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This paper enfolds a medius analysis for first-order nonconforming finite element methods (FEMs) in
linear elasticity named after Crouzeix–Raviart and Kouhia–Stenberg, which are robust with respect to the
incompressible limit as the Lamé parameter λ tends to infinity. The new result is a best-approximation
error estimate for the stress error in L2 up to data-oscillation terms. Even for very coarse shape-regular
triangulations, two comparison results assert that the errors of the nonconforming FEM are equivalent
to those of the conforming first-order FEM. The explicit role of the parameter λ in those equivalence
constants leads to an advertisement of the robust and quasi-optimal Kouhia–Stenberg FEM, in particular
for nonconvex polygons. The proofs are based on conforming companions, a new discrete Helmholtz
decomposition and a new discrete-plus-continuous Korn inequality for Kouhia–Stenberg finite element
functions. Numerical evidence strongly supports the robustness of the nonconforming FEMs with respect
to incompressibility locking and with respect to singularities, and underlines that the dependence of
the equivalence constants on λ in the comparison of conforming and nonconforming FEMs cannot be
improved. This work therefore advertises the Kouhia–Stenberg FEM as a first-order robust discretization
in linear elasticity in the presence of Neumann boundary conditions.

Keywords: linear elasticity; nonconforming finite elements; Kouhia–Stenberg; comparison; locking;
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1. Introduction

The textbook a priori error analysis of nonconforming finite element methods (FEMs) considers an
inconsistency term with the normal derivative of the exact solution along edges and so requires H3/2+ε

regularity of the exact solution for some positive ε. This regularity request fails to hold for certain mixed
boundary value problems in linear elasticity and leaves the impression that nonconforming FEMs may
be more sensitive for ‘near singularities’ than conforming FEM (Braess, 2007, p.111 and the web sup-
plement). The medius analysis of Gudi (2010) and Carstensen et al. (2012b) does not rely on elliptic
regularity at all and proves quasi-optimality for the linear elastic model problem of this paper in the
sense that the total error is dominated by the approximation error. The medius analysis extends to non-
constant coefficients λ and μ and higher space dimensions, while the more involved precise analysis of

c© The authors 2014. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

 IMA Journal of Numerical Analysis Advance Access published November 7, 2014



2 of 31 C. CARSTENSEN AND M. SCHEDENSACK

singular functions in the case of nonconvex polygons appears to be limited to the simple linear elastic
model problem at hand.

For a polygonal, bounded Lipschitz domain Ω ⊂ R
2 with closed Dirichlet boundary ΓD of positive

length and (relatively open) Neumann boundary ΓN := ∂Ω \ ΓD with outer unit normal ν, the strong
formulation of the Navier–Lamé equations for volume forces f ∈ L2(Ω; R

2) and applied tractions g ∈
L2(ΓN; R

2) and homogeneous boundary conditions reads (in compact notation)

div Cε(u) = f in Ω ,

u = 0 on ΓD,

Cε(u)ν = g on ΓN.

The fourth-order elasticity tensor acts as CA := 2μA + λ tr(A)12×2 for positive Lamé parameters μ and
λ, and for any general input variable A ∈ R

2×2, and the linear Green strain is ε(u) := (Du + DuT)/2.
The conforming first-order FEM of Fig. 1(a) (named after Courant (CFEM)) converges, but suffers

from locking in the incompressible limit as λ → ∞ (Falk, 2006; Braess, 2007; Brenner & Scott, 2008).
This means for large values of λ that the L2 error of the stresses shows the expected convergence rate
for a very large number of degrees of freedom only. To overcome this phenomenon, finite element
spaces should have good approximation properties for nearly incompressible materials. One possibility
is the choice of a higher polynomial degree of the ansatz space (� 4) or the use of mixed methods.
However, the lowest-order conforming mixed method of Arnold & Winther (2002) still has 30 degrees
of freedom per triangle. Alternative approaches are the first-order nonconforming methods of Crouzeix
and Raviart (Brenner & Sung, 1992) or of Kouhia & Stenberg (1995), which do not show such a locking
phenomenon and are therefore of great interest. This paper enfolds a medius error analysis for the
nonconforming FEM of Kouhia and Stenberg (KS-NCFEM) of Fig. 1(b) in the sense that mathematical
arguments from an a posteriori error analysis lead to a priori error estimates. The notion of medius
analysis was introduced in Gudi (2010) and leads to results which rely on no extra regularity of the weak
solution and hold for arbitrarily coarse meshes with certain minimal conditions (a)–(d) of Section 2.3.
In this respect, the error analysis of this paper is a refinement of the error analysis in Kouhia & Stenberg
(1995). The main result of this analysis is the best-approximation property of the discrete stress σKS :=
CεNC(uKS) (εNC and DNC are the piecewise analogues of ε and D, respectively) with respect to the exact
stress σ := Cε(u) for the exact and discrete solutions u ∈ H1(Ω; R

2) and uKS ∈ KS(T ); i.e.,

‖σ − σKS‖L2(Ω) � min
vKS∈KS(T )

‖σ − CεNC(vKS)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)).

The definitions of the data oscillations osc(f2, T ) and osc(g2, E(ΓN)) and the precise definition of the
Kouhia–Stenberg FEM space KS(T ) follow in Section 2. The notation A � B abbreviates an inequal-
ity A � CB with some mesh-size- and λ-independent generic constant 0 < C < ∞. The constant may

(a) (b) (c)

Fig. 1. Three first-order FEMs for linear elasticity: (a) CFEM; (b) KS-NCFEM; (c) CR-NCFEM.
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depend on the constant α > 0 in conditions (a)–(d) of Section 2.3 and on μ. Since the multiplicative
constant (hidden behind �) does not depend on λ, the aforementioned error estimate also holds in the
incompressible limit λ → ∞. In other words, quasi-optimal convergence follows for the KS-NCFEM
in the Stokes problem as well.

The proof relies on a new discrete Helmholtz decomposition (Theorem 3.1), a new discrete-plus-
continuous Korn inequality (Theorem 4.1) and the conforming cubic companion of the nonconforming
discrete solution from Lemma 3.3. This conforming companion J3vCR fulfils for all Crouzeix–Raviart
functions vCR the integral mean properties∫

T
(vCR − J3vCR) dx = 0 and

∫
T

DNC(vCR − J3vCR) dx = 0 for all T ∈ T ,

and some stability and approximation properties.
The nonconforming FEM of Crouzeix and Raviart (CR-NCFEM) (Brenner & Sung, 1992) of

Fig. 1(c) only allows a discretization of the pure Dirichlet problem ΓD = ∂Ω , in which the (nonphysical)
stress σ̃ := C̃Du := μDu + (λ + μ) div(u)12×2 appears with its approximation σ̃CR := C̃DNCuCR in the
Crouzeix–Raviart FEM. The best-approximation result of this paper reads

‖σ − CεNC(uCR)‖L2(Ω) � ‖σ̃ − σ̃CR‖L2(Ω) � ‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ).

Recent comparison results (Braess, 2009; Carstensen et al., 2012b) lead to equivalences of approx-
imation classes for the Poisson model problem. The best-approximation results and further analysis of
this paper lead to comparison results between the three considered FEMs of Fig. 1 with explicit depen-
dence on the Lamé parameter λ in the equivalence constants. For the conforming discrete solution uC

and the discrete stress σC := Cε(uC), the comparison between KS-NCFEM and CFEM reads

λ−1‖σ − σC‖L2(Ω) � ‖σ − σKS‖L2(Ω)

� ‖σ − σC‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)). (1.1)

A detailed investigation of the gap in the dependence on λ, which is in fact sharp, is included in
Section 6. For the pure Dirichlet problem ΓD = ∂Ω , the solutions of CR-NCFEM and KS-NCFEM
(with σ̃KS := C̃DNCuKS) exist and can be compared by

‖σ − σCR‖L2(Ω) � ‖σ − σKS‖L2(Ω) + osc(f , T )

and
‖σ̃ − σ̃KS‖L2(Ω) � ‖σ̃ − σ̃CR‖L2(Ω) + osc(f2, T ).

The paper focuses on the two-dimensional case; the generalization to higher dimensions is straight-
forward for CR-NCFEM and CFEM. The generalization of KS-NCFEM to three dimensions applies
two nonconforming and one conforming FEM to the three components or two conforming and one non-
conforming; the mathematical justification will be established in the near future (Hu & Schedensack).

Within the scope of low-order methods, despite the equivalence results of this paper, the explicit
dependence on the Lamé parameter λ strongly suggests the use of nonconforming discretizations for
nearly incompressible materials. If Neumann boundary conditions are present, this advertises the use
of KS-NCFEM which, therefore, is apparently far too underrated in the engineering community despite
striking numerical examples in Kouhia & Stenberg (1995) and Carstensen & Funken (2001a). It may
appear strange to employ some scheme which depends on the choice of the coordinate system, but (in the
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presence of Neumann boundary conditions) the KS-NCFEM is the only known robustly quasi-optimal
first-order scheme.

The outline of this paper is as follows. Section 2 introduces the precise notation and states the main
results, which imply the error estimates of this introduction. Section 3 presents some preliminary results
which include the definition of the conforming companion and the new discrete Helmholtz decomposi-
tion. Sections 4 and 5 prove the main results including the new discrete-plus-continuous Korn inequality.
Section 6 concludes the paper with numerical illustrations and provides striking numerical evidence for
the equivalence of the three first-order methods and the claimed dependence on the equivalence constant
as λ → ∞.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces and their norms is
employed and further notation can be found in the following table for convenient reading.

