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Abstract An adaptive finite element algorithm for problems in elastoplasticity with
hardening is proven to be of optimal convergence with respect to the notion of approx-
imation classes. The results rely on the equivalence of the errors of the stresses and
energies resulting from Jensen’s inequality. Numerical experiments study the influ-
ence of the hardening and bulk parameters to the convergence behavior of the AFEM
algorithm. This is the first optimal adaptive FEM for a variational inequality.
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1 Introduction

Elastoplasticity with hardening is of great importance in many problems of struc-
tural engineering. Well-known models are given by linear kinematic hardening and
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isotropic hardening allowing for the modeling of elastoplastic deformation in an incre-
mental sense [7,19,24]. One pseudo time-step of the elastoplastic model is given by
a variational inequality which is equivalent to a minimization problem with a non-
differentiable dissipation functional arising from the plastic flow law.

Adaptive finite element methods are well-established to address exact solutions of
lower regularity. Empirical evidence shows that efficient simulations converge with
optimal rates in a sequence of automatic mesh-refinement steps. These methods are
usually based on a posteriori error control which has reached a certain maturity for
linear problems. We refer to the monographs [1,3,28] for an overview. The a posteriori
error analysis for variational inequalities in elastoplasticity is established in [2]. In the
presence of hardening, the reduced model without all internal variables is uniformly
convex and hence the dual norms of the residuals from linear elasticity are applicable
and lead to reliable and efficient error control for elastoplasticity with hardening.

Adaptive finite element methods generate a sequence of triangulations and, there-
with, a sequence of approximations via the usual four steps of an adaptive finite element
algorithm (AFEM)

SOLVE → ESTIMATE → MARK → REFINE. (1)

The convergence analysis of such an AFEM algorithm started with the marking due
to Dörfler [15] and was completed with the optimality argument due to Stevenson
[25]. We refer to [13] for linear problems, to [8] for nonlinear problems and to [10]
for mixed methods. The convergence analysis of AFEM algorithms for variational
inequalities is introduced in [6,9].

In this paper, the convergence of the AFEM algorithm is proven for the discretization
of variational inequalities in elastoplasticity. The discretization is based on low-order
finite elements on triangles which are refined by newest vertex bisection. A Dörfler
marking is used in the marking step of (1). The key in the analysis is to show the
equivalence of the errors of the stresses and energies. The convergence analysis was
firstly presented in [12] and relies on the pointwise exactness of the material law.
Jensen’s inequality is applied to the convex dissipation functional and some orthog-
onality relations given by the L2 projection are exploited. The convergence follows
with some contraction argument.

The main result of this paper is the proof of optimal convergence in terms of degrees
of freedom. We emphasize that this result is the first contribution to prove optimality
of the AFEM algorithm for a variational inequality. We apply the methodology of
[13] where the overlay of the triangulation generated by the AFEM algorithm and an
optimal triangulation is considered in terms of an approximation class. Using its con-
vergence property we show that the AFEM algorithm produces triangulations yielding
the same convergence rate as those which are optimal with respect to all admissible
triangulations given by newest vertex bisection.

The remaining parts of this paper are organized as follows. In the Sect. 2, we intro-
duce the formulation of one quasi-static time step in the primal problem of elasto-
plasticity with isotropic as well as linear kinematic hardening. In the Sect. 3, the
equivalence of the energy difference to the stresses is proven and a residual-based
error estimation is introduced along with some basic estimations of the data oscil-
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lations. Moreover, the AFEM algorithm with Dörfler marking is introduced in this
section. The convergence of the AFEM algorithm is proven in Sect. 4, while its opti-
mal convergence is shown in Sect. 5. Numerical experiments are presented in Sect. 6 to
study the influence of the hardening and bulk parameters to the convergence behavior
of the AFEM algorithm. Recall that, throughout this paper, the expression A � B
abbreviates A ≤ C B with a positive constant C and A ≈ B represents A � B � A.
Standard notation on Lebesgue and Sobolev spaces applies throughout the paper and
(·, ·)L2 denotes the L2 inner product.

We explicitly acknowledge that this optimality analysis has been discussed years
ago with Y. Kondratuyck which led to some unpublished work on uniformly convex
minimization.

2 The model of elastoplasticity

Let � ⊂ R
d represent the reference configuration of an elastoplastic body in d =

2, 3 dimensions with Lipschitz boundary ∂� split into a closed Dirichlet part �D of
positive surface measure and a possibly empty Neumann part �N = ∂�\�D with
outer unit normal ν. The surface traction g ∈ L2(�N ; R

d) acts along �N and the
applied volume force reads f ∈ L2(�; R

d). The deformation of the body is described
by the displacement field

u ∈ V := {v ∈ H1(�; R
d)|v = 0 on �D}.

The linearized Green strain tensor is defined by ε(u) := (Du + Du�)/2. The plastic
strain is given by

p ∈ Q := L2
(
�; R

d×d
sym,dev

)

with R
d×d
sym,dev := {q ∈ R

d×d
sym | tr(q) = 0} and trace tr(q) := ∑d

j=1 q j j . The linearized
Green strain is split into an elastic part e and the plastic part p in a small strain
framework as

ε(u) = e + p.

The stress tensor is defined as

σ(u, p) := C(ε(u)− p)

with the isotropic elasticity tensor C assumed to be constant and uniformly elliptic,
i.e.

