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This paper enfolds a medius analysis for the Stokes equations and compares different
finite element methods (FEMs). A first result is a best approximation result for a P1 non-
conforming FEM. The main comparison result is that the error of the P2 P0-FEM is a lower
bound to the error of the Bernardi–Raugel (or reduced P2 P0) FEM, which is a lower bound
to the error of the P1 non-conforming FEM, and this is a lower bound to the error of the
MINI-FEM. The paper discusses the converse direction, as well as other methods such as
the discontinuous Galerkin and pseudostress FEMs.
Furthermore this paper provides counterexamples for equivalent convergence when
different pressure approximations are considered. The mathematical arguments are various
conforming companions as well as the discrete inf-sup condition.
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1. Introduction

Given some external force f ∈ L2(Ω;R2) in some polygonal Lipschitz domain Ω , the Stokes equations seek the velocity
field u ∈ H1

0(Ω;R2) := {u ∈ H1(Ω;R2) | u|∂Ω = 0 in the sense of traces} and the pressure distribution p ∈ L2
0(Ω) := {q ∈

L2(Ω) | ´
Ω

q dx = 0} with

−�u + ∇p = f and div u = 0 in Ω. (1.1)

This paper compares several standard mixed finite element methods for the numerical approximation of the unknown
solution pair (u, p) ∈ H1

0(Ω;R2) × L2
0(Ω) in terms of accuracy. Comparison results for the Poisson model problem of [7,12]

give rise to the conjecture that first-order finite element methods (FEMs) for the Stokes problem are comparable in the
sense that their errors on the same mesh are equivalent up to multiplicative constants, which are independent of the
local mesh-size. The aim of this paper is to investigate the comparability of FEMs that are conceptually very different. The
considered FEMs are MINI-FEM, CR-NCFEM, P2 P0-FEM and BR-FEM (cf. Figs. 1–2). Since they use different continuous and
discontinuous approximations of the velocity and/or the pressure, the approximation properties of the ansatz spaces do not
allow for equivalence but only for a comparison in one direction.

The constraint div u = 0 excludes standard piecewise affine FEMs based on continuous piecewise affine approximations of
the velocity components (see, e.g., [8]). The MINI-FEM from Fig. 1(a) (see Section 2.3 for a precise definition) is a conforming
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Fig. 1. MINI-FEM and CR-NCFEM for the Stokes equations.

Fig. 2. P2 P0-FEM and BR-FEM for the Stokes equations.

method which fulfils the constraint div u = 0 in a weak sense only. It is based on a piecewise affine approximation of the
velocity with an additional bubble function on each triangle for each component of the velocity.

The P1 non-conforming FEM, CR-NCFEM, from Fig. 1(b) (see Section 2.3 for the precise definition), however, fulfils this
constraint element-wise. While for the MINI-FEM the best approximation result∥∥∇(u − uMINI)

∥∥ + ‖p − pMINI‖ � min
vMINI∈V MINI(T )

∥∥∇(u − vMINI)
∥∥ + min

qMINI∈P1(T )∩C(Ω)∩L2
0(Ω)

‖p − qMINI‖

is a direct consequence of the conformity and stability, this paper proves the best approximation result∥∥∇NC(u − uCR)
∥∥ + ‖p − pCR‖ � min

vCR∈V CR(T )

∥∥∇NC(u − vCR)
∥∥ + min

qCR∈P0(T )∩L2
0(Ω)

‖p − qCR‖ + osc( f ,T )

for the CR-NCFEM. The notation A � B abbreviates the inequality A � C B with a mesh-size independent generic constant
C > 0. The constant C may depend on the minimal angle in the triangulation but not on the local mesh-size. The best
approximation result leads to the comparison∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ �
∥∥∇(u − uMINI)

∥∥ + ‖p − pMINI‖ + ‖hT f ‖
with the additional term ‖hT f ‖ with the piecewise constant mesh-size hT .

