approximation of eigenvalues is of high practi-
cal interest because it allows for guaranteed upper and lower eigenvalue bounds
and for a convenient computation via a consistent diagonal mass matrix in 2D.
The first main result is a comparison which states equivalence of the error of
the nonconforming eigenvalue approximation with its best-approximation er-
ror and its error in a conforming computation on the same mesh. The second
main result is optimality of an adaptive algorithm for the effective eigenvalue
computation for the Laplace operator with optimal convergence rates in terms
of the number of degrees of freedom relative to the concept of a nonlinear
approximation class. The analysis includes an inexact algebraic eigenvalue
computation on each level of the adaptive algorithm which requires an itera-
tive algorithm and a controlled termination criterion. The analysis is carried
out for the first eigenvalue in a Laplace eigenvalue model problem in 2D.

1. Introduction

Given a bounded simply connected Lipschitz domain Ω with polygonal boundary
∂Ω, the weak form of the eigenvalue problem−∆u = λu with homogenous boundary
conditions seeks the first eigenpair (λ, u) ∈ R× V such that ‖u‖L2(Ω) = 1 and

a(u, v) = λb(u, v) for all v ∈ V := H1
0 (Ω).(1.1)

Here and throughout this paper, standard notation is employed on Lebesgue and
Sobolev spaces, and the scalar products a and b read

a(v, w) :=

ˆ
Ω

∇v · ∇w dx for any v, w ∈ V ≡ H1
0 (Ω),

b(v, w) :=

ˆ
Ω

v w dx for any v, w ∈ L2(Ω)

with induced norms |||·||| := a(·, ·)1/2 and ‖·‖L2(Ω) = b(·, ·)1/2. The Crouzeix-Raviart
finite element space of piecewise linear polynomials (denoted by P1(T )) with conti-
nuity condition at the interior edges’ midpoints and corresponding zero boundary
conditions along ∂Ω for some shape-regular triangulation T of Ω into closed trian-
gles T ∈ T with interior edges E(Ω), boundary edges E(∂Ω) and midpoints mid(E)
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for E ∈ E := E(Ω) ∪ E(∂Ω) reads

CR1
0(T ) :=

{
v ∈ P1(T )

∣∣∣∣ v is continuous in mid(E) for all E ∈ E(Ω)
& v(mid(E)) = 0 for all E ∈ E(∂Ω)

}
.

The piecewise gradient ∇NC (with respect to the triangulation T ) defines the
discrete scalar product

aNC(vCR, wCR) :=

ˆ
Ω

∇NCvCR · ∇NCwCR dx for any vCR, wCR ∈ V + CR1
0(T )

with induced norm |||·|||NC := aNC(·, ·)1/2. The discrete eigenvalue problem reads:
Seek (λCR, uCR) ∈ R × CR1

0(T ) such that λCR > 0 is minimal, ‖uCR‖L2(Ω) = 1,
and

aNC(uCR, vCR) = λCRb(uCR, vCR) for all vCR ∈ CR1
0(T ).(1.2)

The nonconforming finite element approximation has recently become highly
attractive because of the guaranteed lower and upper eigenvalue bounds [19]. The
lowest eigenvalue λ of (1.1) and its Crouzeix-Raviart approximation λCR satisfy

(1.3)
λCR

1 + 0.1931λCR‖h0‖2∞
≤ λ ≤ |||vC|||2

for any postprocessing vC ∈ V of the computed uCR ∈ CR1
0(T ) with L2 norm one

and the maximal mesh-size ‖h0‖∞. This is one striking advantage of the Crouzeix-
Raviart discretisation, another advantage is the diagonal mass matrix in 2D. The
first main result of this paper compares the energy norm errors of the discrete
first eigenfunction computed by the nonconforming and the conforming P1 finite
element schemes. For sufficiently small mesh-size ‖h0‖∞, Theorem 3.1 asserts the
equivalence of the errors of the nonconforming Crouzeix-Raviart solution uCR and
the conforming P1 solution uC with the L2 projection Π0∇u of the gradient onto
piecewise constants,

|||u− uC||| ≈ |||u− uCR|||NC ≈ ‖∇u−Π0∇u‖L2(Ω).

In conclusion, the nonconforming approximation is not worse than the conforming
one and has the advantage of a consistent diagonal mass matrix in 2D and that of
guaranteed error bounds (1.3).

The reliability and efficiency of the error estimator

µ2
`(T ) := |T | ‖λCRuCR‖2L2(T ) + |T |1/2

∑
E∈E(T )

‖[∂uCR/∂s]E‖
2
L2(E)

have been established [24] up to higher-order terms (for more details cf. Subsection
4.2). This and the recent work [19] motivate an adaptive algorithm Acrevfem
with successive loops on the level ` = 0, 1, 2 . . . of the form

(inexact Solve & Estimate)→Mark→ Refine.

On each of those levels `, the algebraic eigenvalue solver computes an approximation
(λ̃`, ũ`) to the discrete eigenpair (λ`, u`) up to any tolerance monitored in terms
of the error estimator η` with respect to inexact solve and some parameter 0 <
κ < 1/2. A sufficiently fine initial mesh T0 allows for some quasi-orthogonality,
which leads to the contraction property for the inexact eigenpair approximations.
The second main result of this paper asserts quasi-optimal convergence towards
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the eigenpair (λ, u) of the smallest eigenvalue λ with respect to the discrete energy
norm |||·|||NC in the sense that

(|T`| − |T0|)σ|||u− ũ`|||NC ≤ Copt |u|Aσ for all ` = 1, 2, 3, . . . .

For conforming finite element discretisations optimal convergence rates are proven
in [18, 23]. Subsection 4.3 presents the details on the approximation seminorm
|u|Aσ and the optimal convergence rate σ > 0 and states optimality up to the
factor 1 ≤ Copt < ∞ under the condition that T0 is sufficiently fine and the bulk
parameter θ as well as the control parameter κ for the inexact solve are sufficiently
small. All constants Copt and upper bounds on κ and θ depend exclusively on the
initial triangulation T0 and on the parameter σ > 0.

Optimality of adaptive algorithms for the nonconforming finite element discreti-
sation is well studied for the Poisson problem [5, 29, 30] the Stokes equations
[4, 21, 27] and the Navier-Lamé equaitons [16].

One technical difficulty behind the treatment of the nonlinearity is the L2 er-
ror control for possibly singular solutions u in H1

0 (Ω) \ H3/2(Ω). The standard
duality technique has to circumvent the fact that the discrete solutions are not
allowed as test functions on the continuous level and lead to jump terms times
normal derivatives of the dual solution along edges. Their analysis can be found in
textbooks [8, 12] for convex domains outside of the main application for adaptive
mesh-refinement. Instead, this paper shows an alternative L2 error control for ar-
bitrarily small regularity s > 0 (compare with s > 1/2 required for the traces of
normal derivatives to exist). A similar approach has independently been developed
in [28].

The remaining parts of this paper are organised as follows. Section 2 establishes
the L2 control for the eigenfunctions and convergence rates for the eigenvalues
and provides the framework for the balance of higher-order terms that arise from
the nonlinearity of the eigenvalue problem. Section 3 compares the error of the
conforming first-order method with the errors of the nonconforming approximation
and best-approximation. This equivalence enables the subsequent analysis of the
optimal convergence of the adaptive algorithm Acrevfem of Section 4 with respect
to some equivalent approximation class. The quasi-orthogonality and convergence
in the sense of a contraction property will be proven in Section 5. Section 6 provides
the discrete reliability and the quasi-optimal convergence of the algorithm.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and
their norms is employed;

ffl
denotes the integral mean. The formula A . B rep-

resents an inequality A ≤ CB for some mesh-size independent, positive generic
constant C; A ≈ B abbreviates A . B . A. By convention, all generic constants
C ≈ 1 do not depend on the mesh-size but may depend on the fixed coarse trian-
gulation T0 and its interior angles. The measure |·| is context-sensitive and refers
to the number of elements of some finite set (e.g. the number |T | of triangles in
a triangulation T ) or the length |E| of an edge E or the area |T | of some domain
T and not just the modulus of a real number or the Euclidean length of a vector.
The piecewise constant function hT with hT |T := |T |1/2 on the triangle T ∈ T
denotes the mesh-size of the triangulation T with maximum ‖hT ‖∞. The L2 pro-
jection onto piecewise constant functions is denoted by Π0. The space of piecewise
polynomials of degree ≤ k is denoted by Pk(T ).
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Figure 1. Possible refinements of a triangle T in one level within
the NVB. The thick lines indicate the refinement edges of the sub-
triangles as in [6, 33].

2. L2 Control

This section is devoted to the L2 error control of the first nonconforming eigen-
function on a fixed triangulation T ∈ T in the set T of all regular triangulations
that are refinements of the coarse initial triangulation T0 with maximal mesh-size
‖h0‖∞ by Newest-Vertex-Bisection (NVB) [6, 33], see Figure 1. The following error
estimate is well established for H2(Ω) regular domains [7]. That proof might be
extendable to H1+s(Ω) regular domains for 1/2 < s ≤ 1 because of the existence
of the normal derivative of the dual solution along interior edges. The proof in this
section covers the case of reduced elliptic regularity 0 < s ≤ 1 with some constant
C(s,Ω) ≈ 1 (which depends on the maximal interior angle ω of the polygon ∂Ω via
s < π/ω) for the Laplace equation and pure Dirichlet conditions, such that for all
f ∈ L2(Ω) there exists some z ∈ H1

0 (Ω) ∩H1+s(Ω) such that

(2.1) f + ∆z = 0 in D′(Ω) and ‖z‖H1+s(Ω) ≤ C(s,Ω)‖f‖L2(Ω).

