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a b s t r a c t

The discrete reliability of a finite element method is a key ingredient to prove optimal con-
vergence of an adaptivemesh-refinement strategy and requires the interchange of a coarse
triangulation and somearbitrary refinement of it. One approach for this is the careful design
of an intermediate triangulation with one-level refinements and with the remaining diffi-
culty to design some interpolation operatorwhichmaps a possibly nonconforming approx-
imation into the finite element space based on the finer triangulation. This paper enfolds
the second possibility of some novel discrete Helmholtz decomposition for the noncon-
forming Morley finite element method. This guarantees the optimality of a standard adap-
tive mesh-refining algorithm for the biharmonic equation. Numerical examples illustrate
the crucial dependence of the bulk parameter and the surprisingly short pre-asymptotic
range of the adaptive Morley finite element method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The biharmonic equation is the simplest andmost classical fourth-order model in the computational mechanics of struc-
tures which has recently gained tremendous attention for the numerical simulation of implicit partial differential equa-
tions [1–3]. Since conforming finite element methods require C1 conformity, the nonconforming approximation is highly
popular in practice and its most prominent version is the Morley finite element method [4–6] with the space M(Tℓ) of
piecewise quadratic shape functions on regular triangulations into triangles which are continuous at the nodes and have a
vanishing integral of the jumps of the normal derivatives over interior edges, see Fig. 1.

The analysis of this paper is carried out for clamped boundary conditions where the space of admissible functions is the
space H2

0 (Ω) of H
2 functions whose values and normal derivatives vanish along the boundary. The a priori error analysis

makes use of a certain interpolation operator IM and its additional properties and has recently been weakened in the reg-
ularity assumptions on the exact solutions in [7] where its quasi-optimality up to extra volume contributions is derived
for weak solutions in H2

0 (Ω). The a posteriori error control is well developed in [8,9] with explicit residual-based error
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Fig. 1. Morley finite element.

estimators which may drive an automatic mesh-refining algorithm [10,11]. On each triangle T , the local error estimator
contribution consists of a volume term plus tangential jumps of the discrete Hessian along the edges of T ,

η2ℓ(T ) := ∥h2
T f ∥

2
L2(T ) +


E∈E(T )

hE∥[D2
NCuℓ]EτE∥

2
L2(E).

The optimality proof follows the paradigm in [12] which has been extended and generalized in [13,14] to various kinds of
second-order elliptic PDEs and in particular in [15–20] for nonconforming P1 finite element schemes sometimes named after
Crouzeix–Raviart. The key argument for optimality is the discrete reliability

|||uℓ − uℓ+m|||
2
NC ≤ Cdrelη

2
ℓ(Tℓ \ Tℓ+m). (1.1)

It states that the energy difference of two solutions uℓ and uℓ+m related to triangulations Tℓ and Tℓ+m from two different
levels of the adaptive algorithm can be controlled by the error estimator contributions of the triangles in Tℓ \ Tℓ+m with a
constant Cdrel that does not depend onm.

There is a proof for (1.1) by a transfer operator in [11]. The main idea therein is to modify the function uℓ only on the tri-
angles Tℓ \ Tℓ+m. It employs the canonical interpolation of the quasi-interpolation by the conforming Hsieh–Clough–Tocher
finite element in the region that consists of all refined triangleswhich have a positive distance from the unrefined region Tℓ∩

Tℓ+m and somemixture in the layer between this region and Tℓ\Tℓ+m. However, in the published version of [11, Lemma 5.9],
it is unclear whether the intermediate interpolation operator in that layer is uniformly bounded with respect tom for some
very special configurations. Although that small detail was fixed with a minor variation of the transfer operator in the ver-
sion of [21], this paper generalizes the usage of discrete Helmholtz decompositions [15,17,22] from second-order problems
to fourth-order problems: Any piecewise constant symmetric tensor field σℓ allows a stable decomposition into a discrete
Hessian of a Morley FEM function φℓ ∈ M(Tℓ) and the symmetric part of a Curl of a piecewise affine H1 vector field ψℓ.
This property allows for an immediate proof of the aforementioned discrete reliability (1.1) and so for an optimality proof
of the associated adaptive finite element method. This provides a simple alternative to the analysis in [11] and may have
many future applications. A similar discrete Helmholtz decomposition was employed in [23] in the context of mixed finite
element schemes for fourth-order problems.

The remaining parts of this paper are as follows. Section 2 introduces the adaptive Morley FEM along with the necessary
notation on regular triangulations and function spaces. Section 3 states and proves the discrete Helmholtz decomposition
and its variants. Section 4 establishes the discrete reliability. Section 5 presents the optimality result based on the concept of
nonlinear approximation classes. Section 6 outlines a simple Matlab implementation of the Morley FEM. Section 7 presents
numerical tests for several nonconvex domains and different bulk parameters.

Throughout the paper standard notation on Lebesgue and Sobolev spaces is employed. The integral mean is denoted by>
;H−1 andH−2(Ω) denote the dual spaces ofH1

0 (Ω) andH2
0 (Ω). The space of smooth tensor fields with compact support in

Ω is denoted by D(Ω; R2×2). The dot denotes the product of two one-dimensional lists of the same length while the colon
denotes the Euclidean product of matrices, e.g., a · b = a⊤b ∈ R for a, b ∈ R2 and A : B =

2
j,k=1 AjkBjk for 2 × 2 matrices

A, B. The notation a . b abbreviates a ≤ Cb for a positive generic constant C that may depend on the domainΩ but not on
the mesh-size. The notation a ≈ b stands for a . b . a. The measure | · | is context-sensitive and refers to the number of
elements of some finite set or the length of an edge or the area of some domain and not just the modulus of a real number
or the Euclidean length of a vector.

2. Preliminaries

This section presents the adaptive Morley FEM and departs with necessary notation on regular triangulations.