The P2 P0-FEM and the BR-FEM, from Fig. 2(a) and 2(b), approximate the velocity by piecewise P2 and some enriched P1
functions and the pressure by piecewise constant functions. The conformity of the P2 P0-FEM and the inclusion V BR(T ) ⊆
V P2(T ) for the underlying finite element spaces of the velocity approximation of BR-FEM and P2 P0-FEM imply∥∥∇(u − uP2)

∥∥ + ‖p − pP2‖ �
∥∥∇(u − uBR)

∥∥ + ‖p − pBR‖.
Since there exist examples where the convergence of the P2 P0-FEM is of second order and the BR-FEM is a first order
method the converse direction of this estimate cannot be expected to hold in general (see Remark 4.5). The use of a
conforming companion of the non-conforming solution uCR ∈ V CR(T ) of the CR-NCFEM yields∥∥∇(u − uBR)

∥∥ + ‖p − pBR‖ �
∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖.
Altogether, the main comparison results of this paper read∥∥∇(u − uP2)

∥∥ + ‖p − pP2‖ �
∥∥∇(u − uBR)

∥∥ + ‖p − pBR‖
�

∥∥∇NC(u − uCR)
∥∥ + ‖p − pCR‖

�
∥∥∇(u − uMINI)

∥∥ + ‖p − pMINI‖ + ‖hT f ‖. (1.2)

Furthermore this paper discusses the pressure approximation by piecewise constant functions and by continuous piece-
wise affine functions. Theorem 4.9 proves that

‖p − ph‖ �
∥∥∇(u − uH )

∥∥ + ‖p − pH‖ + osc( f ,T )

does not hold in general for solutions (uh, ph) and (uH , pH ) of FEMs with piecewise constant resp. continuous piecewise
affine approximations of the pressure. On the other hand, the continuity of the pressure approximation is not a natural
restriction and causes that

‖p − pH‖ �
∥∥∇NC(u − uh)

∥∥ + ‖p − ph‖
does not hold in general.
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Additionally the paper includes a comparison of CR-NCFEM with a pseudostress approximation.
All of the results are proven by medius analysis. This means that arguments from a posteriori techniques lead to a priori

results. The notation medius analysis was introduced in [17] and this technique leads to results which rely on minimal
regularity of the weak solution (i.e. f ∈ L2(Ω)) and hold even for arbitrary coarse meshes.

For all four considered FEMs a three-dimensional extension [6] exists. In this situation all the arguments of this paper
are applicable and the results remain true.

The remaining parts of this paper are organised as follows. Section 2 introduces the FEMs as well as underlying triangula-
tions, corresponding operators, and other notation. Section 3 performs a medius analysis of the CR-NCFEM. The comparison
results are stated and proven in Section 4. In particular Section 4.1 presents the comparison between CR-NCFEM and MINI-
FEM, Section 4.2 is devoted to the comparison between P2 P0-FEM, BR-FEM and CR-NCFEM. The comparison of the pressure
approximations is performed in Section 4.3 and the inclusion of further methods is discussed in Section 4.4. Section 5 il-
lustrates the behaviour of the four FEMs from Fig. 1 and Fig. 2 in numerical experiments. Section 5.3 summarises the paper
with some conclusions.

Throughout this paper, standard notation on Lebesgue and Sobolev spaces is employed and ‖ • ‖ := ‖ • ‖L2(Ω) ab-
breviates the L2 norm. The formula A � B abbreviates an inequality A � C B for some mesh-size independent, positive
generic constant C ; A ≈ B abbreviates A � B � A. The space C(Ω) denotes the space of continuous functions and
C0(Ω) := C(Ω) ∩ H1

0(Ω) the space of continuous functions with homogeneous Dirichlet boundary conditions. A : B denotes

the scalar product A : B = ∑2
j,k=1 A jk B jk for A, B ∈ R2×2.

2. Preliminaries

This section introduces precise definitions of the Stokes equations and the FEMs under consideration.

2.1. Stokes equations

Given a right-hand side f ∈ L2(Ω;R2) in some polygonal Lipschitz domain, the weak formulation of (1.1) seeks u ∈
H1

0(Ω;R2) and p ∈ L2
0(Ω) with

ˆ

Ω

∇u : ∇v dx −
ˆ

Ω

p div v dx =
ˆ

Ω

f · v dx for all v ∈ H1
0

(
Ω;R2),

ˆ

Ω

q div u dx = 0 for all q ∈ L2
0(Ω). (2.1)