κC|τ |2 ≤ Cτ : τ for all τ ∈ L2
(
�; R

d×d
sym

)
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with some global constant κC > 0. Using this notation, the strong form of the equi-
librium conditions reads

div σ(u, p)+ f = 0 in � and σν = g on �N . (2)

We consider a linear hardening state law of the form χ = Hp and R = Hα with
the isotropic hardening modulus H > 0 and the hardening tensor H assumed to be
symmetric with κH|τ |2 ≤ (Hτ) : τ for all τ ∈ L2(�; R

k×k
sym ) and the global constant

κH > 0. Here, χ ∈ Q denotes the back stress tensor and α ∈ M := L2(�) the
accumulated plastic strain with R ∈ L2(�) as its dual variable. Rate-independent
plasticity models is assigned by a dissipation potential j = j (q, β) assumed to be
lower semicontinuous, convex, as well as positively homogeneous of degree one. In
the case of isotropic hardening, the dissipation potential reads

j (q, β) :=
{
σy |q| for |q| ≤ β,

∞ else.

Here and throughout this paper, |q| := (q:q)1/2 for the product A:B := ∑d
i, j=1 Ai j Bi j

of two matrices A, B ∈ R
d×d and σy > 0 is a material constant which is referred as

the yield stress. Provided that homogeneous initial conditions holds, the subsequent
inclusion condition follows from the time discrete form of the elastoplastic evolution
law,

(p, α) ∈ ∂ j∗(σ, χ, R).

Here, j∗ is the Legendre–Fenchel transform of j , and ∂ f denotes the subdifferential
of a convex function f [20]. The equivalent dual form reads

(σ, χ, R) ∈ ∂ j (p, α).

This is equivalent to the variational inequality

(Hp − σ(u, p), p − q)L2(�;Rd×d ) + (Hα, α − β)L2(�)

+
∫

�

j (p, α)− j (q, β) dx ≤ 0 for all (p, β) ∈ Q × M. (3)

The multiplication of (2) with test functions plus an integration by parts yields

(σ (u, p), ε(v))L2(�;Rd×d ) = ( f, v)L2(�;Rd ) + (g, v)L2(�N ;Rd ) for all v ∈ V . (4)

The summation of (3) and (4) implies the variational inequality [19,24]

b(z − w) ≤ a(w, z − w)+ ψ(z)− ψ(w) for all z ∈ W (5)
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with the abbreviations w = (u, p, α), z = (v, q, β) ∈ W := V × Q × M and

a(w, z) := (σ (u, p), ε(v)− q)L2(�;Rd×d ) + (Hp, q)L2(�;Rd×d ) + (Hα, β)L2(�),

ψ(z) :=
∫

�

j (q, β) dx,

b(z) := ( f, v)L2(�;Rd ) + (g, v)L2(�N ;Rd ).

The Hilbert space W is equipped with the inner product

(w, z)W := (u, v)H1(�;Rd ) + (p, q)L2(�;Rd×d ) + (α, β)L2(�)

for w = (u, p, α), z = (v, q, β) ∈ W.

The induced norm in W is denoted by ‖z‖W := (z, z)1/2W . The bilinear form a is
symmetric and continuous on W . The linear form b is continuous and the functional
ψ is convex, lower semi-continuous and positive homogeneous. Korn’s inequality
implies that a is W -elliptic, i.e.

κ‖z‖2
W ≤ a(z, z) for all z ∈ W

with the ellipticity constant κ > 0 [19, Eq. (7.52)]. Hence, the weak form (5) has a
unique solution equivalently characterized as the unique minimizer of the functional

E(z) := 1

2
a(z, z)− b(z)+ ψ(z) for z ∈ W.

A simpler model of hardening is given by linear kinematic hardening with the
dissipation potential

j (q, β) := σy |q|.

In this case, the accumulated plastic strain does not appear in the modeling given by
the same variational inequality (5). In other words, the Hilbert space W reduces to
W := V × Q and the bilinear form a to

a(w, z) := (σ (u, p), ε(v)− q)L2(�;Rd×d ) + (Hp, q)L2(�;Rd×d )

for w = (u, p), z = (v, q) ∈ W.

Again, a unique solution is guaranteed [11,19].

Remark 1 The model given by linear kinematic hardening can be extended to mul-
tiyield plasticity to describe nonlinear hardening [11,12]. This is done through an
additive split of the plastic strain into multiple variables each representing the plastic
strain associated to a particular yield surface. The yield surfaces differ only in the
material dependent parameters σy, j and H j describing particular yield stresses and
hardening tensors.
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Remark 2 The case H = 0 models perfect plasticity characterized by the absence of
hardening. In this case, the problem (5) is not well posed and the bilinear form a is
not W -elliptic. However, there exist solution of perfect plasticity in a much weaker
sense [26,27]. Furthermore, the discretized problem may lead to difficulties in the
numerical solution for H close to zero. In any case, stable approximations of the
stress are feasible [12].

In what follows, we will focus on the modeling with isotropic and linear kinematic
hardening. But, all arguments can be transferred to the case of linear kinematic hard-
ening by omitting all terms concerning the accumulated plastic strain. The ellipticity
constant κ arises in the following estimate.