2.1. Triangulations and function spaces

Let Ω ⊆ R2 be a bounded polygonal Lipschitz domain with outer unit normal ν. Let Tℓ be a regular triangulation of Ω ,
with edges Eℓ and vertices Nℓ. The interior (resp. boundary) edges are denoted by Eℓ(Ω) (resp. Eℓ(∂Ω)). Analogously let
Nℓ(Ω) denote the interior vertices and Nℓ(∂Ω) denote the vertices on the boundary. The set of edges of a triangle T ∈ Tℓ
reads E(T ), the set of vertices of T is denoted by N(T ). For any T ∈ Tℓ let hT = |T |

1/2 and define the piecewise constant
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mesh-size function hℓ by hℓ|T := hT . The length of an edge E ∈ Eℓ is denoted by hE . For any interior edge E ∈ Eℓ(Ω), there
exist two adjacent triangles T+ and T− such that E = ∂T+ ∩ ∂T− (see Fig. 2). Let νE = (νE(1); νE(2)) denote the fixed normal
vector of E that points from T+ to T−. For E ∈ Eℓ(∂Ω), let νE denote the outward unit normal vector of Ω . The tangential
vector of an edge E is denoted by τE := (−νE(2); νE(1)). Given any (possibly vector-valued) function v, define the jump and
the average of v of across E by

[v]E := v|T+ − v|T− and ⟨v⟩E := (v|T+ + v|T−)/2 along E.

For a boundary edge E ∈ Eℓ(∂Ω) ∩ E(T+), define [v]E := v|E and ⟨v⟩E := v|E .
For any T ∈ Tℓ, the space of polynomial functions of degree k is denoted by Pk(T ). The space of piecewise polynomials

reads

Pk(T) = {v ∈ L2(Ω) | ∀T ∈ T, v|T ∈ Pk(T )}.

Let S ⊆ R2×2 denote the space of symmetric 2 × 2 matrices. Square-integrable functions with values in R2, R2×2 and S
are denoted by L2(Ω; R2), L2(Ω; R2×2) and L2(Ω; S), respectively. The spaces of piecewise vector-valued or tensor-valued
polynomials Pk(Tℓ; R2), Pk(Tℓ; R2×2) and Pk(Tℓ; S) are defined analogously. Real-valued (resp. vector-valued) L2 functions
with vanishing integral mean overΩ are denoted by L20(Ω) (resp. L

2
0(Ω; R2)). The space of vector fields whose components

are H1(Ω) functions is denoted by H1(Ω; R2). For v ∈ H1(Ω; R2), the Curl reads

Curl v :=


−∂v1/∂x2 ∂v1/∂x1
−∂v2/∂x2 ∂v2/∂x1


.

The symmetric and the deviatoric part of a 2×2matrix are defined as sym A := (A+A⊤)/2 and dev A := A−1/2 tr(A) 12×2.
The piecewise action of the differential operators ∇ and D2 is denoted by ∇NC and D2

NC. The L2 projection onto piecewise
constants with respect to Tℓ is denoted byΠ0,Tℓ ≡ Π0,ℓ.

2.2. Morley finite element discretization of the biharmonic equation

Given f ∈ L2(Ω), the biharmonic problem seeks u ∈ H2(Ω)with

∆2u = f inΩ and u =
∂u
∂ν

= 0 on ∂Ω.

Its weak form utilizes the Hilbert space V := H2
0 (Ω), namely the closure of D(Ω) with respect to the H2 norm, and the

bilinear form

a(v,w) :=


Ω

D2v : D2w dx for all v,w ∈ V

with induced norm ||| · ||| := a(·, ·)1/2. The weak formulation seeks u ∈ V such that

a(u, v) =


Ω

f v dx for all v ∈ V ≡ H2
0 (Ω). (2.1)

The Morley finite element space reads

M(Tℓ) :=


v ∈ P2(Tℓ) | v is continuous at the interior vertices and vanishes at the vertices of ∂Ω;

∇NCv is continuous at the interior edges’ midpoints and vanishes at the midpoints of the edges of ∂Ω

.

The discrete version of the energy scalar product reads

aNC(v,w) :=


Ω

D2
NCv : D2

NCw dx for all v,w ∈ V + M(Tℓ)

with induced discrete energy norm ||| · |||NC := aNC(·, ·)1/2. The Morley finite element discretization of (2.1) seeks uℓ ∈ M(Tℓ)
such that

aNC(uℓ, vℓ) =


Ω

f vℓ dx for all vℓ ∈ M(Tℓ). (2.2)

2.3. Explicit residual-based error estimator

For any T ∈ Tℓ, the explicit residual-based error estimator ηℓ := ηℓ(Tℓ) consists of the contributions

η2ℓ(T ) := ∥h2
T f ∥

2
L2(T ) +


E∈E(T )

hE∥[D2
NCuℓ]EτE∥

2
L2(E) for any T ∈ Tℓ,

η2ℓ(K) :=


T∈K

η2ℓ(T ) for any subset K ⊂ Tℓ.
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Fig. 2. Adjacent triangles T− and T+ that share the edge E = ∂T− ∩ ∂T+ .

Fig. 3. Possible refinements of a triangle T in one level within the NVB. The thick lines indicate the refinement edges of the sub-triangles as in [24,25].

The global error estimator ηℓ is known [8,9] to be reliable and efficient in the sense that there exist constants Crel ≈ 1 ≈ Ceff
such that

C−1
rel |||u − uℓ|||2NC ≤ η2ℓ ≤ Ceff|||u − uℓ|||2NC + osc2(f , Tℓ) (2.3)

where the oscillations read

osc2(f ,K) =


T∈K

h2
T


f −

?
T
f dx

2
L2(T )

for any subset K ⊆ Tℓ.