2.2. Triangulations

A shape-regular triangulation T of a bounded Lipschitz domain Ω ⊆ R2 is a set of triangles T ∈ T such that Ω = ⋃
T

and any two distinct triangles are either disjoint or share exactly one common edge or one vertex. Let N denote the set of
vertices of T and E the set of edges. The set of interior nodes is defined by N (Ω) := N ∩ Ω and the set of interior edges
by E(Ω) := {E ∈ E | E � ∂Ω}. Let N (T ) denote the nodes of a triangle T ∈ T , T (z) := {T ∈ T | z ∈ N (T )} the elements
which contain the node z ∈N , and |T (z)| the number of elements in T (z). Let

Pk
(
T ;Rm) := {

vk : T →Rm
∣∣ ∀ j = 1, . . . ,m, the component vk( j) of vk is a polynomial of total degree � k

}
,

Pk
(
T ;Rm) := {

vk : Ω →Rm
∣∣ ∀T ∈ T , vk|T ∈ Pk

(
T ;Rm)}

denote the set of piecewise polynomials and abbreviate Pk(T ) = Pk(T ;R). The L2 projection

Π0 : L2(Ω;Rm) → P0
(
T ;Rm)

is given by T -piecewise constant functions or vectors (Π0 f )|T := ffl
T f dx := ´

T f dx/|T | for all T ∈ T with area |T | and all
f ∈ L2(Ω;Rm). Let hT ∈ P0(T ) denote the piecewise constant mesh-size with hT |T := diam(T ) for all T ∈ T .

For piecewise affine functions vh ∈ P1(T ) the T -piecewise gradient ∇NC vh with (∇NC vh)|T = ∇(vh|T ) for all T ∈ T and,
accordingly, divNC τh for τh ∈ P1(T ;R2) exists with ∇NC vh ∈ P0(T ;R2) and divNC τh ∈ P0(T ).

The oscillations of f ∈ L2(Ω) read osc( f ,T ) := ‖hT ( f − Π0 f )‖.

2.3. Finite element methods

This section presents different finite element methods that have a piecewise polynomial approximation of the velocity
field. The pressure is approximated with either piecewise constants or continuous piecewise affine functions. All methods
are first-order accurate for a general smooth solution (u, p) ∈ H2(Ω;R2) × H1(Ω).
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CR-NCFEM. The P1 non-conforming finite element method CR-NCFEM after Crouzeix and Raviart [13] employs the space

CR1
0(T ) := {

vCR ∈ P1(T )
∣∣ vCR is continuous at midpoints of interior edges and

vanishes at midpoints of boundary edges
}
.

The velocity is approximated in the space

V CR(T ) := CR1
0(T ) × CR1

0(T ).

The CR-NCFEM seeks (uCR, pCR) ∈ V CR(T ) × (P0(T ) ∩ L2
0(Ω)) such thatˆ

Ω

∇NCuCR : ∇NC vCR dx −
ˆ

Ω

pCR divNC vCR dx =
ˆ

Ω

f · vCR dx,

ˆ

Ω

qCR divNC uCR dx = 0 (2.2)

for all vCR ∈ V CR(T ) and qCR ∈ (P0(T ) ∩ L2
0(Ω)); the CR-NCFEM is inf-sup stable [13].

MINI-FEM. In the MINI-FEM [1] the continuous piecewise affine approximation for the velocity is enlarged with cubic
bubble functions, namely by elements of

B := {
ψ ∈ P3(T ) ∩ C0(Ω)

∣∣ ∀T = conv{a,b, c} ∈ T ∃αT ∈ R: ψ |T = αT ϕaϕbϕc
}
,

where ϕa (resp. ϕb , ϕc) is the piecewise affine nodal basis function of the node a (resp. b, c). The MINI-FEM space for the
velocity reads

V MINI(T ) := ((
P1(T ) ∩ C0(Ω)

) + B
)2

.

The MINI-FEM seeks (uMINI, pMINI) ∈ V MINI(T ) × (P1(T ) ∩ C(Ω) ∩ L2
0(Ω)) withˆ

Ω

∇uMINI : ∇vMINI dx −
ˆ

Ω

pMINI div vMINI dx =
ˆ

Ω

f · vMINI dx,

ˆ

Ω

qMINI div uMINI dx = 0 (2.3)

for all vMINI ∈ V MINI(T ) and qMINI ∈ (P1(T ) ∩ C(Ω) ∩ L2
0(Ω)); the MINI-FEM is inf-sup stable [1].