Lemma 1 The minimizer w ∈ W of E and any z ∈ W satisfies

κ‖w − z‖2
W ≤ E(z)− E(w). (6)

Proof From the variational inequality (5), and the W -ellipticity of a, it follows that

κ‖z − w‖2
W ≤ 1

2
a(z − w, z − w) = 1

2
(a(z, z)− a(w,w))− a(w, z − w)

≤ 1

2
(a(z, z)− a(w,w))− b(z − w)+ ψ(z)− ψ(w) = E(z)− E(w).

3 Adaptive finite element discretization

To discretize the variational inequality (5), finite dimensional subspaces V� of V , Q�

of Q and M� of M are introduced. The discrete problem seeks a discrete solution
w� = (u�, p�, α�) ∈ W� := V� × Q� × M� with

b(z� − w�) ≤ a(w�, z� − w�)+ ψ(z�)− ψ(w�) for all z� ∈ W�. (7)

The discrete problem admits a unique solution w� which is also the minimizer of E
over W�.

The subspaces V�, Q� and M� are specified via finite elements on shape regular
triangulations (T�)�∈N0 of � in triangles without hanging nodes. Throughout this
paper, T� is a refinement of an initial triangulation T0. Possible refinements of T0 are
restricted to those resulting from newest vertex bisection. The set of these admissible
refinements is denoted by T.

Let P1(T�) be the space of piecewise affine linear and P0(T�) be the space of
piecewise constant functions with respect to T� and set

V� := P1(T�; R
d) ∩ V, Q� := P0

(
T�; R

d×d
sym,dev

)
, M� := P0(T�).

Moreover, let σ := σ(u, p) and σ� := σ(u�, p�) with u� ∈ V� and p� ∈ Q�. The
following theorem states that the error of stresses is equivalent to the error of energies.
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Theorem 1 The exact and discrete solutions w and w� with stress fields σ and σ�
satisfy

‖σ − σ�‖2
L2(�;Rd×d )

≈ E(w�)− E(w) ≤ (σ� − σ, ε(u� − u))L2(�;Rd×d ).

Proof The variational inequality (5) implies

‖σ − σ�‖2
L2(�;Rd×d )

� a(w� − w,w� − w) ≤ E(w�)− E(w).

Let p̄� ∈ Q� with p̄�|T := |T |−1
∫

T p dx and ᾱ� ∈ M� with ᾱ�|T := |T |−1
∫

T α dx
as well as w̄� := (u�, p̄�, ᾱ�). Since j is convex, Jensen’s inequality yields

j ( p̄�, ᾱ�) ≤ |T |−1
∫

T
j (p, α) dx .

This implies ψ(w̄�) ≤ ψ(w). Thus,

E(w�)− E(w) ≤ a(w�,w� − w)− b(w� − w)+ ψ(w�)− ψ(w)

≤ a(w�, w̄� − w)− b(w̄� − w).

From the orthogonality relations

(q�, p − p̄�)L2(�;Rd×d ) = 0

for all q� ∈ P0(T�; R
d×d) and

(β�, α − ᾱ�) = 0

for all β� ∈ P0(T�), we obtain

a(w�, w̄� − w) = (σ�, ε(u� − u))L2(�;Rd×d ).

From (4), Young’s inequality, and Lemma 1, we conclude

E(w�)− E(w) ≤ a(w�, w̄� − w)− (σ, ε(u� − u))L2(�;Rd×d )

= (σ� − σ, ε(u�)− ε(u))L2(�;Rd×d )

≤ 1

2κ
‖σ − σ�‖2

L2(�;Rd×d )
+ κ

2
‖w� − w‖2

W

≤ 1

2κ
‖σ − σ�‖2

L2(�;Rd×d )
+ 1

2
(E(w�)− E(w))

with the ellipticity constant κ . This completes the proof.

The assertion of Theorem 1 remains valid for discretization spaces defined on
refinements T�+m of T� with m ≥ 1.
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Corollary 1 It holds

‖σ� − σ�+m‖2
L2(�;Rd×d )

≈ E(w�)− E(w�+m)

≤ (σ� − σ�+m, ε(u� − u�+m))L2(�;Rd×d ).

Proof Since W� ⊂ W�+m , the same arguments from the proof of Theorem 1 and
Lemma 1 with w replaced by w�+m prove the assertion.

The residual-based explicit error estimation for the norm ‖ · ‖L2(�;Rd×d ) of stresses
reads [12,19]

η2
�(T ) := |T |‖ f ‖2

L2(T ;Rd )
+ |T |1/2

∑
E∈E(T )

R2
E for T ∈ T�,

RE :=

⎧
⎪⎨
⎪⎩

‖[σ�]νE‖L2(E;Rd ) for E ∈ E�(�),
‖g − σ�νE‖L2(E;Rd ) for E ∈ E�(�N ),

0 for E ∈ E�(�D).

Here and throughout this paper, [·] denotes the jump along an edge E of T� and νE

is a fixed unit normal vector with respect to E . The set E(T ) is the set of all edges
of T ∈ T�. Furthermore, E�(�) is the set of all interior edges of T�, E�(�N ) the set
of all edges on �N , and E�(�D) the set of all edges on �D . The residual-based error
estimator is

η2
� := η2

�(T�), η2
�(M) :=

∑
T ∈M

η2
�(T ) for M ⊂ T�.