A � B A � CB with a mesh-size-independent constant C
vk , v(k) The kth component of v ∈ R

2

A(k, j) The component kj of A ∈ R
2×2

A(k) The kth row (A(k, 1), A(k, 2)) of A ∈ R
2×2

a · b = ∑2
j=1 a(j)b(j) for a, b ∈ R

2

A : B = ∑
j,k=1,2 A(j, k)B(j, k) for A, B ∈ R

2×2

12×2 Unit matrix in R
2×2

S Set of symmetric matrices; S := {A ∈ R
2×2 | A = AT}

ε(u) Green strain (Du + (Du)T)/2
C Elasticity tensor; CA = 2μA + λ tr(A)12×2 for A ∈ R

2×2

C̃ Modified elasticity tensor; C̃A = μA + (μ + λ) tr(A)12×2 for
A ∈ R

2×2

CD(Ω) (respectively, CN(Ω)) Space of continuous functions with homogeneous boundary
conditions on ΓD (respectively, ΓN)

V V := {v ∈ H1(Ω; R
2) | v|ΓD = 0}

Dv, ∇w, div v Derivative (of a vector-valued function v ∈ V ), gradient of a
scalar-valued function w ∈ H1(Ω), divergence of v

Curl Curl v = (∂v/∂x2, −∂v/∂x1) ∈ L2(Ω; R
2) for v ∈ H1(Ω),

Curl w = (Curl w(1); Curl w(2)) ∈ L2(Ω; R
2×2) for w ∈ V

T , N , E Shape-regular triangulation with the set of vertices N and set of
edges E ; Section 2.2

N (ω) Set of vertices in ω, N (ω) :=N ∩ ω

E(ω) = {E ∈ E | E ⊆ ω̄, E �⊆ ∂ω}
|T |, |E| Area of a triangle T , length of an edge E
mid(E) Midpoint of an edge E ∈ E
Pk(T ; R

m) Set of piecewise polynomials of degree � k; Section 2.2
Π0 Π0 : L2(Ω; R

m) → P0(T ; R
m), L2 projection on piecewise

constants; Section 2.2
ΠE L2 projection onto E-piecewise constants; Section 2.2
hT Piecewise constant mesh size, hT |T := diam(T) for all T
[v]E Jump along an edge E; Section 2.2
osc(f , T), osc(f , T ) Oscillations of f , osc(f , T) := ‖hT (f − Π0f )‖L2(T),

osc(f , T ) := ‖hT (f − Π0f )‖L2(Ω)

osc(g, E(ΓN)) Edge oscillations; Section 2.2
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DNC, ∇NC, divNC, CurlNC Piecewise versions of D, ∇, div, Curl
VC(T ) Conforming finite element space; Section 2.3
CR1

D(T ) Nonconforming Crouzeix–Raviart space; Section 2.3
VCR(T ) VCR(T ) := CR1

D(T ) × CR1
D(T )

KS(T ) Finite element space of KS-NCFEM;
KS(T ) = (P1(T ) ∩ CD(Ω)) × CR1

D(T ); Section 2.3
KS∗(T ) KS∗(T ) = CR1

N(T ) × (P1(T ) ∩ CN(Ω)); Section 3
INC : V → VCR(T ) Nonconforming interpolation operator with

(INCv)(mid(E)) =
�

E
v ds for all E ∈ E \ E(ΓD)

(•, •)C−1 (σ , τ)C−1 := ∫
Ω

σ : C
−1τ dx for σ , τ ∈ L2(Ω; S)

2. Notation and main results

This section defines the linear elastic model problem and all the considered FEMs, and states the main
results.

2.1 Linear elasticity

Recall that the elastic body occupies the bounded Lipschitz domain Ω with boundary ∂Ω = ΓD ∪ ΓN.
We assume that ΓD consists of finitely many parts which lie on the outer boundary of Ω (on the
unbounded connectivity component of R

2 \ Ω). The weak formulation based on the Green strain seeks
u ∈ V := {v ∈ H1(Ω; R

2) | v|ΓD = 0} such that

a(v, u) :=
∫

Ω

ε(v) : Cε(u) dx =
∫

Ω

f · v dx +
∫

ΓN

g · v ds for all v ∈ V . (2.1)

For the pure Dirichlet problem, i.e., ΓD = ∂Ω , an integration by parts and the commutation of the
derivatives for C∞

0 (Ω; R
2) functions show that∫

Ω

ε(•) : Cε(•) dx =
∫

Ω

D• : C̃D • dx

on V × C∞
0 (Ω; R

2). The denseness of C∞
0 (Ω; R

2) in V implies that the two bilinear forms are identical
on V × V . Thus, for the pure Dirichlet problem, the equivalent weak formulation based on the full
gradient seeks u ∈ H1

0 (Ω; R
2) with∫

Ω

Dv : C̃Du dx =
∫

Ω

f · v dx for all v ∈ H1
0 (Ω; R

2). (2.2)

Define the energy norm |||•||| := √
a(•, •) in V and the scalar product

(σ , τ)C−1 :=
∫

Ω

σ : C
−1τ dx for all σ , τ ∈ L2(Ω; S).

2.2 Triangulations

Let T denote some shape-regular triangulation of a polygonal, bounded Lipschitz domain Ω into tri-
angles, i.e., Ω̄ = ⋃

T and any two distinct triangles are either disjoint or share exactly one common
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edge or one vertex. Let E denote the set of edges of T and N denote the set of vertices. Define for
ω ⊂ R

2 the sets N (ω) :=N ∩ ω and E(ω) := {E ∈ E | int(E) ⊂ ω} for the relative interior int(E) of an
edge E ∈ E . We assume that the boundary edges E(∂Ω) match the boundary conditions in the sense that
the boundary conditions change only at nodes ΓD ∩ Γ̄N ⊆N . Let

Pk(T ; R
m) := {vk : T → R

m | ∀j = 1, . . . , m, the component

vk(j) of vk is a polynomial of total degree � k},
Pk(T ; R

m) := {vk : Ω → R
m | ∀T ∈ T , vk|T ∈ Pk(T ; R

m)}
denote the set of polynomials and the set of piecewise polynomials, respectively;
Π0 : L2(Ω; R

m) → P0(T ; R
m) denotes the L2 projection onto T -piecewise constant functions or

vectors, i.e., (Π0f )|T =
�

T
f dx := ∫

T f dx/|T | for all T ∈ T with area |T | and all f ∈ L2(Ω; R
m).

The operator ΠE denotes the L2 projection onto E-piecewise constant functions or vectors, i.e.,
ΠEg|E =

�
E

g ds := ∫
E g ds/|E| for all edges E ∈ E of length |E|. The volume oscillations read

osc(f , T) := ‖hT (f − Π0f )‖L2(T) and osc(f , T ) := ‖hT (f − Π0f )‖L2(Ω),

while the edge oscillations read

osc(g, E(ΓN)) :=
√ ∑

E∈E(ΓN)

‖h1/2
T (g − ΠEg)‖2

L2(E)

with piecewise constant mesh size hT ∈ P0(T ) with hT |T := diam(T) for all T ∈ T . The jump along
an interior edge E ∈ E(Ω) with adjacent triangles T+ and T−, i.e., E = T+ ∩ T−, is defined by [v]E :=
v|T+ − v|T− . Given the homogeneous Dirichlet boundary conditions, the jump along boundary edges
E ∈ E(ΓD) reads [v]E := v|T+ for the triangle T+ ∈ T with E ⊂ T+.

For piecewise affine functions vNC ∈ P1(T ; R
2) the T -piecewise gradient DNCvNC with

(DNCvNC)|T = D(vNC|T ) for all T ∈ T and, accordingly, εNC(vNC) and divNC(vNC), exists and DNCvNC ∈
P0(T ; R

2×2) and εNC(vNC) ∈ P0(T ; S) and divNC(vNC) ∈ P0(T ).

2.3 Discrete spaces

CFEM. The Courant finite element space reads

VC(T ) := (P1(T ) ∩ CD(Ω)) × (P1(T ) ∩ CD(Ω)).

The corresponding (unique) Galerkin approximation uC ∈ VC(T ) satisfies∫
Ω

ε(vC) : Cε(uC) dx =
∫

Ω

f · vC dx +
∫

ΓN

g · vC ds for all vC ∈ VC(T ).

CR-NCFEM. Define the P1 nonconforming space as

CR1(T ) := {vCR ∈ P1(T ) | vCR is continuous at midpoints of interior edges}.
The nonconforming Crouzeix–Raviart space reads

CR1
D(T ) := {vCR ∈ CR1(T ) | vCR vanishes at midpoints of edges E ∈ E(ΓD)}.
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For the discretization of the pure Dirichlet problem ΓD = ∂Ω of linear elasticity, define the space

VCR(T ) := CR1
D(T ) × CR1

D(T ).

Since the kernel of εNC : VCR(T ) → P0(T ; R
2×2) is in general not trivial, the weak formulation based

on the full gradient is in use for the discretization and seeks uCR ∈ VCR(T ) with

∫
Ω

DNCvCR : C̃DNCuCR dx =
∫

Ω

f · vCR dx for all vCR ∈ VCR(T ). (2.3)

Here, the piecewise gradient DNC replaces the weak differential operator.
KS-NCFEM. The Kouhia–Stenberg approximation uKS ∈ KS(T ) := (P1(T ) ∩ CD(Ω)) × CR1

D(T )

satisfies ∫
Ω

εNC(vKS) : CεNC(uKS) dx =
∫

Ω

f · vKS dx +
∫

ΓN

g · vKS ds for all vKS ∈ KS(T ). (2.4)

The following conditions (a)–(d) are given for completeness and replace the assumptions on the
sufficiently small mesh size of T and the assumptions (AD) and (AN) of Kouhia & Stenberg (1995).
These conditions are, for example, fulfilled if at least one vertex of each triangle lies in the interior of
the domain. The existence of α > 0 which fulfils conditions (a)–(d) ensures that the inf–sup condition
and a discrete Korn inequality hold.

(a) For all E ∈ E(Ω) with N (E) ⊆N (∂Ω), it holds that |νE(2)| � α.

(b) If ΓN |= ∅, it holds that N ∩ ΓN |= ∅ or there exists at least one E ∈ E(ΓN) with |νE(2)| � α.

