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A posteriori error estimators for convection–diffusion eigenvalue model problems are dis-
cussed in Heuveline and Rannacher (2001) [17] in the context of the dual-weighted resid-
ual method (DWR). This paper directly addresses the variational formulation rather than
the non-linear ansatz of Becker and Rannacher for some convection–diffusion model prob-
lem and presents a posteriori error estimators for the eigenvalue error based on averaging
techniques. Two different postprocessing techniques attached to the DWR paradigm plus
two new dual-weighted a posteriori error estimators are also presented. The first new esti-
mator utilises an auxiliary Raviart–Thomas mixed finite element method and the second
exploits an averaging technique in combination with ideas of DWR. The six a posteriori
error estimators are compared in three numerical examples and illustrate reliability and
efficiency and the dependence of generic constants on the size of the eigenvalue or the con-
vection coefficient.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

While the numerical approximation of eigenvalues of symmetric second-order elliptic partial differential equations
(PDEs) with real eigenpairs is relatively well understood, much less is known about non-symmetric problems with possibly
complex eigenvalues. A posteriori error estimators for symmetric eigenvalue problems can be found in [13,20,22,23,31]. The
convergence of the adaptive finite element method (AFEM) for the symmetric case is considered in [9,14,15,28]. A posteriori
error estimators for some non-symmetric eigenvalue problems can be found in [11,17,18]. It is the aim of this paper to re-
view the results of Heuveline and Rannacher in a direct approach rather than in the non-linear setting of the DWR paradigm
following [1,2,17]. These results are also applicable to the averaging techniques as for the symmetric eigenvalue problem in
[22]. Numerical experiments indicate that the efficiency indices for the residual-type a posteriori error estimators depend
strongly on the convection coefficient b. Therefore, this paper investigates the dual-weighted residual paradigm from Becker
and Rannacher [2,3,1] and presents two new dual-weighted a posteriori error estimators. The first new estimator is based on
the Raviart–Thomas mixed finite element method (MFEM) [6,27] of first-order and the second one on averaging techniques.
Hence, they are named dual-weighted mixed (DWM) and dual-weighted averaging (DWA) a posteriori estimators. The paper
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presents numerical evidence that the DWR methodology in combination with the L2 interpolation scheme of [32] is empir-
ical reliable and efficient for unstructured triangular meshes while [17] is restricted to structured meshes because of the
approximation of the weights by second-order difference quotients.

The convection–diffusion model eigenvalue problem reads: Seek an eigenpair ðk;uÞ 2 C� fH1
0ðX; CÞ \ H2

locðX; CÞg with
�Duþ b � ru ¼ ku in X: ð1:1Þ
The given data b 2 Hðdiv;X; R2Þ is assumed to be divergence free in the bounded Lipschitz domain X # R2, i.e.,R
X v div bdx ¼ 0 for all v 2 V :¼ H1

0ðX; CÞ.
The weak problem considers the two complex Hilbert spaces V with energy norm jjj � jjj ¼j �jH1ðX;CÞ (which is a norm on V)

and W :¼ L2ðX; CÞ with norm k � kL2ðX;CÞ. The weak form reads: Seek an eigenpair ðk;uÞ 2 C� V with kuk ¼ 1 such that
aðu;vÞ ¼ kbðu; vÞ for all v 2 V : ð1:2Þ
The bilinear form að�; �Þ is elliptic and continuous in V and the bilinear form bð�; �Þ is continuous, symmetric and positive def-
inite, and hence induces a norm k � k :¼ bð�; �Þ1=2 on W. For the above model problem, k � k ¼ k � kL2ðX;CÞ and the bilinear forms
(where ð�Þ denotes complex conjugation) read
aðu;vÞ ¼
Z

X
ru � rv þ ðb � ruÞvð Þdx and bðu;vÞ ¼

Z
X

uv dx:
Since b is assumed to be divergence free, an integration by parts yields
Z
X
ðb � rvÞv dx ¼ �

Z
X
ðb � rvÞv dx:
Hence, for all v 2 V , it holds that
jjjv jjj2 ¼ Reaðv ;vÞ:
Thus, the ellipticity constant (which is one) of the bilinear form að�; �Þ is independent of b.
The analysis of the non-symmetric eigenvalue problem requires the dual eigenvalue problem: Seek a (dual) eigenpair

ðk�;u�Þ 2 C� V with ku�k ¼ 1 such that
aðv ;u�Þ ¼ k�bðv ;u�Þ for all v 2 V :
Since the embedding of V in W is continuous and compact, the spectral theory for compact operators [19,24] is applicable.
The Riesz-Schauder theorem shows that the primal and dual spectra consist of finite or countable infinite many eigenvalues
with no finite accumulation point. In particular, the algebraic multiplicities are finite.

Throughout this paper, suppose that k is a simple eigenvalue in the sense that the algebraic multiplicity and hence the
geometric multiplicity is one and that k is well separated from the remaining part of the spectrum.

Given any finite-dimensional subspace V ‘ � V , the discrete problems read: Seek primal and dual (discrete) eigenpairs
ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ with ku‘k ¼ 1 ¼ ku�‘k such that
aðu‘; v‘Þ ¼ k‘bðu‘;v ‘Þ for all v ‘ 2 V ‘ and aðv ‘;u�‘ Þ ¼ k�‘bðv‘;u�‘ Þ for all v ‘ 2 V ‘: ð1:3Þ
The primal and dual eigenvalues kj and k�j as well as the primal and dual discrete eigenvalues k‘;j and k�‘;j are connected by
kj ¼ k�j for j ¼ 1;2;3; . . . and k‘;j ¼ k�‘;j for all j ¼ 1; . . . ;dimðV ‘Þ:
The abstract a priori theory yields the following upper bounds in terms of the maximal mesh-size H‘,
j k� k‘ j K Hs1þs2
‘ ; jjju� u‘jjjK Hs1

‘ ; jjju� � u�‘ jjjK Hs2
‘ ;
where 0 < s1 6 1 and 0 < s2 6 1 depend on the regularity of the primal and dual eigenfunctions [[24], Chapter 10.3]. This
paper employs standard notation on Lebesgue and Sobolev spaces and norms. Moreover, x K y denotes an estimate x 6 Cy
with some generic constant C > 0, which is independent of the maximal mesh-size H‘. Similarly x � y abbreviates the
inequalities x K y and y K x.

The outline of the remaining parts of this paper is a follows. In Section 2 an optimal error estimate for the eigenvalue error
is derived. For this, the basic algebraic properties and identities of the non-symmetric eigenvalue problem are reviewed. In
contrast to [17], the direct variational formulation is used, rather then the more general non-linear DWR framework of Beck-
er and Rannacher [1,2]. The weak regularity assumptions and the suboptimal L2 error estimate of [17] prove the L2 contri-
bution to the residual identity to be of higher-order. Section 3 summarises some old and some new results on several a
posteriori error estimators, namely the residual, the averaging, and the dual-weighted DWR1, DWR2, DWM and DWA a pos-
teriori error estimators. Section 4 describes the adaptive finite element method, the interpolation scheme, used for the cal-
culation of the weights, and the computation of the error estimators. In Section 5 the error estimators are compared in
numerical benchmarks on three different domains for higher eigenvalues and various convection coefficients. Section 6
draws some conclusions.
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2. Algebraic properties

This section is devoted with the primal and dual residual and the estimation of the eigenvalue and energy error in the
primal and dual eigenfunctions.