With the integral means fT := |T |−1
∫

T f dx and gE := |E |−1
∫

E g ds for E ∈
E�(�N ) we define the oscillations by

osc2( f, T ) := |T |‖ f − fT ‖2
L2(T ;Rd )

,

osc( f,M) :=
( ∑

T ∈M
osc2( f, T )

)1/2

for M ⊂ T�,

osc2(g, E) := |T |1/2‖g − gE‖2
L2(E;Rd )

,

osc(g,F) :=
( ∑

E∈F
osc2(g, E)

)1/2

for F ⊂ E�(�N ).

The oscillations on a triangle K ∈ T� dominate the oscillations on the subtriangula-
tion T�+m(K ) := {T ∈ T�+m | T ⊂ K } and E�+m(F) := {E ∈ E�+m(�N ) | E ⊂ F}
with F ∈ E(K ). In turn, the oscillations are dominated by the local error estimator
η�(K ). This is stated in the following lemma.
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Lemma 2 Any K ∈ T� satisfies

osc2( f, T�+m(K )) ≤ osc2( f, K ) ≤ η2
�(K ),

and any F ∈ E(K ) ∩ E�(�N ) satisfies

osc2(g, E�+m(F)) ≤ osc2(g, F) ≤ η2
�(K ).

Proof We find that f̃ ∈ P0(T�+m(K ); R
d) with f̃ |T := fT and T ∈ T�+m(K ) is the

L2 projection of f on P0(T�+m(K ); R
d) and that fK ∈ P0(T�+m(K ); R

d). Thus,

osc2( f, T�+m(K )) =
∑

T ∈T�+m (K )

|T |‖ f − fT ‖2
L2(T ;Rd )

≤ |K |
∑

T ∈T�+m (K )

‖ f − fK ‖2
L2(T ;Rd )

= osc2( f, K ).

Since fK is the L2 projection of f in P0(K ; R
d) and 0 ∈ P0(K ; R

d), we have
osc2( f, K ) ≤ |K |‖ f ‖2

L2(K ;Rd )
≤ η�(K ). The second assertion follows by the same

arguments.

It is well known that the estimator η� is reliable and efficient with constants that
only depend on the material and hardening parameters as well as on the initial trian-
gulation T0.

Theorem 2 It holds

‖σ − σ�‖L2(�;Rd×d ) � η� � ‖σ − σ�‖L2(�;Rd×d ) + osc( f, T�)+ osc(g, E�(�N )).

Proof See [12] for a proof.

The error estimator remains reliable on the set of triangles refined from level � to
level �+ m. This set is denoted by T�\T�+m := {T ∈ T� | T /∈ T�+m}. Note the set of
unrefined triangles is given by T� ∩ T�+m .

Theorem 3 (Discrete reliability) It holds

E(w�)− E(w�+m) � ‖σ�+m − σ�‖2
L2(�;Rd×d )

� η2
�(T�\T�+m).

Proof The Scott–Zhang interpolation on T�\T�+m of u� − u�+m defines v� ∈ V� with
u� − u�+m − v� = 0 on T� ∩ T�+m . Corollary 1 and

(σ�+m − σ�, ε(v�))L2(�;Rd×d ) = 0
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imply

‖σ� − σ�+m‖2
L2(�;Rd×d )

� (σ�+m − σ�, ε(u�+m − u� − v�))L2(�;Rd×d )

= ( f, u�+m − u� − v�)L2(�;Rd ) − (σ�, ε(u� − u�+m − v�))L2(�;Rd×d ).

This and other arguments from [13,25] prove the assertion. Since the remaining details
are the same for linear problems, they are omitted here.

Algorithm 1 The AFEM algorithm.

Input: Loads f ∈ L2(�), g ∈ L2(�N ), initial triangulation T0, bulk parameter 0 < θ ≤ 1.

for � = 0, 1, . . . do

SOLVE: Compute the solution w� ∈ W� of (7).

ESTIMATE: For all T ∈ T�, compute the estimated error η�(T ).

MARK: Determine the set M� of all elements marked for refinement by Dörfler marking/bulk chasing,
i.e. compute M� ⊂ T� of minimal cardinality |M�| with

θη2
� ≤ η2

�(M�). (8)

REFINE: Refine all elements in M� with newest vertex bisection strategy, where green, blue and
bisec3 refinement patterns from Fig. 1 are allowed to be used to compute the regular refinement T�+1.

end for

Output: Sequence of shape regular triangulations (T�)�∈N0
⊂ T, sequence of discrete solutions

(w�)�∈N0
in the nested spaces (W�)�∈N0

.

Algorithm 1 describes the AFEM algorithm used for adaptive refinement. It consists
in loops over SOLVE, ESTIMATE, MARK, and REFINE steps as introduced in (1). In
the SOLVE step, an appropriate solution scheme for the discretization of elastoplastic
problems has to be applied. We refer to modified Newton’s methods [14,17,21,29] and
to algorithms of predictor-corrector type [19]. Due to its implementational simplicity,
we use Uzawa’s method based on a discretized mixed variational formulation which
is equivalent to the discrete variational inequality (7) [16,18]. We emphasize that
efficient Newton-type methods as referred above should be preferred because of their
much better convergence properties. Dörfler marking is used in the MARK step [15],
and newest vertex bisection is applied in the REFINE step, see Fig. 1.