2.4. Adaptive mesh-refinement

Let T0 be some (coarse) initial triangulation ofΩ . The set of regular triangulations created from T0 by the Newest-Vertex-
Bisection (NVB) [24,25] is referred to as set of admissible triangulations and denoted by T.

The adaptive algorithm is driven by this computable error estimator and runs the following loop

Input. Initial triangulation T0, bulk parameter 0 < θ ≤ 1.
for ℓ = 0, 1, 2, . . . do
Solve. Compute discrete solution uℓ ∈ M(Tℓ) of (2.2) with respect to Tℓ.
Estimate. Compute local contributions of the error estimator


η2ℓ(T )


T∈Tℓ

.
Mark. The Dörfler marking chooses a minimal subset Mℓ ⊆ Tℓ such that

θη2ℓ(Tℓ) ≤ η2ℓ(Mℓ).
Refine. Compute the closure of Mℓ and generate a new triangulation Tℓ+1 using the refinement rules of Fig. 3. end do
Output. Sequences of triangulations (Tℓ)ℓ and finite element solutions (uℓ)ℓ.

3. Discrete Helmholtz decompositions

This section is devoted to the proof of some discrete and continuous Helmholtz-type decompositions. Define

Ĥ1(Ω; R2) :=


v ∈ H1(Ω; R2)

 
Ω

v dx = 0 and

Ω

div v dx = 0


and X(Tℓ) := P1(T; R2) ∩ Ĥ1(Ω; R2).

Theorem 3.1 (Discrete Helmholtz Decomposition for Piecewise Constant Symmetric Tensor Fields). Let Ω be simply connected.
Given a piecewise constant symmetric tensor field σℓ ∈ P0(Tℓ; S), there exist unique φℓ ∈ M(Tℓ) and ψℓ ∈ X(Tℓ) such that

σℓ = D2
NCφℓ + symCurlψℓ. (3.1)

The functions φℓ, ψℓ, σℓ from (3.1) satisfy, with the constant Ctrdevdiv from Lemma 3.3, that

|||φℓ|||NC + ∥Curlψℓ∥L2(Ω) ≤ max{1, 3Ctrdevdiv} ∥σℓ∥L2(Ω). (3.2)

The proof is based on an analogue of Korn’s inequality. Recall the following well-known result, which is some straight-
forward modification of [26, Proposition 3.1 in Section IV.3].

Lemma 3.2 (Tr-Dev-Div Lemma). There exists a constant 0 ≤ Ctrdevdiv < ∞ such that any ρ ∈ L2(Ω; R2×2)with

Ω
tr(ϱ) dx =

0 satisfies

∥ρ∥L2(Ω;R2×2) ≤ Ctrdevdiv(∥dev ρ∥L2(Ω;R2×2) + ∥div ρ∥H−1(Ω;R2)). �
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Lemma 3.3 (Korn-Type Inequality). Any v ∈ Ĥ1(Ω; R2) satisfies

∥Curl v∥L2(Ω) ≤ 3Ctrdevdiv ∥symCurl v∥L2(Ω).

Proof. Direct calculations in the 2D case reveal

∥Curl v∥L2(Ω) = ∥Dv∥L2(Ω) and ∥symCurl v∥L2(Ω) = ∥devDv∥L2(Ω). (3.3)

Since

Ω
div v dx = 0, ρ := Dv in Lemma 3.2 leads to

∥Dv∥L2(Ω) ≤ Ctrdevdiv

∥devDv∥L2(Ω) + ∥1v∥H−1(Ω)


. (3.4)

For the estimate of ∥1v∥H−1(Ω), let ϕ = (ϕ1;ϕ2) ∈ H1
0 (Ω; R2)with ∥Dϕ∥L2(Ω) = 1. A direct calculation proves

Dϕ + Curl

ϕ2

−ϕ1


= 2 dev symDϕ.

This and the orthogonality of Dv and Curl (−ϕ2;ϕ1) lead to
Ω

Dv : Dϕ dx =


Ω

Dv :


Dϕ + Curl


ϕ2

−ϕ1


dx = 2


Ω

Dv : dev symDϕ dx.

Since (dev A) : B = A : (dev B) for A, B ∈ R2×2, this equals

2

Ω

devDv : symDϕ dx ≤ 2∥devDv∥L2(Ω). (3.5)

Altogether, this shows

∥1v∥H−1(Ω) ≤ 2∥devDv∥L2(Ω).

The combination with (3.3)–(3.4) concludes the proof. �

Proof of Theorem 3.1. Since the contributions on the right-hand side of (3.1) are L2-orthogonal, it suffices to verify that

dim(P0(Tℓ; S)) = dim(D2
NC(M(Tℓ)))+ dim(symCurl (X(Tℓ))). (3.6)

Lemma 3.3 implies that the kernel spaces of Curl and symCurl coincide. Therefore

dim(symCurl (X(Tℓ))) = dim(Curl (X(Tℓ))) = dim(D(X(Tℓ))).

Since

X(Tℓ) =

P1(Tℓ; R2) ∩ H1(Ω; R2)


/span


1
0


,


0
1


, q


for the function q(ξ) := ξ −
>
Ω
x dx, the dimension of D(X(Tℓ)) equals 2|Nℓ| − 3. Obviously dim(P0(Tℓ; S)) = 3|Tℓ| and

dim(D2
NC(M(Tℓ))) = |Nℓ(Ω)| + |Eℓ(Ω)|. Hence, the proof of (3.6) follows from the well-known Euler formulae

|Nℓ| + |Tℓ| = 1 + |Eℓ| and 2|Tℓ| + 1 = |Nℓ| + |Eℓ(Ω)|.

The proof of the stability (3.2) follows from the orthogonality of the decomposition and Lemma 3.3. �

The following discrete decompositions for general piecewise constant tensor fields are direct consequences of Theo-
rem 3.1.

