
MATHEMATICS OF COMPUTATION
Volume 83, Number 290, November 2014, Pages 2605–2629
S 0025-5718(2014)02833-0
Article electronically published on April 25, 2014

GUARANTEED LOWER BOUNDS FOR EIGENVALUES

CARSTEN CARSTENSEN AND JOSCHA GEDICKE

Abstract. This paper introduces fully computable two-sided bounds on the
eigenvalues of the Laplace operator on arbitrarily coarse meshes based on
some approximation of the corresponding eigenfunction in the nonconforming
Crouzeix-Raviart finite element space plus some postprocessing. The efficiency
of the guaranteed error bounds involves the global mesh-size and is proven for
the large class of graded meshes. Numerical examples demonstrate the reliabil-
ity of the guaranteed error control even with an inexact solve of the algebraic
eigenvalue problem. This motivates an adaptive algorithm which monitors the
discretisation error, the maximal mesh-size, and the algebraic eigenvalue error.
The accuracy of the guaranteed eigenvalue bounds is surprisingly high with
efficiency indices as small as 1.4.

1. Introduction

The well-established Rayleigh-Ritz principle for the algebraic as well as for the
continuous eigenvalues of the Laplacian,

−Δu = λu for u ∈ V \{0} := H1
0 (Ω)\{0},(1.1)

immediately results in upper bounds of the eigenvalues by Rayleigh quotients

λ1 ≤ R(v) := |||v|||2/‖v‖2 for any v ∈ V \{0}.(1.2)

Standard notation on Lebesgue and Sobolev spaces and norms is adopted through-
out this paper and, for brevity, ‖·‖ := ‖·‖L2(Ω) denotes the L2 norm and |||·||| :=
‖∇·‖L2(Ω) := |·|H1(Ω) denote the H1 semi-norm for the entire bounded polygo-
nal Lipschitz domain Ω. Although λ1 in (1.2) denotes the first exact eigenvalue
of (1.1), the well-established min-max principle applies to the higher eigenvalues
0 < λ1 < λ2 ≤ λ3 ≤ . . . . Since upper bounds are easily obtained by conforming
discretisations via (1.2), the computation of lower bounds is of high interest and
we solely mention the milestones [For55,Wei56,AD04] for asymptotic lower bounds
in the sense that they provide guaranteed bounds under the assumption that the
global mesh-size is sufficiently small. Unfortunately, the minimal mesh-size re-
quired to deduce some guaranteed lower eigenvalue bound is not quantified in the
current literature—so nobody knows whether some mesh allows some guaranteed
bound or not. This paper establishes guaranteed lower bounds even for very coarse
triangulations like those of Figure 1.1 for the unit square Ω = (0, 1)2 with only two
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2606 C. CARSTENSEN AND J. GEDICKE

Figure 1.1. Criss (left), criss-cross (middle) and union-jack
(right) triangulations of the unit square in 2, 4, and 8 congruent
triangles.

triangles. For the three meshes of Figure 1.1, clearly in the pre-asymptotic range
of convergence, Theorem 3.1 of this paper provides the guaranteed bounds

2.3371 ≤ λ1 ≤ 32, 4.2594 ≤ λ1 ≤ 24, and 6.6182 ≤ λ1 ≤ 22.0397(1.3)

for the first exact eigenvalue λ1 = 2π2 = 19.7392 despite the coarse discretisation
with just 1, 4, or 8 degrees of freedom in a Crouzeix-Raviart nonconforming finite
element discretisation (CR-NCFEM); cf. Examples 3.7 and 3.10 below for more
details.

To the best knowledge of the authors, any other a posteriori error control requires
some (unquantified) sufficiently small global mesh-size [CG11, DDP12, DPR03];
for an a priori error analysis see [BO91, SF73]. The asymptotic convergence of
the conforming FEM is presented in [CG11, GMZ09, GG09] and the asymptotic
quasi-optimal convergence and complexity in [CG12b,DRSZ08,DXZ08]. Recently,
[HHL11] proves asymptotic lower bounds of several nonconforming FEM and higher
order elliptic operators. The main results of this paper are by no means restricted
to the present case and work for 3D as well as for biharmonic eigenvalue problems
[CG12a].

To describe the main results of this paper, let T be an arbitrarily coarse shape-
regular triangulation of the polygonal domain Ω into triangles with set E of edges
and let

CR1
0(T ) := {v ∈ P1(T ) | v is continuous at mid(E) and v = 0 at mid(E(∂Ω))}

denote the Crouzeix-Raviart nonconforming FEM spaces for the piecewise first-
order polynomials P1(T ) :=

{
v ∈ L2(Ω) | ∀T ∈ T , v|T is affine

}
. The degrees of

freedom for a triangle are depicted in Figure 1.2. Suppose that (λ̃CR,1, ũCR,1) ∈
R × CR1

0(T ) is some computed approximation of the smallest exact eigenvalue λ1

of the associated algebraic eigenvalue problem with the stiffness matrix A, the
(diagonal) mass matrix B, and the algebraic residual r := AũCR,1 − λ̃CR,1BũCR,1

for the algebraic eigenvector ũCR,1. Suppose that the first approximated discrete

eigenvalue λ̃CR,1 is closer to the first discrete eigenvalue λCR,1 than to the second
discrete eigenvalue (which has to be guaranteed by algebraic eigenvalue analysis)

and that ‖r‖B−1 < λ̃CR,1. The numerical experiments of Section 6 show that for
the simple first eigenvalue the algebraic separation condition is not critical, but
a cluster of eigenvalues may lead to difficulties with this separation condition on
the level of the algebraic eigensolve. The first main result, in Theorem 3.1 below,
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Figure 1.2. Crouzeix-Raviart finite element.

implies

λ̃CR,1 − ‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
≤ λ1 ≤ R(ICMũCR,1).

Since λ̃CR,1 is the nearest approximation to λCR,1, the algebraic residual r yields
an upper bound for the discrete eigenvalue error in Lemma 3.8. Moreover, H :=
maxT∈T diam(T ) denotes the maximal mesh-size and ICM denotes the interpolation
operator of Section 3 which ensures ICMũCR,1 �≡ 0 to define the Rayleigh quotient.

The explicit constant κ reads κ2 := (1/8 + j−2
1,1) ≤ 0.1932 for the first positive root

j1,1 of the Bessel function of the first kind.
Note that the nonconforming eigenvalue for the first two meshes of Figure 1.1

reads λCR,1 = 24 and is larger than the solution λ = 2π2. This novel observation
shows that the nonconforming eigenvalue by itself does not always provide some
lower bound for arbitrarily coarse meshes in contrast to the lower bound given in
this paper. The asymptotic a posteriori error control of [AD04] does not provide
those error bounds.

The second main result, Theorem 4.1, guarantees efficiency in the sense that the
difference of the upper and lower bound is bounded by the error for the large class
of graded meshes.

The lower bound is generalised to higher eigenvalues under some explicit given
mesh-size restriction plus the aforementioned separation condition. Together with
a conforming approximation for an upper bound, the bounds for the higher eigen-
values are also efficient.

The efficiency for graded meshes motivates the development of an adaptive al-
gorithm that balances the finite element error and the global mesh-size H in order
to reduce the difference of the upper and lower eigenvalue bounds.