Theorem 2.1 (Eigenvalue and L2 control). Suppose that the initial mesh-size
‖h0‖∞ := ‖hT0‖∞ � 1 is sufficiently small, then the first eigenpair (λ, u) and
the discrete first eigenpair (λCR, uCR) ∈ R × CR1

0(T ) with ‖uCR‖L2(Ω) = 1 and
b(u, uCR) ≥ 0 satisfy

|λ− λCR|+ ‖u− uCR‖L2(Ω) . ‖h0‖s∞|||u− uCR|||NC.

Before the remaining parts of this section are devoted to the proof of this the-
orem, some conclusion for the discrete eigenpair approximations on two different
triangulations is in order.

Corollary 2.2. Suppose that the initial mesh-size ‖h0‖∞ := ‖hT0‖∞ � 1 is suffi-
ciently small and that T`+m ∈ T is a refinement of T` ∈ T. Then some eigenfunction
u` ∈ CR1

0(T`) (resp. u`+m ∈ CR1
0(T`+m)) with ‖u`‖ = 1 (resp. ‖u`+m‖ = 1) with

respect to the first discrete eigenvalues λ` (resp. λ`+m) satisfies

‖λ`+mu`+m − λ`u`‖L2(Ω) .‖h0‖s∞(|||u− u`|||NC + |||u− u`+m|||NC).

Proof. Theorem 2.1 proves that there exist eigenfunctions u` ∈ CR1
0(T`) and u`+m ∈

CR1
0(T`+m) with ‖u`‖L2(Ω) = 1 = ‖u`+m‖L2(Ω) and

4 ‖λ`+mu`+m − λ`u`‖2L2(Ω)

= (λ`+m − λ`)2‖u`+m + u`‖2L2(Ω) + (λ`+m + λ`)
2‖u`+m − u`‖2L2(Ω)

. ‖h0‖2s∞(|||u− u`|||2NC + |||u− u`+m|||2NC).

The a priori analysis [1, 7, 34] guarantees that λ` and λ`+m are bounded for
‖h0‖∞ � 1. �
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The proofs of the results in this and the following section rely on the design of
some novel conforming P4 companion to the nonconforming discrete solution uCR.

Proposition 2.3. For any vCR ∈ CR1
0(T ) there exists some J4vCR ∈ P4(T )∩C0(Ω)

such that (a) vCR − J4vCR is L2 orthogonal on the space P1(T ) of piecewise first-
order polynomials, (b) it enjoys the integral mean property of the gradient

Π0(∇NC(vCR − J4vCR)) = 0,

and (c) it satisfies the approximation and stability property

‖h−1
T (vCR − J4vCR)‖L2(Ω) + |||vCR − J4vCR|||NC . min

v∈V
|||vCR − v|||NC.(2.2)

Proof. The design follows in three steps.

Step 1. Let N denote the set of vertices of T and let N (Ω) := N ∩Ω be the set of
interior vertices. The operator J1 : CR1

0(T )→ P1(T )∩C0(Ω) acts on any function
vCR ∈ CR1

0(T ) by averaging the function values at each interior node z, i.e.,

(2.3) J1vCR(z) = |T (z)|−1
∑

T∈T (z)

vCR|T (z) for all z ∈ N (Ω)

for T (z) := {T ∈ T | z ∈ T}. This operator is also known as enriching operator in
the context of fast solvers [11]. The proof of the approximation property

(2.4) ‖h−1
T (vCR − J1vCR)‖L2(Ω) . min

v∈V
|||vCR − v|||NC

is included in [13, Theorem 5.1]. This and an inverse estimate imply the stability
property

(2.5) |||vCR − J1vCR|||NC . min
v∈V
|||vCR − v|||NC.

Step 2. Given any edge E = conv{a, b} with nodal P1 conforming basis functions
ϕa, ϕb ∈ P1(T )∩C0(Ω) (defined by ϕa(a) = 1 and ϕa(z) = 0 for z ∈ N \ {a}), the
quadratic edge-bubble function

[E := 6ϕaϕb

has support supp(ϕa) ∩ supp(ϕb) and satisfies
ffl
E
[E ds = 1. For any function

vCR ∈ CR1
0(T ) the operator J2 : CR1

0(T )→ P2(T ) ∩ C0(Ω) acts as

J2vCR := J1vCR +
∑

E∈E(Ω)

( 
E

(vCR − J1vCR) ds

)
[E .

An immediate consequence of this choice reads 
E

J2vCR ds =

 
E

vCR ds for all E ∈ E .

An integration by parts shows the integral mean property of the gradients Π0∇J2 =
∇NC, i.e, ˆ

T

∇J2vCR dx =

ˆ
T

∇NCvCR dx for all T ∈ T .



6 C. CARSTENSEN, D. GALLISTL, AND M. SCHEDENSACK

An integration by parts shows for the vertex PE ∈ N (T )\E opposite to E ∈ E(T )
in the triangle T the trace identity 

E

(vCR − J1vCR) ds

=

 
T

(vCR − J1vCR) dx+
1

2

 
T

(x− PE) · ∇NC (vCR − J1vCR) dx.

The scaling ‖[E‖L2(Ω) . |T |1/2 shows

|T |−1/2
∥∥∥ ∑
E∈E(T )

( 
E

(vCR − J1vCR) ds

)
[E

∥∥∥
L2(T )

.
∑

E∈E(T )

∣∣∣  
E

(vCR − J1vCR) ds
∣∣∣

. |T |−1/2‖vCR − J1vCR‖L2(T ) + ‖∇NC(vCR − J1vCR)‖L2(T ).

This and the properties (2.4)–(2.5) yield

‖h−1
T (vCR − J2vCR)‖L2(Ω) . min

v∈V
|||vCR − v|||NC.

The stability property of J2 follows with an inverse estimate

|||vCR − J2vCR|||NC . ‖h−1
T (vCR − J2vCR)‖L2(Ω) . min

v∈V
|||vCR − v|||NC.

Step 3. On any triangle T = conv{a, b, c} with nodal basis functions ϕa, ϕb, ϕc,
the cubic volume bubble function reads

[T := ϕaϕbϕc ∈ H1
0 (T ).

The affine functions

φT,z :=

√
40 + 10

√
7 |T |−1/2

(
2− (7−

√
7)ϕz

)
for z ∈ {a, b, c}

are [T orthonormal in the sense that (with the Kronecker δ)ˆ
T

φT,y φT,z[T dx = δyz for y, z ∈ {a, b, c}.

Define

J4vCR := J2vCR +
∑
T∈T

∑
z∈N (T )

(ˆ
T

(vCR − J2vCR)φT,z dx

)
φT,z[T .

The difference vCR−J4vCR is L2 orthogonal to all piecewise affine functions. Since
φT,z vanishes on E ∈ E , J4 enjoys the integral mean property of the gradient
Π0∇J4 = ∇NC. Since∣∣∣∣ˆ

T

(vCR − J2vCR)φT,z dx

∣∣∣∣ . ‖vCR − J2vCR‖L2(T ),

the scaling |T |1/2‖∇φT,z‖L2(T ) ≈ ‖∇[T ‖L2(Ω) ≈ ‖[T ‖L∞(Ω) ≈ |T |1/2‖φT,z‖L∞(T ) ≈
1 and Step 2 imply the stability property

|||vCR − J4vCR|||NC . min
v∈V
|||vCR − v|||NC.

The Poincaré inequality proves the approximation property

‖h−1
T (vCR − J4vCR)‖L2(Ω) . min

v∈V
|||vCR − v|||NC. �
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The proof of Theorem 2.1 starts with arguments from [34] exploited in [17] for
conforming FEM.

Let λk denote the k-th exact eigenvalue and let λCR(K) denote the first discrete
eigenvalue with respect to CR1

0(K). For a sufficiently small mesh-size ‖h0‖∞ of T0

the well-established a priori analysis of [1, 7, 34] implies that

M := sup
K∈T

sup
k=2,3,4,...

λCR(K)

|λCR(K)− λk|
<∞.(2.6)

Lemma 2.4. Let GCRu ∈ CR1
0(T ) denote the nonconforming finite element solu-

tion of the Poisson problem with right-hand side λu, i.e.,

(2.7) aNC(GCRu, vCR) = b(λu, vCR) for all vCR CR1
0(T ).

Any eigenfunction uCR ∈ CR1
0(T ) corresponding to λCR and u ∈ V corresponding

to λ such that ‖u‖L2(Ω) = 1 = ‖uCR‖L2(Ω) and b(u, uCR) ≥ 0 satisfy (with the
constant M from (2.6)) that

‖u− uCR‖L2(Ω) ≤
√

2(1 +M)‖u−GCRu‖L2(Ω).

Proof. Some algebra with ‖uCR‖L2(Ω) = 1 = ‖u‖L2(Ω) and b(u, uCR) ≥ 0 proves

‖u− uCR‖2L2(Ω)

2
=
‖u− b(u, uCR)uCR‖2L2(Ω)

1 + |b(u, uCR)|
.(2.8)

Note that b(u, uCR)uCR is the L2 projection onto span{uCR}. The combination of
(2.8) with the triangle inequality proves

(2.9)

‖u− uCR‖L2(Ω)√
2

≤ ‖u− b(u, uCR)uCR‖L2(Ω) = min
t∈R
‖u− t uCR‖L2(Ω)

≤ ‖u− b(GCRu, uCR)uCR‖L2(Ω)

≤ ‖u−GCRu‖L2(Ω) + ‖GCRu− b(GCRu, uCR)uCR‖L2(Ω).