Corollary 3.4 (Discrete Helmholtz Decomposition for Piecewise Constant Tensor Fields I). Let Ω be simply connected. Given a
piecewise constant tensor field σℓ ∈ P0(Tℓ; R2×2), there exist unique φℓ ∈ M(Tℓ), ψℓ ∈ X(Tℓ) and ρℓ ∈ P0(Tℓ) such that

σℓ = D2
NCφℓ + symCurlψℓ +


0 ρℓ

−ρℓ 0


and

|||φℓ|||NC + ∥Curlψℓ∥L2(Ω) + ∥ρℓ∥L2(Ω) . ∥σℓ∥L2(Ω).

Proof. This follows from the orthogonality of the decomposition and the observation that dim(P0(Tℓ; R2×2))− dim(P0(Tℓ;
S)) = |Tℓ|. �

Corollary 3.5 (Discrete Helmholtz Decomposition for Piecewise Constant Tensor Fields II). Let Ω be simply connected. Given a
piecewise constant tensor field σℓ ∈ P0(Tℓ; R2×2), there exist φℓ ∈ M(Tℓ), ψℓ ∈ P1(Tℓ; R2) ∩ H1(Ω; R2) ∩ L20(Ω; R2) and
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ρℓ ∈ P0(Tℓ) ∩ L20(Ω) such that

σℓ = D2
NCφℓ + Curlψℓ +


0 ρℓ

−ρℓ 0


and

|||φℓ|||NC + ∥Curlψℓ∥L2(Ω) + ∥ρℓ∥L2(Ω) . ∥σℓ∥L2(Ω).

Proof. The fact that, for any ϑ ∈ H1(Ω; R2),

Curlϑ = symCurlϑ +


0 divϑ

−divϑ 0


and


0 1

−1 0


= Curl q (3.7)

for the function q(ξ) := ξ −
>
Ω
x dx and Corollary 3.4 imply the assertion. �

The decomposition of Corollary 3.5 is a discrete analogue of [8, Lemma 1]. It allows for an alternative proof of that result.
Recall thatΩ is simply connected.

Theorem 3.6 (Lemma 1 of [8]). Given any σ ∈ L2(Ω; R2×2), there exist φ ∈ H2
0 (Ω), ψ ∈ H1(Ω; R2) ∩ L20(Ω; R2) and ρ ∈

L20(Ω) such that

σ = D2φ + Curlψ +


0 ρ

−ρ 0


and

∥D2φ∥L2(Ω) + ∥Curlψ∥L2(Ω) + ∥ρ∥L2(Ω) . ∥σ∥L2(Ω).

Proof. Let (Tℓ | ℓ ∈ N) denote a sequence of uniformly refined triangulations ofΩ and let σℓ := Π0,ℓσ . Corollary 3.4 yields

σℓ = D2
NCφℓ + symCurlψℓ +


0 ρℓ

−ρℓ 0


.

The stability of the decomposition shows that there exists a subsequence (not relabeled here for simplicity) such that, for
ℓ → ∞,

D2
NCφℓ ⇀ A, symCurlψℓ ⇀ B, ρℓ ⇀ ρ̃ in L2(Ω; R2×2) or L2(Ω). (3.8)

Letm ≥ n ≥ ℓ. The fact that symCurlψℓ+n ∈ P0(Tℓ+n; R2×2) ⊆ P0(Tℓ+m; R2×2) and the orthogonality of the decomposition
prove 

Ω

σ : symCurlψℓ+n dx =


Ω

σℓ+m : symCurlψℓ+n dx

=


Ω

symCurlψℓ+m : symCurlψℓ+n dx.

Hence,

∥symCurl (ψℓ+m − ψℓ+n)∥
2
L2(Ω) =


Ω

σ : symCurl (ψℓ+m − ψℓ+n) dx → 0 as m, n → ∞.

This and analogous arguments for the remaining contributions show that the convergence in (3.8) is indeed strongly in
L2(Ω) or L2(Ω; R2×2). Therefore, B = symCurl ψ̃ for some ψ̃ ∈ Ĥ1(Ω; R2) and ρ̃ ∈ L2(Ω). For the proof that A = D2φ for
some φ ∈ H2

0 (Ω), let ϕ : Ω → R2×2 be a smooth test function. The integration by parts reveals, for any ℓ ∈ N, that
Ω

D2
NCφℓ : ϕ dx =


E∈Eℓ


E
[∇NCφℓ]E · νEϕ ds −


E
[φℓ]Edivϕ · νE ds


+


Ω

φℓ : div divϕ dx,

where the divergence of a vector field is understood row-wise. For any edge E ∈ Eℓ, the Poincaré and Friedrichs inequalities
and the trace inequality prove that

∥[∇NCφℓ]E∥L2(E) . h1/2
E ∥D2

NCφℓ∥L2(ωE )
and ∥[φℓ]E∥L2(E) . h3/2

E ∥D2
NCφℓ∥L2(ωE )

.

Hence, the jump contributions vanish in the limit ℓ → ∞. The Friedrichs inequality shows φℓ ⇀ φ ∈ L2(Ω) and so
Ω

A : ϕ dx = lim
ℓ→∞


Ω

D2
NCφℓ : ϕ dx = lim

ℓ→∞


Ω

φℓ div divϕ dx =


Ω

φ div divϕ dx.
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Therefore, A = D2φ and φ ∈ H2
0 (Ω). This establishes the decomposition

σ = D2φ + symCurl ψ̃ +


0 ρ̃

−ρ̃ 0


and

∥D2φ∥L2(Ω) + ∥Curl ψ̃∥L2(Ω) + ∥ρ̃∥L2(Ω) . ∥σ∥L2(Ω).