The remaining parts of this paper are organised as follows. Section 2 presents the
model problem (1.1) and the necessary notation. Section 3 proves the explicit lower
and upper bounds for the smallest eigenvalue based on the nonconforming discrete
eigenvalue as well as on its approximation. The efficiency of the resulting a posteri-
ori error estimator follows in Section 4. Section 5 establishes some bounds for higher
eigenvalues and their efficiency. Section 6 presents some adaptive algorithm which
monitors the discretisation error, the maximal mesh-size, and the algebraic eigen-
value error and verifies the theoretical results in some numerical experiments. An
empirical comparison of conforming and nonconforming discretisations is included
as well. Since the consistent mass matrix is diagonal, nonconforming discretisations
are of particular attraction in practise.

Throughout this paper, A � B abbreviates the inequality A ≤ CB for some
constant C that does not depend on the mesh-sizes but only on some lower bound
of the minimal interior angle in T .
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2608 C. CARSTENSEN AND J. GEDICKE

2. Notation and Preliminaries

The weak formulation of the model problem (1.1) looks for the eigenpair (λ, u) ∈
R× V with b(u, u) = 1 and

a(u, v) = λb(u, v) for all v ∈ V := H1
0 (Ω).

Here and throughout this paper, the scalar products a(·, ·) and b(·, ·) read

a(u, v) :=

ˆ
Ω

∇u · ∇v dx and b(u, v) :=

ˆ
Ω

uv dx for all u, v ∈ V

and induce the norms |||·||| := a(·, ·)1/2 on V and ‖·‖ := b(·, ·)1/2 = ‖·‖L2(Ω) on L2(Ω).
The eigenvalue problem is symmetric and positive definite and there exist count-

ably many positive eigenvalues with no finite accumulation point [BO91]. The
eigenvalues can be ordered

0 < λ1 < λ2 ≤ λ3 ≤ . . .

and there exist some orthonormal basis (u1, u2, u3, . . .) of corresponding eigenvec-
tors. Section 3 focuses on the computation of the first eigenvalue λ1 which is simple
[Eva00, Section 6.5, Theorem 2]. The min-max principle reduces for the smallest
eigenvalue to

λ1 = min
v∈V \{0}

R(v) with the Rayleigh quotient R(v) := a(v, v)/b(v, v).

Let T be a regular triangulation in the sense of Ciarlet of the bounded 2D
Lipschitz domain Ω into at least two triangles such that all T ∈ T are closed
triangles with positive area |T | and two distinct intersecting triangles T1, T2 ∈ T
share either one common edge or one common node. Let E denote the set of all
edges (E(Ω) of interior edges) of the triangulation T , let mid(E) be the midpoint
and hE the length of an edge E ∈ E . Let hT := diam(T ), H := maxT∈T hT and
hT ∈ P0(T ) piecewise defined as hT |T = hT . Let [·]E := (·)|T+

− (·)|T− denote the
jump across an interior edge E ∈ E(Ω) with E = T+ ∩ T−, T± ∈ T , and [·]E := (·)
for E ⊂ ∂Ω. Let N denote the set of all nodes (N (Ω) of interior nodes) in the
triangulation T .

The conforming finite element space is defined by VC(T ) := H1
0 (Ω) ∩ P1(T ). In

the following let Π0 denote the L2 projection onto piecewise constants P0(T ) as
well as P0(T ;Rn).

For all interior edges E ∈ E(Ω), the edge-oriented basis function ψE is defined
by

ψE(mid(E)) = 1 and ψE(mid(F )) = 0 for all F ∈ E\E.

Then CR1
0(T ) = span{ψE |E ∈ E(Ω)} � V and the nonconforming discrete eigen-

value problem reads:
Find an eigenpair (λCR, uCR) ∈ R× CR1

0(T ) with b(uCR, uCR) = 1 and

aNC(uCR, vCR) = λCRb(uCR, vCR) for all vCR ∈ CR1
0(T ).

The nonconforming bilinear form aNC,

aNC(uCR, vCR) :=
∑
T∈T

ˆ
T

∇uCR · ∇vCR dx for all uCR, vCR ∈ CR1
0(T ),
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GUARANTEED LOWER BOUNDS FOR EIGENVALUES 2609

induces the mesh-dependent norm |||.|||NC := aNC(·, ·)1/2 and the Rayleigh quotient

RNC(vCR) := aNC(vCR, vCR)/‖vCR‖2 for all vCR ∈ CR1
0(T )\{0}.

The nonconforming interpolant INC : V → CR1
0(T ) is defined for any v ∈ V by

INCv(mid(E)) :=
1

|E|

ˆ
E

v ds for all E ∈ E .

The proof of the L2 error estimate below is essentially contained in [CGR12].

Theorem 2.1 (L2 interpolation error estimate). Any v ∈ H1
0 (Ω) satisfies

‖v − INCv‖ ≤ κH|||v − INCv|||NC.

Proof. The proof reduces to the corresponding estimate on a single triangle T . Let
f ∈ H1(T ) satisfy

´
E
fds = 0 on the triangle T = conv({P} ∪ E) with an edge E

opposite to the vertex P . Then Lemma 2.2 in [CGR12] proves for the first positive
root j1,1 of the Bessel function J1 of the first kind that the following holds:

‖f‖L2(T ) ≤
√
max
x∈E

|P − x|2/8 + h2
T /j

2
1,1 |f |H1(T ).

The choice f := v − INCv concludes the proof. �

3. Explicit bounds for the smallest eigenvalue

This section is devoted to the proof of the explicit bounds for the first eigenvalue
λ1. Recall that H is the maximal diameter in the triangulation T and that κ is
some universal constant.

Theorem 3.1. Let (λ̃CR,1, ũCR,1) ∈ R×CR1
0(T ) be an approximation of the eigen-

pair (λ1, u1) of the smallest eigenvalue with ‖ũCR,1‖L2(Ω) = 1 and with algebraic

residual r := AũCR,1 − λ̃CR,1BũCR,1 and let ICMũCR,1 be the quasi-interpolant of

ũCR,1 from Definition 3.3 below. Suppose separation of λ̃CR,1 from the remaining

discrete spectrum in the sense that λ̃CR,1 is closer to the smallest discrete eigen-

value λCR,1 than to any other discrete eigenvalue and suppose that ‖r‖B−1 < λ̃CR,1.
Then it holds that

λ̃CR,1 − ‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
≤ λ1 ≤ R(ICMũCR,1).

The remaining part of this section is devoted to the proof of Theorem 3.1. The
point of departure is the particular case of exact solve.

Theorem 3.2 (Lower bound for exact solve). The first exact eigenvalue λ1 and
the first discrete eigenvalue λCR,1 satisfy

λCR,1

1 + κ2λCR,1H2
≤ λ1.

Proof. The Pythagoras theorem in L2(Ω;R2) reads

λ1 = a(u1, u1) = ‖∇u1‖2 = ‖∇u1 −Π0∇u1‖2 + ‖Π0∇u1‖2.
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2610 C. CARSTENSEN AND J. GEDICKE

An integration by parts on one triangle T ∈ T and
´
E
(v − INCv) ds = 0, for all

v ∈ V and E ∈ E , show that

|T |Π0∇v|T =

ˆ
T

∇v dx =

ˆ
∂T

vνT ds

=

ˆ
∂T

(INCv)νT ds =

ˆ
T

∇(INCv) dx = |T |∇(INCv|T ).

This proves the known identity for the piecewise defined gradient (∇NC ·)|T :=
∇(·|T ):

Π0∇v = ∇NC(INCv).(3.1)

The combination with the aforementioned Pythagoras identity reads

λ1 = |||u1 − INCu1|||2NC + |||INCu1|||2NC.

The min-max principle on the discrete eigenvalue problem allows the estimate

λCR,1‖INCu1‖2 ≤ |||INCu1|||2NC.