(c) In the case that the two vertices of an interior edge E ∈ E(Ω) belong to the boundary, i.e.,
space N (E) ⊆N (∂Ω), and |νE(1)| < α, consider z ∈N (E). For the nodal patch ωz := int(

⋃{T ∈
T | z ∈ T}) let ω1, ω2 ⊆ ωz denote the two connected sets, which decompose the nodal patch in
the upper and lower part (i.e., ω̄1 ∩ ω̄2 = E and ω1 ∪ ω2 ∪ int(E) = ωz). Then there exist edges
Ek ∈ E(∂ωk) ∩ E(ΓD) for k = 1, 2 with |νEk (1)| > α (see Fig. 2(c)).

(d) If the entire Dirichlet boundary is nearly horizontal, i.e., for all E ∈ E(ΓD) it holds that |νE(1)| <
α, then there exist two adjacent edges on the Dirichlet boundary, i.e., there exist E, F ∈ E(ΓD)

with E |= F and E ∩ F |= ∅.

The generic multiplicative constants hidden in the notation � are allowed to depend on α. Figure 2
illustrates conditions (a)–(d).

2.4 Main results

The main results below imply the statements of the introduction in Section 1.

Theorem 2.1 (Best approximation of KS-NCFEM) The exact and the discrete stress σ = Cε(u) and
σKS = CεNC(uKS) for the exact and discrete solutions u ∈ V and uKS ∈ KS(T ), respectively, satisfy

‖σ − σKS‖L2(Ω) � min
vKS∈KS(T )

‖σ − CεNC(vKS)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)).
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(a) (b)

(c) (d)

Fig. 2. Illustrations of conditions (a)–(d): (a) a situation excluded by condition (a); (b) triangulation which is excluded by condition
(b); (c) a possible patch, which fulfils condition (c); (d) a situation excluded by condition (d).

Remark 2.2 As one key ingredient for the proof of Theorem 2.1, the error estimate of Theorem 4.4 esti-
mates the stress error of KS-NCFEM by some best-approximation error of the stress and the derivative
in the piecewise constant functions plus some data approximation terms.

Theorem 2.3 (Best approximation of CR-NCFEM) Let σ̃ := C̃Du for the exact solution u ∈
H1

0 (Ω; R
2). For the pure Dirichlet problem ΓD = ∂Ω , the discrete stress σ̃CR := C̃DNCuCR for the dis-

crete solution uCR ∈ VCR(T ) of (2.3) satisfies

‖σ̃ − σ̃CR‖L2(Ω) � ‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ).

Theorem 2.4 (Comparison of CFEM, CR-NCFEM and KS-NCFEM) The exact stress σ = Cε(u) and
the discrete stresses σC = Cε(uC) and σKS = CεNC(uKS) satisfy

λ−1‖σ − σC‖L2(Ω) � ‖σ − σKS‖L2(Ω)

� ‖σ − σC‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)).

For the pure Dirichlet problem ΓD = ∂Ω , the discrete stress σCR = CεNC(uCR) satisfies

‖σ − σCR‖L2(Ω) � ‖σ − σKS‖L2(Ω) + osc(f , T ).

In addition, the stress error of KS-NCFEM is comparable with the error of the nonsymmetric approxi-
mation σ̃ := C̃Du from (2.2) through

‖σ − σKS‖L2(Ω) � ‖σ̃ − σ̃CR‖L2(Ω) + osc(f2, T ).
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3. Preliminary results

The following discrete Helmholtz decomposition and some properties of a conforming companion are
required below; cf. Falk & Morley (1990) for a first decomposition of this type. To this end, define

CR
(T ) := {vCR ∈ CR(T ) | vCR(mid(E1)) = vCR(mid(E2))

for E1, E2 edges of the same connectivity component of ΓN},
V 


C(T ) := {vC ∈ P1(T ) ∩ H1(Ω) | vC is constant along

each connectivity component of ΓN}.
Recall that the boundary conditions match the triangulation T of the possibly multiply connected planar
Lipschitz domain Ω with ΓD ⊆ Γ0 for the outer boundary Γ0 of Ω (Γ0 is defined as the boundary of the
unbounded connectivity component of R

2 \ Ω).

Theorem 3.1 (Discrete Helmholtz decomposition) Let KS∗(T ) := CR
(T ) × V 

C(T ). Then it holds

that
P0(T ; S) = CεNC(KS(T )) ⊕ (CurlNC(KS∗(T )) ∩ P0(T ; S))

and the sum is orthogonal with respect to the scalar product (•, •)C−1 := ∫
Ω

• : C
−1 • dx.

Remark 3.2 For any v∗
KS ∈ KS∗(T ) the assertion CurlNC v∗

KS ∈ P0(T ; S) is equivalent to
divNC v∗

KS = 0.

Proof of Theorem 3.1. For αKS ∈ KS(T ) and βKS∗ ∈ KS∗(T ) with CurlNC(βKS∗) ∈ P0(T ; S) let αC ∈
P1(T ) ∩ CD(Ω), αCR ∈ CR1

D(T ), βCR ∈ CR
(T ) and βC ∈ V 

C(T ) with αKS = (αC, αCR) and βKS∗ =

(βCR, βC). Then αKS and βKS∗ satisfy

(Cε(αKS), CurlNC βKS∗)C−1 =
∫

Ω

εNC(αKS) : CurlNC βKS∗ dx

=
∫

Ω

DNC(αKS) : CurlNC βKS∗ dx

=
∫

Ω

(∇αC · CurlNC βCR + ∇NCαCR · Curl βC) dx.

This and the L2 orthogonalities

∇(P1(T ) ∩ CD(Ω))⊥L2 CurlNC(CR
(T )), ∇NC CR1
D(T )⊥L2 Curl(V 


C(T )) (3.1)

imply the orthogonality (with respect to the scalar product (•, •)C−1 )

CεNC(KS(T ))⊥(CurlNC(KS∗(T )) ∩ P0(T ; S)).

Given σh ∈ P0(T ; S), let αKS ∈ KS(T ) solve∫
Ω

εNC(vKS) : CεNC(αKS) dx =
∫

Ω

εNC(vKS) : σh dx for all vKS ∈ KS(T ).

The jth row τh(j) := (τh(j, 1), τh(j, 2)) ∈ P0(T ; R
2) of τh := σh − CεNC(αKS) ∈ P0(T ; S) is piecewise

constant for j = 1, 2. The discrete Helmholtz decomposition for Crouzeix–Raviart and conforming P1
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functions (Arnold & Falk, 1989) remains true for mixed boundary conditions and interchanged discrete
spaces as

P0(T ; R
2) = ∇NC CR1

D(T ) ⊕ Curl V 

C(T ),

P0(T ; R
2) = ∇(P1(T ) ∩ CD(Ω)) ⊕ CurlNC CR
(T ).

(This can be proved, for example, by the orthogonalities (3.1) and a dimension argument.) This guaran-
tees the existence of pC ∈ P1(T ) ∩ CD(Ω), pCR ∈ CR
(T ), qCR ∈ CR1

D(T ) and qC ∈ V 

C(T ) with

τh(1) = ∇pC + CurlNC pCR and τh(2) = ∇NCqCR + Curl qC.

(Here, ∇pC, CurlNC pCR, ∇NCqCR and Curl qC are understood as row vectors.) Since τh is orthogonal to
CεNC(KS(T )) with respect to (•, •)C−1 and since τh ∈ P0(T ; S), the functions vC ∈ P1(T ) ∩ CD(Ω) and
vCR ∈ CR1

D(T ) satisfy∫
Ω

(∇vC; ∇NCvCR) : (τh(1); τh(2)) dx =
∫

Ω

εNC(vC, vCR) : τh dx = 0.

This implies the L2 orthogonalities

τh(1)⊥L2∇(P1(T ) ∩ CD(Ω)) and τh(2)⊥L2∇NC CR1
D(T ).

This and the orthogonalities (3.1) lead to

‖∇pC‖2
L2(Ω) =

∫
Ω

∇pC · (∇pC − τh(1)) dx = 0.

Analogous arguments prove ‖∇NCqCR‖2
L2(Ω)

= 0. Hence,

τh = CurlNC(pCR, qC) ∈ CurlNC(KS∗(T )).

�

Lemma 3.3 There exists an operator J3 : CR1
D(T ) → (P3(T ) ∩ CD(Ω)) with the conservation

properties ∫
T
(vCR − J3vCR) dx = 0 for all T ∈ T , (3.2a)∫

E
(vCR − J3vCR) dx = 0 for all E ∈ E , (3.2b)

and the approximation and stability properties

‖h−1
T (vCR − J3vCR)‖L2(Ω) ≈ ‖∇NC(vCR − J3vCR)‖L2(Ω)

≈ min
ϕ∈H1(Ω)∩CD(Ω)

‖∇NC(vCR − ϕ)‖L2(Ω)

� ‖∇NCvCR‖L2(Ω). (3.3)
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Remark 3.4 The conservation property along edges (3.2b) and an integration by parts reveal the con-
servation property of the gradients Π0∇J3 = ∇NC in the sense that

∫
T

∇J3vCR dx =
∫

T
∇NCvCR dx for all T ∈ T and all vCR ∈ CR1

D(T ).