Define the functions ψ ∈ H1(Ω; R2) ∩ L20(Ω; R2) and ρ ∈ L20(Ω) via

ψ(ξ) := ψ̃(ξ)+

?
Ω
ρ̃ dx


ξ −

?
Ω
x dx


and ρ := ρ̃ −

?
Ω
ρ̃ dx − div ψ̃.

The observation (3.7) proves the asserted decomposition. The stability follows from the triangle inequality. �

4. Discrete reliability

This section is devoted to the proof of discrete reliability via the discrete Helmholtz-type decomposition of Section 3.
This is an alternative approach to [11, Lemma 5.5].

Theorem 4.1 (Discrete Reliability). There exists a constant Cdrel ≈ 1 such that any admissible refinement Tℓ+m ∈ T of Tℓ ∈ T
and the respective discrete solutions uℓ ∈ M(Tℓ) and uℓ+m ∈ M(Tℓ+m) satisfy

|||uℓ − uℓ+m|||
2
NC ≤ Cdrelηℓ(Tℓ \ Tℓ+m)

2.

Proof. The discrete Helmholtz decomposition from Theorem 3.1 leads to φℓ+m ∈ M(Tℓ+m) and ψℓ+m ∈ X(Tℓ+m) such that

D2
NC(uℓ+m − uℓ) = D2

NCφℓ+m + symCurlψℓ+m.

The orthogonality of the decomposition proves

|||uℓ+m − uℓ|||2NC = aNC(uℓ+m − uℓ, φℓ+m)−


Ω

D2
NCuℓ : Curlψℓ+m dx. (4.1)

The Morley interpolation operator Iℓ : M(Tℓ+m) → M(Tℓ) is defined via

(Iℓvℓ+m)(z) = vℓ+m(z) for any z ∈ Nℓ and any vℓ+m ∈ M(Tℓ+m)
E

∂ Iℓvℓ+m

∂νE
ds =


E

∂vℓ+m

∂νE
ds for any E ∈ Eℓ and any vℓ+m ∈ M(Tℓ+m)

and satisfies the following approximation and stability property [11] for any T ∈ Tℓ

∥h−2
T (1 − Iℓ)vℓ+m∥L2(T ) + ∥h−1

T ∇NC(1 − Iℓ)vℓ+m∥L2(T ) + ∥D2
NCIℓvℓ+m∥L2(T ) . ∥D2

NCvℓ+m∥L2(T ). (4.2)

A piecewise integration by parts proves the projection property

Π0,ℓD2
NC = D2

NCIℓ. (4.3)

The projection property of the Morley interpolation operator (4.3) and the approximation and stability property (4.2) prove
for the first term of (4.1) that

aNC(uℓ+m − uℓ, φℓ+m) =


Ω

f (1 − Iℓ)φℓ+m dx . ∥h2
ℓf ∥L2(∪(Tℓ\Tℓ+m))

|||φℓ+m|||NC.

Letψℓ ∈ P1(Tℓ)∩H1(Ω) denote the Scott–Zhang quasi-interpolation [27] ofψℓ+m with the property thatψℓ|E = ψℓ+m|E for
all edges E ∈ Eℓ∩Eℓ+m. Since Curlψℓ andD2

NCuℓ are L
2-orthogonal, an integration by parts shows for the second term of (4.1)

Ω

D2
NCuℓ : Curlψℓ+m dx =


E∈Eℓ\Eℓ+m


E
([D2

NCuℓ]EτE) · (ψℓ+m − ψℓ) ds.

Cauchy and trace inequalities and the approximation and stability properties of the Scott–Zhang quasi-interpolation prove
that this is bounded by 

T∈Tℓ\Tℓ+m


E∈E(T )

hE∥[D2
NCuℓ]EτE∥

2
L2(E)

1/2

∥Dψℓ+m∥L2(Ω).

The combination of the foregoing estimates and the stability (3.2) conclude the proof. �
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5. Optimal convergence rates

This section outlines the proof of Theorem 5.1 (Theorem 6.2 from [11]) and follows the standard arguments from [13,25],
cf. also [14] for a more general paradigm of optimality of adaptive algorithms. This outline is added for completeness and a
convenient reading to underline the role of discrete reliability.

5.1. Approximation classes and optimality result

Let, for any N ∈ N,

T(N) := {T ∈ T | |T| − |T0| ≤ N}

and define the seminorm

|(u, f )|As := sup
N∈N

N s inf
T∈T(N)


∥(1 −Π0,T)D2u∥2

L2(Ω) + osc2(f , T)
1/2

and the approximation class

As :=

(u, f ) ∈ V × L2(Ω)

 |(u, f )|As ≤ ∞

.

An alternative approximation class reads

A
′

s :=

(u, f ) ∈ V × L2(Ω)

∆2u = f in H−2(Ω) and |(u, f )|A′
s
≤ ∞


for the seminorm

|(u, f )|A′
s
:= sup

N∈N
N s


inf
T∈T(N)

|||u − uT|||
2
NC + osc2(f , T)

1/2

where uT is the Morley FEM solution of (2.2) with respect to T and the right-hand side f .
The best-approximation results of [7, Lemma 2.1] show that

|||u − uT|||
2
NC . ∥(1 −Π0,T)D2u∥2

L2(Ω) + osc2(f , T).

Therefore the approximation classes are equivalent in the sense that

(u,∆2u) ∈ As if and only if (u,∆2u) ∈ A
′

s.

The optimality result is stated in the following theorem.

Theorem 5.1 (Optimal Convergence Rates). Let Ω be simply connected. For any (u,∆2u) ∈ As, the adaptive algorithm of Sec-
tion 2.4 computes sequences of triangulations (Tℓ)ℓ and discrete Morley FEM solutions (uℓ)ℓ with optimal rate of convergence in
the sense that for sufficiently small θ ≪ 1 there exists a constant Copt ≈ 1 such that

(|Tℓ| − |T0|)
s


|||u − uℓ|||2NC + osc2(f , Tℓ) ≤ Copt|(u,∆2u)|As .