For the primal and dual discrete eigenpairs ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ, the residuals are defined
Res‘ :¼ aðu‘; �Þ � k‘bðu‘; �Þ 2 V� and Res�‘ :¼ að�;u�‘ Þ � k�‘bð�;u�‘ Þ 2 V�
for the dual space V� of V. Notice that V ‘ � kerðRes‘Þ and V ‘ � kerðRes�‘ Þ.
It is the goal of this section to derive the following optimal error estimate for the eigenvalue error of simple eigenvalues
j k� k‘ j K jjjRes‘jjj2� þ jjjRes�‘ jjj
2
� ð2:1Þ
which is valid only for H‘ � 1. Throughout this paper let e‘ :¼ u� u‘ and e�‘ :¼ u� � u�‘ .

Lemma 2.1 (Primal–dual error residual identity). Suppose that ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ are the discrete primal and discrete dual
eigenpairs to the primal and dual eigenpairs ðk;uÞ and ðk�;u�Þ. Then it holds that
ðk� k‘Þ bðu;u�Þ þ bðu‘;u�‘ Þ � bðe‘; e�‘ Þ
� �

¼ Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ:
Proof. Direct algebraic manipulations and the definition of the residuals and using that k ¼ k�; k‘ ¼ k�‘ leads to
aðu‘;u� � u�‘ Þ � k‘bðu‘;u� � u�‘ Þ þ aðu� u‘; u�‘ Þ � k�‘bðu� u‘;u�‘ Þ ¼ aðu‘;u�Þ � k‘bðu‘;u�Þ þ aðu;u�‘ Þ � k�‘bðu;u�‘ Þ
¼ ðk� � k‘Þbðu‘;u�Þ þ ðk� k�‘ Þbðu;u�‘ Þ
¼ ðk� k‘Þðbðu;u�Þ þ bðu‘;u�‘ Þ � bðe‘; e�‘ ÞÞ: �
Lemma 2.2. Suppose that the maximal mesh-size H‘ tends to zero as ‘!1, then
lim
‘!1

bðe‘; e�‘ Þ ¼ 0 and lim
‘!1

bðu‘;u�‘ Þ ¼ bðu; u�Þ:
Proof. The convergence of jjje‘jjj and jjje�‘ jjj implies the convergence of ke‘k and ke�‘k to zero as ‘!1 because of the compact
embedding. Hence, the assertions follow from j bðe‘; e�‘ Þ j6 ke‘kke�‘k and
j bðu;u�Þ � bðu‘;u�‘ Þ j¼j bðu� u‘;u�Þ þ bðu‘;u� � u�‘ Þ j6 ke‘k þ ke�‘k: �
Remark 2.1. Since all eigenvalues converge as H‘ ! 0; k‘ is, as k, a simple eigenvalue for sufficiently small H‘. For a vector
z 2 Rm let zH denotes its complex conjugate transposed vector. The condition number 1= j yH

‘ B‘x‘ j of the discrete eigenvalue
k‘ is defined for right and left eigenvectors x‘ and y‘ of the algebraic eigenvalue problems
A‘x‘ ¼ k‘B‘x‘ and yH
‘ A‘ ¼ k�‘y

H
‘ B‘;
with non-symmetric convection–diffusion matrix A‘ and symmetric positive definite mass matrix B‘ [16, Section 7.2.2]. It is
known that yH

‘ B‘x‘ – 0 for simple eigenvalues and that j yH
‘ B‘x‘ j	 0 if the simple eigenvalue is well separated from the

remaining part of the spectrum. Hence, for well separated simple eigenvalues considered in this paper, it is reasonable to
assume bðu; u�Þ– 0. Furthermore, 1= j bðu; u�Þ j is the condition number of the continuous eigenvalue k and
j bðu;u�Þ þ bðu‘;u�‘ Þ � bðe‘; e�‘ Þ j �!2 j bðu;u�Þ j
as H‘ ! 0.
Suppose that k is simple such that bðu;u�Þ – 0 and let ‘	 1 be such that the maximal mesh-size H‘ of the triangulation T ‘

is sufficiently small, i.e.,
maxfke‘k; ke�‘k jg < minf1; j bðu;u�Þ j =2g: ð2:2Þ
Then j bðu;u�Þ j<j bðu;u�Þ þ bðu‘;u�‘ Þ � bðe‘; e�‘ Þ j< 3, where the lower bound follows from
j bðu;u�Þ þ bðu‘;u�‘ Þ � bðe‘; e�‘ Þ j¼ j 2bðu; u�Þ � bðu; u� � u�‘ Þ � bðu� u‘;u�Þ j

P 2 j bðu; u�Þ j � j bðu;u� � u�‘ Þ þ bðu� u‘;u�Þ j

P 2 j bðu; u�Þ j �kukke�‘k � ku�kke‘k

¼ 2 j bðu; u�Þ j �ke�‘k � ke‘k
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and (2.2). Thus for simple eigenvalues k it holds that
j k� k‘ j�j Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ j : ð2:3Þ
This implies the suboptimal eigenvalue error estimate
j k� k‘ j K jjjRes‘jjj� þ jjjRes�‘ jjj�: ð2:4Þ
Remark 2.2. The proof of the following Lemma 2.3 applies a suboptimal L2 error estimate that is based on the weak
regularity assumption of the eigenvalue k with the eigenspace EðkÞ. That is a condition on
akð�; �Þ ¼ að�; �Þ � kbð�; �Þ;
on the quotient space V=EðkÞ in the sense that
jjjwjjj 6 Ck sup
v2V=EðkÞ

j akðv ;wÞ j
jjjv jjj for all w 2 V=EðkÞ:
The constant Ck depends on the distance of k to all other distinct eigenvalues and does not depend on the mesh-size. This
weak regularity assumption implies the suboptimal L2 error estimates [17, (70)–(71)]
ke‘kK jjjRes‘jjj�þ j k� k‘ j and ke�‘kK jjjRes�‘ jjj�þ j k� k‘ j : ð2:5Þ
Lemma 2.3 (Energy estimate). Suppose that bðu;u�Þ– 0, the maximal mesh-size H‘ is sufficiently small according to (2.2), and
ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ are the discrete primal and discrete dual eigenpairs to the primal and dual eigenpairs ðk;uÞ and ðk�;u�Þ. Then
it holds that
jjje‘jjj þ jjje�‘ jjjK jjjRes‘jjj� þ jjjRes�‘ jjj�:
Proof. Since bðu;uÞ ¼ 1 ¼ bðu‘;u‘Þ, the eigenvalue Eqs. (1.2) and (1.3) imply that
aðe‘; e‘Þ ¼ kþ k‘ � kbðu; u‘Þ � aðu‘; uÞ:
The relation
k‘bðu‘;uÞ ¼ k‘bðu;u‘Þ ¼ k‘Rebðu;u‘Þ � ik‘Imbðu;u‘Þ
leads to
aðe‘; e‘Þ ¼ ðkþ k‘Þð1� Rebðu;u‘ÞÞ þ i ðk‘ � kÞImbðu;u‘Þ þ k‘bðu‘;uÞ � aðu‘;uÞ:
From 0 ¼ Imku‘k2 ¼ Imbðu‘;u‘Þ it follows that
aðe‘; e‘Þ ¼ ðkþ k‘Þð1� Rebðu;u‘ÞÞ þ i ðk‘ � kÞImbðu� u‘;u‘Þ þ k‘bðu‘;uÞ � aðu‘;uÞ:
Since
2Rebðu;u‘Þ ¼ kuk2 þ ku‘k2 � ke‘k2 ¼ 2� ke‘k2
;