Proof of Lemma 3.3. The design is based on three successive steps.
Step 1. The operator J1 : CR1

D(T ) → P1(T ) ∩ CD(Ω) acts on any function vCR ∈ CR1
D(T ) by averaging

the function values at each node z ∈N (Ω ∪ ΓN):

J1vCR(z) = |T (z)|−1
∑

T∈T (z)

vCR|T (z) for all z ∈N (Ω ∪ ΓN) (3.4)

with T (z) := {T ∈ T | z ∈ T}. (This operator is also known as the enriching operator in the context of
fast solvers; see Brenner, 1996.) The arguments of Carstensen et al. (2012a, Theorem 5.1) prove the
approximation property

‖h−1
T (vCR − J1vCR)‖L2(Ω) �

√ ∑
E∈E(Ω∪ΓD)

|E|−1‖[vCR]E‖2
L2(E)

�
√ ∑

E∈E(Ω∪ΓD)

|E| ‖[∇NCvCR · τE]E‖2
L2(E)

� min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR − v)‖L2(Ω). (3.5)

This and an inverse estimate imply the stability property

‖∇NC(vCR − J1vCR)‖L2(Ω) � min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR − v)‖L2(Ω). (3.6)

Step 2. Given any edge E = conv{a, b} ∈ E(Ω ∪ ΓN) with nodal P1 conforming basis functions ϕa, ϕb ∈
P1(T ) ∩ C(Ω) (defined by ϕa(a) = ϕb(b) = 1,ϕa(z) = 0 for z ∈N \ {a} and ϕb(z) = 0 for z ∈N \ {b}),
the quadratic edge-bubble function

�E := 6 ϕaϕb

has the support ω̄E and satisfies
�

E
�E ds = 1. For any function vCR ∈ CR1

D(T ) the operator J2 :
CR1

D(T ) → P2(T ) ∩ CD(Ω) acts as

J2vCR := J1vCR +
∑

E∈E(Ω∪ΓN)

(�
E
(vCR − J1vCR) ds

)
�E.

An immediate consequence of this choice is

�
E

J2vCR ds =
�

E
vCR ds for all E ∈ E .
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An integration by parts shows, for the vertex PE ∈N (T) \ E opposite to E ∈ E(T) in the triangle T ,
the trace identity

�
E
(vCR − J1vCR) ds =

�
T
(vCR − J1vCR) dx + 1

2

�
T
(x − PE) · ∇NC(vCR − J1vCR) dx.

The scaling ‖�E‖L2(Ω) � hT shows∥∥∥∥∥∥h−1
T

∑
E∈E(T)

(�
E
(vCR − J1vCR) ds

)
�E

∥∥∥∥∥∥
L2(T)

�
∑

E∈E(T)

∣∣∣∣
�

E
(vCR − J1vCR) ds

∣∣∣∣
� h−1

T ‖vCR − J1vCR‖L2(T) + ‖∇NC(vCR − J1vCR)‖L2(T).

This together with (3.5) and (3.6) yield

‖h−1
T (vCR − J2vCR)‖L2(Ω) � min

v∈H1(Ω)∩CD(Ω)
‖∇NC(vCR − v)‖L2(Ω). (3.7)

The stability property of J2 follows with an inverse estimate:

‖∇NC(vCR − J2vCR)‖L2(Ω) � ‖h−1
T (vCR − J2vCR)‖L2(Ω)

� min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR − v)‖L2(Ω). (3.8)

Step 3. On any triangle T = conv{a, b, c} with nodal basis functions ϕa, ϕb, ϕc, the cubic volume bubble
function reads

�T := 60ϕaϕbϕc ∈ H1
0 (T)

and enjoys the scaling ‖∇�T‖L2(Ω) ≈ 1. Define

J3vCR := J2vCR +
∑
T∈T

(�
T
(vCR − J2vCR) dx

)
�T .

Then J3 fulfils the conservation properties (3.2) and∥∥∥∥∥
∑
T∈T

(�
T
(vCR − J2vCR) dx

)
∇�T

∥∥∥∥∥
2

L2(Ω)

≈
∑
T∈T

∣∣∣∣
(�

T
(vCR − J2vCR) dx

)∣∣∣∣
2

� ‖h−1
T (vCR − J2vCR)‖2

L2(Ω).

This together with (3.7) and (3.8) imply

‖DNC(vCR − J3vCR)‖L2(Ω) � ‖DNC(vCR − J2vCR)‖L2(Ω) +
∥∥∥∥∥
∑
T∈T

(�
T
(vCR − J2vCR) dx

)
∇�T

∥∥∥∥∥
L2(Ω)

� min
v∈H1(Ω)∩CD(Ω)

‖∇NC(vCR − v)‖L2(Ω).

This and a Poincaré inequality lead to (3.3). �
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Lemma 3.5 Any vKS ∈ KS(T ) satisfies∫
Ω

(Π0σ − σKS) : εNC(vKS) dx � (‖(σ − Π0σ)(2)‖L2(Ω) + osc(f2, T )

+ osc(g2, E(ΓN)))‖∇NCvKS(2)‖L2(Ω).

Proof. Given any vKS ∈ KS(T ), let vC ∈ P1(T ) ∩ CD(Ω) and vCR ∈ CR1
D(T ) be the components of vKS,

i.e., vKS = (vC, vCR). Lemma 3.3 guarantees the existence of J3vCR ∈ P3(T ) ∩ H1(Ω) ∩ CD(Ω) with∫
T
(vCR − J3vCR) dx = 0 =

∫
T

∇NC(vCR − J3vCR) dx for all T ∈ T

and ‖∇NC(vCR − J3vCR)‖L2(Ω) � ‖∇NCvCR‖L2(Ω). (3.9)

Since Π0σ is piecewise constant, the integral mean property (3.9) implies∫
Ω

Π0σ : εNC(0, vCR) dx =
∫

Ω

Π0σ : εNC(0, J3vCR) dx

=
∫

Ω

(Π0σ − σ) : D(0, J3vCR) dx +
∫

Ω

σ : ε(0, J3vCR) dx.

Since σ is the stress of the exact solution and J3vCR ∈ H1(Ω) ∩ CD(Ω), the Cauchy–Schwarz inequality
implies ∫

Ω

(Π0σ − σ) : D(0, J3vCR) dx +
∫

Ω

σ : ε(0, J3vCR) dx

� ‖(σ − Π0σ)(2)‖L2(Ω)‖∇J3vCR‖L2(Ω) +
∫

Ω

f2J3vCR dx +
∫

ΓN

g2J3vCR ds.

The triangle inequality and the stability property (3.9) show

‖∇J3vCR‖L2(Ω) � ‖∇J3vCR − ∇NCvCR‖L2(Ω) + ‖∇NCvCR‖L2(Ω)

� ‖∇NCvCR‖L2(Ω).

The combination of the above inequalities yields∫
Ω

Π0σ : εNC(0, vCR) dx � ‖(σ − Π0σ)(2)‖L2(Ω)‖∇NCvCR‖L2(Ω)

+
∫

Ω

f2J3vCR dx +
∫

ΓN

g2J3vCR ds.

Since σ and σKS are the stresses of the exact and the discrete solution, respectively, it follows that∫
Ω

(Π0σ − σKS) : εNC(vKS) dx =
∫

Ω

(Π0σ − σKS) : εNC(0, vCR) dx

=
∫

Ω

Π0σ : εNC(0, vCR) dx −
∫

Ω

f2vCR dx −
∫

ΓN

g2vCR ds.
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The combination of the previous displayed formulas proves

∫
Ω

(Π0σ − σKS) : εNC(vKS) dx � ‖(σ − Π0σ)(2)‖L2(Ω)‖∇NCvCR‖L2(Ω)

+
∫

Ω

f2(J3vCR − vCR) dx +
∫

ΓN

g2(J3vCR − vCR) ds. (3.10)

Since the integral mean of J3vCR − vCR vanishes on triangles, the trace inequality (Brenner & Scott,
2008, p.282) followed by a Poincaré inequality yields, for E ∈ E(ΓN) and T ∈ T with E ∈ E(T),

‖h−1/2
T (J3vCR − vCR)‖L2(E) � ‖h−1

T (J3vCR − vCR)‖L2(T) + ‖∇NC(J3vCR − vCR)‖L2(T)

� ‖∇NC(J3vCR − vCR)‖L2(T).

Since the integral mean of J3vCR − vCR vanishes on edges, this leads to

∫
E

g2 (J3vCR − vCR) ds � ‖h1/2
T (g2 − ΠEg2)‖L2(E)‖∇NC(J3vCR − vCR)‖L2(T).

Since the integral mean of J3vCR − vCR vanishes on triangles, (3.10) implies

∫
Ω

(Π0σ − σKS) : εNC(vKS) dx

� (‖(σ − Π0σ)(2)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)))‖∇NCvCR‖L2(Ω).

This concludes the proof. �

The nonconforming interpolation operator INC : V → VCR(T ) is defined by (INCv)(mid(E)) =
�

E
v ds

for all E ∈ E \ E(ΓD) and fulfils the integral mean property DNCINC = Π0D in the sense that

DNCINCv|T =
�

T
Dv dx for all T ∈ T and all v ∈ V . (3.11)
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Lemma 3.6 Any βKS∗ ∈ KS∗(T ) with CurlNC βKS∗ ∈ P0(T ; S) satisfies∫
Ω

εNC(INCu − uKS) : CurlNC βKS∗ dx � ‖(Du − Π0Du)(1)‖L2(Ω)‖ CurlNC βKS∗(1)‖L2(Ω).

Proof. According to the definition, βKS∗(1) ∈ CR
(T ) and βKS∗(2) ∈ V 

C(T ). The orthogonalities (3.1)

and CurlNC βKS∗ ∈ S show, for any φC ∈ P1(T ) ∩ CD(Ω), that∫
Ω

εNC(INCu − uKS) : CurlNC βKS∗ dx =
∫

Ω

(∇NCINCu(1) − ∇φC) · CurlNC βKS∗(1) dx.