The proof follows in Section 5.2 and employs the following two results of [11].

Theorem 5.2 (Quasi-Orthogonality, Lemma 3.4 of [11]). Let Tℓ+m ∈ T be some admissible refinement of Tℓ ∈ T. The discrete
solutions uℓ ∈ M(Tℓ) and uℓ+m ∈ M(Tℓ+m) satisfy for a constant Cqo ≈ 1 that

|aNC(u − uℓ+m, uℓ+m − uℓ)| ≤ Cqo


T∈Tℓ\Tℓ+m

∥h2
T f ∥L2(T )∥D

2
NC(u − uℓ+m)∥L2(T ). �

Theorem 5.3 (Contraction Property, Theorem 4.5 of [11]). There exist constants 0 < ρ < 1 and 0 < β, γ < ∞ such that for Tℓ
and its one-level refinement Tℓ+1 created by AFEM, the quantity

ξ 2ℓ := |||u − uℓ|||2NC + β∥h2
ℓf ∥

2
L2(Ω) + γ η2ℓ

contracts in the sense that

ξℓ+1 ≤ ρξℓ for all ℓ = 0, 1, 2, . . . . �

5.2. Proof of optimality

This subsection outlines the optimality proof of [11]. Let, for any ℓ ∈ N, e2ℓ := |||u − uℓ|||2NC + osc2(f , Tℓ). The optimality
proof makes use of the following consequence of the quasi-orthogonality (Theorem 5.2) and the efficiency of the error
estimator. There exists a constant C ≈ 1 such that for Tℓ and any refinement Tℓ+m ∈ T there holds

e2ℓ+m ≤ Ce2ℓ. (5.1)
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Lemma 5.4 (Lemma 6.1 of [11]). For any ℓ ∈ N the number of marked triangles is controlled as

|Mℓ| . |(u, f )|1/sAs e−1/s
ℓ .

Proof. Let 0 < α < 1 and ϵ2 := C−1αe2ℓ . Since (u, f ) ∈ A′
s, there exists an optimal triangulation Tϵ ∈ T with Morley finite

element solution uϵ ∈ M(Tϵ) such that

|Tϵ | − |T0| ≤ |(u, f )|1/s
A′
s
ϵ−1/s and |||u − uϵ |||2NC + osc2(f , Tϵ) ≤ ϵ2. (5.2)

Let T⋆ denote the overlay of Tℓ and Tϵ defined as the smallest common refinement of Tℓ and Tϵ and let u⋆ denote the discrete
FEM solution with respect to T⋆. The estimate (5.1) proves

|||u − u⋆|||2NC + osc2(f , T⋆) ≤ Cϵ2 = αe2ℓ.

The quasi-orthogonality from Theorem 5.2 followed by the Young inequality prove

|2aNC(u − u⋆, u⋆ − uℓ)| ≤
(1 − α)

2
e2ℓ + 2C2

qo
α

1 − α
η2ℓ(uℓ, Tℓ \ T⋆).

The foregoing two displayed estimates together with the definition of ϵ and the discrete reliability from Theorem 4.1 prove

(1 − α)e2ℓ ≤ |||uℓ − u⋆|||2NC + 2aNC(u − u⋆, u⋆ − uℓ)+ osc2(f , Tℓ)− osc2(f , T⋆)

≤
(1 − α)

2
e2ℓ +


1 + 2C2

qo
α

1 − α
+ Cdrel


η2ℓ(Tℓ \ T⋆).

Thus, the efficiency η2ℓ ≤ Ceff e2ℓ leads to

θη2ℓ(Tℓ) ≤ η2ℓ(Tℓ \ T⋆)

for θ < (1 − α)2/

2Ceff((1 − α)(1 + Cdrel)+ 2αC2

qo)

. Hence, Tℓ \ T⋆ satisfies the bulk criterion. The minimality of Mℓ and

the properties of the overlay prove

|Mℓ| ≤ |T⋆| − |Tℓ| ≤ |Tϵ | − |T0|.

This and (5.2) conclude the proof. �

Proof of Theorem 5.1. The contraction from Theorem 5.3 and the reliability and efficiency (2.3) prove for any k ∈ N with
k ≤ ℓ that

eℓ . ξℓ . ρkeℓ−k.

The overhead control |Tℓ| − |T0| .
ℓ

j=1 |Mj| from [24], Lemma 5.4 and (5.1) therefore lead to

|Tℓ| − |T0| .

ℓ
j=1

|Mj| . |(u, f )|1/s
A′
s
e−1/s
ℓ

ℓ
k=1

ρ(ℓ−k)/s.

Since the geometric sum on the right-hand side is uniformly bounded, the equivalence of |(u, f )|A′
s
and |(u, f )|As concludes

the proof. �

6. Numerical realization

This section introduces a Matlab program to compute the Morley FEM solution of ∆2u = f with clamped boundary
conditions in the spirit of [28].

6.1. Shape functions

The three vertices of the triangle T are denoted by P1, P2, P3 and the edges opposite are denoted by E1, E2, E3 as depicted
in Fig. 4. Each edge Ej is equipped with a global sign σj ∈ {±1} such that νEj = σjνT . Let ϕ1, ϕ2, ϕ3 denote the barycentric
coordinates on T . The six local basis functions [29] read

ψj = ϕj + 2ϕj+1ϕj−1 − ∇ϕj+1 · ∇ϕj−1


k≠j

ϕk(ϕk − 1)/|∇ϕk|
2,

ψ3+j = σjϕj(ϕj − 1)/|∇ϕj| for j = 1, 2, 3
(6.1)

and satisfy (with the Kronecker δ) that for all j, k = 1, 2, 3

ψj(Pk) =
∂ψ3+j

∂νE
(mid(Ek)) = δjk and ψ3+j(Pk) =

∂ψj

∂νE
(mid(Ek)) = 0.
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Fig. 4. Local enumeration of vertices and edges.