The combination of the previous results leads to

|||u1 − INCu1|||2NC + λCR,1‖INCu1‖2 ≤ λ1.(3.2)

Some elementary algebra based on ‖u1‖ = 1 and the binomial expansion yield

1 + ‖u1 − INCu1‖2 − 2‖u1 − INCu1‖
≤ 1 + ‖u1 − INCu1‖2 − 2b(u1 − INCu1, u1) = ‖INCu1‖2.

Set s = α/(1 + α) with α := κ2H2λCR,1. This results in

1 + ‖u1 − INCu1‖2 − 2s‖u1 − INCu1‖ − 2(1− s)‖u1 − INCu1‖ ≤ ‖INCu1‖2.
The Young inequality 2s‖u1 − INCu1‖ ≤ s2 + ‖u1 − INCu1‖2 leads to

1− s2 − 2(1− s)‖u1 − INCu1‖ ≤ ‖INCu1‖2.
The a priori estimate of Theorem 2.1 plus another Young inequality

2|||u1 − INCu1|||NC ≤ t+ |||u1 − INCu1|||2NC/t

for t := (1− s)κHλCR,1 > 0 result in

1− s2 − (1− s)2H2κ2λCR,1 − |||u1 − INCu1|||2NC/λCR,1 ≤ ‖INCu1‖2.(3.3)

The combination of (3.2) and (3.3) proves

λCR,1

(
(1− s2)− ((1− s)κH)2 λCR,1

)
≤ λ1.

This and the definition of s lead to

λCR,1

1 + κ2H2λCR,1
≤ λ1. �

For the analysis of an upper bound, notice that the min-max principle for the
smallest eigenvalue shows

λ1 = min
v∈V \{0}

R(v) ≤ R(w) for any w ∈ VC(T )\{0}.

Thus, any conforming approximation close to the nonconforming eigenfunction pro-
vides a guaranteed upper bound. The postprocessing of [CM13] provides such a
sufficiently accurate conforming interpolation ICM : CR1

0(T ) → VC(T ∗) for the
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z ω∗
z

ωz

Figure 3.1. Patch ωz of T (solid lines) with refined patch ω∗
z

(grey) of the sub-triangulation T ∗ := red(T ) (solid and dashed
lines).

red-refined triangulation T ∗ := red(T ) of T into triangles depicted in Figure 3.1.
(The red-refined triangulation red(T ) results from dividing each triangle in T into 4
congruent sub-triangles by connecting the midpoints of the edges by straight lines.)

Definition 3.3. For all nodes z in the red-refined triangulation T ∗ = red(T ) and
vCR ∈ CR1

0(T ), set

ICMvCR(z) :=

⎧⎨
⎩

0 if z lies on the boundary ∂Ω,
vCR(z) if z is the midpoint of an edge E ∈ E(Ω),
vmin(z) if z ∈ N (Ω),

where the average vmin(z) in the interior node z ∈ N (Ω) in the coarse triangulation
T is determined locally on nodal patches ω∗

z covered by the triangles T ∗(z) := {T ∈
T ∗ | z ∈ N (T )} of the red-refined triangulation T ∗ of Figure 3.1. Let

Wz := {w ∈ P1(T ∗(z)) ∩ C(ω∗
z) | w = vCR on ∂ω∗

z}

denote the one-dimensional piecewise affine space of continuous functions on ω∗
z

with prescribed boundary values on ∂ω∗
z . The function vmin in Wz is the unique

minimizer of

min
w∈Wz

∑
T∈T ∗(z)

‖∇(vCR − w)‖2L2(T ).(3.4)

Lemma 3.4. Any Crouzeix-Raviart function vCR ∈ CR1
0(T ) with its jump of the

tangential derivative [∂vCR/∂s]E across an edge E satisfies

|||vCR − ICMvCR|||2NC �
∑
E∈E

hE‖[∂vCR/∂s]E‖2L2(E) � min
v∈V

|||vCR − v|||2NC.

Proof. The design of the interpolant ICM shows that ‖∇(vCR−ICMvCR)‖2L2(T4)
= 0

for those centred triangles T4 ∈ T ∗ with all three nodes of T4 as midpoints of
edges in the coarse triangulation T . Let z ∈ N denote some node of T and set
E∗(z) := {F ∈ E∗ | z ∈ N ∗(F )} for the smaller edges in the patch ω∗

z which share
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2612 C. CARSTENSEN AND J. GEDICKE

z in the red-refined triangulation T ∗ of Figure 3.1. Consider the two semi-norms
ρ1 and ρ2 defined, for all vCR ∈ CR1

0(T )|ω∗
z
:= {vCR|ω∗

z
: vCR ∈ CR1

0(T )}, by

ρ1(vCR) := ‖∇(vCR − ICMvCR)‖L2(ω∗
z )
,

ρ2(vCR)
2 :=

∑
F∈E∗(z)

hF ‖[∂vCR/∂s]F ‖2L2(F ).

In the first step one shows for some constant C(z) that

ρ1(vCR) ≤ C(z)ρ2(vCR) for all vCR ∈ CR1
0(T )|ω∗

z
.(3.5)

To do so, suppose that ρ2(vCR) = 0. Then it holds that vCR|ω∗
z
∈ C(ω∗

z) ∩ P1(ω
∗
z).

For an interior node z, it follows that (ICMvCR)(z) = vCR(z) and so ρ1(vCR) =
0. For a boundary node z, ρ2(vCR) = 0 implies hF ‖∂vCR/∂s‖2L2(F ) = 0 and so

vCR vanishes along F ∈ E∗(z) with F ⊂ ∂Ω. This implies ICMvCR(z) = 0 and
so ρ1(vCR) = 0. Hence, in either case ρ2(vCR) = 0 implies ρ1(vCR) = 0. The
equivalence-of-norms argument on the finite-dimensional vector space CR1

0(T )|ω∗
z

proves (3.5) with some constant C(z).
The second step verifies that C(z) � 1 with some standard scaling argument;

hence the details are omitted.
In step three, the sum of all estimates (3.5) and the fact that vCR equals ICMvCR

on all centred triangles in the red-refinement T ∗, show that

|||vCR − ICMvCR|||2NC =
∑
z∈N

‖∇(vCR − ICMvCR)‖2L2(ω∗
z )

≤
(
max
z∈N

C(z)

) ∑
E∈E

hE‖[∂vCR/∂s]E‖2L2(E).

This concludes the proof of the first inequality.
The second inequality∑

E∈E
hE‖[∂vCR/∂s]E‖2L2(E) � min

v∈V
|||vCR − v|||2NC

can be found in the context of efficiency of a posteriori error estimates for noncon-
forming schemes [DDPV96,CELH12]. �

Lemma 3.5. ICM : CR1
0(T ) → P1(T ∗) ∩ C0(Ω) is linear and uniformly bounded

in the sense that

‖ICM‖ := sup
vCR∈CR1

0(T )\{0}
|||ICMvCR|||/|||vCR|||NC � 1.

Proof. The critical value vmin(z) of the minimising function vmin ∈ P1(T ∗(z)) of
(3.4) for an interior node z ∈ N (Ω) is computed from the one-dimensional linear
equation obtained from the optimality condition: The piecewise affine nodal basis
function ϕ∗

z associated with the node z ∈ N ∗ in the refined triangulation T ∗ satisfies∑
T∈T ∗(z)

ˆ
T

∇ϕ∗
z · ∇(vmin − vCR)dx = 0.