Since φC ∈ P1(T ) ∩ CD(Ω) is arbitrary, this implies∫
Ω

εNC(INCu − uKS) : CurlNC βKS∗ dx

� min
φC∈P1(T )∩CD(Ω)

‖∇NCINCu(1) − ∇φC‖L2(Ω)‖ CurlNC βKS∗(1)‖L2(Ω). (3.12)

The integral mean property (3.11) of INC and Carstensen et al. (2012a, Theorem 5.1) show

min
φC∈P1(T )∩CD(Ω)

‖∇NCINCu(1) − ∇φC‖L2(Ω) � ‖∇u(1) − ∇NCINCu(1)‖L2(Ω)

= ‖∇u(1) − Π0∇u(1)‖L2(Ω). (3.13)

The combination of (3.12) and (3.13) concludes the proof. �

4. Proof of Theorem 2.1

The main step in the proof of Theorem 2.1 is the error estimate

‖σ − σKS‖L2(Ω) � ‖σ − Π0σ‖L2(Ω) + ‖(Du − Π0Du)(1)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN))

from Theorem 4.4. The discrete-plus-continuous Korn inequality from Theorem 4.1 allows con-
trol of the nonsymmetric term ‖Du − Π0Du‖L2(Ω) in terms of the symmetric stress error ‖σ −
CεNC(vKS)‖L2(Ω). This proves Theorem 2.1.

The remaining parts of this section prove first Theorem 4.1 and then Theorem 4.4.
Theorem 4.1 generalizes the discrete Korn inequality from Kouhia & Stenberg (1995) in that the

underlying function space is V + KS(T ) and not just KS(T ). Then Carstensen & Funken (2001b,
Remark 4.1.v) gives the general warning that the Korn inequality in the form of Theorem 4.1 is only
stated but not proved completely in Bao & Barrett (1998).

Theorem 4.1 (Discrete-plus-continuous Korn inequality) For a triangulation T which fulfils conditions
(c),(d) of Section 2.3, any vNC ∈ V + KS(T ) satisfies

‖DNCvNC‖L2(Ω) � ‖εNC(vNC)‖L2(Ω).

Remark 4.2 The discrete-plus-continuous Korn inequality could be proved for slightly weaker condi-
tions than conditions (c),(d) from Section 2.3 as in the situation of Fig. 2(d). In those situations, the
proof of Theorem 4.1 considers some larger neighbourhoods of the patches. In the situation of Fig. 2(d),
it is not guaranteed that those patches do not become arbitrarily large under some refinement strategies
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and so the constant from the discrete Korn inequality is not uniformly bounded. For the ease of this
presentation and the sake of clarity, the slightly stronger versions (c),(d) are assumed.

The proof of Theorem 4.1 considers a set of vertices Z ⊆N defined by z ∈Z if and only if at least
one of the following conditions (i)–(iii) is fulfilled with α > 0 from conditions (c), (d) of Section 2.3:

(i) The node z ∈N (Ω) is an interior node.

(ii) The node z ∈N (∂Ω) is a boundary node with |νE(1)| > α for all E ∈ E(ωz) for the nodal
patch ωz := int(

⋃{T ∈ T | z ∈ T}), and if |{E ∈ E(ΓD ∩ ω̄z) | |νE(1)| < α}| = 1, then |{E ∈ E(ΓD ∩
ω̄z) | |νE(1)| > α}| > 0.

(iii) The node z ∈N (∂Ω) is a boundary node and there exists an edge E ∈ E(ωz) with N (E) ⊆
N (∂Ω) and |νE(1)| < α, which decomposes the patch ωz in the two domains ω1, ω2 (i.e., ω1, ω2

connected with ω̄1 ∩ ω̄2 = E and ω1 ∪ ω2 ∪ int(E) = ωz). For each of the two domains ω1 and
ω2 there exist E1 ∈ E(∂ω1) ∩ E(ΓD) and E2 ∈ E(∂ω2) ∩ E(ΓD) on the Dirichlet boundary with
|νE1(1)| > α and |νE2(1)| > α, as depicted in Fig. 2(c).

Recall that the generic multiplicative constants hidden in the notation � may depend on α.
The set Z contains all interior nodes and some nodes on the boundary, for which some local discrete

Korn inequality holds on the nodal patches. The proof of Theorem 4.1 uses the fact that, under conditions
(c), (d) of Section 2.3, the set Z is large enough to prove the theorem even if that set is empty and the
mesh is very coarse (without any interior nodes). The first step of this proof is the subsequent lemma.

Lemma 4.3 (Characterization of rigid body motions) Let T be a triangulation which fulfils condi-
tions (c),(d) of Section 2.3 and define Z as above. Then any vKS ∈ KS(T ) with εNC(vKS|ωz) = 0 on
the nodal patch ωz for z ∈Z is continuous on ωz. For E ∈ E(Ω) with |νE(1)| � α, any vKS ∈ KS(T ) with
εNC(vKS|ωE) = 0 on the edge patch ωE := int(

⋃{T ∈ T | E ∈ E(T)}) is continuous on ωE.

Proof. The critical situation concerns horizontal edges as depicted in Fig. 3(a). For interior nodes the
rigid body motions are fixed through two midpoints of those horizontal edges (see Fig. 3(c)). For nodes
on the boundary, condition (iii) guarantees that the rigid body motions are fixed by the boundary condi-
tions. In the case of the edge patches, such critical situations are excluded. �

Proof of Theorem 4.1. Define Γ̃D := ⋃{E ∈ E(ΓD) | |νE(1)| > α or ∃F ∈ E(ΓD) with F |= E and F ∩
E |= ∅}. The point of departure is the discrete Korn inequality for piecewise H1 functions (Brenner,
2004, Equation (1.19)),

‖DNCvNC‖L2(Ω) � ‖εNC(vNC)‖L2(Ω) + ‖vNC‖L2(Γ̃D) +
√ ∑

E∈E(Ω)

|E|−1‖[vNC]E‖2
L2(E)

.

For any vertex z ∈Z set T (z) := {T ∈ T | z ∈ T}, the set of all triangles with vertex z, and define Ez :=
{E ∈ E(Ω ∪ Γ̃D) | z ∈ E and if E ∈ E(Γ̃D) and |νE(1)| < α, then |E(Γ̃D)| > 1} and let ωz := int(

⋃
T (z))

be the nodal patch. On KS(T (z)) := {vKS ∈ P1(T (z), R2) | ∃wKS ∈ KS(T ) s.t. vKS = wKS|ωz} the maps

ρ1(vKS) :=
√∑

E∈Ez

|E|−1‖[vKS]E‖2
L2(E)

and ρ2(vKS) := inf
v∈V(ωz)

‖εNC(vKS − v)‖L2(ωz)

(4.1)
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(a) (b)

(c)

Fig. 3. Illustration of critical situations for Lemma 4.3: (a) an excluded infinitesimal rigid body motion; (b) situation of Fig. 3(a)
embedded in a triangulation, excluded by condition (c); (c) interior patch.

define two seminorms, where

V(ωz) := {w ∈ L2(ωz; R
2) | ∃v ∈ V with w = v|ωz}.

The triangle inequality implies that infimizing sequences vn ∈ V(ωz) in (4.1) are bounded in
H1(ωz; R

2). Since V(ωz) is a closed subspace of the reflexive space H1(ωz; R
2), there exist a subse-

quence vnk and a function v∞ ∈ V(ωz) with vnk ⇀ v∞. This and the weak lower semicontinuity of the
norm ‖ε(•)‖L2(ωz) on V(ωz) imply that the infimum is in fact a minimum.

If ρ2(vKS) = 0 for vKS ∈ KS(T (z)), then there exists some v ∈ V(ωz) with εNC(vKS) = ε(v). There-
fore, wKS := v − vKS ∈ P1(T (z); R

2) is a piecewise rigid body motion. This implies

v ∈ P1(T (z); R
2) ∩ C(ωz; R

2) ⊂ KS(T (z))

and therefore wKS ∈ KS(T (z)). Lemma 4.3 implies that wKS ∈ C(ωz; R
2) is continuous. Hence, vKS =

v − wKS ∈ C(ωz; R
2) and vKS|E ≡ 0 for E ∈ Ez ∪ Γ̃D and therefore ρ1(vKS) = 0. Since ρ1 and ρ2 are

seminorms on the finite-dimensional space KS(T (z)), there exists a constant C(T (z)), such that
ρ1 � C(T (z))ρ2. A scaling argument shows that the constant C(T (z)) is independent of the mesh size
and depends on the minimal angle in T (z) and on α > 0 from conditions (c),(d) of Section 2.3 only.

For E ∈ E(Ω ∪ Γ̃D) with |νE(1)| � α, a similar argument shows the inequality ρ1 � ρ2 for the two
seminorms (of vKS ∈ KS(T (z)))

ρ1(vKS) := |E|−1/2‖[vKS]E‖L2(E)

and
ρ2(vKS) := inf

v∈V(ωE)
‖εNC(vKS − v)‖L2(ωE).

Note that for all E ∈ E(Ω ∪ Γ̃D) with |νE(1)| < α, conditions (c),(d) guarantee the existence of a
node z ∈Z with E ∈ Ez. Since the length of edges E ∈ E(ΓD) on the Dirichlet boundary is bounded
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(|E| � 1), the sum over all vertices z ∈Z and the bounded overlap of the patches show

‖vKS‖L2(Γ̃D) +
√ ∑

E∈E(Ω)

|E|−1‖[vKS]E‖2
L2(E)

�
√ ∑

E∈E(Ω∪Γ̃D)

|E|−1‖[vKS]E‖2
L2(E)

�
√√√√ ∑

E∈E(Ω∪Γ̃D)
|νE(1)|�α

|E|−1‖[vKS]E‖2
L2(E)

+
∑
z∈Z

∑
E∈Ez

|E|−1‖[vKS]E‖2
L2(E)

� inf
v∈V

‖εNC(vKS − v)‖L2(Ω). (4.2)

For vNC ∈ V + KS(T ) and v ∈ V and vKS ∈ KS(T ) with vNC = v + vKS, it holds that [vNC]E = [vKS]E

and vNC|ΓD = vKS|ΓD . Inequality (4.2) implies

‖vNC‖L2(Γ̃D) +
√ ∑

E∈E(Ω)

|E|−1‖[vNC]E‖2
L2(E)

� inf
w∈V

‖εNC(vKS − w)‖L2(Ω)

� ‖εNC(vNC)‖L2(Ω).