It remains to estimate the second term on the right-hand side of (2.9).
Set vCR := GCRu−b(GCRu, uCR)uCR andN := dim(CR1

0(T )). Since the discrete
eigenfunctions (uCR,j | j = 1, . . . , N) form an L2-orthonormal basis of CR1

0(T )
and vCR is L2 orthogonal on span{uCR} ≡ span{uCR,1}, there exist coefficients
(αj | j = 2, . . . N) such that

vCR =

N∑
j=2

αjuCR,j and
N∑
j=2

α2
j = ‖vCR‖2L2(Ω).

The definition of GCR shows that

(λCR,j − λ)b(GCRu, uCR,j) = λb(u−GCRu, uCR,j).

Therefore the orthogonality and the preceding identities lead to

‖vCR‖2L2(Ω) = b(GCRu,

N∑
j=2

αjuCR,j) = b(u−GCRu,

N∑
j=2

αj
λ

λCR,j − λ
uCR,j).

The Cauchy inequality, the estimate (2.6) and the L2-orthogonality of the discrete
eigenfunctions therefore shows

‖vCR‖L2(Ω) ≤M‖u−GCRu‖L2(Ω).

The combination with (2.9) concludes the proof. �
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One of the difficulties in the proof of Theorem 2.1 is the fact that the right-hand
side u − GCRu in the duality argument does not belong to V . This difficulty is
circumvented by the use of the companion operator of Proposition 2.3. A similar
result has been derived independently in [28].

Lemma 2.5 (L2 control for u−GCRu). The first exact and discrete eigenfunctions
satisfy

‖u−GCRu‖L2(Ω) . ‖h0‖s∞|||u− uCR|||NC.

Proof. Let e := u−GCRu and let z ∈ V denote the solution of the following linear
Poisson problem

a(z, v) = b(e, v) for all v ∈ V.
Since Π0(GCRu− J4GCRu) = 0, it holds

(2.10)
‖e‖2L2(Ω) = b(J4GCRu−GCRu, e) + b(e, u− J4GCRu)

= b(J4GCRu−GCRu, (1−Π0)e) + a(z, u− J4GCRu).

Piecewise Poincaré inequalities and (2.2) lead to

b(J4GCRu−GCRu, (1−Π0)e) . ‖h0‖2∞|||e|||2NC.
Since e is perpendicular to the conforming finite element functions in P1(T ) ∩ V
and since Π0∇NC(GCRu − J4GCRu) = 0, the Scott-Zhang [31] quasi-interpolation
zC ∈ P1(T ) ∩ V of z satisfies

a(z, u− J4GCRu) = aNC(e, z − zC) + aNC(GCRu− J4GCRu, z − zC).

Standard a priori estimates [12] and elliptic regularity imply

|||z − zC||| . ‖h0‖s∞‖z‖H1+s(Ω) . ‖h0‖s∞‖e‖L2(Ω)

The combination of the above estimates with (2.2) proves

‖e‖L2(Ω) . ‖h0‖s∞|||e|||NC.
The following best-approximation for the nonconforming approximation of the Pois-
son problem (here with right-hand side λu) can be found in [15, 26, 28]. The
improved oscillation term on the right-hand side

|||e|||NC . min
vCR∈CR1

0(T )
|||u− vCR|||NC + min

p∈P1(T )
‖hT (λu− p)‖L2(Ω)

can be obtained by a refined efficiency analysis as in [28]. The combination of the
foregoing two displayed inequalities leads to

‖u−GCRu‖L2(Ω) . ‖h0‖s∞(|||u− uCR|||NC + ‖h0‖∞λ‖u− uCR‖L2(Ω)).

The discrete Friedrichs inequality [12, Theorem 10.6.12] concludes the proof. �

Proof of Theorem 2.1. Lemmas 2.4–2.5 prove

‖u− uCR‖L2(Ω) ≤
√

2(1 +M)‖u−GCRu‖L2(Ω) . ‖h0‖s∞|||u− uCR|||NC.

For the proof of the eigenvalue error bound, elementary algebra with |||u|||2 = λ and
|||uCR|||2NC = λCR and ‖u‖L2(Ω) = 1 = ‖uCR‖L2(Ω) proves

(2.11) λ−λCR + |||u−uCR|||2NC = λ‖u−uCR‖2L2(Ω) + 2
(
λb(u, uCR)− aNC(u, uCR)

)
.

The eigenvalue problem proves for the last contribution that

λb(u, uCR)− aNC(u, uCR) = λb(u, uCR − J4uCR)− aNC(u, uCR − J4uCR).
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Since uCR − J4uCR is L2-orthogonal on uCR and since ∇NC(uCR − J4uCR) is L2-
orthogonal on Π0∇u, this equals

λb(u− uCR, uCR − J4uCR)−
ˆ

Ω

(1−Π0)∇u · ∇NC(uCR − J4uCR) dx.

The estimates (2.2) and ‖(1−Π0)∇u‖L2(Ω) . ‖h0‖s∞ therefore prove

|λb(u, uCR)−aNC(u, uCR)| . ‖u−uCR‖L2(Ω)‖h0‖∞|||u−uCR|||NC+‖h0‖s∞|||u−uCR|||.

The combination with (2.11) and the fact [19] that λCR ≤ λ for ‖h0‖∞ � 1 conclude
the proof. �

3. Comparison Results

This section states an equivalence result for the errors of the eigenfunction ap-
proximations by conforming and nonconforming finite element methods as initiated
in [9, 15] for linear problems. This comparison result is utilised in Section 6 to
change the approximation seminorm and so enables the optimality proof.

Theorem 3.1. Let Π0∇u denote the L2 best-approximation of the gradient of an
exact eigenfunction u corresponding to the first exact eigenvalue λ onto piecewise
constants. For sufficiently small ‖h0‖∞ � 1, the discrete eigenfunctions uCR and
uC with b(u, uC) > 0 and b(u, uCR) > 0 and ‖uC‖L2(Ω) = 1 = ‖uCR‖L2(Ω) satisfy

(3.1) |||u− uC||| ≈ |||u− uCR|||NC ≈ ‖∇u−Π0∇u‖L2(Ω).

Proof. The nonconforming interpolation operator ICR is defined by

(ICR v)(mid(E)) =

 
E

v ds for all E ∈ E and all v ∈ V.(3.2)

An integration by parts proves the integral mean property of the gradients

Π0∇ = ∇NC ICR .(3.3)

The proof of comparison departs with the split

(3.4)
|||u− uCR|||2NC
= aNC(u, J4uCR − uCR) + a(u, u− J4uCR)− aNC(uCR, ICR u− uCR).

The integral mean property of the gradient Π0∇J4 = ∇NC shows

aNC(u, J4uCR − uCR) = aNC(u− ICR u, J4uCR − uCR)

≤ |||u− ICR u|||NC|||uCR − J4uCR|||NC.

This, the projection property (3.3) of ICR, and the stability property (2.2) of J4

imply

(3.5) aNC(u, J4uCR − uCR) . ‖∇u−Π0∇u‖L2(Ω)|||u− uCR|||NC.

The eigenvalue problem on the continuous and discrete level plus some algebra
imply for the last and second last term of (3.4) that

(3.6)

aNC(u, u− J4uCR)− aNC(uCR, ICR u− uCR)

= b(λu, u− J4uCR)− b(λCRuCR, ICR u− uCR)

= b(λu− λCRuCR, u− J4uCR)

+ b(λCRuCR, u− ICR u) + b(λCRuCR, uCR − J4uCR).
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By the design of J4, the term uCR − J4uCR is orthogonal on piecewise affine func-
tions. Thus,

b(λCRuCR, uCR − J4uCR) = 0.

The arguments from Corollary 2.2 with (λ`+m, u`+m) replaced by (λ, u) show

b(λu− λCRuCR, u− J4uCR) . ‖h0‖s∞|||u− uCR|||NC ‖u− J4uCR‖L2(Ω).

For sufficiently small ‖h0‖∞ � 1, uC and uCR satisfy b(uC, uCR) ≥ 0 and therefore
Theorem 2.1 plus a triangle inequality followed by (2.2) show

‖u− J4uCR‖L2(Ω) . ‖u− uCR‖L2(Ω)‖uCR − J4uCR‖L2(Ω)

. ‖h0‖s∞|||u− uCR|||NC + ‖h0‖∞|||u− uCR|||NC.

Hence,

(3.7) b(λu− λCRuCR, u− J4uCR) . ‖h0‖2s∞|||u− uCR|||2NC.

The L2 error estimate [12, 14] for the nonconforming interpolation reads

(3.8) ‖u− ICR u‖L2(Ω) . |||hT (u− ICR u)|||NC.

This and the projection property ∇NC ICR = Π0∇ lead to

(3.9) b(λCRuCR, u− ICR u) . ‖hT λCRuCR‖L2(Ω)‖∇u−Π0∇u‖L2(Ω).

The efficiency of the term ‖hT λCRuCR‖L2(Ω) is discussed in Subsection 4.2 based
on [24]. Independently of Section 3, Theorem 4.4 shows

(3.10) ‖hT λCRuCR‖L2(Ω) . |||u− uCR|||NC.

The combination of (3.4)–(3.10) leads to

|||u− uCR|||NC . ‖∇u−Π0∇u‖L2(Ω) + ‖h0‖2s∞|||u− uCR|||NC.

For ‖h0‖∞ � 1, the second term can be absorbed. This proves

|||u− uCR|||NC . ‖∇u−Π0∇u‖L2(Ω).

The comparison of |||u−uC||| with |||u−uCR|||NC is inspired by [15] for the Poisson
problem. The inclusion P1(T ) ∩ C0(Ω) ⊂ CR1

0(T ) implies for

vC := argmin
wC∈P1(T )∩C0(Ω)

|||uCR − wC|||NC

that

(3.11)

|||uCR − uC|||2NC = aNC(uCR − uC, uCR − vC)

+ b(λCRuCR − λCuC, vC − uC)

≤ |||uCR − uC|||NC |||uCR − vC|||NC
+ ‖λCRuCR − λCuC‖L2(Ω) ‖vC − uC‖L2(Ω).