(This follows from the implementation of the boundary values on ∂ω∗
z and the

ansatz of the remaining vmin(z)ϕ
∗
z.) This design shows that ICM : CR1

0(T ) →
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GUARANTEED LOWER BOUNDS FOR EIGENVALUES 2613

P1(T ∗) ∩ C0(Ω) is a linear operator. Lemma 3.4 plus some triangle inequality
shows the boundedness of ICM: Indeed, any vCR ∈ CR1

0(T ) satisfies

|||ICMvCR||| ≤ |||vCR − ICMvCR|||NC + |||vCR|||NC

� min
v∈V

|||vCR − v|||NC + |||vCR|||NC � |||vCR|||NC. �

Lemma 3.6 (Upper bound). The conforming interpolation ICMvCR ∈ VC(T ∗) of
any nonconforming function vCR ∈ CR1

0(T ), which is normalised by ‖vCR‖ = 1,
satisfies

λ1 ≤ R(ICMvCR).

Proof. Since ‖vCR‖ = 1, (ICMvCR)(mid(E)) = vCR(mid(E)) �= 0 for at least one
edge E ∈ E . Hence, ICMvCR �≡ 0. Therefore, the assertion follows immediately
from the continuous Rayleigh-Ritz principle without any extra condition. �

Example 3.7. For the three triangulations of the unit square Ω = (0, 1)2 depicted
in Figure 1.1, the first exact eigenvalue reads λ1 = 2π2 = 19.7392 and is smaller than
the first discrete conforming eigenvalue λC,1 = 24 from the related one-dimensional
algebraic eigenvalue problem for the criss-cross and the union-jack triangulations.
The criss and the criss-cross triangulations of Figure 1.1 lead to the discrete non-
conforming eigenvalue λCR,1 = 24. The nonconforming eigenvalue approximation
of the smallest eigenvalue for the union-jack triangulation reads λCR,1 = 18.3344
up to some truncation error of finite machine precision from the iterative algebraic
eigenvalue solver and is empirically below the exact eigenvalue. Theorem 3.1 leads
to the guaranteed error bounds (1.3). Note that for the union-jack pattern, the
proposed conforming interpolation on the red-refined triangulation T ∗ provides an
upper bound which is strictly smaller than the conforming eigenvalue λC,1 = 24 for
the coarse mesh T .

Since the algebraic eigenvalue problems are solved iteratively, the algebraic eigen-
value error has to be considered as well. The algebraic eigenvalue problem reads

AuCR = λCRBuCR

for the coefficient vector uCR ≡ (uCR(mid(E)) : E ∈ E(Ω)) of the discrete solution

uCR =
∑

E∈E(Ω)

uCR(E)ψE

for the edge-oriented basis (ψE |E ∈ E(Ω)) of CR1
0(T ). Set ‖x‖M :=

√
xTMx for

some SPD matrix M .

Lemma 3.8 ([Par98, Theorem 15.9.1]). Let (λ̃CR, ũCR) be an approximated al-

gebraic eigenpair such that λ̃CR is closer to some λCR than to any other discrete
eigenvalue. Suppose that the coefficient vector ũCR is normalised with respect to B,
‖BũCR‖B−1 = ‖ũCR‖B = 1. Then the algebraic residual r := AũCR − λ̃CRBũCR

satisfies

|λCR − λ̃CR| ≤ ‖r‖B−1 . �

Remark 3.9. The local mass matrix of the CR-NCFEM for some T ∈ T equals
|T |/3 times the 3 × 3 identity matrix I3×3. Hence, the global mass matrix B is
diagonal and the residual norm ‖r‖B−1 of the error bound is directly computable.
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Proof of Theorem 3.1. Lemma 3.8 and the monotonicity of t/(1 + κ2H2t) in t >

0 allows us to formally replace λCR,1 in Theorem 3.2 with λ̃CR,1 − ‖r‖B−1 for

λ̃CR,1 > ‖r‖B−1 which proves the lower bound. The upper bound is proven in
Lemma 3.6. �
Example 3.10. Since the iterative solution of the underlying discrete algebraic
eigenvalue problem dominates the overall computational costs in general, the trun-
cation error in the iterative solution may be much larger than machine precision.
For example, the Rayleigh-quotient for the starting vector (1, . . . , 1) ∈ R8 of the
union-jack triangulation of Figure 1.1 (discussed also in Example 3.7) yields the

nonconforming eigenvalue approximation λ̃CR,1 = 24 and the corresponding guar-
anteed bounds

6.9360 ≤ λ1 ≤ 24.

This is competitive with the bounds (1.3) from much more expensive eigenvalue
computations.

4. Efficiency for graded meshes

This section is devoted to the efficiency of the eigenvalue estimate of Theorem 3.1
with the difference of its upper and lower bounds

η := R(ICMũCR,1)−
λ̃CR,1 − ‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
.(4.1)

Efficiency means that this length η of the interval is bounded in terms of the error
and will be proven in the following theorem for the class of graded meshes. (Graded
meshes will be defined in the second half of this section.)

Theorem 4.1. For all graded meshes the estimate of Theorem 3.1 is efficient in
the sense that the difference η of the upper and lower bounds satisfies

η � (1 +H2λ̃CR,1)|||u1 − ũCR,1|||2NC +H2
(
(λ1 − λCR,1)

2 + λ1λCR,1‖u1 − uCR,1‖2
)

+ |λ1 − λ̃CR,1|+ ‖A(uCR,1 − ũCR,1)‖B−1

+ λCR,1‖uCR,1 − ũCR,1‖+ |λCR,1 − λ̃CR,1|.
The remaining parts of this section are devoted to the proof of Theorem 4.1.

The first results hold on arbitrary shape-regular meshes.

Lemma 4.2. The difference η from (4.1) of the lower and upper eigenvalue bounds
satisfies

η � (1 +H2λ̃CR,1)|||u1 − ũCR,1|||2NC + |λ1 − λ̃CR,1|+ λ̃2
CR,1H

2

+ ‖A(uCR,1 − ũCR,1)‖B−1 + λCR,1‖uCR,1 − ũCR,1‖+ |λCR,1 − λ̃CR,1|.
Proof. Some preliminary manipulations in step one of this proof show that

η = R(ICMũCR,1)−
λ̃CR,1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
+

‖r‖B−1

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2

≤ R(ICMũCR,1)− λ1 + |λ1 − λ̃CR,1|+ λ̃CR,1
κ2(λ̃CR,1 − ‖r‖B−1)H2

1 + κ2(λ̃CR,1 − ‖r‖B−1)H2
+ ‖r‖B−1

≤ R(ICMũCR,1)− λ1 + |λ1 − λ̃CR,1|+ λ̃2
CR,1κ

2H2 + ‖r‖B−1 .

(4.2)
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Step two will be the proof of

R(ICMũCR,1)− λ1 � (1 +H2λ̃CR,1)|||u1 − ũCR,1|||2NC.(4.3)

Elementary algebra reveals for ṽC := ICMũCR,1/‖ICMũCR,1‖ that

R(ICMũCR,1)− λ1 = |||ṽC |||2 − |||u1|||2 = |||u1 − ṽC |||2 + 2a(u1, ṽC − u1).

Since VC(T ∗) ⊂ V and ‖u1‖ = 1 = ‖ṽC‖ it follows that

2a(u1, ṽC − u1) = −2λ1 + 2λ1b(u1, ṽC) = −λ1‖u1 − ṽC‖2 ≤ 0.

This shows that

R(ICMũCR,1)− λ1 ≤ 2|||ũCR,1 − ṽC |||2NC + 2|||u1 − ũCR,1|||2NC.