�

The remaining part of this section proves Theorem 4.4.

Theorem 4.4 It holds that

‖σ − σKS‖L2(Ω) � ‖σ − Π0σ‖L2(Ω) + ‖(Du − Π0Du)(1)‖L2(Ω)

+ osc(f2, T ) + osc(g2, E(ΓN)).

Remark 4.5 It remains an open question whether one can neglect the term ‖(Du − Π0Du)(1)‖L2(Ω) in
the upper bound in Theorem 4.4; it is not clear how to control this term by the stress error.

The inf–sup condition from Theorem 4.6 plays an important role for the independence from λ in the
proof of Theorem 4.4.

Theorem 4.6 (Inf–sup condition, Kouhia & Stenberg, 1995) Let T satisfy conditions (a),(b) from
Section 2.3. Then it holds that

‖p0‖L2(Ω) � sup
vKS∈KS(T )\{0}

∫
Ω

p0 divNC vKS dx

‖DNCvKS‖L2(Ω)

(4.3)

for all p0 ∈ P0(T ) if ΓN |= ∅ and for all p0 ∈ P0(T ) with
∫

Ω
p0 dx = 0 if ΓN = ∅.

Proof. The first paper (Kouhia & Stenberg, 1995) on this nonconforming FEM aims at an asymptotic
result for sufficiently fine mesh sizes and therefore reasonably ignores the possibly pathological cases
on coarse meshes. Following the arguments of Kouhia & Stenberg (1995, pp. 208–210), one can verify
that condition (a) is stronger than Kouhia & Stenberg (1995, condition (AD), p. 198) but avoids the
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modification of the domain necessary in Kouhia & Stenberg (1995, Step 4 of the proof). In fact, the
proof in Kouhia & Stenberg (1995) reduces the discrete stability to that on the continuous level but
changing the mesh results in changing the domain. One possible criticism is that the change of the
continuous inf–sup constant with respect to the change of the domain is neglected without a detailed
discussion in Kouhia & Stenberg (1995). Conditions (a),(b) of Section 2.3 are sufficient to argue on
the original domain in a way analogous to Kouhia & Stenberg (1995, pp. 208–210). Since there are no
additional ideas in the proof, further details of this technicality are omitted. �

Proof of Theorem 4.4. The triangle inequality implies that it suffices to consider the difference ‖Π0σ −
σKS‖L2(Ω). The L2-orthogonal decomposition in the isochoric and deviatoric part reads

‖Π0σ − σKS‖2
L2(Ω) = ‖ dev(Π0σ − σKS)‖2

L2(Ω) + 1
4‖ tr(Π0σ − σKS)12×2‖2

L2(Ω).

For ΓN = ∅ the homogeneous boundary conditions of u and uKS allow an integration by parts for the
second term. The continuity condition

∫
E[uKS]E ds = 0 for all E ∈ E(Ω) leads to

∫
Ω

tr(Π0σ) dx = 0 =
∫

Ω

tr(σKS) dx, (4.4)

i.e., tr(Π0σ − σKS) ∈ P0(T )/R. Theorem 4.6 guarantees, for ΓN = ∅ and ΓN |= ∅, the existence of vKS ∈
KS(T ) with ‖DNCvKS‖L2(Ω) = 1 and

‖ tr(Π0σ − σKS)‖L2(Ω) �
∫

Ω

tr(Π0σ − σKS) divNC vKS dx

=
∫

Ω

(Π0σ − σKS) : DNCvKS dx −
∫

Ω

dev(Π0σ − σKS) : DNCvKS dx.

The application of Lemma 3.5 to the first term of the right-hand side yields

‖ tr(Π0σ − σKS)‖L2(Ω) � ‖(σ − Π0σ)(2)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN))

+ ‖ dev(Π0σ − σKS)‖L2(Ω).

The analysis of ‖ dev(Π0σ − σKS)‖L2(Ω) remains. Algebraic manipulation shows dev CA : dev CA � A :
CA for all A ∈ R

2×2. Applied to the above situation this reads

‖ dev(Π0σ − σKS)‖2
L2(Ω) �

∫
Ω

(Π0σ − σKS) : εNC(INCu − uKS) dx. (4.5)

The point is that C dev A does not depend on λ. Theorem 3.1 guarantees the existence of αKS ∈ KS(T )

and βKS∗ ∈ KS∗(T ) with the property that CurlNC βKS∗ ∈ P0(T ; S) and Π0σ − σKS = CεNC(αKS) +



20 of 31 C. CARSTENSEN AND M. SCHEDENSACK

CurlNC βKS∗ . Lemmas 3.5 and 3.6 yield

∫
Ω

(Π0σ − σKS) : εNC(INCu − uKS) dx

=
∫

Ω

εNC(αKS) : (Π0σ − σKS) dx +
∫

Ω

CurlNC βKS∗ : εNC(INCu − uKS) dx

� (‖(Π0σ − σ)(2)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)))‖∇NCαKS(2)‖L2(Ω)

+ ‖(Du − Π0Du)(1)‖L2(Ω)‖ CurlNC βKS∗(1)‖L2(Ω). (4.6)

A similar argument as for the decomposition of Π0σ − σKS in the isochoric and the
deviatoric part at the beginning of the proof bounds the term ‖ CurlNC βKS∗(1)‖2

L2(Ω)
by

(CurlNC βKS∗ , C−1 CurlNC βKS∗)C−1 . For this purpose CurlNC βKS∗ is L2-orthogonally decomposed in the
isochoric and the deviatoric part, i.e.,

‖ CurlNC βKS∗‖2
L2(Ω) = ‖ dev(CurlNC βKS∗)‖2

L2(Ω) + 1
4‖ tr(CurlNC βKS∗)12×2‖2

L2(Ω). (4.7)

For ΓN = ∅ the function αKS satisfies∫
Ω

tr(CεNC(αKS)) dx = (2μ + 2λ)

∫
Ω

divNC(αKS) dx

= (2μ + 2λ)
∑
E∈E

∫
E

[αKS]E νE ds = 0.

With (4.4), it follows that
∫

Ω
tr(CurlNC βKS∗) dx = 0. The inf–sup condition for Kouhia–Stenberg

functions, Theorem 4.6, guarantees, for ΓN = ∅ and ΓN |= ∅, the existence of vKS ∈ KS(T ) with
‖DNCvKS‖L2(Ω) = 1 and

‖ tr(CurlNC βKS∗)‖L2(Ω) �
∫

Ω

tr(CurlNC βKS∗) divNC vKS dx.

For βKS∗ = (βCR, βC) with βCR ∈ CR1
N(T ) and βC ∈ P1(T ) ∩ CN(Ω) and vKS = (vC, vCR) with vC ∈

P1(T ) ∩ CD(Ω) and vCR ∈ CR1
D(T ), it follows that

‖ tr(CurlNC βKS∗)‖L2(Ω) �
∫

Ω

(CurlNC βKS∗ − dev CurlNC βKS∗) : DNCvKS dx

� ‖ dev CurlNC β‖L2(Ω)‖DNCvKS‖L2(Ω)

+
∫

Ω

CurlNC βCR · ∇vC dx +
∫

Ω

Curl βC · ∇NCvCR dx. (4.8)

Since ∇vCτE vanishes on ΓD, an integration by parts leads to

∫
Ω

CurlNC βCR · ∇vC dx =
∑

E∈E(Ω)

∫
E
[βCR]E ds∇vC · τE +

∑
E∈E(ΓN)

∫
E
βCR ds∇vC · τE = 0.
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Since ∇βC · τE vanishes on E ∈ E(ΓN),

∫
Ω

Curl βC · ∇NCvCR dx =
∑

E∈E(ΓD)

∫
E

vCR ds(∇βC · τE) +
∑

E∈E(Ω)

∫
E
[vCR]E ds(∇βC · τE) = 0.

Together with (4.7) and (4.8), it follows that

‖ tr(CurlNC βKS∗)‖L2(Ω) + ‖ CurlNC βKS∗‖L2(Ω) � ‖ dev CurlNC βKS∗‖L2(Ω).

Since dev CA : dev CA � A : CA for all A ∈ R
2×2, it follows, as above, that

‖ CurlNC βKS∗‖2
L2(Ω) � (CurlNC βKS∗ , CurlNC βKS∗)C−1 .

Theorem 4.1 implies

‖∇NCαKS(2)‖2
L2(Ω) � ‖εNC(αKS)‖2

L2(Ω) � (CεNC(αKS), CεNC(αKS))C−1 .

The orthogonality of the decomposition Π0σ − σKS = CεNC(αKS) + CurlNC βKS∗ with respect to
(•, •)C−1 , together with the above estimate, implies

‖∇NCαKS(2)‖L2(Ω) + ‖ CurlNC βKS∗‖L2(Ω) �
(∫

Ω

(Π0σ − σKS) : εNC(INCu − uKS) dx

)1/2

.

Inequality (4.6) proves

(∫
Ω

(Π0σ − σKS) : εNC(INCu − uKS) dx

)1/2

� ‖(Π0σ − σ)(2)‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN))

+ ‖(Du − Π0Du)(1)‖L2(Ω).

This and (4.5) conclude the proof of Theorem 4.4. �

5. Proof of Theorems 2.3 and 2.4

The first part of this section proves Theorem 2.3, while the second proves Theorem 2.4.
The proof of Theorem 2.3 is based on the following lemma. It corresponds to Lemma 3.5 for

Crouzeix–Raviart functions.