(a) green (b) blueleft (c) blueright (d) bisec3

Fig. 1 Possible refinements of a triangle in the AFEM algorithm. Thick lines denote refinement edges for
subsequent newest vertex bisection
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4 Convergence of the AFEM algorithm

The point of departure for the AFEM convergence analysis is the error estima-
tor reduction for increasing refinement levels � ∈ N. For this purpose, define the
patches ωE := int(T ∪ T ′) for T, T ′ ∈ T� and E ∈ E(T ) ∩ E(T ′) as well as
ωT := ⋃

E∈E(T ) ωE . Note that the trace theorem and the shape regularity of T� imply

‖[σ�+m − σ�]νE‖L2(E;Rd ) � |E |−1/2‖σ�+m − σ�‖L2(ωE ;Rd×d ) for E ∈ E�(�),
‖(σ�+m − σ�)νE‖L2(E;Rd ) � |E |−1/2‖σ�+m − σ�‖L2(ωE ;Rd×d ) for E ∈ E�(�N ).

(9)

In the following, we apply similar techniques as proposed in [13]. In particular, we
make use of the identity

(a + b)2 = min
0<t<∞

(
(1 + t)a2 + (1 + 1/t)b2

)
for a, b ≥ 0. (10)

Lemma 3 There exists a constant �0 > 0 such that

η2
�+m(T ) ≤ (1 + λ)η2(T )+�0(1 + 1/λ)‖σ�+m − σ�‖2

L2(ωT ;Rd×d )

for λ > 0 and T ∈ T� ∩ T�+m .

Proof The triangle inequality leads to

|η�+m(T )− η�(T )|

≤ |T |1/4
⎛
⎝ ∑

E∈E(T )∩E�(�)

(‖[σ�+m]νE‖L2(E;Rd ) − ‖[σ�]νE‖L2(E;Rd )

)2

+
∑

E∈E(T )∩E�(�N )

(‖gE − σ�+mνE‖L2(E;Rd ) − ‖gE − σ�νE‖L2(E;Rd )

)2

⎞
⎠

1/2

≤ |T |1/4
⎛
⎝ ∑

E∈E(T )∩E�(�)
‖[σ�+m − σ�]νE‖2

L2(E;Rd )

+
∑

E∈E(T )∩E�(�N )

‖(σ� − σ�+m)νE‖2
L2(E;Rd )

⎞
⎠

1/2

.

The combination with (9)–(10) concludes the proof.

Lemma 4 There exists a constant �1 > 0 such that

η2
�+m(T�+m(K )) ≤ 2−1/2(1 + λ)η2

�(K )+�1(1 + 1/λ)‖σ�+m − σ�‖2
L2(ωK ;Rd×d )

for λ > 0 and K ∈ T�\T�+m .
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Proof The refinement patterns of the newest vertex bisection of the AFEM algorithm
from Fig. 1 shows |T | ≤ |K |/2 for all T ∈ T�+m(K ). Thus, (10) implies

η2
�+m(T�+m(K ))

=
∑

T ∈T�+m (K )

|T |‖ f ‖2
L2(T ;Rd )

+
∑

T ∈T�+m (K )

|T |1/2
∑

E∈E(T )∩E�+m(�)

‖[σ�+m]νE‖2
L2(E;Rd )

+
∑

E∈E(T )∩E�+m(�N )

‖(gE − σ�+m)νE‖2
L2(E;Rd )

≤ |K |/2
∑

T ∈T�+m (K )

‖ f ‖2
L2(T ;Rd )

+ (1 + 1/λ)
∑

T ∈T�+m (K )

|T |1/2
∑

E∈E(T )∩E�+m(�)

‖[σ�+m − σ�]νE‖2
L2(E;Rd )

+
∑

E∈E(T )∩E�+m(�N )

‖(σ�+m − σ�)νE‖2
L2(E;Rd )

+ (|K |/2)1/2(1 + λ)
∑

F∈E(K )∩E�(�)
‖[σ�]νF‖2

L2(F;Rd )

+
∑

F∈E(K )∩E�(�N )

‖(gF − σ�)νF‖2
L2(F;Rd )

.

The assertion follows from the definition of η2(K ) and (9).

Theorem 4 There exists a constant� > 0 which only depends on the initial triangu-
lation T0 such that the estimators η� and η�+m satisfy

η�+m ≤
(
η2
�(T� ∩ T�+m)+ 2−1/2η2

�(T�\T�+m)
)1/2 +�‖σ�+m − σ�‖L2(�;Rd×d ).

Proof From Lemmas 3 and 4, we obtain

η2
�+m = η2

�+m(T� ∩ T�+m)+ η2
�+m(T�\T�+m)

≤ (1 + λ)
(
η2
�(T� ∩ T�+m)+ 2−1/2η2

�(T�\T�+m)
)

+ 4(1 + 1/λ)max{�0,�1}‖σ�+m − σ�‖2
L2(�,Rd×d )

.

The assertion directly follows from (10).

The following corollary is a direct consequence of the Dörfler marking (8).

Theorem 5 Given the bulk parameter 0 < θ ≤ 1 and the constant � > 0 from
Theorem 4, then ρ1 := (1 − θ + 2−1/2θ)1/2 < 1 satisfies

η�+1 ≤ ρ1η� +�‖σ�+1 − σ�‖L2(�;Rd×d ).
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Proof The Dörfler marking (8) implies

θη2
� ≤ η2

�(M�) ≤ η2
�(T�\T�+1) = η2

� − η2
�(T� ∩ T�+1).