The Young inequality leads to

|||ũCR,1 − ṽC |||2NC = |||ũCR,1 − ICMũCR,1 + ICMũCR,1(1− 1/‖ICMũCR,1‖)|||2NC

≤ 2|||ũCR,1 − ICMũCR,1|||2NC + 2(‖ICMũCR,1‖ − 1)2R(ICMũCR,1).

Since ‖ũCR,1‖ = 1, an inverse triangle inequality shows

(‖ICMũCR,1‖ − 1)2 = (‖ICMũCR,1‖ − ‖ũCR,1‖)2 ≤ ‖ũCR,1 − ICMũCR,1‖2.

Note that (ũCR,1 − ICMũCR,1)|T4
≡ 0 on each centred triangle T4 in T ∗. For the

remaining triangles T ∈ T ∗ of the patches ω∗
z for nodes z ∈ N (Ω), it holds that

(ũCR,1 − ICMũCR,1)|E ≡ 0 on the edges E with E ⊂ ∂ω∗
z . Hence, the Friedrich’s

inequality shows, for those triangles, that

‖ũCR,1 − ICMũCR,1‖L2(T ) ≤ hT ‖∇(ũCR,1 − ICMũCR,1)‖L2(T ).

The summation over all triangles yields

‖ũCR,1 − ICMũCR,1‖ � H|||ũCR,1 − ICMũCR,1|||NC.(4.4)

The remaining term H2R(ICMũCR,1) is bounded by 16H2λ̃CR,1 because of the
uniform boundedness of ICM in Lemma 3.5 and the inequality of the discrete norms
‖ũCR,1‖2 ≤ 16‖ICMũCR,1‖2. The proof of the latter estimate considers the centred
triangle T4 of the fine triangulation T ∗ with (ICMũCR,1)|T4

= ũCR,1|T4
. Set x :=

(ũCR,1(mid(Ej)))j=1,2,3 ∈ R3 of the three edges E1, E2, E3 of T and compute (with
the Rayleigh quotient ≥ 1 of the displayed 3× 3 matrix)

‖ICMũCR,1‖2L2(T4)
=

|T |
48

xT

⎛
⎝ 2 1 1

1 2 1
1 1 2

⎞
⎠x ≥ |T |

48
x · x = ‖ũCR,1‖2L2(T )/16.

Finally, the estimate

|||ũCR,1 − ICMũCR,1|||2NC �
∑
E∈E

hE‖[∂ũCR,1/∂s]E‖
2
L2(E) � min

v∈V
|||ũCR,1 − v|||2NC

from Lemma 3.4 concludes the proof of (4.3) in step two.
Step three will be the proof of

‖r‖B−1 ≤ ‖A(uCR,1 − ũCR,1)‖B−1(4.5)

+ λCR,1‖uCR,1 − ũCR,1‖+ |λCR,1 − λ̃CR,1|.
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ξ1

ξ1

ξ3

ξ3

ξ4

ξ4

ξJ(θ)

ξJ(θ)
ω

K(J(θ))

Figure 4.1. Reference triangle Tref with 3/2-graded sub-triangles
for N = 4.

The definition of the algebraic residual r := AũCR,1−λ̃CR,1BũCR,1 plus the triangle
inequality yield

‖r‖B−1 = ‖AũCR,1 −AuCR,1 + λCR,1BuCR,1 − λCR,1BũCR,1

+ λCR,1BũCR,1 − λ̃CR,1BũCR,1‖B−1 .

This and the triangle inequality prove (4.5) in step three.
Step four is the finish of the proof. Indeed, the combination of (4.2)–(4.5) con-

cludes the proof of Lemma 4.2. �
The following estimate is proven with the same arguments as in the conforming

case and is reported in [DDP12] for the nonconforming CR-NCFEM.

Lemma 4.3 ([DDP12]). Let (λCR, uCR) ∈ R × CR1
0(T ) be a discrete eigenpair of

the eigenpair (λ, u), then it holds that

‖hT λCRuCR‖2 � |||u− uCR|||2NC +H2
(
(λ− λCR)

2 + λλCR‖u− uCR‖2
)
. �

The second half of this section concerns the somewhat surprising result of The-
orem 4.4 for graded meshes which are described in the following.

Given a polygonal domain with a coarse triangulation T0 into triangles called
macro elements (which specify the geometry), the domain Ω will be covered by
piecewise affine images of the graded mesh on the reference triangle Tref with ver-
tices (0, 0), (1, 0), and (0, 1). Provided the coarse triangulation satisfies the condi-
tion that each triangle has at most one vertex as a corner of ∂Ω, then the grading
parameter β can be different for each such corner of ∂Ω and β := 1 for all those
macro triangles without a vertex at a corner of ∂Ω. One verifies directly that the
structured mesh is a (shape) regular triangulation. On each element K ∈ T0, the
mesh of the reference triangle is obtained by an affine transformation. The graded
mesh on the macro element Tref of Figure 4.1 is generated as follows: Given some
grading parameter β > 0 and given an integerN ≥ 2, set ξj := (j/N)β and draw line
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segments aligned to the anti-diagonal through (0, ξj) and (ξj , 0) for j = 0, 1, . . . , N .
Each of these line segments is divided into j uniform edges and so define the set
of nodes (0, 0) and (j − k, k)ξj/j for k = 0, . . . , j and j = 1, . . . , N . The triangles
are then given by the vertices ξj/j(j − k, k) and ξj/j(j − k− 1, k+ 1) aligned with
anti-diagonal and the vertex ξj−1/(j − 1)(j − k − 1, k) on the finer segment and
ξj+1/(j+1)(j−k, k+1) on the coarser neighbouring segment. The smallest triangle

reads conv{(0, 0), (0, ξ1), (ξ1, 0)} with diameter
√
2ξ1 ≈ N−β . The largest triangles

have diameter H ≈ N−1.

Theorem 4.4. Any function f ∈ L2(Ω)\{0} and any graded triangulation T of Ω
satisfy

‖hT f‖ ≈ 1/N.

The equivalence constant C(f) in the assertion 1/N ≤ C(f)‖hT f‖ depends on f .

Proof. The first inequality follows from

‖hT f‖ ≤ H‖f‖ ≈ ‖f‖/N.

To verify the reverse inequality, consider one triangle K ∈ T0. Some affine diffeo-
morphism (which depends only on T0) maps K onto Tref and some transformation
shows that it suffices to verify the assertion on Tref . Without loss of generality,
let f ∈ L2(Tref)\{0} satisfy |f | ≥ ε > 0 on a set ω of measure |ω| > 0. Let the
volume fraction θ := |ω|/|Tref | of ω in Tref be fixed and consider the question where
ω ⊂ Tref of fixed area |ω| = θ/2 may be located to minimise the term

´
Tref∩ω

h2
T dx.

Figure 4.1 illustrates the situation where ω is placed where hT is small. In the end,
one deduces that for some index J(θ) (which is maximal with ξ2J(θ) ≤ θ), the min-

imising set ω includes the sub-triangle K(J(θ)) := conv{(0, 0), (ξJ(θ), 0), (0, ξJ(θ))}
and the induced sub-triangulation T (K(J(θ))). Hence,

‖hT ‖L2(K(J(θ)) ≤ ‖hT ‖L2(ω) ≤
1

ε
‖hT f‖L2(ω) ≤

1

ε
‖hT f‖L2(Ω).

Thus it remains to prove that

N−1 � ‖hT ‖L2(K(J(θ)).

Since the j-th diagonal layer consists of 2j − 1 triangles, it holds that

J(θ)∑
j=1

(2j − 1)

(
jβ − (j − 1)β

Nβ

)4

�
∑

T∈T (K(J(θ)))

ˆ
T

h2
T dx.