The bound for the eigenvalues λCR ≤ λC . 1 and the normalisation ‖uC‖L2(Ω) = 1
yield

‖λCRuCR − λCuC‖L2(Ω) . ‖uCR − uC‖L2(Ω) + |λCR − λC|.

Therefore, the triangle and Young inequalities control the last term in (3.11) as

(3.12)
‖λCRuCR − λCuC‖L2(Ω) ‖vC − uC‖L2(Ω)

. ‖uCR − uC‖2L2(Ω) + |λCR − λC|2 + ‖vC − uCR‖2L2(Ω).
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Known a priori results [7, 34] for conforming eigenvalue approximations read

(3.13) |λ− λC|+ ‖u− uC‖L2(Ω) . ‖h0‖s∞|||u− uC|||.
This, Theorem 2.1 and the triangle and Young inequalities bound the right-hand
side of (3.12) by

‖h0‖2s∞|||u− uC|||2 + ‖h0‖2s∞|||u− uCR|||2NC + ‖vC − uCR‖2L2(Ω).

The discrete Friedrichs inequality [12, Theorem 10.6.12] reads ‖vC − uCR‖L2(Ω) .
|||vC − uCR|||NC. It is known [13, Theorem 5.1] that

|||uCR − vC|||NC ≈ min
v∈V
|||uCR − v|||NC ≤ |||uCR − u|||NC.

The preceding two displayed formulas and (3.11) yield

|||uCR − uC|||2NC . |||uCR − u|||NC|||uCR − uC|||NC + |||uCR − u|||2NC + ‖h0‖2s∞|||u− uC|||2.

The term |||uCR − uC|||NC on the right-hand side can be absorbed. This plus the
triangle inequality and ‖h0‖∞ � 1 prove the assertion

|||u− uC||| ≤ |||u− uCR|||NC + |||uCR − uC||| . |||u− uCR|||NC.
The remaining inequalities are obvious. �

4. Algorithm and Optimality

This section presents the adaptive algorithm Acrevfem and its optimality in
terms of the approximation seminorm. The section adopts the notation of the
previous sections for a sequence of regular triangulations T` with mesh-size h` := hT`
and interior edges E`(Ω), boundary edges E`(∂Ω) and E` := E`(Ω) ∪ E`(∂Ω). The
notation for the piecewise gradient ∇NC(`) and the discrete scalar product aNC(`)

depends on the triangulation T` and, hence, on the level `. The index ` is dropped,
whenever there is no risk of confusion. The first discrete eigenpair on the level ` is
denoted by (λ`, u`) ∈ R× CR1

0(T`).

4.1. Adaptive algorithm Acrevfem.
Input. Given an initial triangulation T0 with maximal mesh-size ‖h0‖∞ (and refine-
ment edges RE(T0) as in [6, 33]), the bulk parameter 0 < θ ≤ 1, and 0 < κ < 1/2,
the adaptive algorithm Acrevfem runs the following loop.
For ` = 0, 1, 2, . . . (until termination) do
Inexact Solve. Throughout this paper, the algebraic eigenvalue problem (1.2)
is solved approximately with some known discrete approximation (λ̃`, ũ`) ∈ R ×
CR1

0(T`) such that ‖ũ`‖L2(Ω) = 1 and

|||u` − ũ`|||2NC + |λ` − λ̃`|2 ≤ κ min{η2
` , η

2
`−1}(4.1)

for ` ∈ N0 (with η−1 := +∞).

Remark 4.1. The inexact solve is unavoidable in iterative procedures for the alge-
braic eigenvalue problem. The interaction of Estimate and Solve breaks with the
traditional AFEM loop in that the tolerance κη2

` is not known in (4.1) when the ter-
mination is applied. In other words, the assumption (4.1) cannot be implemented
straight away but needs to be linked in an internal loop with the computation of η`
in (4.2). We refer to [2, 3] for the analysis of a similar algorithm for linear problems
and to [18] for an example of a practical realisation in the context of conforming
FEMs for eigenvalue problems.
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That paper [18] furthermore illustrates that optimal complexity of an overall
strategy can in fact be expected under realistic assumptions on the performance
of the algebraic solver in Solve. This paper focusses on the convergence analysis
of the discretisation and, hence, omits further algorithmic details on the algebraic
eigenvalue problem.

Estimate. For any interior edge E = T+ ∩T− shared by the two triangles T± ∈ T`
with edge-patch ωE := int(T+ ∪ T−), let [·]E := · |T+ − · |T− denote the jump across
E. For E ∈ E`(∂Ω), the jump is defined as [·]E := · |T+ for the one element T+ with
E ⊂ T+ and ωE := int(T+) owing to the homogeneous boundary conditions. For
any T ∈ T` with set E`(T ) of edges and the known approximations λ̃` and ũ` with
(4.1), set η2

` := η2
` (T`) :=

∑
T∈T` η

2
` (T ), where, for any T ∈ T ,

η2
` (T ) := |T | ‖λ̃`ũ`‖2L2(T ) + |T |1/2

∑
E∈E`(T )

‖[∂ũ`/∂s]E‖
2
L2(E).(4.2)

Mark. The bulk criterion [25] selects an (almost) minimal subset M` ⊂ T` of
triangles with

θη2
` ≤ η2

` (M`) :=
∑
T∈M`

η2
` (T ).(4.3)

Refine. Given the marked edges M` in T`, refine the triangulation with newest-
vertex bisection (NVB) [6, 33] of Figure 1 and generate a minimal regular trian-
gulation T`+1 in which at least the marked edges are refined. The refinement edge
RE : T0 → E0, with RE(T ) ∈ E0(T ) for any T ∈ T0, is fixed for the initial triangu-
lation T0; the configuration of the refinement edges in refined triangles is depicted
in Figure 1. The result T`+1 of Refine is the smallest regular refinement of T` from
NVB, where at least the refinement edges of the triangles inM` are bisected [10].
od
Output. Sequence of triangulations (T`)` and discrete approximations (λ̃`, ũ`)`
with b(u, ũ`) > 0.

Remark 4.2. The analysis of the following sections relies on the assumption of a
sufficiently fine initial mesh T0 with mesh-size ‖h0‖∞ � 1 such that the results
from Sections 2–3 are valid.

Remark 4.3. The discussion of the next subsection (cf. Remark 4.5) shows that a
proper choice of κ and a sufficiently fine initial mesh-size guarantee b(u, ũ`) 6= 0.
Hence, the output of the adaptive algorithm is uniquely defined.

4.2. Efficiency and reliability of the error estimator. Recall that the param-
eter 0 < s ≤ 1 describes the elliptic regularity of the Poisson problem as in (2.1)
and ‖h0‖∞ denotes the maximal mesh-size of T0.

Theorem 4.4 (efficiency and reliability [24]). The error estimator µ` := µ`(T`) :=(∑
T∈T` µ

2
`(T )

)1/2 with respect to the exact discrete eigenpair (λ`, u`) with b(u, u`) >
0, namely

µ2
`(T ) := |T | ‖λ`u`‖2L2(T ) + |T |1/2

∑
E∈E`(T )

‖[∂u`/∂s]E‖
2
L2(E) for all T ∈ T ,

is reliable and efficient in the sense that

(4.4)
|||u− u`|||NC . µ` + ‖h0‖s∞|||u− u`|||NC,

µ` . (1 + ‖h0‖s∞)|||u− u`|||NC.
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Proof. It is proven in [24] that

(4.5)
|||u− u`|||NC . µ` + |λ− λ`|+ (λλ`)

1/2‖u− u`‖L2(Ω),

µ` . |||u− u`|||NC + ‖h`(λu− λ`u`)‖L2(Ω).

It is stated in [24] that, according to known a priori estimates, the additional terms
in (4.5) are of higher order. Indeed, the results from Section 2 prove

|λ− λ`|+ (λλ`)
1/2‖u− u`‖L2(Ω) + ‖h`(λu− λ`u`)‖L2(Ω) . ‖h0‖s∞|||u− u`|||NC. �

The following lemma plus the triangle inequality and (4.1) imply efficiency and
reliability of the error estimator η2

` =
∑
T∈T` η

2
` (T ) with an approximate eigenpair

(λ̃`, ũ`) and

η2
` (T ) = |T | ‖λ̃`ũ`‖2L2(T ) + |T |1/2

∑
E∈E`(T )

‖[∂ũ`/∂s]E‖
2
L2(E).

The inexact discrete solutions (λ̃`, ũ`) satisfy for, sufficiently small κ� 1, that

|||u− ũ`|||NC ≤ Crel (η` + ‖h0‖s∞|||u− ũ`|||NC) ,(4.6)

η2
` ≤ Ceff(1 + ‖h0‖2s∞)|||u− u`|||2NC.(4.7)

Remark 4.5. In particular this plus the L2 control from Theorem 2.1 and the tol-
erance (4.1) imply

‖u− ũ`‖ .
(
‖h0‖s∞ + κ(1 + ‖h0‖2s∞)

)
|||u− u`|||NC

and, therefore, 1 . b(u, ũ`) for sufficiently small ‖h0‖2s∞ and κ.

Lemma 4.6 (continuity of the error estimator). There exists Ccont ≈ 1 such that
any subsetM⊂ T` satisfies

|η`(M)− µ`(M)| ≤ Ccont(|||u` − ũ`|||NC + |λ` − λ̃`|).