Lemma 5.1 Any vCR ∈ VCR(T ) satisfies

∫
Ω

(σ̃ − σ̃CR) : DNCvCR dx � (‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ))‖DNCvCR‖L2(Ω).
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Proof. Lemma 3.3 implies, with a piecewise Poincaré inequality for J3 (applied componentwise),

∫
Ω

(σ̃ − σ̃CR) : DNCvCR dx =
∫

Ω

(C̃(DNCINCu) − σ̃CR) : DNCvCR dx

=
∫

Ω

f · (J3vCR − vCR) dx +
∫

Ω

(C̃(DNCINCu) − σ̃ ) : DJ3vCR dx

� ‖hT (f − Π0f )‖L2(Ω)‖(J3vCR − vCR)/hT ‖L2(Ω) (5.1)

+ ‖Π0σ̃ − σ̃‖L2(Ω)‖DJ3vCR‖L2(Ω)

� osc(f , T )‖DNCvCR‖L2(Ω) + ‖Π0σ̃ − σ̃‖L2(Ω)‖DNCvCR‖L2(Ω). �

Proof of Theorem 2.3. The point of departure is an inequality of Carstensen & Rabus (2012, Lemma
3.8),

‖σ̃ − σ̃CR‖2
L2(Ω) �

∫
Ω

(σ̃ − σ̃CR) : (Du − DNCuCR) dx + ‖hT f ‖2
L2(Ω). (5.2)

Define the bubble function bT := (ϕT , ϕT ) ∈ P3(T ; R
2) with ϕT as in the proof of Lemma 3.5. The

property
∫

T bT dx ≈ |T | implies

‖hT f ‖L2(T) � osc(f , T) + ‖hT Π0f ‖L(T)

≈ osc(f , T) +
∣∣∣∣
∫

T
bT · Π0f dx

∣∣∣∣ .

The scaling ‖bT‖L2(T) ≈ hT |T and an integration by parts show

∣∣∣∣
∫

T
bT · Π0f dx

∣∣∣∣ � ‖bT‖L2(T)‖f − Π0f ‖L2(T) +
∣∣∣∣
∫

T
bT · f dx

∣∣∣∣
� osc(f , T) +

∣∣∣∣
∫

T
DbT : (σ − Π0σ) dx

∣∣∣∣ .

Since ‖DbT‖L2(T) ≈ 1 and (A + AT) : (A + AT) � 4A : A, it follows that

∣∣∣∣
∫

T
DbT : (σ − Π0σ) dx

∣∣∣∣ � ‖σ − Π0σ‖L2(T)

� ‖σ̃ − Π0σ̃‖L2(T).

Altogether,

‖hT f ‖L2(T) � osc(f , T) + ‖σ̃ − Π0σ̃‖L2(T).
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This, (5.2) and Lemma 5.1 imply

‖σ̃ − σ̃CR‖2
L2(Ω) �

∫
Ω

(σ̃ − Π0σ̃ ) : (Du − Π0Du) dx +
∫

Ω

(σ̃ − σ̃CR) : DNC(INCu − uCR) dx

+ osc2(f , T ) + ‖σ̃ − Π0σ̃‖2
L2(Ω)

� ‖σ̃ − Π0σ̃‖2
L2(Ω) + osc2(f , T )

+ (‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ))‖DNC(INCu − uCR)‖L2(Ω),

where the last inequality follows from ‖Du − Π0Du‖L2(Ω) � ‖σ̃ − Π0σ̃‖L2(Ω). The Young inequality
2 a b � α a2 + α−1 b2 for α > 0 implies

(‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ))‖DNC(INCu − uCR)‖L2(Ω)

� 1/(4α)(‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ))2 + α‖DNC(INCu − uCR)‖2
L2(Ω).

For sufficiently small α the last term is absorbed. It follows that

‖σ̃ − σ̃CR‖L2(Ω) � ‖σ̃ − Π0σ̃‖L2(Ω) + osc(f , T ).

�

The remaining parts of this section are devoted to the proof of Theorem 2.4, which is based on the
following proposition.

Proposition 5.2 For uKS ∈ KS(T ) and 1 � λ it holds that

min
vC∈VC(T )

|||uKS − vC|||NC � λ1/2 min
v∈V

|||uKS − v|||NC.

Proof. The arguments of Carstensen et al. (2012a, Theorem 5.1) prove the crucial point, namely

min
vC∈VC(T )

‖DNC(vKS − vC)‖L2(Ω) ≈ min
v∈V

‖DNC(vKS − v)‖L2(Ω).

(This is proved for scalar functions and the pure Dirichlet problem in Carstensen et al., 2012a, but the
local arguments in the proof are still valid for the weaker boundary conditions and for two components.)
The estimate

|||vKS|||NC � λ1/2‖εNC(vKS)‖L2(Ω) � λ1/2‖DNCvKS‖L2(Ω)

and

‖DNC(vKS − v)‖L2(Ω) � |||vKS − v|||NC

conclude the proof of the proposition. �

Proof of Theorem 2.4. The proof follows in three steps.
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Step 1. The inclusion VC(T ) ⊂ KS(T ) and Galerkin orthogonality show, together with Proposition 5.2,

|||uKS − uC|||NC � min
vC∈VC(T )

|||uKS − vC|||NC

� λ1/2 min
v∈V

|||uKS − v||| � λ1/2|||u − uKS|||.

This implies the following inequality for the energy norm:

|||u − uC||| � |||u − uKS|||NC + |||uC − uKS|||NC � (1 + λ1/2)|||u − uKS|||NC.

Since |CA|2 � λ (A : CA), it follows that

‖σ − σC‖L2(Ω) � λ1/2|||u − uC||| � λ|||u − uKS|||NC � λ‖σ − σKS‖L2(Ω).

Step 2. The inequalities

‖σ − σKS‖L2(Ω) � ‖σ − σC‖L2(Ω) + osc(f2, T ) + osc(g2, E(ΓN)),

‖σ − σKS‖L2(Ω) � ‖σ̃ − σ̃CR‖L2(Ω) + osc(f2, T ) (if ΓD = ∂Ω)

are direct consequences of Theorems 2.1 and 4.4.
Step 3. The inequality (A + AT) : (A + AT) � 4 A : A implies

(σ − σCR) : (σ − σCR) � (σ̃ − σ̃CR) : (σ̃ − σ̃CR).

From Theorem 4.1 it follows, for σ̃KS := C̃DNCuKS, that

‖σ̃ − σ̃KS‖2
L2(Ω) = μ2‖DNC(u − uKS)‖2

L2(Ω)

+ (2μ(λ + μ) + (λ + μ)2)‖ divNC(u − uKS)‖2
L2(Ω)

� 4μ2‖εNC(u − uKS)‖2
L2(Ω) + (4μλ + λ2)‖ divNC(u − uKS)‖2

L2(Ω)

= ‖σ − σKS‖2
L2(Ω).

Altogether,

‖σ − σCR‖L2(Ω) � ‖σ̃ − σ̃CR‖L2(Ω)

� ‖σ̃ − σ̃KS‖L2(Ω) + osc(f , T )

� ‖σ − σKS‖L2(Ω) + osc(f , T ).

This concludes the proof of Theorem 2.4. �

6. Numerical investigations

This section provides numerical evidence that the claimed equivalence of σCR and σKS is independent
of the parameter λ for the pure Dirichlet problem in linear elasticity and that the dependence of the
equivalence constants in (1.1) on λ = 1.6 × 10k for k = 6, 7, 8, 9 cannot be improved.
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6.1 Preliminaries

Throughout this section, the elastic modulus is E = 105 and the Poisson ratio varies between ν =
0.4, 0.49, 0.499, 0.4999 with corresponding values of μ = E/(2(1 + ν)) and λ = Eν/((1 + ν)(1 −
2ν)) = 1.6 × 10k for k = 6, 7, 8, 9. The initial triangulations T0 of all four numerical examples are
depicted in Figs 4 and 5. The discrete problems are solved on a sequence of triangulations T� obtained by
successive red-refinements; a red-refinement of a triangle subdivides each triangle into four congruent
subtriangles via straight lines through the edges’ midpoints, as depicted in Fig. 4(a).

Since the error is known only in the first example, the averaging error estimator defined in
Carstensen & Funken (2001a, Equation (2.17)) serves as an error indicator. Although the proofs of
efficiency and reliability from Carstensen & Funken (2001a) provide no information about the effi-
ciency and reliability constants, there is numerical evidence that the averaging error estimator often
yields results very close to the exact error (Carstensen & Funken, 2001a). The first example confirms
this observation and so partly justifies the use of this error estimator for the further examples. Let |T |
denote the area of a triangle T ∈ T and τE the tangent of an edge E ∈ E . The residual error estimators

ηC(uC) :=
⎛
⎝∑

T∈T

⎛
⎝|T |‖f ‖2

L2(T) + |T |1/2
∑

E∈E(T)\E(ΓD)

‖[σC]EνE‖2
L2(E)

⎞
⎠

⎞
⎠

1/2

,

ηCR(uCR) :=
⎛
⎝∑

T∈T

⎛
⎝|T |‖f ‖2

L2(T) + |T |1/2
∑

E∈E(T)\E(ΓN)

‖[DNCuCR]EτE‖2
L2(E)

⎞
⎠

⎞
⎠

1/2

,

ηKS(uKS) :=
⎛
⎝∑

T∈T

⎛
⎝|T |‖f ‖2

L2(T) + |T |1/2
∑

E∈E(T)\E(ΓN)

‖[DNCuKS]EτE‖2
L2(E)

+ |T |1/2
∑

E∈E(T)\E(ΓD)

‖(1, 0) · ([σKS]EνE)‖2
L2(E)

⎞
⎠

⎞
⎠

1/2

for CFEM, CR-NCFEM and KS-NCFEM, respectively, are reliable and efficient (Carstensen & Funken,
2001a; Carstensen & Rabus, 2012). In contrast to Carstensen & Funken (2001a), the normal jump of
the second component of the stress is omitted for KS-NCFEM in the spirit of Dari et al. (1995).