The binomial expansion shows

J(θ)∑
j=1

(
jβ − (j − 1)β

Nβ

)4

≈
J(θ)∑
j=1

(
jβ−1β

Nβ

)4

.

This leads to

β4

N2

J(θ)∑
j=1

(
j

N

)4β−3

N−1 =

J(θ)∑
j=1

j

(
jβ−1β

Nβ

)4

�
J(θ)∑
j=1

(2j − 1)

(
jβ − (j − 1)β

Nβ

)4

.
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Since J(θ) = N 2β
√
2|K(J(θ))|, the sum on the right-hand side is a Riemann sum

over the interval [0, 2β
√
2|K(J(θ))|]. Since β ≥ 1,

β4

N2

J(θ)∑
j=1

(
j

N

)4β−3

N−1 ≈ β4

N2

ˆ 2β
√

2|K(J(θ))|

0

x4β−3dx

=
β4(2|K(J(θ))|)(2β−1)/β

N2(4β − 2)
≈ 1

N2
.

This proves the assertion for N ≥ N0 and sufficiently large N0 so that J(θ) ≥ 1.
For 1 ≤ N ≤ N0, N‖hT f‖ ≥ N1−β‖f‖ is bounded from below in terms of N0. This
concludes the proof for all N ∈ N. �

Proof of Theorem 4.1. The assertion follows from Lemma 4.2, Theorem 4.4, and
Lemma 4.3. �

5. Error bounds for higher eigenvalues

This section is devoted to some computable lower bounds of higher eigenvalues.
It is emphasised that λJ could be a multiple eigenvalue and λJ could even be a
part of a cluster without any separation (on the continuous level); cf. Example 5.3
below. However, any clustering of discrete eigenvalues may have some disastrous
effect on the smallness of the discrete residual r in the algebraic eigenvalue problem.

Theorem 5.1. Suppose that the separation condition H<
(√

1 + 1/J − 1
)
/(κλ

1/2
J )

holds for the J-th exact eigenvalue λJ . Let (λ̃CR,J , ũCR,J ) ∈ R × CR1
0(T ) with

‖ũCR,J‖L2(Ω) = 1 and algebraic residual r := AũCR,J − λ̃CR,JBũCR,J approximate

the J-th eigenpair (λJ , uJ ). Suppose separation of λ̃CR,J from the remaining dis-

crete spectrum in the sense that λ̃CR,J is closer to the discrete eigenvalue λCR,J

than to any other discrete eigenvalues and that ‖r‖B−1 < λ̃CR,J . Then it holds that

λ̃CR,J − ‖r‖B−1

1 + κ2(λ̃CR,J − ‖r‖B−1)H2
≤ λJ ≤ max

ξ∈RJ\{0}
R

⎛
⎝ J∑

j=1

ξjICMũCR,j

⎞
⎠ .

The difference of the upper and lower bounds

ηJ := max
ξ∈RJ\{0}

R

⎛
⎝ J∑

j=1

ξjICMũCR,j

⎞
⎠− λ̃CR,J − ‖r‖B−1

1 + κ2(λ̃CR,J − ‖r‖B−1)H2
(5.1)

is efficient in the sense that

ηJ �

⎛
⎝1 +H2 max

ξ∈RJ\{0}
R

⎛
⎝ J∑

j=1

ξjICMũCR,j

⎞
⎠
⎞
⎠ max

ξ∈RJ\{0}
|||uJ −

J∑
j=1

ξj ũCR,j |||NC

+ |λJ − λ̃CR,J |+H2
(
(λJ − λCR,J )

2 + λJλCR,J‖uJ − uCR,J‖2
)

+ ‖A(uCR,J − ũCR,J )‖B−1 + λCR,J‖uCR,J − ũCR,J‖+ |λCR,J − λ̃CR,J |.

The proofs start with the linear independence of nonconforming interpolants.

Lemma 5.2. Let (u1, . . . , uJ) be some b-orthonormal basis of exact eigenvectors
in V for the exact first J eigenvalues 0 < λ1 < λ2 ≤ . . . ≤ λJ on the continuous
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level. For any global mesh-size H <
(√

1 + 1/J − 1
)
/(κλ

1/2
J ), the nonconforming

interpolants INCu1, . . . , INCuJ are linear independent.

Proof. For any j = 1, . . . , J , Theorem 2.1 shows

‖uj − INCuj‖ ≤ κH|||uj − INCuj |||NC ≤ κH|||uj |||NC ≤ κHλ
1/2
j =: dj .(5.2)

With the Kronecker δjk = 1 for j = k and δjk = 0 for j �= k, this implies

|b(INCuj , INCuk)− δjk| = |b(INCuj , INCuk)− b(uj , uk)|
= |−b(uj − INCuj , INCuk)− b(uj , uk − INCuk)|
= |b(uj − INCuj , uk − INCuk)− b(uj − INCuj , uk)− b(uj , uk − INCuk)|
≤ ‖uj − INCuj‖‖uk − INCuk‖+ ‖uj − INCuj‖+ ‖uk − INCuk‖
≤ djdk + dj + dk.

Some calculations show that H <
(√

1 + 1/J − 1
)
/(κλ

1/2
J ) leads to

J
max
j=1

(
J∑

k=1

(djdk + dj + dk)

)
< 1.

The Gershgorin theorem shows that the eigenvalues of (b(INCuj , INCuk))j,k=1,...,J

are all positive. �

Proof of the lower bound in Theorem 5.1 for r ≡ 0. Lemma 5.2 guarantees that

INCu1, . . . , INCuJ

are linearly independent. The Rayleigh-Ritz principle on the discrete level states
that the discrete eigenvalue λCR,J of number J equals

λCR,J = min
VJ⊂CR1

0(T ),dim(VJ )=J
max

v∈VJ\{0}
RNC(v).

Therein, the notation dim(VJ) = J abbreviates that the minimum is taken over all
subspaces of CR1

0(T ) of dimension J . Since INCu1, . . . , INCuJ are linear indepen-
dent, there exist some real coefficients ξ1, . . . , ξJ such that the Rayleigh quotient is
maximised in VJ := span{INCu1, . . . , INCuJ}. This leads to

λCR,J ≤ RNC

⎛
⎝ J∑

j=1

ξjINCuj

⎞
⎠ .(5.3)

One may assume without loss of generality that

J∑
j=1

ξ2j = 1.

Let v :=
∑J

j=1 ξjuj and observe that ‖v‖2 =
∑J

j=1 ξ
2
j = 1. Since ∇NC(v − INCv)

is L2 orthogonal to ∇NCINCv, the Pythagoras theorem reads

|||v − INCv|||2NC + |||INCv|||2NC = |||v|||2.
The orthogonality of the eigenfunctions shows

|||v|||2 = |||
J∑

j=1

ξjuj |||2 =

J∑
j=1

ξ2j |||uj |||2 =

J∑
j=1

ξ2jλj .
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The combination of the aforementioned equalities results in

|||v − INCv|||2NC + |||INCv|||2NC =

J∑
j=1

ξ2jλj ≤ λJ .

Together with (5.3) in the form of

λCR,J‖INCv‖2 ≤ |||INCv|||2NC,

the previous estimate yields

|||v − INCv|||2NC + λCR,J‖INCv‖2 ≤ λJ .