Proof. One triangle inequality in R4|M| is followed by another in L2(T ) for any
T ∈M to verify

|η`(M)− µ`(M)|

=

∣∣∣∣∣
( ∑
T∈M

(
|T | ‖λ̃`ũ`‖2L2(T ) + |T |1/2

∑
E∈E`(T )

‖[∂ũ`/∂s]E‖
2
L2(E)

))1/2

−
( ∑
T∈M

(
|T | ‖λ`u`‖2L2(T ) + |T |1/2

∑
E∈E`(T )

‖[∂u`/∂s]E‖
2
L2(E)

))1/2
∣∣∣∣∣

≤
( ∑
T∈M

(
|T |
(
‖λ̃`ũ`‖L2(T ) − ‖λ`u`‖L2(T )

)2

+ |T |1/2
∑

E∈E`(T )

(
‖[∂ũ`/∂s]E‖L2(E) − ‖[∂u`/∂s]E‖L2(E)

)2))1/2

≤
( ∑
T∈M

(
|T |‖λ̃`ũ` − λ`u`‖2L2(T ) + |T |1/2

∑
E∈E`(T )

‖[∂(ũ` − u`)/∂s]E‖
2
L2(E)

))1/2

.
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The discrete Friedrichs inequality [12, Theorem 10.6.12] controls the first term∑
T∈M

|T |‖λ̃`ũ` − λ`u`‖2L2(T ) . |||u` − ũ`|||
2
NC + |λ` − λ̃`|2.

The trace inequality [12, p.282] leads to∑
T∈M

|T |1/2
∑

E∈E`(T )

‖[∂(ũ` − u`)/∂s]E‖
2
L2(E) . |||u` − ũ`|||

2
NC. �

4.3. Approximation class. Given an initial triangulation T0, a triangulation T`
is called an admissible triangulation, written T` ∈ T, if there exist regular trian-
gulations T0, T1, . . . , T` such that, for k = 1, . . . , `, each Tk is generated from Tk−1

with refinements from Figure 1.
The set of all such admissible triangulations is denoted by T, while T(N) denotes

the subset of all admissible triangulations with at most |T0|+N triangles. For any
T ∈ T(N), let ΠT denote the L2 best-approximation onto piecewise constants with
respect to T . For the first eigenpair (λ, u) and σ > 0 define

|u|Aσ := sup
N∈N

Nσ inf
T ∈T(N)

‖∇u−ΠT∇u‖L2(Ω).

It is the comparison of Theorem 3.1 that allows the conclusion that |u|Aσ <∞ for
the first eigenpair (λ, u) leads to discrete eigenvalues which converge of the same
rate σ (with respect to the optimal admissible meshes) and so enables the optimality
analysis of this paper.

Optimal convergence rates means that |u|Aσ < ∞ for some 0 < σ < ∞ implies
the rate for the output (λ`, u`) of the adaptive algorithm (with an appropriate
choice of u` amongst all eigenvectors of the minimal discrete eigenvalue) even on
any level ` with N` := |T`| − |T0| in the sense that

Nσ
` sup
`∈N0

|||u− u`|||NC ≤ Copt |u|Aσ .

The point is that the constant Copt ≥ 1 is bounded from above, Copt <∞.

4.4. Asymptotic optimality. The following theorem states the quasi-optimal
convergence of the adaptive algorithm; its proof follows at the end of Section 6.

Theorem 4.7 (quasi-optimal convergence). Let Ω be simply connected. For suf-
ficiently small 0 < θ � 1, 0 < κ � 1, 0 < ‖h0‖∞ := ‖hT0‖L∞(Ω) � 1 and any
σ > 0 with |u|Aσ <∞, Acrevfem computes sequences of triangulations (T`)` and
discrete solutions (λ̃`, ũ`)` of optimal rate of convergence in the sense that

(|T`| − |T0|)σ|||u− ũ`|||NC ≤ Copt |u|Aσ for all ` = 0, 1, 2, . . .

5. Contraction Property

This section is devoted to the proof of the contraction property, which implies
the convergence of the adaptive algorithm.

Theorem 5.1 (contraction property). For sufficiently small ‖h0‖∞ and 0 < κ� 1,
there exist positive constants 0 < β, γ < ∞ and 0 < ρ2 < 1 (which depend in
addition on T0) such that, for any ` ∈ N0 the following holds. The solution (λ`, u`),
its approximation (λ̃`, ũ`), the error estimator η` from (4.2) with respect to the
triangulation T` generated by Acrevfem, and the term

ξ2
` := η2

` + β |||u− ũ`|||2NC + γ‖h`λ`u`‖2L2(Ω)
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E

ωE 0
0

0

1

Figure 2. Edge patch ωE and plot of the function φE .

satisfy

(5.1) ξ2
`+1 ≤ ρ2ξ

2
` for ` = 0, 1, 2, . . .

The proof is based on the error estimator reduction property.

Theorem 5.2 (error estimator reduction). There exist constants 0 < ρ1 < 1 and
0 < Λ < ∞ which depend only on T0, such that for the refinement T`+1 of T`
generated by Acrevfem on two consecutive levels ` and `+1, the respective discrete
approximations ũ` ∈ CR1

0(T`) and ũ`+1 ∈ CR1
0(T`+1) satisfy

(5.2)
η2
`+1 ≤ ρ1η

2
` + Λ

(
|||ũ`+1 − ũ`|||2NC + |λ`+1 − λ̃`+1|2 + |λ` − λ̃`|2

+ |||u`+1 − ũ`+1|||2NC + |||u` − ũ`|||2NC
)
.

The proof employs the following lemma, which generalises [20, Theorem 4.1].

Lemma 5.3 (local discrete efficiency). Any v` ∈ CR1
0(T`) and any edge E ∈ E` \

E`+m with edge-patch ωE satisfy

|E|1/2 ‖[∂v`/∂s]E‖L2(E) . min
v`+m∈CR1

0(T`+m)
‖∇NC(v` − v`+m)‖L2(ωE).

Proof. Let φE ∈ P1(T`+m)∩C(Ω) be the piecewise affine continuation of φE(mid(E))
= 1 and φE = 0 on ∂ωE as in Figure 2. An integration by parts and the L2 or-
thogonality of CurlφE := (−∂φE/∂x2, ∂φE/∂x1) on ∇NC CR1

0(T`+m) prove

±|E|1/2‖[∂v`/∂s]E‖L2(E) = |E| [∂v`/∂s]E = 2

ˆ
E

[∂v`/∂s]EφE ds

= 2

ˆ
ωE

∇NCv` · CurlφE dx = 2

ˆ
ωE

∇NC(v` − v`+m) · CurlφE dx.

A Cauchy inequality plus a scaling argument for ‖CurlφE‖L2(ωE) . 1 conclude the
proof. �

Lemma 5.4 (discrete Friedrichs inequality on two levels). Let T`+1 be some re-
finement of T` generated by Acrevfem. Any functions v`+1 ∈ CR1

0(T`+1) and
v` ∈ CR1

0(T`) satisfy

‖v`+1 − v`‖L2(Ω) . |||v`+1 − v`|||NC.

Proof. The discrete Friedrichs inequality [12, Theorem 10.6.12] reads

‖v`+1 − v`‖2L2(Ω) .
∑

F∈E`+1

∣∣∣∣ 
F

[v`+1 − v`]F ds
∣∣∣∣2 + |||v`+1 − v`|||2NC.
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Note that each edge E ∈ E`\E`+1 is bisected and, hence, [v`]F vanishes at mid(E) ∈
F , for F ⊂ E, F ∈ E`+1 \ E`, while

´
F

[v`+1]F ds = 0. Hence, the Friedrichs
inequality along each edge F ∈ E`+1 yield∑

F∈E`+1

∣∣∣∣ 
F

[v` − v`+1]F ds

∣∣∣∣2 =
∑

F∈E`+1\E`

∣∣∣∣ 
F

[v`]F ds

∣∣∣∣2
≤

∑
F∈E`+1\E`

|F |−1‖[v`]F ‖2L2(F ) .
∑

F∈E`+1\E`

|F | ‖[∂v`/∂s]F ‖2L2(F )

≤
∑

E∈E`\E`+1

|E| ‖[∂v`/∂s]E‖
2
L2(E).

This and Lemma 5.3 prove∑
E∈E`+1

∣∣∣∣ 
E

[v`+1 − v`]Eds
∣∣∣∣2 . |||v`+1 − v`|||2NC. �

Proof of Theorem 5.2. Let %(K) := 1/2 if K ∈ T` \ T`+1 and %(K) := 1 if K ∈
T` ∩T`+1. The triangle inequality implies for K ∈ T` and all T ∈ T`+1(K) := {T ′ ∈
T`+1 |T ′ ⊆ K} that |T | ≤ %(K)|K|. Hence, it follows for all 0 < µ <∞ that∑

T∈T`+1(K)

|T | ‖λ̃`+1ũ`+1‖2L2(T )

≤ (1 + 1/µ)
∑

T∈T`+1(K)

|T | ‖λ̃`+1ũ`+1 − λ̃`ũ`‖2L2(T )

+ (1 + µ)
∑

T∈T`+1(K)

%(K) |K| ‖λ̃`ũ`‖2L2(T ).

Since b(ũ`+1 + ũ`, ũ`+1 − ũ`) = 0,

4‖λ̃`+1ũ`+1 − λ̃`ũ`‖2L2(Ω)

= (λ̃`+1 + λ̃`)
2 ‖ũ`+1 − ũ`‖2L2(Ω) + (λ̃`+1 − λ̃`)2 ‖ũ`+1 + ũ`‖2L2(Ω)

≤ (λ̃`+1 + λ̃`)
2 ‖ũ`+1 − ũ`‖2L2(Ω) + 4(λ̃`+1 − λ̃`)2.

Since |||u`|||2NC = λ` and |||u`+1|||2NC = λ`+1 are bounded, it holds

|λ`+1 − λ`| = |aNC(u`+1 + u`, u`+1 − u`)| . |||u`+1 − u`|||NC.