6.2. Local stiffness matrix

The second derivatives of ψ1, ψ2, ψ3 read

∂2ψj

∂xk∂xℓ
=


∂ϕj+1

∂xk

∂ϕj−1

∂xℓ

−2
∇ϕj+1 · ∇ϕj−1

|∇ϕj−1|
2

2

2 −2
∇ϕj+1 · ∇ϕj−1

|∇ϕj−1|
2



∂ϕj+1

∂xk
∂ϕj−1

∂xℓ

 .
With the matrices

G :=


∂ϕ1/∂x1 ∂ϕ1/∂x2
∂ϕ2/∂x1 ∂ϕ2/∂x2
∂ϕ3/∂x1 ∂ϕ3/∂x2


and M := G⊤G =


∇ϕj · ∇ϕk


j,k=1,2,3 ,

the first three rows of the Hessians H(1:3,:) are computed as a result of the lines 16–19 in the program displayed in
Section 6.5. The second derivatives of ψ4, ψ5, ψ6 read

∂2ψj+3

∂xk∂xℓ
=

2 σj
|∇ϕj|

∂ϕj

∂xk

∂ϕj

∂xℓ
for j = 1, 2, 3; k, ℓ = 1, 2.

The Hessians H(4:6,:) are computed by line 19 in Section 6.5. This leads to the local stiffness matrix

STIMA(T ) :=


T
D2ψj : D2ψk dx


j,k=1,...,6

= |T |H diag(1, 2, 1)H⊤.

6.3. Right-hand side

For any T , the contribution to the right-hand side vector is computed with the quadrature formula which is exact for
piecewise constant f ,

T
fψj dx =

1
3

3
j=1

f (mid(Ej)) ψj(mid(Ej)).

The evaluation ofψ1, . . . , ψ3 at the quadrature points is realized in line 21 whileψ4, . . . , ψ6 are evaluated in line 22 of the
program in Section 6.5. The resulting matrix

Q :=


ψj(mid(Ek))

j=1,...,6
k=1,...,3


is used in line 23 to perform the quadrature

T
f

ψ1
...
ψ6

 dx =
|T |

3
Q⊤

f (mid(E1))
f (mid(E2))
f (mid(E3))


.

6.4. Data structures

The triangulation T is described by the matrices c4n ∈ R|N|×2 and n4e ∈ R|T |×3 where the jth row of c4n contains
the coordinates of the vertex zj while the jth row of n4e gives the global numbers of the vertices of the triangle Tj. The
rows of n4sCb ∈ R|E(∂Ω)|×2 contain the numbers of the two endpoints of the boundary edges. The global edge enumeration
n4s is computed from the input in line 4. For the edge Ej = conv{zk, zℓ}, the entry reads n4s(j, :) = [k,ℓ]. The three edge
numbers of each triangle are described by the rows of s4e. If the nodes with global numbers j, k are the endpoints of the
edge number ℓ, then sparse matrix s4n has the entry s4n(j, k) =ℓ and zero otherwise. Finally, each row of e4s ∈ R|E|×2

gives the numbers of the triangles T+, T− shared by an edge E. For edges on the boundary, the second entry is zero.
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Fig. 5. L-shaped domain, domain with 1/8 cusp and domain with 1/16 cusp.

6.5. Matlab program

The assembly and overall setting of the program is rather standard [28,30] and not further discussed in this paper because
the complete script fits into 30 lines ofMatlab. Given the geometryc4n,n4e, the boundary datan4sCb and the load function
f as input as described in Section 6.4, the following function computes the Morley FEM approximation of the biharmonic
problem.
1 function x = MorleyFEM(c4n,n4e,n4sCb,f)
2 allSides = [n4e(:,[2 3]); n4e(:,[3 1]); n4e(:,[1 2])];
3 [~,ind,back] = unique(sort(allSides ,2),’rows’);
4 n4s = allSides(ind,:); s4e = reshape(back,size(n4e));
5 s4n = sparse(n4s(:,1),n4s(:,2),1:size(n4s,1),size(c4n,1),size(c4n,1));
6 s4n = s4n + s4n’; ElemNrs = repmat(1:size(n4e,1),1,3);
7 allElem4s(ind)=accumarray(back,ElemNrs);
8 e4s = [ElemNrs(ind)’, allElem4s(ind)’-ElemNrs(ind)’];
9 A = sparse(size(c4n,1)+size(n4s,1),size(c4n,1)+size(n4s,1));

10 b=zeros(size(A,1),1); x=b; I=[2,3,3,1,1,2];
11 for el = 1 : size(n4e,1) % loop over all triangles
12 L=[n4e(el,:),size(c4n,1)+s4e(el,:)];
13 area = det([1,1,1;c4n(L(1:3),:)’])/2; sg=[1;1;1]-2*(e4s(s4e(el,:),2)==el);
14 G = [1,1,1;c4n(L(1:3),:)’] \ [0,0;eye(2)]; M = G*G’; z=diag(M);
15 R = repmat([M(2,3);M(3,1);M(1,2)],1,2)./[z([2,3,1]),z([3,1,2])];
16 H=[reshape(G([I,3+I,3+I])*...
17 (kron(eye(9) ,[0,2;2,0])-2*diag(repmat(reshape(R’,1,6),1,3)))*...
18 blkdiag(G(2:3),G([3,1]),G(1:2),G(2:3),G([3,1]),G(1:2),G(5:6) ,...
19 G([6,4]),G(4:5))’,3,3);2*diag(sg./sqrt(z))*G(:,[1,2,2]).*G(:,[1,1,2])];
20 A(L,L) = A(L,L)+ area*H*diag([1,2,1])*H’;
21 Q=[.5+([0,R([2,3],2)’;R(1,2),0,R(3,2);R(3,[2,1]),0]+diag(sum(R,2)))/4,...
22 repmat(sg’./sqrt(z)’,3,1).*(ones(3)-eye(3))/9];
23 b(L)=b(L)+area/3 *Q’*(f((c4n(L(1:3),:)+c4n(L([2,3,1]),:))/2)); end
24 CbSides = s4n((n4sCb(:,1)-1)*size(c4n,1)+n4sCb(:,2));
25 dof = setdiff(1:size(A,1),[unique(n4sCb);size(c4n,1)+CbSides]);
26 x(dof) = A(dof,dof)\b(dof);