Since ‖v‖2 = 1, the Cauchy inequality followed by the binomial expansion implies

1 + ‖v − INCv‖2 − 2‖v − INCv‖ ≤ 1 + ‖v − INCv‖2 − 2b(v − INCv, v) = ‖INCv‖2.
Following the proof of Theorem 3.1 with the substitution of u1 by v eventually
results in

λCR,J

1 + κ2λCR,JH2
≤ λJ . �

Proof of the lower bound in Theorem 5.1 for r �≡ 0. Lemma 3.8 and the monoton-
icity of t/(1 + κ2H2t) in t > 0 allows the substitution of λCR by λ̃CR,J − ‖r‖B−1

for λ̃CR,J > ‖r‖B−1 . �

Proof of the upper bound in Theorem 5.1. Let ũCR,1, . . . , ũCR,J be the first J ap-
proximated discrete orthonormal eigenfunctions. Since ICMũCR,1 ≡ ũCR,1 on each
centred triangle of T ∗ with all vertices as midpoints of edges in E(T ), the functions
ICMũCR,1, . . . , ICMũCR,J are linear independent. Thus, there exist some maximis-

ing coefficients ξj with
∑J

j=1 ξ
2
j = 1 such that

λJ = min
VJ⊂V,dim(VJ )=J

max
v∈VJ\{0}

R(v) ≤ R

⎛
⎝ J∑

j=1

ξjICMũCR,j

⎞
⎠ . �

Proof of efficiency in Theorem 5.1. The proof of efficiency of the difference of the
upper and lower bounds in (5.1) follows from some modifications of the arguments
of Lemmas 4.2, 4.3 and Theorem 4.4. Therefore the remaining parts of this proof
only sketch the main steps. The arguments in (4.2) lead to

ηJ ≤ max
ξ∈RJ\{0}

R

⎛
⎝ J∑

j=1

ξjICMũCR,j

⎞
⎠− λJ + |λJ − λ̃CR,J |+ λ̃2

CR,Jκ
2H2 + ‖r‖B−1 .

(5.4)

Suppose that ξ1, . . . , ξJ denote some coefficients of a maximiser ṽC in the Rayleigh

quotient of (5.4), ṽC :=
∑J

j=1 ξjICMũCR,j , and set ṽCR :=
∑J

j=1 ξjũCR,j . Here,
the arguments of step two in the proof of Lemma 4.2 lead to

R(ṽC)− λJ � |||uJ − ṽCR|||NC + |||ṽCR − ṽC |||NC + (‖ṽC‖ − 1)2R(ṽC).

Since ũCR,1, . . . , ũCR,J is orthonormal and, without loss of generality, ξ21+. . .+ξ
2
J = 1,

it holds that ‖ṽCR‖ = 1 and

(‖ṽC‖ − 1)2 ≤ ‖ṽCR − ṽC‖2.
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The discrete scaling argument of (4.4) implies

‖ṽCR − ṽC‖ � H|||ṽCR − ṽC |||NC.

The linearity of ICM from Lemma 3.5, ṽCR− ṽC = ṽCR−ICMṽCR, plus Lemma 3.4
show that

|||ṽCR − ṽC |||NC � |||uJ − ṽCR|||NC.

The arguments of steps three and four in the proof of Lemma 4.2 plus Lemma 4.3
and Theorem 4.4 conclude the proof of the efficiency. �

Example 5.3. The criss-cross triangulation of Figure 1.1 leads to the matrices
A = 4 I4×4 = B/24 for the 4 × 4-dimensional identity matrix I4×4. Any vector
uCR ∈ R4 is an eigenvector with r ≡ 0 to the eigenvalue λCR = 24 of multiplicity
four. For J = 2 one may choose the basis (uCR,1, uCR,2) proportional to (1, 1, 1, 1)
and (1, 1, 1, 0) that leads to the bounds 4.2594 ≤ λ2 ≤ 72. Note that the exact
second and third eigenvalues λ2 = λ3 = 5π2 = 49.348 coincide. The condition

H <
(√

3/2− 1
)
/(κπ

√
5) is violated, but some elementary direct considerations

with u2 and u3 on the continuous level and the positivity of u1 imply that INCu1 and
INCu2 are linearly independent. Therefore, the aforementioned eigenvalue bounds
for λ2 are guaranteed. The eigenvalue bounds are remarkable in that J = 2 cuts a
cluster of eigenvalues on the continuous level (λ2 = λ3) as well as on the discrete
level (λCR,1 = . . . = λCR,4).

Remark 5.4. Note that Lemma 5.2 provides an explicit bound for the global mesh-
size that leads to the separation condition in Theorem 5.1 but does not need any
regularity assumption of the eigenfunctions. Elliptic regularity for some convex
domain Ω [Gri85, Theorem 4.3.1.4] shows

‖D2uJ‖ = ‖ΔuJ‖ = λJ‖uJ‖ = λJ .

Since (3.1), the Poincaré inequality on a triangle T ∈ T [LS10] reads

‖∇(uJ − INCuJ )‖2L2(T ) ≤ h2
T /j

2
1,1‖D2uJ‖2L2(T ).

The square roots of the sum of all those inequalities reads

|||uJ − INCuJ |||NC ≤ H/j1,1‖D2uJ‖L2(Ω).

This and Theorem 2.1 plus the aforementioned elliptic regularity estimate shows

‖uJ − INCuJ‖ ≤ κH|||uJ − INCuJ |||NC ≤ κH2/j1,1‖D2uJ‖ ≤ κH2λJ/j1,1.

This leads to the improved separation condition

H2 < j1,1

(√
1 + 1/J − 1

)
/(κλJ)

for higher eigenvalues on convex domains in Theorem 5.1. The reduced elliptic
regularity allows a similar proof with rather unknown constants from ‖uJ‖Hs(Ω) ≤
C(s)‖λJuJ‖.

6. Numerical experiments

This section presents an adaptive algorithm and provides some numerical exam-
ples for the unit square, the L-shaped domain, and two isospectral domains.

Licensed to Humboldt Universitat zu Berlin. Prepared on Mon Aug 17 10:10:27 EDT 2015 for download from IP 141.20.210.43.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



2622 C. CARSTENSEN AND J. GEDICKE

red

1 2

3

4

56

green

1 2

3

4

blue-left

1 2

3

4

5

blue-right

1 2

3

4

5

Figure 6.1. Refinement rules: sub-triangles with corresponding
reference edges depicted with a second edge.

6.1. Adaptive finite element algorithm. The basic adaptive finite element
method (AFEM) starts from an initial coarse triangulation T0 and generates a
sequence of nested triangulations T0, T1, . . . with corresponding nonnested noncon-
forming spaces (CR1

0(T�))� in successive loops of the form

Solve −→ Estimate −→ Mark −→ Refine.

Input. T0, 0 < θ ≤ 1, τ > 0.

Solve. Input: Approximation (λ̃1,�, ũ1,�) ∈ R× CR1
0(T�) on the triangulation T�.

Repeat
Run one iteration step of the preconditioned inverse iteration (PIN-
VIT) [KN03] with one V-cycle multigrid iteration with Richardson
smoother [Bre99] as a preconditioner

until

‖r�‖B−1
�

≤ min{λ̃1,�, τ}, r� := A�ũ1,� − λ̃1,�B�ũ1,�,

and if 1 > κ4(λ̃1,� − ‖r�‖B−1
�
)2H4

� until η2 ≤ max{η1, η3}.

Estimate. The error estimate of Theorem 3.1 reads

|λ1 − λ̃1,�| ≤ η1 + η2 + η3

with

η1 :=
λ̃1,�κ

2(λ̃1,� − ‖r�‖B−1
�
)H2

�

1− κ4(λ̃1,� − ‖r�‖B−1
�
)2H4

�

,

η2 :=
‖r�‖B−1

�

1 + κ2(λ̃1,� − ‖r�‖B−1
�
)H2

�

,

η3 := R(ICMũ1,�)−
λ̃1,�

1− κ4(λ̃1,� − ‖r�‖B−1
�
)2H4

�

.
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Table 6.1. Spectral gap for the smallest eigenvalue of the unit
square for different meshes with N = |E�(Ω)| degrees of freedom.