this implies
jjje‘jjj2 ¼ Reaðe‘; e‘Þ 6 jRes‘ðe‘Þj þ jk� k‘jke‘k þ
j kþ k‘ j

2
ke‘k2

: ð2:6Þ
The suboptimal estimates (2.4) and (2.5) imply
j k� k‘ j þke‘kK jjjRes‘jjj� þ jjjRes�‘ jjj�: ð2:7Þ
Since k:kK jjj:jjj, the inequalities (2.6), (2.7) yield
jjje‘jjjK jjjRes‘jjj� þ jjjRes�‘ jjj�:
Similarly it follows that
jjje�‘ jjjK jjjRes‘jjj� þ jjjRes�‘ jjj�: �
Theorem 2.4 (Eigenvalue Error Estimate). Suppose that bðu;u�Þ – 0, the maximal mesh-size H‘ is sufficiently small such that
(2.2) holds and let ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ be the discrete primal and discrete dual eigenpairs to the primal and dual eigenpairs
ðk;uÞ and ðk�;u�Þ for the simple eigenvalue k. Then it holds that
jk� k‘jK jjjRes‘jjj2� þ jjjRes�‘ jjj
2
� :
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Proof. The aforementioned estimate (2.3), the Cauchy–Schwarz inequality and Lemma 2.3 lead to
jk� k‘jK jRes‘ðe�‘ Þj þ jRes�‘ ðe‘ÞjK jjjRes‘jjj2� þ jjjRes�‘ jjj
2
� : �
3. A posteriori error estimates

This section is devoted to the residual, averaging and dual-weighted residual a posteriori error estimators for the eigen-
value error of simple eigenvalues. The first two residual and averaging based a posteriori error estimators make use of
Theorem 2.4
j k� k‘ j K jjjRes‘jjj2� þ jjjRes�‘ jjj
2
� :
Here, the dual norms of the primal and dual residuals are bounded separately. The DWR based a posteriori error estimators
are derived from the asymptotic estimate (2.3) for simple eigenvalues,
j k� k‘ j�j Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ j;
where the constant tends to 1=ð2 j bðu;u�Þ jÞ as H‘ ! 0. In general the dual-weighted error estimators avoid any additional
inequality, such as approximation properties, with unknown constants. Thus, they are robust with respect to strong convec-
tion which is also confirmed by the numerical examples in Section 5. One question that arises from the computation of
Res‘ðe�‘ Þ or Res�‘ ðe‘Þ is the calculation of the unknown errors e‘ and e�‘ . The rather heuristic approach of [1] states that it is
numerically reliable and efficient to approximate these quantities which occur only in the weights. The idea is that one does
not need to approximate the weights with higher accuracy than the size of the residual terms. In practice, the unknown pri-
mal and dual solutions u;u� are replaced by solutions of a higher-order method or by higher-order interpolation. In Section 4
a higher-order interpolation ansatz for general triangular meshes is described which leads to numerically reliable and effi-
cient dual-weighted a posteriori error estimators.

Throughout this paper, suppose ðT ‘Þ‘ is a family of shape-regular triangulations of X into triangles, i.e. each T 2 T ‘ is a
closed triangle, X ¼

S
T2T ‘T, for any two distinct triangles T1; T2 2 T ‘ and T1 \ T 2 is either empty, a common vertex or a com-

mon side. Suppose that the minimal angle of every triangle is uniformly bounded from below. The conforming finite element
space of order k 2 N for the triangulation T ‘ is defined by
PkðT ‘Þ :¼ v 2 H1ðX; CÞ : 8T 2 T ‘; vT is polynomial of degree 6 k
n o

:

Let V ‘ :¼ P1ðT ‘Þ \ V and h‘ 2 P0ðT ‘Þ be such that h‘jT :¼ diamðTÞ for all T 2 T ‘. Given a triangulation T ‘, define E‘ as the set of
inner edges and N ‘ as the set of inner nodes. Let hT :¼ diamðTÞ for T 2 T ‘ and hE :¼ diamðEÞ for E 2 E‘. The jump of the dis-
crete gradient ru‘ 2 P0ðT ‘Þ2 in normal direction mE along an inner edge @Tþ \ @T� ¼ E 2 E‘, for Tþ; T� 2 T ‘, is denoted by
sru‘t � mE ¼ ru‘jTþ � mE �ru‘jT� � mE and sru‘t � mE ¼ 0 for boundary edges E � @X.

3.1. Residual estimator

The first a posteriori error estimator is the residual error estimator from [17].

Lemma 3.1. Let ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ be the discrete primal and discrete dual eigenpairs to the primal and dual eigenpairs ðk;uÞ and
ðk�;u�Þ. Then it holds that
jjjRes‘jjj2� K
X
T2T ‘

h2
Tkb � ru‘ � k‘u‘k2

L2ðTÞ þ
X
E2E‘

hEksru‘t � mEk2
L2ðEÞ;

jjjRes�‘ jjj
2
� K

X
T2T ‘

h2
Tk � b � ru�‘ � k�‘u

�
‘k

2
L2ðTÞ þ

X
E2E‘

hEksru�‘t � mEk2
L2ðEÞ:
Proof. Let v ‘ denote the Scott-Zhang interpolation of v onto V ‘. Then it holds that
Res‘ðvÞ ¼ Res‘ðv � v ‘Þ ¼ aðu‘;v � v ‘Þ � k‘bðu‘;v � v‘Þ