This leads to

η2
�(T� ∩ T�+1) ≤ (1 − θ)η2

� .

Theorem 4 yields

η�+1 ≤
(
(1 − θ)η2

� + 2−1/2
(
η2
� − η�(T� ∩ T�+1)

))1/2 +�‖σ�+1 − σ�‖L2(�;Rd×d )

≤
(
(1 − θ)η2

� + 2−1/2
(
η2
� − (1 − θ)η2

�

))1/2 +�‖σ�+1 − σ�‖L2(�;Rd×d )

= ρ1η� +�‖σ�+1 − σ�‖L2(�;Rd×d ).

The convergence of the AFEM algorithm directly results from the convergence of
the weighted sum

ξ2
� := η2

� + βδ�

with δ� := E(w�)− E(w) and some β ≥ 0. This is stated in the following theorem.

Theorem 6 There exist parameters β ≥ 0 and 0 < ρ2 < 1 such that

ξ�+1 ≤ ρ2ξ� for all � ∈ N0.

Proof For 0 < λ < ρ−2
1 − 1 Theorem 5 and (10) imply

η2
�+1 ≤ (1 + λ)ρ2

1η
2
� + (1 + 1/λ)�2‖σ�+1 − σ�‖2

L2(�;Rd×d )
.

For ρλ := (1 + λ)ρ2
1 < 1 and a further constant βλ ≥ 0, which also depends on λ,

Corollary 1 shows

η2
�+1 ≤ ρλη

2
� + βλ(E(w�)− E(w�+1)) = ρλη

2
� + βλδ� − βλδ�+1.

From Theorems 1 and 2, we conclude that there exists some constant C > 0 such that
δ� ≤ Cη2

� . With

ϑ := (1 − ρλ)βλ

βλC + 1
and ρ2 := ρλ + ϑC < 1,

we obtain

η2
�+1 + βλδ�+1 ≤ ρλη

2
� + βλδ� ≤ ρ2η

2
� + (βλ − ϑ)δ� = ρ2(η� + βλδ�).
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5 Optimal convergence of the AFEM algorithm

The convergence rate of the AFEM algorithm is described via the notion of an approx-
imation class. For this purpose, set

W (T ) := P1(T ; R
d)× P0

(
T ; R

d×d
sym,dev

)
× P0(T )

for a triangulation T and denote the minimizer of E over W (T ) bywT ∈ W (T ). Fur-
thermore, recall the definition of T as the set of refinements of the initial triangulation
T0 resulting from newest vertex bisection and define the subset T(N ) := {T ∈ T |
|T | − |T0| ≤ N } for N ∈ N. Given any 0 < s < ∞ define the semi-norm

|(w, f, g)|As

:= sup
N∈N

N s min
T ∈T(N )

(
osc2( f, T )+ osc2(g, E(�N ))+ E(wT )− E(w)

)1/2

and the approximation class

As :=
{
(w, f, g) ∈ W × L2(�; R

d)× L2(�N ; R
d) | |(w, f, g)|As < ∞

}
.

The main result of this paper states the optimal convergence of the AFEM algorithm
with respect to the energy and in the norm ‖ · ‖L2(�,Rd×d ) of stresses.

Theorem 7 There exist 0 < θ0 ≤ 1 and a constant C(s) > 0 such that for all bulk
parameters 0 < θ ≤ θ0 of the AFEM algorithm it holds

(|T�| − |T0|)s(E(w�)− E(w)+ osc2( f, T�)+ osc2( f, E�(�N )))
1/2

≤ C(s)|(w, f, g)|As . (11)

Furthermore, there exists a constant C̄(s) > 0 such that

(|T�| − |T0|)s(‖σ − σ�‖2
L2(�;Rd×d )

+ osc2( f, T�)+ osc2(g, E�(�N )))
1/2

≤ C̄(s)|(w, f, g)|As . (12)

The remaining part of this section is devoted to the proof in four steps.
Step 1. Given 0 < τ < 1 and (w, f, g) ∈ As , choose a minimal N� ∈ N such that

|(w, f, g)|As ≤ τξ�N s
� .

Such a minimal N� satisfies

N� ≤ 2(N� − 1) ≤ 2|(w, f, g)|1/sAs
(τξ�)

−1/s . (13)
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The definition of the approximation class As implies the existence of a triangulation
T̃� ∈ T(N�) and a discrete solution w̃� ∈ W (T̃�) such that

E(w̃�)− E(w)+ osc2( f, T̃�)+ osc2(g, Ẽ�(�N )) ≤ N−2s
� |(w, f, g)|2As

≤ (τξ�)
2

(14)
with the set Ẽ�(�N ) of all edges of T̃� on �N .

Step 2 considers the (unique) smallest common refinement T� ⊕ T̃� ∈ T of T� and T̃�
[13], which satisfies

|T� ⊕ T̃�| − |T�| ≤ |T̃�| − |T0|.