The triangle inequality therefore proves

|λ̃`+1 − λ̃`| . |||ũ`+1 − ũ`|||NC + |||u`+1 − ũ`+1|||NC + |||u` − ũ`|||NC
+
∣∣λ`+1 − λ̃`+1

∣∣+
∣∣λ` − λ̃`∣∣.

The combination of the above estimates with Lemma 5.4 for ũ` and ũ`+1 plus
(λ̃`+1 + λ̃`)

2 . 1 yield( ∑
T∈T`+1(K)

|T | ‖λ̃`+1ũ`+1‖2L2(T )

)
− (1 + µ)%(K) |K| ‖λ̃`ũ`‖2L2(K)

. (1 + 1/µ) |K|
(
|||ũ` − ũ`+1|||2NC + |λ̃`+1 − λ`+1|2 + |λ̃` − λ`|2

+ |||ũ`+1 − u`+1|||2NC + |||ũ` − u`|||2NC
)
.
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The triangle inequality used for the second summand of the estimator and the
trace inequality [12] with constant Ctr lead, for K ∈ T`, to∑

T∈T`+1(K)

|T |1/2
∑

E∈E`+1(T )

‖[∂ũ`+1/∂s]E‖2L2(E)

≤ (1 + 1/µ)
∑

T∈T`+1(K)

|T |1/2
∑

E∈E`+1(T )

‖[∂ũ`+1/∂s− ∂ũ`/∂s]E‖2L2(E)

+ (1 + µ)
∑

T∈T`+1(K)

|T |1/2
∑

E∈E`+1(T )

‖[∂ũ`/∂s]E‖2L2(E)

≤ (1 + 1/µ)
∑

T∈T`+1(K)

Ctr|T |1/2
∑

E∈E`+1(T )

|E|−1‖∇ũ`+1 −∇ũ`‖2L2(T )

+ (1 + µ) %(K)1/2|K|1/2
∑

E∈E`(K)

‖[∂ũ`/∂s]E‖2L2(E).

Since |T |1/2|E|−1 ≈ 1, the sum over all triangles in T` yields

η2
`+1 − (1 + µ)

(
η2
` (T` ∩ T`+1) + η2

` (T` \ T`+1)/
√

2
)

. (1 + 1/µ)
(
|||ũ` − ũ`+1|||2NC + |λ̃`+1 − λ`+1|2

+ |λ̃` − λ`|2 + |||ũ`+1 − u`+1|||2NC + |||ũ` − u`|||2NC
)
.

The bulk criterion assures θη2
` ≤ η2

` (T` \ T`+1) whence

η2
` (T` ∩ T`+1) + η2

` (T` \ T`+1)/
√

2 ≤ (1− θ(1− 1/
√

2))η2
`

The combination of the preceding two estimates imply (5.2) with ρ1 := (1 +µ)(1−
θ(1− 1/

√
2)) < 1 and some Λ ≈ (1 + 1/µ) for sufficiently small µ > 0. �

Quasi-orthogonality is the second main ingredient for the contraction property.

Theorem 5.5 (quasi-orthogonality). There exists some positive constant Cqo ≈ 1
which solely depends on T0 such that, for any refinement T`+m of T`, the ex-
act solution (λ, u) and the discrete solutions (λ`+m, u`+m) and (λ`, u`) (with re-
spect to T`+m and T`) with inexact approximations (λ̃`+m, ũ`+m) and (λ̃`, ũ`) with
‖ũ`‖L2(Ω) = 1 = ‖ũ`+m‖L2(Ω) satisfy

(5.3)

|aNC(u−ũ`+m, ũ` − ũ`+m)|
≤Cqo

(
‖h`λ`u`‖L2(∪(T`\T`+m))|||u− ũ`+m|||NC

+ |||u− ũ`+m|||NC(|||u` − ũ`|||NC + |||u`+m − ũ`+m|||NC)

+ |||u`+m − ũ`+m|||2NC + ‖h0‖2s∞(|||u− u`|||2NC + |||u− u`+m|||2NC)
)
.

Proof. Some elementary algebra plus the Cauchy inequality show

aNC(u− ũ`+m, ũ` − ũ`+m)

= aNC(u− ũ`+m, ũ` − u`)
+ aNC(u− ũ`+m, u`+m − ũ`+m) + aNC(u− ũ`+m, u` − u`+m)

≤ |||u− ũ`+m|||NC
(
|||u` − ũ`|||NC + |||u`+m − ũ`+m|||NC

)
+ aNC(u− ũ`+m, u` − u`+m).

It remains to bound the last term aNC(u− ũ`+m, u` − u`+m).
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Let I` (resp. I`+m) denote the nonconforming interpolation operator from (3.2)
with respect to the triangulation T` (resp. T`+m). Note that the interpolation
operator I` is well-defined also for functions v`+m ∈ CR1

0(T`+m) by

I` v`+m(mid(E)) =

 
E

v`+m ds for any E ∈ E`.

The piecewise integration by parts shows that the analogue of (3.3) holds in the
form ˆ

T

∇NCv`+m dx =

ˆ
T

∇ I` v`+m dx for any T ∈ T`.(5.4)

This and the discrete Friedrichs inequality [12, Theorem 10.6.12] eventually lead to
the approximation result [30]

‖v`+m − I` v`+m‖L2(T ) . |T |1/2‖∇NCv`+m‖L2(T ) for T ∈ T`.(5.5)

The orthogonality (5.4) implies the Pythagoras theorem

(5.6) |||v`+m − I` v`+m|||2NC + |||I` v`+m|||2NC = |||v`+m|||2NC.

This shows stability of I` : CR1
0(T`+m)→ CR1

0(T`). The projection properties (3.3)
and (5.4) of the nonconforming interpolation operators I` and I`+m on the levels `
and `+m and the discrete problem (1.2) prove

aNC(u` − u`+m, u− ũ`+m)

= aNC(u`, I`(u− ũ`+m))− aNC(u`+m, I`+m u− ũ`+m)

= λ`b(u`, I`(u− ũ`+m))− λ`+mb(u`+m, I`+m u− ũ`+m)

= b(λ`u`, (I`+m− I`)(ũ`+m − u)) + b(λ`+mu`+m − λ`u`, I`+m(ũ`+m − u)).

Since the action of the nonconforming interpolation operators I` and I`+m on the
levels ` and `+m is the same on the triangles T`∩T`+m, the approximation property
(5.5) and the stability property (5.6) of I` and the projection property (3.3) of I`+m
for the gradient prove

b(λ`u`, (I`+m− I`)(ũ`+m − u))

=b(λ`u`, I`+m(ũ`+m − u)− I`(I`+m(ũ`+m − u)))

.‖h`λ`u`‖L2(T`\T`+m)|||u− ũ`+m|||NC.
The Cauchy and the Young inequalities prove

2 b(λ`+mu`+m − λ`u`, I`+m(ũ`+m − u))

≤‖λ`+mu`+m − λ`u`‖2L2(Ω) + ‖I`+m u− ũ`+m‖2L2(Ω).
(5.7)

The first term on the right-hand side has been bounded in Corollary 2.2. For the
second term on the right-hand side of (5.7), the triangle inequality reveals

‖I`+m u− ũ`+m‖L2(Ω)

≤ ‖u− u`+m‖L2(Ω) + ‖u`+m − ũ`+m‖L2(Ω) + ‖u− I`+m u‖L2(Ω).

Theorem 2.1 proves

‖u− u`+m‖L2(Ω) . ‖h0‖s∞|||u− u`+m|||NC.

The discrete Friedrichs inequality [12, Theorem 10.6.12] shows

‖u`+m − ũ`+m‖L2(Ω) . |||u`+m − ũ`+m|||NC.
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The estimate for the nonconforming interpolation (3.8) and the projection property
(3.3) prove

‖u− I`+m u‖L2(Ω) . ‖h0‖∞|||u− u`+m|||NC.

The combination of the previous arguments shows

b(λ`+mu`+m − λ`u`, I`+m(ũ`+m − u))

. ‖h0‖2s∞|||u− u`+m|||2NC + |||u`+m − ũ`+m|||2NC + ‖h0‖2s∞|||u− u`|||2NC.

This concludes the proof. �

Proof of Theorem 5.1. The estimator reduction property (5.2) and the binomial
formula for ũ`+1 − ũ` = (ũ`+1 − u) + (u− ũ`) yield

η2
`+1 ≤ ρ1η

2
` + Λ

(
|||u− ũ`|||2NC − |||u− ũ`+1|||2NC + |λ`+1 − λ̃`+1|2 + |λ` − λ̃`|2

+ |||u`+1 − ũ`+1|||2NC + |||u` − ũ`|||2NC − 2aNC(u− ũ`+1, ũ`+1 − ũ`)
)
.

This, the quasi-orthogonality (5.3), and the Young inequality lead to

(5.8)

η2
`+1 ≤ ρ1η

2
` + Λ

(
(1 + 4Cqo‖h0‖2s∞)|||u− ũ`|||2NC

− (1− 4Cqo‖h0‖2s∞)|||u− ũ`+1|||2NC + |λ`+1 − λ̃`+1|2

+ |λ` − λ̃`|2 + (1 + 2Cqo + 4Cqo‖h0‖2s∞)|||u`+1 − ũ`+1|||2NC
+ (1 + 4Cqo‖h0‖2s∞)|||u` − ũ`|||2NC
+ 2Cqo

(
‖h`λ`u`‖L2(∪(T`\T`+1))|||u− ũ`+1|||NC

+ |||u− ũ`+1|||NC(|||u` − ũ`|||NC + |||u`+1 − ũ`+1|||NC)
))
.