P2 P0-FEM. The P2 P0-FEM seeks uP2 ∈ V P2(T ) := (P2(T ) ∩ C0(Ω))2 and pP2 ∈ P0(T ) ∩ L2
0(Ω) withˆ

Ω

∇uP2 : ∇vP2 dx −
ˆ

Ω

pP2 div vP2 dx =
ˆ

Ω

f · vP2 dx,

ˆ

Ω

qP2 div uP2 dx = 0 (2.4)

for all vP2 ∈ V P2(T ) and all qP2 ∈ P0(T ) ∩ L2
0(Ω); the P2 P0-FEM is inf-sup stable [5].

BR-FEM. The BR-FEM after Bernardi and Raugel [4] is a modification of the P2 P0-FEM. It is sometimes also called reduced
P2 P0-FEM [5]. For a node a ∈ N , let ϕa denote the P1 nodal basis function and for an edge E ∈ E , let νE denote the outer
unit normal. The space of edge bubbles reads

BE := {
ψ ∈ (

P2(T ) ∩ C0(Ω)
)2 ∣∣ ∀E = conv{a,b} ∈ E ∃αE ∈R: ψ |E = αEϕaϕbνE

}
.

The BR-FEM approximation seeks uBR ∈ V BR(T ) := (P1(T ) ∩ C0(Ω))2 ⊕BE and p ∈ P0(T ) ∩ L2
0(Ω) withˆ

Ω

∇uBR : ∇vBR dx −
ˆ

Ω

pBR div vBR dx =
ˆ

Ω

f · vBR dx,

ˆ

Ω

qBR div uBR dx = 0 (2.5)

for all vBR ∈ V BR(T ) and all qBR ∈ P0(T ) ∩ L2(Ω); the BR-FEM is inf-sup stable [4].
0
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2.4. Conforming companions

The design of three conforming companions to any vCR ∈ V CR(T ) begins with the map J1 : CR1
0(T ) → P1(T ) ∩ C0(Ω)

defined by

J1 vCR :=
∑

z∈N (Ω)

∣∣T (z)
∣∣−1 ∑

T ∈T (z)

vCR|T (z)ϕz,

where ϕz denotes the conforming nodal basis function with respect to the node z. For a given edge E := conv{a,b} ∈ E let
bE := 6ϕaϕb denote the edge bubble function. Then the operator J2 : CR1

0(T ) → P2(T ) ∩ C0(Ω) is given by

J2 vCR := J1 vCR +
∑

E∈E(Ω)

( 
E

(vCR − J1 vCR)ds

)
bE .

For any triangle T ∈ T with T := conv{a,b, c} define the element bubble function bT := 60ϕaϕbϕc . The operator J3 :
CR1

0(T ) → P3(T ) ∩ C0(Ω) is given by

J3 vCR := J2 vCR +
∑
T ∈T

( 
T

(vCR − J2 vCR)dx

)
bT .

Lemma 2.1. (See [9].) The operators Jk : CR1
0(T ) → (Pk(T ) ∩ C0(Ω)), k = 1,2,3, defined above satisfy the conservation propertiesˆ

T

∇NC(vCR − Jk vCR)dx = 0 for all T ∈ T and k = 2,3, (2.6)

ˆ

T

(vCR − J3 vCR)dx = 0 for all T ∈ T , (2.7)

and the approximation and stability properties for k = 1,2,3∥∥h−1
T (vCR − Jk vCR)

∥∥ ≈ ∥∥∇NC(vCR − Jk vCR)
∥∥ ≈ min

ϕ∈H1
0(Ω)

∥∥∇NC(vCR − ϕ)
∥∥ � ‖∇NC vCR‖. (2.8)

3. Medius analysis for CR-NCFEM

This section states and proves a best-approximation result for CR-NCFEM.

Theorem 3.1 (Best-approximation result). Any vCR ∈ V CR(T ) and qCR ∈ P0(T ) ∩ L2
0(Ω) satisfy∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ �
∥∥∇NC(u − vCR)

∥∥ + ‖p − qCR‖ + osc( f ,T ).

The error analysis of [13] employs a Strang–Fix decomposition. To obtain an error estimate this approach requires u ∈
H2(Ω;R2) and p ∈ H1(Ω). For the medius analysis of Theorem 3.1 this assumption is dropped.