Notice carefully that

|T�\(T� ⊕ T̃�)| ≤
∑

T ∈T�\(T�⊕T̃�)

(|(T� ⊕ T̃�)(T )| − 1)

= |(T� ⊕ T̃�)\T�| − |T�\(T� ⊕ T̃�)| = |T� ⊕ T̃�| − |T�|

and conclude

|T�\(T� ⊕ T̃�)| ≤ |T̃�| − |T0| ≤ N�. (15)

Step 3 proves

η� � η�

(
T�\(T� ⊕ T̃�)

)
. (16)

In fact, Theorems 2 and 3 imply

η2
� � ‖σ − σ�‖2

L2(�;Rd×d )
+ osc2( f, T�)+ osc2(g, E�(�N ))

� ‖σ̂� − σ�‖2
L2(�;Rd×d )

+ ‖σ − σ̂�‖2
L2(�;Rd×d )

+ osc2( f, T�)+ osc2(g, E�(�N ))

� η2
�(T�\(T� ⊕ T̃�))+ E(ŵ�)− E(w)+ osc2( f, T� ⊕ T̃�)+ osc2(g, Ê�(�N )).

Here, Ê�(�N ) is the set of all edges of T� ⊕ T̃� on �N and σ̂� := σ(û�, p̂�) with the
discrete solution ŵ� := (û�, p̂�, α̂�) ∈ WT�⊕T̃� . Note

osc2( f, T�) = osc2( f, T� ∩ (T� ⊕ T̃�))+ osc2( f, T�\(T� ⊕ T̃�))
≤ osc2( f, T� ⊕ T̃�)+ η2

�(T�\(T� ⊕ T̃�)).

Lemma 2 and (14) yield

E(ŵ�)− E(w)+ osc2( f, T� ⊕ T̃�)+ osc2(g, Ê�(�N ))

≤ E(w̃�)− E(w)+ osc2( f, T̃�)+ osc2(g, Ẽ�(�N ))

≤ (τξ�)
2 � τ 2η2

� .
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Hence, η2
� � η2

�(T�\(T� ⊕ T̃�))+ τ 2η2
� . The estimate (16) follows with a sufficiently

small τ > 0.

Step 4 utilizes the BDV-Theorem [5] for newest-vertex bisection, namely

|T�| − |T0| ≤ |T�\T0| � |M0 ∪ · · · ∪ M�−1|. (17)

The estimate (16) implies the existence of a parameter 0 < θ0 ≤ 1 so that θ0η
2
� ≤

η2
�(T�\(T� ⊕ T̃�)). This means that T�\(T� ⊕ T̃�) also satisfies the bulk criterion (8)

for all bulk parameters 0 < θ ≤ θ0. Since M� is of minimal cardinality, (13) and (15)
imply

|M�| ≤ |T�\(T� ⊕ T̃�)| ≤ N� ≤ 2|(w, f, g)|1/sAs
(τξ�)

−1/s .

The estimate (17) leads to

|T�| − |T0| �
�−1∑
k=0

|Mk | � |(w, f, g)|1/sAs
τ−1/s

�−1∑
k=0

ξ
−1/s
k .

Theorem 6 with 0 < ρ2 < 1 yields

ξ� ≤ ρ�−k
2 ξk for 0 ≤ k ≤ �.

Hence,

�−1∑
k=0

ξ
−1/s
k ≤ ξ

−1/s
�

�−1∑
k=0

ρ
(�−k)/s
2 ≤ ξ

−1/s
�

ρ
1/s
2

1 − ρ
1/s
2

.

Therefore,

ξ�(|T�| − |T0|)s � ρ2

τ(1 − ρ
1/s
2 )s

|(w, f, g)|As .

The definition of ξ� as well as Theorems 1 and 2 eventually yield the assertion (11).
The assertion (12) directly follows from Theorem 1 and (11). ��

6 Numerical results

The numerical experiments of this section study the influence of the hardening ten-
sor H and the choice of the bulk parameter θ to the convergence properties of the
AFEM algorithm. In the first experiment, we consider the L-shaped domain � :=
[0, 1]2\[0, 0.5]2 and apply Hooke’s material law with Lame’s constants λ := 1000
and μ := 1000. The volume force is set to f := 0 on � and the surface traction
to g := (0.75, 0)� on [0, 1] × {1}. We prescribe homogeneous Dirichlet boundary
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Fig. 2 Displacement and plastic/elastic zone for σy = 2.5 and a ξ = 0.1, b ξ = 1, c ξ = 10, d ξ = 100

conditions on �D := [0, 0.5] × {0}. The hardening tensor is defined as H := ξI with
ξ > 0 and identity tensor I. In Fig. 2, adaptive meshes after 30 refinements with the
bulk parameter θ := 0.1 and the hardening parameter ξ ∈ {0.1, 1, 10, 100} are shown.
In this experiment, the yield stress is set to σy := 2.5. The figures show

λ� := σ−1
y | dev(σ (u�, p�)− Hp�)|
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Fig. 3 Estimated error for
different hardening parameters ξ
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indicating p� = 0 if λ� < 1 [23]. We observe high yielding of the material for
the lowest hardening parameter ξ = 0.1 resulting from tension on [0, 1] × {1}.
The adaptive refinements resolve the singularity at the reentrant corner at (0, 0) as
well as the transition regions from elasticity (λ� < 1) to plasticity (λ� = 1). In
Fig. 3, the estimated error η� is plotted for the different hardening parameters with
respect to the number of degrees of freedom (ndof). For the moderate hardening para-
meters ξ = 10 or ξ = 100, we find nearly parallel estimated convergence rates.
This is not the case for the small hardening parameters ξ = 1 and ξ = 0.1. The
corresponding convergence rates seem to have slightly smaller slopes than the rates
given by the moderate hardening parameters. The reason for this observation could
be the essentially smaller ellipticity constant κ which directly influences the effi-
ciency and reliability constants of the estimator described by Theorem 2. This, in
turn, may lead to a larger pre-asymptotic region of the convergence. Note that ξ tend-
ing to zero leads to the case of perfect plasticity. The problem (5) is no longer well
posed in this case since the bilinear form a is not guaranteed to be W -elliptic. For ξ
close to zero, numerical algorithms may often fail to solve the discretized problem in
practice.