The solution can be plotted with the following lines
X=c4n(:,1)’; Y=c4n(:,2)’; Xcrd=X(n4e)’; Ycrd=Y(n4e)’;
Z=x(n4e)’; C=sum(Z,1)/3; figure; patch(Xcrd,Ycrd,Z,C); view(-37.5,30);

Remark 6.1. The update of the sparse matrix in each loop iteration can be replaced by building the stiffness matrix directly
from an array of local stiffness matrices and proper index sets as described in [31].

7. Numerical examples

This section presents numerical tests on the performance of the adaptive Morley FEM and illustrates the optimal con-
vergence rates as well as the superiority of adaptive over uniform mesh-refinement.

7.1. Realization

The computational tests are carried out for the three nonconvex domains of Fig. 5. The convergence history plots compare
the convergence rates for bulk parameters θ = 0.1, . . . , 0.9 with uniform mesh-refinement.

The error quantities in the convergencehistory plots are plotted against the degrees of freedom. Besidesηℓ and |||u−uℓ|||NC,
the averaging error estimator of [32] is plotted for comparison. Define the piecewise affine H1 tensor field σav,ℓ by

σav,ℓ(z) :=

?
ωz

D2
NCuℓ dx for any z ∈ N

for the nodal patch ωz = ∪{T ∈ Tℓ | z ∈ T }. The reliability

|||u − uℓ|||NC . ∥D2
NCuℓ − σav,ℓ∥L2(Ω) + ∥h2

ℓf ∥L2(Ω)

is proven in [32].
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Fig. 6. Convergence history of the error and estimators for the L-shaped domain with θ = 0.5, . . . , 0.9 and uniform mesh-refinement.

Fig. 7. Convergence history of the error and estimators for the L-shaped domain with θ = 0.1, . . . , 0.6.

7.2. L-shaped domain

Consider the L-shaped domain Ω = (−1, 1)2 \ ([0, 1] × [−1, 0]) with α := 0.5444837 and ω := 3π/2. The exact
singular solution from [33, p. 107] reads in polar coordinates as

u(r, θ) = (r2 cos2 θ − 1)2 (r2 sin2 θ − 1)2 r1+α gα,ω(θ) (7.1)

for

gα,ω(θ) =


1

α − 1
sin((α − 1)ω)−

1
α + 1

sin((α + 1)ω)
 

cos((α − 1)θ)− cos((α + 1)θ)


−


1

α − 1
sin((α − 1)θ)−

1
α + 1

sin((α + 1)θ)
 

cos((α − 1)ω)− cos((α + 1)ω)

.

Figs. 6–7 show the convergence history of the error estimators and the exact error for uniform and adaptive meshes. The
convergence rates for uniform mesh-refinement as well as for large values of θ is sub-optimal. The choice of θ ≤ 0.5 leads
to the optimal convergence rate starting from the first loop in the adaptive algorithm. The averaging error estimator is very
accurate in the sense that both the reliability and efficiency constants seem to be close to 1.
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Fig. 8. Convergence history of the error and estimators for the 1/8 cusp domain with θ = 0.5, . . . , 0.9 and uniform mesh-refinement.

Fig. 9. Convergence history of the error and estimators for the 1/8 cusp domain with θ = 0.1, . . . , 0.6.

7.3. Domain with 1/8 cusp

OnΩ := (−1, 1)2\conv{(0, 0), (1,−1), (1, 0)}, the exact solution from [33, p. 107] is defined via (7.1) for the parameters
α := 0.50500969 and ω := 7π/4. Figs. 8–9 show the convergence history of the error estimators and the exact error for
uniform and adaptive meshes. The choice of θ ≤ 0.5 yields optimal convergence rates while larger values of θ or uniform
refinement lead to sub-optimal convergence rates.

7.4. Domain with 1/16 cusp

OnΩ := (−1, 1)2\conv{(0, 0), (1,−0.5), (1, 0)}, the exact solution [33, p. 107] is given via (7.1) for the parametersα :=

0.50060833 and ω := 15π/8. Figs. 10–11 show the convergence history of the error estimators and the exact error for uni-
form and adaptive meshes. As in the previous examples, the averaging error estimator yields a very accurate approximation
of the true energy error.

Figs. 12–13 display the adaptive meshes for different values of θ . The adaptive mesh-refinement mainly concentrates on
the re-entrant corner. In contrast to second-order problems, one can observe some additional refinement layers at the flat
parts of the boundary.
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Fig. 10. Convergence history of the error and estimators for the 1/16 cusp domain with θ = 0.5, . . . , 0.9 and uniform mesh-refinement.

Fig. 11. Convergence history of the error and estimators for the 1/16 cusp domain with θ = 0.1, . . . , 0.6.

Fig. 12. Adaptive meshes for the 1/16 cusp example. Left: θ = 0.1; level 23; 3582 degrees of freedom. Right: θ = 0.5; level 8; 5267 degrees of freedom.
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Fig. 13. Adaptive meshes for the 1/16 cusp example. Left: θ = 0.8; level 5; 3628 degrees of freedom; Right: θ = 0.9; level 5; 5393 degrees of freedom.
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