¼
X
T2T ‘

Z
T
ru‘ � rðv � v ‘Þ þ ðb � ru‘Þðv � v‘Þdx� k‘

Z
T

u‘ðv � v ‘Þdx

¼
X
T2T ‘

Z
T
ðb � ru‘ � k‘u‘Þðv � v‘Þdxþ

X
E2E‘

Z
E
ðsru‘t � mEÞðv � v ‘Þds:
The approximation properties of the interpolation operator [29]
X
T2T ‘

kh�1
T ðv � v ‘Þk2

L2ðTÞ þ
X

E2E‘
kh�1=2

E ðv � v ‘Þk2
L2ðEÞK jjjv jjj

2
; ð3:1Þ
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and the Cauchy–Schwarz inequality yield
Res‘ðvÞ 6
X
T2T ‘

hTkb � ru‘ � k‘u‘kL2ðTÞkh
�1
T ðv � v ‘ÞkL2ðTÞ þ

X
E2E‘

h1=2
E k½ru‘
 � mEkL2ðEÞkh

�1=2
E ðv

� v‘ÞkL2ðEÞK
X
T2T ‘

h2
Tkb � ru‘ � k‘u‘k2

L2ðTÞ

 !1=2

jjjv jjj þ
X
E2E‘

hEk½ru‘
 � mEk2
L2ðEÞ

 !1=2

jjjv jjj:
For the second assertion notice that the dual bilinear form a�ðu�; �Þ :¼ að�;u�Þ reads in the model problem
a�ðu�;vÞ ¼ aðv ;u�Þ ¼
Z

X
rv � ru� þ ðb � rvÞu�ð Þdx:
An integration by parts leads to
a�ðu�;vÞ ¼
Z

X
ru� � rv � ðb � ru�Þvð Þdx for all v 2 V :
The same arguments as for the first assertion lead to the assertion for jjjRes�‘ jjj. h
3.2. Averaging estimator

The averaging technique concerns operators
A : P0ðT ‘Þ2 ! fV2
‘ \ CðXÞ

2g;
with the model example
Aðru‘Þ :¼
X
z2N ‘

1
jxzj

Z
xz

ru‘ dx
� �

uz:
Here and throughout this paper, uz denotes the nodal basis function for an inner node z 2 N ‘. Alternative averaging oper-
ators from [7] could be employed as well.

Lemma 3.2. Let ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ be the discrete primal and discrete dual eigenpairs to the primal and dual eigenpairs ðk;uÞ and
ðk�;u�Þ. Then it holds that
jjjRes‘jjj�K kh‘ð�divðAðru‘ÞÞ þ b � ru‘ � k‘u‘ÞkL2ðXÞ þ kAðru‘Þ � ru‘kL2ðXÞ;

jjjRes�‘ jjj�K kh‘ð�divðAðru�‘ ÞÞ � b � ru�‘ � k�‘u
�
‘ ÞkL2ðXÞ þ kAðru�‘ Þ � ru�‘kL2ðXÞ:
Proof. As in the previous lemma, let v ‘ denote the Scott–Zhang interpolation of v onto V ‘, since Aðru‘Þ is globally contin-
uous the divergence theorem can be applied. This yields
Res‘ðvÞ ¼ Res‘ðv � v ‘Þ ¼ aðu‘;v � v ‘Þ � k‘bðu‘;v � v‘Þ

¼
Z

X
ðru‘ � Aðru‘ÞÞ � rðv � v ‘Þdx�

Z
X

divðAðru‘ÞÞðv � v ‘Þdxþ
Z

X
ðb � ru‘ � k‘u‘Þðv � v ‘Þdx:
Hölder’s inequality leads to
Res‘ðvÞ 6
X
T2T ‘

hTk � divðAðru‘ÞÞ þ b � ru‘ � k‘u‘kL2ðTÞkh
�1
T ðv � v ‘ÞkL2ðTÞ

� �
þ
X
T2T ‘

kru‘ � Aðru‘ÞkL2ðTÞkrðv � v‘ÞkL2ðTÞ:
Using the stability and the approximation property (3.1)
X
T2T ‘

krv ‘k2
L2ðTÞK jjjv jjj

2 and
X
T2T ‘

kh�1
T ðv � v ‘Þk2

L2ðTÞK jjjv jjj
2
;

together with the Cauchy–Schwarz inequality yield
Res‘ðvÞK kh‘ð�divðAðru‘ÞÞ þ b � ru‘ � k‘u‘ÞkL2ðXÞ þ kAðru‘Þ � ru‘kL2ðXÞ

� �
jjjv jjj:
In the same way one proves the assertion for jjjRes�‘ jjj. h
3.3. DWR1 estimator

The first DWR a posteriori error estimator (DWR1) is derived from the DWR ansatz as in [17] or [1] plus a result
from [8].
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Lemma 3.3. Let the eigenfunctions u;u� 2 H2ðXÞ \ H3ðT ‘Þ, H3ðT ‘Þ denote the broken space of piecewise H3 Sobolev
functions, ðk‘;u‘Þ and ðk�‘ ;u�‘ Þ be the discrete primal and discrete dual eigenpairs to the primal and dual eigenpairs ðk;uÞ and
ðk�;u�Þ, and
gT :¼ kb � ru‘ � k‘u‘kL2ðTÞ þ h�1=2
T k½ru‘
 � mEkL2ð@TÞ;

g�T :¼ k � b � ru�‘ � k�‘u
�
‘kL2ðTÞ þ h�1=2

T k½ru�‘ 
 � mEkL2ð@TÞ:
ð3:2Þ
Then it holds that
j Res‘ðe�‘ Þ j þ j Res�‘ ðe‘Þ j K
X
T2T ‘

h3=2
T gTk½ru�‘ 
 � mEkL2ð

S
EXT
Þ þ

X
T2T ‘

h3=2
T g�Tk½ru‘
 � mEkL2ð

S
EXT
ÞÞ þHOT
for suitable fixed subsets XT # X, which contain T 2 T ‘, with skeleton
S
EXT , and a higher-order term
HOT :¼
X
T2T ‘

h2
TgTkre�‘kL2ðXT Þ þ

X
T2T ‘

h2
Tg
�
Tkre‘kL2ðXT Þ:
Proof. Suppose u 2 H2ðXÞ, then integration by parts and Hölder’s inequality show that
Res‘ðvÞ ¼
X
T2T ‘

Z
T
ru‘ � rðv � v ‘Þ þ ðb � ru‘ � k‘u‘Þðv � v ‘Þdx

6

X
T2T ‘

h�1=2
T k½ru‘
 � mEkL2ð@TÞh

1=2
T kv � v ‘kL2ð@TÞ þ kb � ru‘ � k‘u‘kL2ðTÞkv � v ‘kL2ðTÞ 6

X
T2T ‘

gTxT :
Here, gT is as defined in (3.2) and
xT :¼ kv � v‘kL2ðTÞ þ h1=2
T kv � v ‘kL2ð@TÞ:
Let v ‘ ¼ I ‘v 2 V ‘ be the nodal interpolant of v. The interpolation estimate [5]
kv � I ‘vk2
L2ðTÞ þ hTkv � I ‘vk2

L2ð@TÞK h4
TkD

2vk2
L2ðTÞ
leads to
Res‘ðvÞK
X
T2T ‘

h2
TgTkD

2vkL2ðTÞ:
In [17] D2v is locally approximated on each quadrilateral Q by D2v‘jQ using finite differences. While this is an appropriate
ansatz for structured meshes, for general triangular meshes considered here this is not suited. In [8] it is shown that
v 2 H3ðT ‘Þ implies
kD2vkL2ðTÞ 6 c1h�1=2
T k½rv ‘
 � mEkL2ð