A close investigation of the dependency on the parameter λ for ν = 0.4, 0.49, 0.499 and 0.4999 in
the comparison result (1.1) considers the quotients

q(ν, �) := ‖σν − σ
�,ν
C ‖L2(Ω)/‖σν − σ

�,ν
KS ‖L2(Ω) for � = 1, . . . , 9. (6.1)

Here and in Sections 6.2 and 6.4, σν denotes the exact stress for the Poisson ratio ν, and σ
�,ν
C and

σ
�,ν
KS denote, respectively, the discrete stresses of CFEM and KS-NCFEM for the Poisson ratio ν and

the �th red-refinement T� := red(�)(T0) of T0. (For the experiment from Section 6.4 the quotients are
approximated by the corresponding values of the averaging error estimator.)
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6.2 Academic example

Under homogeneous pure Dirichlet boundary conditions, the unit square Ω = (0, 1)2 is loaded with the
applied force

f (x, y) =
(−2μπ3 cos(πy) sin(πy)(2 cos(2πx) − 1)

2μπ3 cos(πx) sin(πx)(2 cos(2πy) − 1)

)

(written as a function of the coordinates x and y) so that (2.1) leads to the exact smooth solution

u(x, y) =
(

π cos(πy) sin2(πx) sin(πy)
−π cos(πx) sin2(πy) sin(πx)

)
.

Given the initial mesh T0 of Fig. 4(b) with one interior node and eight interior edges, the three FEMs
with the number of degrees of freedom lead on each triangulation T� to the discrete stresses σC, σCR, σKS;
on level zero, for instance, ndof = 2 for CFEM, ndof = 16 for CR-NCFEM and ndof = 9 for KS-
NCFEM. The convergence history plot of Fig. 6 displays various errors and error estimators versus
the number of degrees of freedom for the Poisson ratios ν = 0.4, 0.49, 0.499, 0.4999 (from dark to light;
in the color picture in the online edition of this paper the values correspond to red, blue, green, cyan)
for the three FEMs.

The graphs of the averaging error estimators and the exact error of CR-NCFEM and KS-NCFEM
for all values of ν lie on top of each other and the values of the residual error estimator for KS-NCFEM
and also the values of the residual error estimator for CR-NCFEM behave in the same way.

For the initial triangulation T0 of Fig. 4(b) with two degrees of freedom in CFEM, the averaging
error estimator strongly underestimates and is omitted. Apart from that case, the values of the averaging
error estimator are very close to the exact error. This example therefore serves as an empirical validation
of the averaging error estimator in the following examples where it is expected to indicate the (unknown)
errors to high accuracy.

Equivalent convergence rates are observed for all three FEMs with a strong dependency on λ for
CFEM, while the errors in KS-NCFEM and CR-NCFEM are of similar size. Table 1 displays the quo-
tients (6.1) and reveals a linear dependency on λ. This is clear numerical evidence that the dependence
on λ in the first estimate of (1.1) and in Theorem 2.4 is sharp.

(a) (b)

Fig. 4. (a) Red-refined triangle. (b) Initial triangulation T0 on the unit square from Section 6.2.
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(a) (b)

Fig. 5. (a) Initial triangulation T0 on the L-shaped domain in Sections 6.4 and 6.5. (b) Cook’s membrane and initial triangulation
T0 in Section 6.3.

Table 1 Quotient q(ν, �) from (6.1) for CFEM and KS-NCFEM in Section 6.2

ν � = 1 2 3 4 5 6 7 8 9

0.4 0.8461 1.588 2.411 2.947 3.165 3.229 3.246 3.250 3.251
0.49 0.6717 3.327 9.667 17.95 24.84 28.46 29.71 30.05 30.14
0.499 0.6498 4.053 17.61 56.26 127.5 207.0 264.0 289.3 297.3
0.4999 0.6476 4.150 19.52 78.29 277.7 778.8 1556 2301 2755

6.3 Cook’s membrane benchmark

This benchmark in linear elasticity concerns the domain Ω of Fig. 5(b) with vertices (0, 0), (48, 44),
(48, 60), (0, 44) and the Dirichlet boundary ΓD := conv{(0, 0), (0, 44)} and ΓN := ∂Ω \ ΓD. The applied
forces are f ≡ 0 in Ω and g(x) = (0, 1) if x1 = 48 on the right vertical edge of ∂Ω while g ≡ 0 on
the remaining two parts of ΓN. The Neumann boundary of the problem excludes CR-NCFEM. The
estimated errors of CFEM and KS-NCFEM are plotted against the number of degrees of freedom in
Fig. 7. For ν = 0.49, 0.499, 0.4999 the values of the averaging error estimator for KS-NCFEM lie on
top of each other and the values of the residual error estimator for KS-NCFEM behave in the same way.

The locking behaviour of CFEM and the robustness of KS-NCFEM (with respect to λ) is clearly
visible in the sense that the preasymptotic range for CFEM is so big that it covers the full range of our
computational capabilities with the effect that, for ν = 0.4999, none of the computational values are
better than the initial stress approximation (relative to the L2 norm).

Note that the jump in the boundary conditions at the vertex (0, 44) causes a solution u �∈ H2(Ω; R
2)

in agreement with the reduced convergence rates (under uniform mesh refinement) and, hence, the
conditions of Kouhia & Stenberg (1995) are violated.

6.4 L-shaped domain without locking

This example shows that the equivalence constant in the second inequality of (1.1) cannot be replaced
by any negative power of λ. The underlying domain of this example is the L-shaped domain Ω :=
(−1, 1)2 \ [0, 1] × [−1, 0] with ΓD = ∂Ω and the initial mesh T0 of Fig. 5(a). The piecewise constant
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Fig. 6. Estimated errors of CFEM (residual estimator (•), averaging estimator (�) and exact error (◦)), CR-NCFEM (residual
estimator (�), averaging estimator (�) and exact error (♦)) and KS-NCFEM (residual estimator (∗), averaging estimator (×) and
exact error (�)) for ν = 0.4, 0.49, 0.499, 0.4999 (from dark to light; in the color picture in the online edition of this paper the
values correspond to red, blue, green, cyan) on uniform red-refined meshes for the unit square from Section 6.2.

Fig. 7. Estimated errors of CFEM (residual estimator (•) and averaging estimator (�)) and KS-NCFEM (residual estimator (∗)
and averaging estimator (×)) for ν = 0.4, 0.49, 0.499, 0.4999 (from dark to light; in the color picture in the online edition of this
paper the values correspond to red, blue, green, cyan) on uniform red-refined meshes for Cook’s membrane from Section 6.3.
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volume force f reads

f (x, y) :=

⎧⎪⎨
⎪⎩

(0, −1) if x � 0 and y � 0,

(1, −1) if x, y � 0,

(0, 0) if x, y � 0.

Figure 8 displays the averaging and residual error estimators for a sequence of red-refined triangulations
against the number of degrees of freedom. For ν = 0.49, 0.499, 0.4999 the values of the averaging error
estimator lie on top of each other for all three FEMs and the values of the residual error estimator
behave in the same way. In Table 2, the quotients from (6.1) are approximated by the corresponding
values of the averaging estimator. The values of these quotients are all of the same order of magnitude;
this indicates no dependency on λ in the second inequality of (1.1).

Since f is a gradient, we do not expect and do not observe the locking behaviour while λ increases
over several orders of magnitude.

Fig. 8. Estimated errors of CFEM (residual estimator (•) and averaging estimator (�)), CR-NCFEM (residual estimator (�) and
averaging estimator (�)) and KS-NCFEM (residual estimator (∗) and averaging estimator (×)) for ν = 0.4, 0.49, 0.499, 0.4999
(from dark to light; in the color picture in the online edition of this paper the values correspond to red, blue, green, cyan) on the
L-shaped domain from Section 6.4.

Table 2 Approximated quotient q(ν, �) from (6.1) for CFEM and KS-NCFEM in Section 6.4

ν � = 1 2 3 4 5 6 7 8

0.4 1.123 1.502 1.762 1.931 2.037 2.097 2.123 2.118
0.49 1.348 2.057 2.705 3.291 3.807 4.252 4.641 4.989
0.499 1.371 2.130 2.790 3.342 3.869 4.393 4.882 5.334
0.4999 1.373 2.138 2.803 3.336 3.783 4.211 4.666 5.127
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Fig. 9. Estimated error for CFEM (residual estimator (•) and averaging estimator (�)) and KS-NCFEM (residual estimator (∗)
and averaging estimator (×)) for ν = 0.4, 0.49, 0.499, 0.4999 (from dark to light; in the color picture in the online edition of this
paper the values correspond to red, blue, green, cyan) on the L-shaped domain from Section 6.5.

6.5 L-shaped domain with Neumann boundary conditions

This example confirms our theoretical findings in the case of a nonempty Neumann boundary. The
boundary conditions change type at the re-entrant corner point. This means that one cannot expect a
regularity of H3/2+ε for some positive ε. The empirical convergence rate 1/6 of Fig. 9 in terms of the
number of degrees of freedom clearly indicates that u �∈ H3/2(Ω; R

2). This situation excludes even a
mathematical justification via a straightforward though technical generalization of the error analysis
from Kouhia & Stenberg (1995).

The domain Ω and the initial triangulation T0 is as in Section 6.4, while the volume force f reads

f (x, y) :=

⎧⎪⎨
⎪⎩

(0, 0) if x � 0 and y � 0,

(0, 1) if x, y � 0,

(1, 0) if x, y � 0.

The boundary is divided into the Neumann boundary ΓN := {(x1, x2) ∈ ∂Ω | x1 > 0} with applied trac-
tions g ≡ 0 and the Dirichlet boundary ΓD = ∂Ω \ ΓN. Figure 9 displays the estimated errors in terms of
the number of degrees of freedom. For ν = 0.499 and 0.4999, the values of the averaging error estimator
for KS-NCFEM lie on top of each other and the values of the residual error estimator for KS-NCFEM
behave in the same way. The equivalence of KS-NCFEM and CFEM up to a multiplicative factor which
scales linearly in λ is visible also for this singular problem. The numerical experiments provide striking
empirical evidence for robustness with respect to the locking behaviour and to possible singularities and
mark the superiority of the somehow bizarre but simple and well-justified KS-NCFEM.
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