N 16 56 208 800
λ2,� − λ1,� 12.0964 25.4691 28.5894 29.3549

N 3136 12416 49408 197120
λ2,� − λ1,� 29.5454 29.5930 29.6048 29.6078
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Figure 6.2. Computed and randomly perturbed upper and lower
bounds on the smallest eigenvalue of the unit square

Mark. The mesh-refinement selects a set of edges M� ⊆ E� with the goal to balance
the contributions η1 + η2 + η3 as follows:

(a) If 1 ≤ κ4(λ̃1,� − ‖r�‖B−1
�
)2H4

� or η1 > max{η2, η3} then M� :=
⋃
{E ∈ E� :

|E| = H�}.

(b) Else if η3 ≥ max{η1, η2}, then the set of marked edgesM� ⊆ E� is of minimal
cardinality that fulfills the bulk criterion [Dör96]:

θ
∑
E∈E�

η2� (E) ≤
∑

E∈M�

η2� (E) for η2� (E) := hE‖[∂ũ1,�/∂s]‖2L2(E).

Refine. Given the set M� ⊆ E� of marked edges, the refinement T�+1 is computed
as a minimal regular triangulation such that M� ⊆ E�\E�+1 and each triangle is
refined by one of the rules from Figure 6.1.

6.2. Unit square. Consider the model problem (1.1) on the unit square Ω = (0, 1)2

with the smallest eigenvalue λ1 = 2π2.
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Figure 6.3. Convergence history for the unit square for different
eigenvalue errors

The first experiment in Table 6.1 investigates the critical algebraic condition on
the spectral gap λ2,� −λ1,�. The results are computed for a sequence of red-refined
meshes and the ARPACK [LSY98] solver (implemented in the Matlab function
‘eigs’) with tolerance up to machine precision. The spectral gap is relatively large
even for coarse meshes and motivates the choice τ = 1.

Figure 6.2 verifies that the lower and upper bounds of Theorem 3.1 are empir-
ically lower and upper eigenvalue bounds and presents some perturbed bounds as
well. The perturbed bounds are obtained from a perturbed eigenvector

ũ1,� = u1,� + rand(0, 1)/(dim(CR1
0(T�))λ1,�),

where u1,� is computed with ARPACK up to machine precision. The perturbed
eigenvalue is the Rayleigh quotient of the perturbed eigenvector. Note that the
numerical results show that for the first mesh the perturbation is too large such
that a different eigenvalue is approximated and the lower bound does not hold.

Figure 6.3 compares the accuracy of the nonconforming and the conforming
FEMs on uniform red-refined meshes. The first observation is that the nonconform-
ing eigenvalue error |λ1 − λCR,1| is smaller than the conforming eigenvalue error
|λ1−λC,1| displayed versus its degrees of freedoms N := dim(VC). The comparison
of the conforming eigenvalue error |λ1 − λC,1| and the error for the postprocess-

ing λCM,1 := R(ICMuCR,1), |λ1 − λCM,1|, both plotted versus N = dim(CR1
0(T )),

shows that the proposed interpolation on the red-refined mesh leads to better upper
bounds than a conforming approximation on the coarse mesh.

6.3. L-shaped domain. Consider the model problem (1.1) on the L-shaped do-
main Ω = (−1, 1)2\([0, 1]× [−1, 0]) with λ1 = 9.6397238440219 [TB06].

Figure 6.4 compares the eigenvalue error for the mean value μ of the upper
and lower eigenvalue bounds in Theorem 3.1 to its upper bound η/2. Uniform
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Figure 6.5. Efficiency indices for the L-shaped domain

red-refined meshes with ARPACK result in sub-optimal convergence of the estima-
tor η/2 as expected for the singular eigenfunction but lead to a surprising super-
convergence of the error |λ1−μ|. The surprising super-convergence of |λ1−μ| might
result from some super-convergence phenomena on this highly structured grid; cf.
[WZ09] for super-convergence phenomena of eigenvalues. For graded meshes with
ARPACK the empirical convergence rate is optimal and for the proposed adaptive
algorithm it is asymptotically optimal. The eigenvalue error of the adaptive algo-
rithm is not monotone which results from the fact that the algorithm starts with
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2
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2

2

Figure 6.6. Two isospectral domains

uniform refinements at the beginning and therefore the error matches the super-
convergent error. Afterwards one step of uniform refinement is followed by one step
of adaptive refinement that destroys the mesh-symmetry and therefore the super-
convergence. As a result the error gets closer and closer to the quasi-optimal error
for graded meshes. In contrast to that the error bound η/2 is monotonically de-
creasing. This illustrates the mixed adaptive strategy with respect to the algebraic
eigenvalue error, the global mesh-size, and the approximation error and provides
numerical evidence for the superiority of adaptive mesh-refinement.

Figure 6.5 displays the efficiency indices Ieff := (η/2)/|λ1 − μ|. Clearly, for
uniform meshes one observes the mentioned efficiency gap. The values for graded
and adaptive meshes are between 1 and 2 and tend to 1.4. Since η/2 is a guaranteed
upper bound, all values are greater or equal to one.

6.4. Isospectral domains. Consider the model problem (1.1) on the two isospec-
tral domains of Figure 6.6 with the approximation of the 50-th eigenvalue λ50 =
54.187936 [TB06]. For the numerical experiments, both domains are triangulated
similarly with the same number of triangles. The experiments show for uniform
red-refinements and ARPACK that both domains lead to the same eigenvalue ap-
proximations up to machine precision. Table 6.2 verifies empirically the theoretical
upper and lower bounds of Theorem 5.1 and shows that also the computed upper
and lower bounds are equal up to machine precision for both domains. An inter-
esting observation on the maximising Rayleigh quotient in Theorem 5.1 is that the
maximum of R(ξ1ICMũCR,1+. . .+ξ50ICMũCR,50) is obtained for ξ1 = . . . = ξ45 = 0
and ξ50 = 1 in all displayed numerical experiments. The separation condition of
Theorem 5.1 leads in this example with J = 50 to H < 0.007 which is satisfied
for the triangulations in the last and second last entry of Table 6.2. Remark 5.4
illustrates that this condition is coarse but explicit constants for the nonconvex do-
main at hand require more insight which is compensated by this strong separation
condition in this paper.
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Table 6.2. Bounds for λ50 = 54.187936 for the isospectral do-
mains of Figure 6.6

lower bounds
N left domain right domain
186 8.484029241600799 8.484029241600801
708 22.079541883464980 22.079541883464987
2760 40.139305042643208 40.139305042643237
10896 49.823736249152233 49.823736249152240
43296 53.022275017108896 53.022275017108903
172608 53.889870459421545 53.889870459421537
689280 54.112360562895724 54.112360562895560
2754816 54.168723796821510 54.168723796821538
11014656 54.183012990240513 54.183012990240186

upper bounds
N left domain right domain
186 114.2653311991490 114.2653311991488
708 64.397132862386258 64.397132862387565
2760 56.619351329573185 56.619351329573249
10896 54.818424684560334 54.818424684560306
43296 54.352753736838082 54.352753736838132
172608 54.231273697990432 54.231273697990602
689280 54.199573365120656 54.199573365121147
2754816 54.191162363149061 54.191162363147861
11014656 54.188868310930701 54.188868310929948
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