The Young inequality asserts, for any 0 < µ < 1, that

2Cqo‖h`λ`u`‖L2(∪(T`\T`+1))|||u− ũ`+1|||NC

≤
2C2

qo

µ
‖h`λ`u`‖2L2(∪(T`\T`+1)) +

µ

2
|||u− ũ`+1|||2NC.

Similarly

2Cqo|||u− ũ`+1|||NC
(
|||u` − ũ`|||NC + |||u`+1 − ũ`+1|||NC

)
≤ µ

2
|||u− ũ`+1|||2NC +

4C2
qo

µ
|||u` − ũ`|||2NC +

4C2
qo

µ
|||u`+1 − ũ`+1|||2NC.
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The combination with (5.8) plus some rearrangements lead to

(5.9)

η2
`+1 ≤ ρ1η

2
` + Λ

(
(1 + 4Cqo‖h0‖2s∞)|||u− ũ`|||2NC

− (1− 4Cqo‖h0‖2s∞ − µ)|||u− ũ`+1|||2NC

+
2C2

qo

µ
‖h`λ`u`‖2L2(∪(T`\T`+1)) + |λ`+1 − λ̃`+1|2

+ |λ` − λ̃`|2 +
(

1 +
4C2

qo

µ
+ 4Cqo‖h0‖2s∞

)
|||u` − ũ`|||2NC

+
(

1 +
4C2

qo

µ
+ 4Cqo‖h0‖2s∞ + 2Cqo

)
|||u`+1 − ũ`+1|||2NC)

)
.

For the third contribution to ξ`+1, the triangle inequality followed by the Young
inequality implies, for any 0 < δ <∞, that

‖h`+1λ`+1u`+1‖2L2(Ω)

≤(1 + δ)‖h`+1(λ`+1u`+1 − λ`u`)‖2L2(Ω) + (1 + 1/δ)‖h`+1λ`u`‖2L2(Ω).

A moment’s reflection shows that

1/2‖h`λ`u`‖2L2(∪(T`\T`+1)) + ‖h`+1λ`u`‖2L2(Ω) ≤ ‖h`λ`u`‖
2
L2(Ω).

The combination of the previous two estimates with Corollary 2.2 yields

(5.10)

‖h`+1λ`+1u`+1‖2L2(Ω) + (1 + 1/δ) /2 ‖h`λ`u`‖2L2(∪(T`\T`+1))

≤ (1 + δ)(C/2)‖h0‖2+2s
∞ (|||u− u`|||2NC + |||u− u`+1|||2NC)

+ (1 + 1/δ)‖h`λ`u`‖2L2(Ω)

≤ (1 + δ)C‖h0‖2+2s
∞ (|||u− ũ`|||2NC + |||u− ũ`+1|||2NC)

+ (1 + 1/δ)‖h`λ`u`‖2L2(Ω)

+ (1 + δ)C‖h0‖2+2s
∞ (|||u` − ũ`|||2NC + |||u`+1 − ũ`+1|||2NC).

with some C ≈ 1. For β := Λ(1 − 4Cqo‖h0‖2s∞ − µ − 4δC2
qoC‖h0‖2+2s

∞ /µ) and
γ := 4ΛδC2

qo/(µ(δ + 1)), the estimates (5.9) and (5.10) eventually imply

η2
`+1+β|||u− ũ`+1|||2NC + γ‖h`+1λ`+1u`+1‖2L2(Ω)

≤ρ1η
2
` + Λ

(
1 + 4Cqo‖h0‖2s∞ + 4δC2

qoC‖h0‖2+2s
∞ /µ

)
|||u− ũ`|||2NC

+ Λ
(
4C2

qo/µ
)
‖h`λ`u`‖2L2(Ω) + Λ|λ̃`+1 − λ`+1|2 + Λ|λ` − λ̃`|2

+ Λ
(
1 + 4δCC2

qo‖h0‖2+2s
∞ /µ+ 4C2

qo/µ+ 4Cqo‖h0‖2s∞
)

× (|||u` − ũ`|||2NC + |||u`+1 − ũ`+1|||2NC)

+ 2ΛCqo|||u`+1 − ũ`+1|||2NC.

Lemma 5.4 (for v`+1 ≡ 0) leads to

‖h`(λ`u` − λ̃`ũ`)‖2L2(Ω) . ‖h0‖2∞|||λ`u` − λ̃`ũ`|||2NC.

Hence, a triangle inequality and the tolerance (4.1) guarantee the existence of some
C̃ such that

‖h`λ`u`‖2L2(Ω) ≤ 2κ‖h0‖2∞C̃η2
` + 2‖h`λ̃`ũ`‖2L2(Ω).
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Since ‖h`λ̃`ũ`‖2L2(Ω) ≤ η
2
` , this proves

‖h`λ`u`‖2L2(Ω) ≤ (2 + 2κ‖h0‖2∞C̃)η2
` .

The reliability (4.6) of η` and the choice of the tolerance (4.1) lead to

η2
`+1 + β|||u− ũ`+1|||2NC + γ‖h`+1λ`+1u`+1‖2L2(Ω)

≤
(
ρ1 + (2 + 4C2

rel)µΛ + 2κΛ
(

2 + 4δCC2
qo‖h0‖2+2s

∞ /µ+ 4C2
qo/µ

+ 4Cqo‖h0‖2s∞ + Cqo + ‖h0‖2∞C̃µ
))
η2
`

+ Λ
(
1 + 4Cqo‖h0‖2s∞ + 4δC2

qoC‖h0‖2+2s
∞ /µ− 2µ+ 4C2

rel‖h0‖2s∞µ
)
|||u− ũ`|||2NC

+ Λ
(
4C2

qo/µ− µ
)
‖h`λ`u`‖2L2(Ω).

This is smaller than or equal to ρ2

(
η2
` + β|||u− ũ`|||2NC + γ‖h`λ`u`‖2L2(Ω)

)
for

ρ2 := max

{
ρ1 + (2 + 4C2

rel)µΛ + 2κΛ
(

2 + 4δCC2
qo‖h0‖2+2s

∞ /µ+ 4C2
qo/µ

+ 4Cqo‖h0‖2s∞ + Cqo + ‖h0‖2∞C̃µ
)
,

Λ
(
1 + 4Cqo‖h0‖2s∞ + 4δC2

qoC‖h0‖2+2s
∞ /µ− 2µ+ 4C2

rel‖h0‖2s∞µ
)
/β,

Λ
(
4C2

qo/µ− µ
)
/γ

}
.

For sufficiently small µ, κ, and ‖h0‖∞ with δ := 4C2
qo/µ

2 it follows ρ2 < 1. �

6. Optimality Analysis

This section is devoted to the proof of Theorem 4.7 with the discrete reliability.

Theorem 6.1 (discrete reliability). Let Ω be simply connected. For sufficiently
small mesh-size ‖h0‖∞ � 1, there exists a constant Cdrel . 1 such that any re-
finement T`+m of T` in T and their respective discrete solutions (λ`+m, u`+m) and
(λ`, u`) from the adaptive algorithm satisfy

|||u`+m − u`|||2NC ≤ Cdrel

(
µ2
`(T` \ T`+m) + ‖h0‖2s∞

(
|||u− u`+m|||2NC + |||u− u`|||2NC

))
.

The proof of Theorem 6.1 splits the left-hand side in two orthogonal terms. One
of these terms, the nonconformity residual, is bounded by the tangential jumps in
the following consequence of [30].

Theorem 6.2 (discrete reliability of nonconformity residual). If Ω is simply con-
nected, any refinement T`+m of T` and any function v` ∈ CR1

0(T`) satisfy

min
v`+m∈CR1

0(T`+m)
|||v` − v`+m|||2NC .

∑
T∈T`\T`+m

∑
E∈E`(T )

|E| ‖[∂v`/∂s]E‖
2
L2(E).

Proof. The use of the discrete Helmholtz decomposition as in [5] yields the existence
of α`+m ∈ CR1

0(T`+m) and β`+m ∈ P1(T`+m) ∩ C(Ω) such that

v` = ∇NCα`+m + Curlβ`+m.

The orthogonality of the decomposition implies

min
v`+m∈CR1

0(T`+m)
|||v` − v`+m|||2NC = ‖Curlβ`+m‖2L2(Ω).
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The proof of [30, Theorem 2.1] shows

‖Curlβ`+m‖2L2(Ω) .
∑

T∈T`\T`+m

∑
E∈E`(T )

|E| ‖[∂v`/∂s]E‖
2
L2(E). �

Proof of Theorem 6.1. Let P`+mu` ∈ CR1
0(T`+m) denote the best approximation of

u` in CR1
0(T`+m) with respect to |||·|||NC and T`+m and set v`+m := u`+m−P`+mu` ∈

CR1
0(T`+m). The Pythagoras theorem reads

|||u`+m − u`|||2NC = |||v`+m|||2NC + |||u` − P`+mu`|||2NC.(6.1)

Since aNC(P`+mu`, v`+m) = aNC(u`, v`+m) = aNC(u`, I` v`+m), the discrete problem
(1.2) (on the levels `+m and `) implies

|||v`+m|||2NC = |||u`+m − P`+mu`|||2NC = aNC(u`+m, v`+m)− aNC(u`, I` v`+m)

= λ`+mb(u`+m − u`, v`+m) + (λ`+m − λ`)b(u`, v`+m) + λ`b(u`, v`+m − I` v`+m).

The Cauchy and discrete Friedrichs [12, Theorem 10.6.12] inequalities prove

λ`+mb(u`+m − u`, v`+m) + (λ`+m − λ`)b(u`, v`+m)

.
(
λ`+m ‖u`+m − u`‖L2(Ω) + |λ`+m − λ`| ‖u`‖L2(Ω)

)
|||v`+m|||NC.

The fact v`+m − I` v`+m = 0 on all T ∈ T` ∩ T`+m and the approximation property
(5.5) of I` lead to

λ`b(u`, v`+m − I` v`+m) . ‖h`λ`u`‖L2(∪(T`+m\T`))|||v`+m|||NC.