S
EXT
ÞÞ þ c2krðv � v ‘Þk1=2

L2ðXT Þ
:

The constant c1 depends on the shape of elements and c2 on kvkH3ðXT Þ. This leads to the estimate
Res‘ðe�‘ Þ
�� ��KX

T2T ‘

h3=2
T gTk½ru�‘ 
 � mEkL2ð

S
EXT
Þ þHOT;
with higher-order term
HOT ¼
X
T2T ‘

h2
TgTkre�‘kL2ðXT Þ:
Note that the jump term is formally equivalent to the energy norm and that HOT involves an extra factor of h1=2
T compared to

the other term of the estimate. Following the argumentation for the primal residual yields the assertion for the dual residual
j Res�‘ ðe‘Þ j K
X
T2T ‘

h3=2
T g�Tk½ru‘
 � mEkL2ð

S
EXT
Þ þHOT;
with the higher-order term
HOT ¼
X
T2T ‘

h2
Tg
�
Tkre‘kL2ðXT Þ: �
Remark 3.1. From the theory in [8] it remains open to choose the fixed size of the patches XT containing T 2 T ‘. However,
the numerical examples of Section 5 suggest, that, surprisingly, XT ¼ T and thus

S
EXT ¼ @T might be sufficient. This seems to

be in agreement with [1].
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3.4. DWR2 estimator

The second DWR estimator (DWR2) according to [1] reads as follows. Observe that this error estimator involves the un-
known exact primal and dual errors e‘ and e�‘ . In the numerical examples of Section 5, these errors will be approximated by
the interpolation described in Section 4.

Lemma 3.4. The unknown exact errors e‘ and e�‘ satisfy
j Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ j ¼
X
T2T ‘

Z
T
ðb � ru‘ � k‘u‘Þe�‘dxþ

X
E2E‘

Z
E
ðsru‘t � mEÞe�‘ds

�����
þ
X
T2T ‘

Z
T
ð�b � ru�‘ � k�‘u

�
‘ Þe‘dxþ

X
E2E‘

Z
E
ðsru�‘t � mEÞe‘ds

�����:
Proof. An integration by parts leads to
Res‘ðe�‘ Þ ¼ aðu‘;u� � u�‘ Þ � k‘bðu‘;u� � u�‘ Þ ¼
X
T2T ‘

Z
T
ðb � ru‘ � k‘u‘Þðu� � u�‘ Þdxþ

X
E2E‘

Z
E
½ru‘
 � mEðu� � u�‘ Þds:
Similarly,
Res�‘ ðe‘Þ ¼ aðu� u‘;u�‘ Þ � k�‘bðu� u‘; u�‘ Þ ¼
X
T2T ‘

Z
T
ð�b � ru�‘ � k�‘u

�
‘ Þðu� u‘Þdxþ

X
E2E‘

Z
E
½ru�‘ 
 � mEðu� u‘Þds: �
3.5. DWM estimator

Utilising the non standard Raviart–Thomas solution of an auxiliary problem leads to a new approach for a dual-
weighted a posteriori error estimator. Note that this error estimator involves the unknown exact primal and dual er-
rors e‘ and e�‘ as well as their unknown gradients re‘ and re�‘ . In practice these errors need to be approximated as
described in Section 4.

Lemma 3.5. Let the two mixed finite element functions ðqM;uMÞ 2 RT0ðT ‘Þ � P0ðT ‘Þ and ðq�M ;u�MÞ 2 RT0ðT ‘Þ � P0ðT ‘Þ be the
solutions of the equilibrium conditions
� divðqMÞ þ b � qM ¼ f‘ in X and qM �ruM ¼ 0 in X;

� divðq�MÞ � b � q�M ¼ f �‘ in X and q�M �ru�M ¼ 0 in X;
with right-hand sides f‘; f �‘ 2 P0ðT ‘Þ given by f‘jT :¼ h�2
T

R
T k‘u‘ and f �‘jT :¼ h�2

T

R
T k�‘u

�
‘ for T 2 T ‘. Then the unknown exact errors e‘

and e�‘ satisfy
j Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ j 6
Z

X
ðru‘ � qMÞ � re�‘dxþ

Z
X
ðru�‘ � q�MÞ � re‘dxþ

Z
X

b � ðru‘ � qMÞe�‘dx
����
�
Z

X
b � ðru�‘ � q�MÞe‘dx

����þHOT
with the higher-order term
HOT ¼
Z

X
ðf‘ � k‘u‘Þe�‘dxþ

Z
X
ðf �‘ � k�‘u

�
‘ Þe‘dx

����
����:
Proof. By the definition of the auxiliary problem for qM and integration by parts it holds that
Res‘ðe�‘ Þ ¼
Z

X
ru‘ � re�‘dxþ

Z
X
ðb � ru‘ � k‘u‘Þe�‘dx ¼

Z
X
ðru‘ � qMÞ � re�‘dxþ

Z
X

b � ðru‘ � qMÞe�‘dxþ
Z

X
ðf‘ � k‘u‘Þe�‘dx:
Element-wise Cauchy and Poincaré [25] inequalities yield
Z
X
ðf‘ � k‘u‘Þe�‘dx 6 kf‘ � k‘u‘kke�‘k 6

1
p

X
T2T ‘

h2
Tkk‘ru‘k2

L2ðTÞ

 !1=2

ke�‘k:
Note that ke�‘k is of the same convergence order as j k� k‘ j and that the last term involves an additional term of order OðH‘Þ.
Therefore, this term is formally of higher-order compared to j k� k‘ j. The same argumentation leads to
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Res�‘ ðe‘Þ ¼
Z

X
ru�‘ � re‘dxþ

Z
X
ð�b � ru�‘ � k�‘u

�
‘ Þe‘dx

¼
Z

X
ðru�‘ � q�MÞ � re‘dx�

Z
X

b � ðru�‘ � q�MÞe‘dxþ
Z

X
ðf �‘ � k�‘u

�
‘ Þe‘dx:
The last term is again a formally higher-order term. h
3.6. DWA estimator

The second new a posteriori error estimator makes use of the ideas of the DWR2 estimator. The new aspect proposed here
is not to use integration by parts to obtain a residual term but to involve the averaged gradients Aðru‘Þ and Aðru�‘ Þ and then
to do integration by parts. Again this error estimator involves the unknown exact primal and dual errors e‘ and e�‘ which have
to be approximated as described in Section 4.