The estimated error for several bulk parameters

θ ∈ {0.1, 0.25, 0.5, 0.9, 0.95, 1} (18)

is shown in the Figs. 4 and 5. Here, the hardening parameter is set to ξ := 100
and the yield stress to σy := 1.25. Obviously, the convergence rates resulting from
the adaptive refinements (θ < 1) have a larger slope than the uniform refinements
(θ = 1). In fact, the low regularity properties of the solution resulting from the
singularity at the reentrant corner and the elastoplastic material modeling prevents
better convergence rates in the case of uniform refinements. Furthermore, we observe
that the pre-asymptotic region is more distinct in comparison to the results of Fig. 3.
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Fig. 4 Estimated error for
adaptive and uniform
refinements
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Fig. 5 Zoom of Fig. 4
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This may result from the smaller yield stress in this parameter configuration leading
to a larger region of plastic deformation, see Fig. 6b.

Theorem 7 states the existence of a certain limit θ0 so that optimal convergence
rates are ensured for all bulk parameters smaller than this limit. Figure 5 shows a
zoom of Fig. 4. Therein, we observe that the bulk parameter θ = 0.5 seems to be a
candidate of such a limit in the selection (18) of bulk parameters, i.e. the convergence
rates (≈O(ndof−1/2)) are not improved if smaller bulk parameters are chosen. The
adaptive mesh for this bulk parameter is depicted in Fig. 6a where, again, the singularity
at the reentrant corner and the transition regions are resolved by adaptivity.

To estimate the limit θ0 more precisely, we may have a closer look at the proof of
Theorem 7 (Step 3 and Step 4) where θ0 is presumed as
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Fig. 6 a Adaptive mesh for θ = 0.5. b Displacement and plastic/elastic zone for σy = 1.25 and ξ = 100

Fig. 7 Number of degrees of
freedom (ndof) versus number
of refinement steps
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θ0 = Ceff − τ̃

(1 + ε)Crel

with the efficiency constant Ceff > 0 of Theorem 2 and the discrete reliability constant
Crel > 0 of Theorem 3 as well as some parameters 0 < τ̃ < Ceff and ε > 0. Thus,
θ0 := min{CeffC

−1
rel , 1} may be an appropriate choice.
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Fig. 8 a Coarse mesh of the benchmark problem. b Adaptive mesh for θ = 0.1

Recall that in each refinement step a non-linear problem has to be solved which
produces the largest computational amount. Hence, it is favorable to choose a bulk
parameter which is as large as possible since this reduces the number of refinement
steps in the AFEM algorithm. In Fig. 7, the number of degrees of freedom (ndof)
versus the number of refinement steps are plotted. We see that these numbers differs
strongly, in particular, the smaller the bulk parameter is chosen. Thus, to ensure optimal
convergence rates with minimal computational amount, it is reasonable to choose the
limit θ0 as bulk parameter.

In the first experiment, we observe that local refinements result from different types
of sources, the reentrant corner and the elastoplastic material modeling. In the second
experiment of this section, we consider a problem where local refinements only result
from elastoplasticity. The configuration of this experiment is based on the benchmark
problem as introduced, for instance, in [4,22]. In this problem, the upper left quarter
of a stretched square with a hole is considered. The quarter may be described by

� := (0, 10)2\{(x, y) ∈ R
2 | (x − 10)2 + y2 ≤ 1}.

Again, we use Hook’s law, here with modulus of elasticity E := 206900 and Poisson’s
ratio ν := 0.29. The volume force is set to f := 0 on � and the surface traction is
set to g := (0.75, 0)� on [0, 10] × {10}. The yield stress is set to σy := 400. In
accordance to the benchmark problem, we use the boundary conditions u2 := 0 on
[0, 9] × {0} and u1 := 0 on {10} × [1, 10]. The hardening tensor is defined as above
via ξ := 10000.

In Fig. 8a, the coarse mesh is depicted that is used in the experiment where the hole
at the bottom right corner is approximated during the refinement process. Figure 8b
shows the adaptive mesh after 39 refinement steps with bulk parameter θ := 0.1.
The local refinements coincide with the plastic zone that is indicated by λ� = 1 in
Fig. 9. The convergence of the adaptive scheme is depicted in Fig. 10. We observe

123



C. Carstensen et al.

Fig. 9 Plastic and elastic zones
indicated by λ�

Fig. 10 Estimated error for
adaptive and uniform
refinements of the benchmark
problem
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that the convergence rates resulting from the adaptive refinements are clearly of the
order O(ndof−1/2)whereas the convergence rates resulting from uniform refinements
(θ = 1.0) are slightly smaller than these rates.

Recall that the mesh size of uniformly refined meshes is O(ndof−1/2), the conver-
gence rates of the proposed adaptive scheme with low order finite elements seem to
be optimal in both experiments as predicted.
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