The combination of the preceding estimates results in

|||v`+m|||NC . λ`+m ‖u`+m − u`‖L2(Ω) + |λ`+m − λ`|+ ‖h`λ`u`‖L2(∪(T`+m\T`)).

This, the triangle inequality, and Theorem 2.1 lead to

|||v`+m|||NC . µ`(T` \ T`+m) + ‖h0‖s∞(|||u− u`|||NC + |||u− u`+m|||NC).(6.2)

This and (6.1) plus Theorem 6.2 conclude the proof. �

Proof of Theorem 4.7. Theorem 3.1 implies that the approximation seminorm
|u|Aσ is equivalent to the following modified version

|u|A′σ := sup
N∈N

Nσ inf
T ∈T(N)

|||u− uT |||NC,

where uT ∈ CR1
0(T ) denotes the nonconforming discrete normalised eigenfunc-

tion with ‖uT ‖L2(Ω) = 1 with minimal distance |||u − uT |||NC. The proof of quasi-
optimality will rely on this characterisation. The proof is structured into Claim
A–D and excludes the pathological case ξ0 = 0 for

ξ2
` := η2

` + β |||u− ũ`|||2NC + γ ‖h`λ`u`‖2L2(Ω) for all ` = 0, 1, 2, . . .

from Theorem 5.1. Choose 0 < τ ≤ |u|2A′σ /ξ
2
0 , and set ε2(`) := τξ2

` . Let N(`) ∈ N
be minimal with the property

(6.3) |u|A′σ ≤ ε(`)N(`)σ.

Claim A. It holds

(6.4) N(`) ≤ 2 |u|1/σA′σ ε(`)
−1/σ for all ` ∈ N0.
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Proof of Claim A. For N(`) = 1, (6.3) and the contraction property (5.1) imply

|u|2A′σ ≤ ε(`)
2 = τξ2

` ≤ τξ2
0 ≤ |u|

2
A′σ

,

whence |u|2A′σ = ε(`)2. For N(`) ≥ 2, the minimality of N(`) in (6.3) yields

ε(`)
(
N(`)− 1

)σ
< |u|A′σ .

Therefore,
N(`) ≤ 2

(
N(`)− 1

)
≤ 2 |u|1/σA′σ ε(`)

−1/σ. �

The definition of |u|A′σ as a supremum over N shows for N = N(`) that there
exists some optimal triangulation T ` (which is possibly not related to T`) of cardi-
nality |T `| ≤ |T0|+N(`) with discrete solution (λ`, u`) ∈ R× CR1

0(T `) and

(6.5) |||u− u`|||2NC ≤ N(`)−2σ |u|2A′σ ≤ ε(`)
2.

The overlay T̂` := T` ⊗ T ` is defined as the smallest common refinement of T` and
T `. It is known [22, 33] that

|T̂`| − |T`| ≤ |T `| − |T0| ≤ N(`).

The number of triangles in T` \ T̂` can be estimated as

|T` \ T̂`| ≤
∑

K∈T`\T̂`

(
|T̂`(K)| − 1

)
= |T̂` \ T`| − |T` \ T̂`| = |T̂`| − |T`|.

Thus

(6.6) |T` \ T̂`| ≤ N(`) ≤ 2 |u|1/σA′σ ε(`)
−1/σ.

Claim B. For sufficiently small ‖h0‖∞ � 1 there exists C1 ≈ 1 such that the
discrete solution û` ∈ CR1

0(T̂`) with respect to T̂` satisfies

(6.7) |||u− û`|||2NC ≤ C1ε
2(`).

Proof of Claim B. The quasi-orthogonality of Theorem 5.5 shows

|||u− û`|||2NC = |||u− u`|||2NC − |||u` − û`|||2NC + 2aNC(u− û`, u` − û`)
≤ (1 + 2Cqo‖h0‖2s∞) |||u− u`|||2NC − |||u` − û`|||2NC

+ 2C2
qo‖h`λ`u`‖2L2(∪(T `\T̂`))

+ (1/2 + 2Cqo‖h0‖2s∞)|||u− û`|||2NC.

The efficiency ‖h`λ`u`‖2L2(Ω) ≤ Ceff(1 + ‖h0‖2s∞)|||u− u`|||2NC from (4.4) implies

(1/2− 2Cqo‖h0‖2s∞)|||u− û`|||2NC + |||u` − û`|||2NC
≤ (1 + 2Cqo‖h0‖2s∞)|||u− u`|||2NC + 2C2

qo‖h`λ`u`‖2L2(∪(T `\T̂`))

≤ (1 + 2Cqo‖h0‖2s∞ + 2C2
qoCeff(1 + ‖h0‖2s∞))|||u− u`|||2NC.

This and (6.5) conclude the proof for

C1 := (1 + 2Cqo‖h0‖2s∞ + 2C2
qoCeff(1 + ‖h0‖2s∞))/(1/2− 2Cqo‖h0‖2s∞). �

Claim C. There exists C2 ≈ 1 with

(6.8) η2
` ≤ C2 η

2
` (T` \ T̂`).
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Proof of Claim C. Since κ� 1, the efficiency from (4.7) shows

(6.9) η2
`/Ceff ≤ (1 + ‖h0‖2s∞)|||u− u`|||2NC.

The quasi-orthogonality leads to

|||u− u`|||2NC = |||u− û`|||2NC + |||û` − u`|||2NC + 2aNC(u− û`, û` − u`)
≤ (2 + 2Cqo‖h0‖2s∞)|||u− û`|||2NC + 2Cqo‖h0‖2s∞|||u− u`|||2NC

+ |||û` − u`|||2NC + C2
qo‖h`λ`u`‖2L2(∪(T`\T̂`))

.

This and the discrete reliability from Theorem 6.1 with constant Cdrel lead to
(6.10)

(1− 2Cqo‖h0‖2s∞ − Cdrel‖h0‖2s∞)|||u− u`|||2NC
≤ (2 + 2Cqo‖h0‖2s∞ + Cdrel‖h0‖2s∞)|||u− û`|||2NC + (Cdrel + C2

qo)µ2
`(T` \ T̂`).

Lemma 4.6 and the choice of the tolerance (4.1) yields

(6.11) µ2
`(T` \ T̂`) ≤ 2η2

` (T` \ T̂`) + 4C2
contκη

2
` .

The combination of (6.7) and (6.9)–(6.11) leads to

η2
`

Ceff
≤ C2

2Ceff
η2
` (T` \ T̂`) +

%

2Ceff
η2
`

with

C2 := 4Ceff(1 + ‖h0‖2s∞)(1− 2Cqo‖h0‖2s∞ − Cdrel‖h0‖2s∞)−1(Cdrel + C2
qo)

and

% := 2Ceff(1 + ‖h0‖2s∞)(1− Cqo‖h0‖2s∞ − Cdrel‖h0‖2s∞)−1

×
(
(2 + 2Cqo‖h0‖2s∞ + Cdrel‖h0‖2s∞)CeqC1τ + 4C2

contκ(Cdrel + C2
qo)
)

with equivalence constant Ceq from η2
` ≤ ξ2

` ≤ Ceqη
2
` (for ‖h0‖∞ � 1). The choice

of

0 < τ <
1− Cqo‖h0‖2s∞ − Cdrel‖h0‖2s∞

4CeffCeqC1(2 + 2Cqo‖h0‖2s∞ + Cdrel‖h0‖2s∞)(1 + ‖h0‖2s∞)

and of sufficiently small κ leads to % < 1 and, hence, to (6.8). �

Claim D. The choice 0 < θ ≤ 1/C2 implies(
|T`| − |T0|

)σ|||u− ũ`|||NC ≤ C(σ) |u|A′σ .

Proof of Claim D. Mark selectsM` ⊂ T` with minimal cardinality |M`| such that
θη2
` ≤ η2

` (M`). Since
θη2
` ≤ η2

`/C2 ≤ η2
` (T` \ T̂`),

T` \ T̂` also satisfies the bulk criterion and the minimality ofM` proves, with (6.6)
and the definition of ε(`) from the very beginning of the proof, that

|M`| ≤ |T` \ T̂`| ≤ 2 |u|1/σA′σ ε(`)
−1/σ = 2 |u|1/σA′σ τ

−1/(2σ)ξ
−1/σ
`

with τ ≈ 1 and for all ` ∈ N0. It is known [6, Theorem 2.4] (see also [33, Theorem
6.1]) that newest-vertex bisection and proper initialisation of refinement edges leads
to a constant CBDV ≈ 1 with

|T`| − |T0| ≤ CBDV

`−1∑
k=0

|Mk| ≤ 2CBDV |u|1/σA′σ τ
−1/(2σ)

`−1∑
k=0

ξ
−1/σ
k .
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The contraction property of Theorem 5.1 ξ2
k+1 ≤ ρ2ξ

2
k for all k ∈ N0 and mathe-

matical induction prove

ξ2
` ≤ ρ`−k2 ξ2

k for 0 ≤ k ≤ `.
Since 0 < ρ2 < 1,

`−1∑
k=0

ξ
−1/σ
k ≤ ξ−1/σ

`

`−1∑
k=0

ρ
(`−k)/(2σ)
2 ≤ ξ−1/σ

` ρ
1/(2σ)
2

/
(1− ρ1/(2σ)

2 ).

Altogether,

|T`| − |T0| ≤ 2CBDV |u|1/σA′σ τ
−1/(2σ)ξ

−1/σ
` ρ

1/(2σ)
2

/(
1− ρ1/(2σ)

2

)
.

This and |||u− u`|||NC ≤ ξ` conclude the proof of Claim D and of Theorem 4.7. �
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