Lemma 3.6. The unknown exact errors e‘ and e�‘ satisfy
j Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ j ¼
Z

X
ðru‘ � Aðru‘ÞÞ � re�‘dxþ

Z
X
ðru�‘ � Aðru�‘ ÞÞ � re‘dx

����
þ
Z

X
ð�divðAðru‘ÞÞ þ b � ru‘ � k‘u‘Þe�‘dxþ

Z
X
ð�divðAðru�‘ ÞÞ � b � ru�‘ � k�‘u

�
‘ Þe‘dx

����:
Proof. An addition and subtraction of the averaging term Aðru‘Þ and an integration by parts yields
Res‘ðe�‘ Þ ¼ aðu‘;u� � u�‘ Þ � k‘bðu‘;u� � u�‘ Þ ¼
Z

X
ðru‘ � Aðru‘ÞÞ � re�‘dxþ

Z
X
ð�divðAðru‘ÞÞ þ b � ru‘ � k‘u‘Þe�‘dx:
Analogously it follows
Res�‘ ðe‘Þ ¼ aðu� u‘;u�‘ Þ � k�‘bðu� u‘;u�‘ Þ ¼
Z

X
ðru�‘ � Aðru�‘ ÞÞ � re‘dxþ

Z
X
ð�divðAðru�‘ ÞÞ � b � ru�‘ � k�‘u

�
‘ Þe‘dx: �
4. Adaptive finite element method

The adaptive finite element method (AFEM) generates a sequence of meshes T 0; T 1; . . . and associated discrete subspaces
V0(V1( . . .(V with discrete primal and discrete dual eigenpairs ðk‘;u‘Þ; ðk�‘ ;u�‘ Þ. A typical loop from V ‘ to V ‘þ1 consists of the
steps
SOLVE! ESTIMATE!MARK! REFINE:
4.1. Solve

The primal and dual generalized algebraic eigenvalue problems
A‘x‘ ¼ k‘B‘x‘ and yH
‘ A‘ ¼ k�‘y

H
‘ B‘
are solved with an algebraic eigensolver. Here, the coefficient matrices are the non-symmetric convection–diffusion matrix
A‘ and the symmetric positive definite mass matrix B‘. The right and left eigenvectors x‘ and y‘ represent the eigenfunctions
u‘ ¼
XdimðV ‘Þ

k¼1

x‘;kuk and u�‘ ¼
XdimðV ‘Þ

k¼1

y‘;kuk;
with respect to the basis ðu1; . . . ;udimðV ‘ÞÞ of V ‘.

4.2. Estimate

Since the weight-terms e‘ and e�‘ in the dual-weighted a posteriori error estimators involve the unknown solutions u and
u�, they have to be approximated. In the following experiments those functions are approximated by averaging
Aðu‘Þ 2 P2ðT ‘Þ of u‘ 2 P1ðT ‘Þ and Aðu�‘ Þ 2 P2ðT ‘Þ of u�‘ 2 P1ðT ‘Þ on the mesh T ‘. In contrast to the recovery of a gradient as
in [33], the L2 recovery of [32] is used here which is similar but uses different interpolation points. The post-processing is
based on element patches xT :¼ [z�Txz for T 2 T ‘, where xz :¼ [T2T ‘ ;z�T T is the nodal patch. The nodal and edge degrees
of freedom for the interpolated P2ðT ‘Þ function are computed for each element separately by a global least square quadratic
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polynomial fitting. The interpolation points for the least square fitting are the nodal points of xT as displayed in Fig. 1. After
all local values are computed, a global P2ðT ‘Þ function is obtained by taking the arithmetic mean values for each node and
midpoint of an edge of T ‘.

In [4] an alternative way of computing the estimator gDWR2 based on nodal values is presented. The analysis of this error
estimator makes use of a special interpolation operator. This operator assumes that the mesh T ‘ results from uniform refine-
ment of a coarser mesh and considers the nodal values as values for a higher-order P2 basis on the coarser grid. The inter-
polation scheme presented here does not assumes any structure of the mesh.

The step ESTIMATE of the AFEM loop involves an appropriate a posteriori error estimator. In the numerical examples of
Section 5 the following error estimators are compared. Since the residual identity depends on the eigenvalue condition num-
ber the condition number needs to be approximated for efficient a posteriori error control with efficiency indices close to
one. In Section 5 it is shown empirically that the approximation 1=ð2bðu‘;u�‘ ÞÞ is efficient.

The first a posteriori error estimator is the residual estimator
g‘;R ¼
1

2 j bðu‘;u�‘ Þ j
X
T2T

h2
Tkb � ru‘ � k‘u‘k2

L2ðTÞ þ
X
E�T

hEksru‘t � mEk2
L2ðEÞ

 !

þ 1
2 j bðu‘;u�‘ Þ j

X
T2T

h2
Tk � b � ru�‘ � k�‘u

�
‘k

2
L2ðTÞ þ

X
E�T

hEksru�‘t � mEk2
L2ðEÞ

 !
:

The second a posteriori error estimator is the averaging estimator
g‘;A ¼
1

2 j bðu‘;u�‘ Þ j
X
T2T
kAðru‘Þ � ru‘k2

L2ðTÞ þ h2
Tk � divðAðru‘ÞÞ þ b � ru‘ � k‘u‘k2

L2ðTÞ

� �

þ 1
2 j bðu‘;u�‘ Þ j

X
T2T
kAðru�‘ Þ � ru�‘k

2
L2ðTÞ þ h2

Tk � divðAðru�‘ ÞÞ � b � ru�‘ � k�‘u
�
‘k

2
L2ðTÞ

� �
:

The third a posteriori error estimator is the DWR1 estimator where the higher-order terms are neglected
g‘;DWR1 ¼
1

2 j bðu‘;u�‘ Þ j
X
T2T ‘

h3=2
T gTk½ru�‘ 
 � mEkL2ð@TÞ þ

X
T2T ‘

h3=2
T g�Tk½ru‘
 � mEkL2ð@TÞ

 !
;

with gT and g�T from (3.2).
The fourth a posteriori error estimator is the DWR2 estimator where the unknown solutions in the weights, u and u�, are

interpolated by Aðu�‘ Þ and Aðu�‘ Þ as described above
g‘;DWR2 ¼
1

2 j bðu‘;u�‘ Þ j
X
E2E‘

Z
E
ðsru‘t � mEÞðAðu�‘ Þ � u�‘ Þdsþ

X
E2E‘

Z
E
ðsru�‘t � mEÞðAðu‘Þ � u‘Þds

�����
þ
X
T2T ‘

Z
T
ðb � ru‘ � k‘u‘ÞðAðu�‘ Þ � u�‘ Þdxþ

X
T2T ‘

Z
T
ð�b � ru�‘ � k�‘u

�
‘ ÞðAðu‘Þ � u‘Þdx

�����:

The local refinement indicators read
gT : ¼
Z

T
ðb � ru‘ � k‘u‘ÞðAðu�‘ Þ � u�‘ Þdxþ

X
E2@T

Z
E
ðsru‘t � mEÞðAðu�‘ Þ � u�‘ Þdsþ

Z
T
ð�b � ru�‘ � k�‘u

�
‘ ÞðAðu‘Þ � u‘Þdx

�����
þ
X
E2@T

Z
E
ðsru�‘t � mEÞðAðu‘Þ � u‘Þds

�����:

They are only necessary to determine the set of marked edges for refinement.

The fifth a posteriori error estimator utilised the auxiliary Raviart–Thomas mixed solutions qM and q�M and the averaged
gradients Aðru‘Þ and Aðru�‘ Þ



Fig. 2. Refinement rules: sub-triangles with corresponding reference edges depicted with a second edge.
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g‘;DWM ¼
1

2 j bðu‘;u�‘ Þ j

Z
X
ðru‘ � qMÞ � ðAðru�‘ Þ � ru�‘ Þdxþ

Z
X
ðru�‘ � q�MÞ � ðAðru‘Þ � ru‘Þdx

����
þ
Z

X
b � ðru‘ � qMÞðAðu�‘ Þ � u�‘ Þdx�

Z
X

b � ðru�‘ � q�MÞðAðu‘Þ � u‘Þdx
����;
where the higher-order term is neglected. The local refinement indicators read
gT : ¼
Z

T
ðru‘ � qMÞ � rðAðru�‘ Þ � ru�‘ Þdxþ

Z
T
ðru�‘ � q�MÞ � ðAðru‘Þ � ru‘Þdx

����
þ
Z

T
b � ðru‘ � qMÞðAðu�‘ Þ � u�‘ Þdx�

Z
T

b � ðru�‘ � q�MÞðAðu‘Þ � u‘Þdx
����:
The last error a posteriori error estimator uses both averaged gradients Aðru‘Þ and Aðru�‘ Þ as well as interpolated L2 func-
tions Aðu�‘ Þ and Aðu�‘ Þ for the weights
l‘;DWA ¼
1

2 j bðu‘;u�‘ Þ j

Z
X
ðru‘ � Aðru‘ÞÞ � ðAðru�‘ Þ � ru�‘ Þdxþ

Z
X
ðru�‘ � Aðru�‘ ÞÞ � ðAðru‘Þ � ru‘Þdx

����
þ
Z

X
ð�divðAðru‘ÞÞ þ b � ru‘ � k‘u‘ÞðAðu�‘ Þ � u�‘ Þdxþ

Z
X
ð�divðAðru�‘ ÞÞ � b � ru�‘ � k�‘u

�
‘ ÞðAðu‘Þ � u‘Þdx

����:

Here, the local refinement indicators read
gT : ¼
Z

T
ðru‘ � Aðru‘ÞÞ � ðAðru�‘ Þ � ru�‘ Þdxþ

Z
T
ðru�‘ � Aðru�‘ ÞÞ � ðAðru‘Þ � ru‘Þdx

����
þ
Z

T
ð�divðAðru‘ÞÞb � ru‘ � k‘u‘ÞðAðu�‘ Þ � u�‘ Þdxþ

Z
T
ð�divðAðru�‘ ÞÞ � b � ru�‘ � k�‘u

�
‘ ÞðAðu‘Þ � u‘Þdx

����:
4.3. Mark

Based on the refinement indicators, the set of elementsM‘ # T ‘ that are refined is specified in the algorithm Mark . Let
M‘ be the set of minimal cardinality for which the bulk criterion [12],
h
X
T2T ‘

g2
T 6

X
T2M‘

g2
T

is satisfied for a given bulk parameter 0 < h 6 1.

4.4. Refine

Given the setM‘ # T ‘ of marked elements, mark all edges of elements inM‘ for refinement. The closure algorithm com-
putes a superset of refined edges such that once an edge of a triangle is marked for refinement its reference edge is marked as
well. The refinement T ‘þ1 is obtained by application of the refinement rules from Fig. 2.

5. Numerical experiments

This section is devoted to numerical experiments and the empirical evidence of reliability, efficiency and stability for
higher eigenvalues and strong convection coefficients. The numerical experiments on the unit square investigate the validity
of the residual identity of Lemma 2.1 and the efficiency of the proposed eigenvalue condition number approximation. The
experiments of the L shaped domain investigate the stability of the a posteriori error estimators for higher eigenvalues
and the experiments on the slit domain their robustness in b.

5.1. Unit square

As first example consider the convection–diffusion eigenvalue model problem (1.1) on the unit square X ¼ ð0;1Þ � ð0;1Þ.
For constant convection coefficient b, the exact eigenvalue with smallest real part reads k ¼j bj2=4þ 2p2 [26]. The corre-
sponding primal and dual eigenfunctions read
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uðx; yÞ ¼ exp
b � ðx; yÞt

2

 !
sinðpxÞ sinðpyÞ;

u�ðx; yÞ ¼ exp �b � ðx; yÞt

2

 !
sinðpxÞ sinðpyÞ:
Two discrete primal and dual solutions are displayed in Fig. 3. To investigate the stability of the residual equation of Lemma
2.1 which depends on the condition number of the eigenvalue Fig. 4 shows the factor
bðu;u�Þ þ bðu‘;u�‘ Þ � bðe‘; e�‘ Þ
� ��1
for different values of b. The values depend strongly on the size of j b j and eigenvalue computations beyond j b j	 20 is
numerically unstable. Fig. 5 compares the accuracy of the eigenvalue condition number approximation ð2bðu‘;u�‘ ÞÞ

�1 with
the error
d‘ :¼ bðu;u�Þ þ bðu‘; u�‘ Þ � bðe‘; e�‘ Þ
� ��1 � ð2bðu‘; u�‘ ÞÞ

�1
compared to the eigenvalue error. Since the error for the eigenvalue condition number is much smaller than the eigenvalue
error for different values of b, the proposed approximation ð2bðu‘;u�‘ ÞÞ

�1 of the eigenvalue condition number is empirical effi-
cient. In all presented numerical results the sign of Res‘ðe�‘ Þ and Res�‘ ðe‘Þ is in fact the same. Thus the triangle inequality
j Res‘ðe�‘ Þ þ Res�‘ ðe‘Þ j6j Res‘ðe�‘ Þ j þ j Res�‘ ðe‘Þ j in the proof of Theorem 2.4 does not destroy the efficiency of the estimate.
Let N‘ denote the number of unknowns, i.e., the number of inner nodes. Because the domain is convex, even uniform refine-
ment results in optimal convergence rates ofOðN�1

‘ Þ as shown in Fig. 6. Note that for uniform meshes N‘ � h�2
‘ and that there

is some strong pre-asymptotic error due to the eigenvalue condition number estimate. The a posteriori error estimators
g‘;DWR2;g‘;DWM, and g‘;DWA are close to the error while g‘;R;g‘;A, and g‘;DWR1 are by factors 104 � 106 larger than the error. Note
that the first term of the error estimator g‘;A is of higher order and g‘;A is asymptotically reliable.
Primal (left) and dual (right) discrete solution for b ¼ ð3;0Þ on adaptively refined meshes generated by g‘;R on the unit square with about 500 nodes.

4. Eigenvalue condition numbers for different values of b and sequences of uniform and adaptive meshes generated by g‘;R on the unit square.



Fig. 5. Eigenvalue errors and jd‘j for different values of b and sequences of uniform and adaptive meshes generated by g‘;R on the unit square.

Fig. 6. Eigenvalue errors and error estimators for b ¼ ð20;0Þ and a sequence of uniform meshes on the unit square.
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5.2. L-shaped domain

The second example is the convection–diffusion eigenvalue model problem (1.1) on the L-shaped domain
X ¼ ðð�1;1Þ � ð�1;1ÞÞ n ð½0;1
 � ½0;�1
Þ with constant convection parameter b ¼ ð3;0Þ and higher eigenvalues. The primal
and dual solutions for adaptive meshes generated by the AFEM, based on the a posteriori error estimator g‘;DWR2 for the
5-th eigenvalue with smallest real part, are shown in Fig. 7. An approximation of the first eigenvalue reads
k ¼j bj2=4þ 9:6397238 where 9:6397238 from [30] is an approximation of the first Laplace eigenvalue. In Fig. 8 it is shown
that uniform refinement results in a suboptimal convergence rate of about OðN�2=3

‘ Þ, while adaptive refinement leads to
numerically optimal convergence rates of OðN�1

‘ Þ. The experiments show that the a posteriori error estimators are reliable
and efficient for adaptive mesh refinement. Notice that the eigenvalues obtained from the AFEM for different estimators lead
to similar eigenvalue errors. As before the values of g‘;DWR2;g‘;DWM, and g‘;DWA are closer to the exact error than those of



Fig. 7. Primal (left) and dual (right) discrete solution for b ¼ ð3;0Þ; k5 on adaptively refined meshes generated by g‘;DWR2 on the L-shaped domain with about
500 nodes.

Fig. 8. Eigenvalue errors and estimators for b ¼ ð3;0Þ; k1 and sequences of uniform and adaptive meshes on the L-shaped domain.

Fig. 9. Eigenvalue errors for b ¼ ð3;0Þ; k1; k5; k20 and k50 for sequences of uniform and adaptive meshes generated by g‘;DWR2 on the L-shaped domain.
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Fig. 10. Efficiency indices IEff for b ¼ ð3;0Þ; k1; k50 and adaptive meshes on the L-shaped domain.
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g‘;R;g‘;A, and g‘;DWR1. In order to study the dependence of the a posteriori error estimators on the size of the eigenvalue, we
compare the numerical results for
k1 ¼j bj2=4þ 9:6397238; k5 ¼j bj2=4þ 31:912636;

k20 ¼j bj2=4þ 101:60529; k50 ¼j bj2=4þ 250:78548;
with approximations for the corresponding Laplace eigenvalues from [30]. Fig. 9 shows that the size of the eigenvalue error
depends on the eigenvalue and that the a posteriori error estimator g‘;DWR2 is asymptotically exact. In order to investigate the
dependence on the size of the eigenvalue, the efficiency indices IEff ¼ g‘= j k� k‘ j for k1 and k50 are compared in Fig. 10. The
experiments show that the ratio between the a posteriori error estimators and the eigenvalue error is growing in k for
g‘;R;g‘;A, and g‘;DWR1 while g‘;DWR2;g‘;DWM, and g‘;DWA are robust in k. Note that the efficiency indices of g‘;DWR2;g‘;DWM, and
g‘;DWA are close to one.

5.3. Slit domain

As last example consider the convection–diffusion eigenvalue model problem (1.1) on the slit domain
X ¼ ðð�1;1Þ � ð�1;1ÞÞ n ð½0;1
 � f0gÞwith different constant values for b. A computed reference value for the first eigenvalue
reads k ¼j bj2=4þ 8:3713297112 with approximation 8:3713297112 of the first Laplace eigenvalue computed on very fine
meshes and higher order finite elements. The primal and dual eigenfunctions on adaptive meshes for g‘;DWA are shown in
Fig. 11. Notice that for the primal eigenfunction the influence of the magnitude of the corner singularity at the origin is much
larger than for the dual eigenfunction. This illustrates that it is important to consider both primal and dual residuals. Due to



Fig. 11. Primal (left) and dual (right) discrete solution for b ¼ ð3;0Þ on adaptively refined meshes generated by g‘;DWA on the slit domain with about 500
nodes.

Fig. 12. Eigenvalue errors and estimators for b ¼ ð15;0Þ and sequences of uniform and adaptive meshes on the slit domain.

Fig. 13. Meshes with b ¼ ð15;0Þ generated by the refinement monitored by g‘;R;g‘;A;g‘;DWR1;g‘;DWR2;g‘;DWM and g‘;DWA (from left to right and top to bottom)
on the Slit domain with about 2500 nodes.
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Fig. 14. Efficiency indices IEff for b ¼ ð1;0Þ; ð15;0Þ and adaptive sequences of meshes on the slit domain.
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the corner singularity, uniform refinement results in a suboptimal convergence rate OðN�1=2
‘ Þ while adaptive refinement re-

sults in the optimal convergence rate OðN�1
‘ Þ as shown in Fig. 12 for b ¼ ð15;0Þ. Note that the eigenvalue errors for g‘;R and

g‘;A are much larger than for g‘;DWR1;g‘;DWR2;g‘;DWM and g‘;DWA and even larger than the eigenvalue error for uniform refine-
ment up to N ‘ ¼ 106. This observation is caused by a much larger pre-asymptotic range for g‘;R and g‘;A than for the DWR
based a posteriori error estimators. The different adaptive meshes with about N ‘ ¼ 2500 are shown in Fig. 13. The meshes
for g‘;R and g‘;A show strong refinement towards the two boundary layers on the left and right but almost no refinement to-
wards the corner singularity at the origin which might cause the larger eigenvalue errors. In contrast to that all other
refinement indicators show strong refinement toward the corner singularity at the origin which leads to smaller eigenvalue
errors. In order to study the dependence of the a posteriori error estimators on the size of the convection coefficient, exper-
iments for b ¼ ð1;0Þ and b ¼ ð15;0Þ are compared in Fig. 14. The constants of the estimates in Lemma 3.1 and Lemma 3.2
depend on the size of the convection parameter. Thus, the efficiency indices Ieff are expected to depend on the size of j b j
as well which is confirmed by the numerical experiments. The size of the efficiency indices grows for the a posteriori error
estimators g‘;R;g‘;A and g‘;DWR1 corresponding to the increase of j b j. In contrast the efficiency indices for g‘;DWR2;g‘;DWM and
g‘;DWA are robust in b and asymptotically close to one.
6. Conclusions

All the numerical results indicate that the a posteriori error estimators are empirically reliable and efficient for suf-
ficiently small global mesh-size. The interpolation scheme of Section 4 for the weights shows to be empirical stable for
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unstructured triangular meshes. The approximation of the condition number needs to be included in the a posteriori
error estimators in order to get efficiency indices close to one. The DWR2, DWM and the DWA a posteriori error esti-
mators result in the best asymptotic efficiency indices close to one independently of both, the size of the eigenvalue and
the convection parameter. For larger values of j b j the DWR based a posteriori error estimators show much better results
than the residual and averaging based a posteriori error estimators because of the much smaller pre-asymptotic range.
Since the used eigenvalue solver ARPACK [21] shows some instability for convection coefficients larger than ð20;0Þ and
coarser meshes those are excluded in this paper. For highly non-symmetric problems other techniques such as homot-
opy methods [10] need to be applied in order to compute the same eigenvalue of interest during all steps of the adap-
tive finite element loop or different finite elements need to be considered such as discontinuous Galerkin finite elements
[11].
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