Proof of Theorem 3.1. The non-conforming interpolation operator denoted by INC : H1
0(Ω;R2) → V CR(T ) is defined by

INC v
(
mid(E)

) :=
 

E

v ds for all v ∈ H1
0

(
Ω;R2) and all E ∈ E(Ω).

The error of the velocity satisfies∥∥∇NC(u − uCR)
∥∥2 =

ˆ

Ω

∇NC(u − INCu) : ∇NC(u − uCR)dx +
ˆ

Ω

∇NC(INCu − uCR) : ∇NC(u − uCR)dx.

In order to estimate the second term consider the function J3 wCR for wCR := INCu − uCR from Lemma 2.1. Since
divNC wCR = 0, the second term readsˆ

Ω

∇NC(INCu − uCR) : ∇NC(u − uCR)dx

=
ˆ

∇u : ∇NC(wCR − J3 wCR)dx +
ˆ

f · ( J3 wCR − wCR)dx +
ˆ

p div J3 wCR dx.
Ω Ω Ω
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Since Π0∇( J3 wCR) = ∇NC wCR, this equalsˆ

Ω

(∇u − Π0∇u) : ∇NC(wCR − J3 wCR)dx +
ˆ

Ω

( f − Π0 f )( J3 wCR − wCR)dx +
ˆ

Ω

(p − Π0 p)div J3 wCR dx

�
∥∥∇NC(u − INCu)

∥∥∥∥∇NC(wCR − J3 wCR)
∥∥ + ∥∥∇NC( J3 wCR − wCR)

∥∥osc( f ,T ) + ‖p − Π0 p‖ ‖∇ J3 wCR‖.
The stability of J3 leads toˆ

Ω

∇NC(u − uCR) : ∇NC(INCu − uCR)dx �
(∥∥∇NC(u − INCu)

∥∥ + osc( f ,T ) + ‖p − Π0 p‖) ‖∇NC wCR‖.

This implies∥∥∇NC(u − uCR)
∥∥ �

∥∥∇NC(u − INCu)
∥∥ + ‖p − Π0 p‖ + osc( f ,T ).

For the error of the pressure the discrete inf-sup condition implies that there exists vCR ∈ V CR(T ) with ‖∇NC vCR‖ = 1 such
that

‖pCR − Π0 p‖ �
ˆ

Ω

(pCR − Π0 p)div vCR dx.

The integral mean property Π0∇ J3 vCR = ∇NC vCR implies

‖pCR − Π0 p‖ =
ˆ

Ω

∇NCuCR : ∇NC vCR dx −
ˆ

Ω

f · vCR dx −
ˆ

Ω

Π0 p divNC J3 vCR dx

=
ˆ

Ω

∇NC(uCR − u) : ∇NC vCR dx +
ˆ

Ω

f · ( J3 vCR − vCR)dx +
ˆ

Ω

(p − Π0 p)div J3 vCR dx

+
ˆ

Ω

(∇u − Π0∇u) : ∇NC(vCR − J3 vCR)dx.

The approximation and stability properties of J3 and Π0∇ J3 vCR = ∇NC vCR imply

‖pCR − Π0 p‖ �
∥∥∇NC(u − uCR)

∥∥ + osc( f ,T ) + ‖p − Π0 p‖.
This concludes the proof. �
4. Comparison results

This section establishes comparisons between the FEMs introduced in Section 2.3.

4.1. CR-NCFEM versus MINI-FEM

This section compares CR-NCFEM with MINI-FEM.

Theorem 4.1. The solution (uCR, pCR) ∈ V CR(T ) × (P0(T ) ∩ L2
0(Ω)) of the CR-NCFEM and the solution (uMINI, pMINI) ∈ V MINI(T ) ×

(P1(T ) ∩ C0(Ω) ∩ L2
0(Ω)) of the MINI-FEM satisfy∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ �
∥∥∇(u − uMINI)

∥∥ + ‖p − pMINI‖ + ‖hT f ‖.

Remark 4.2. Since CR-NCFEM has a piecewise constant and the MINI-FEM has a globally continuous and piecewise affine
pressure approximation, the converse estimate cannot be expected to hold in general, cf. Theorem 4.8. The question remains
open whether the unnatural continuous or the natural discontinuous pressure approximation is better.

The following lemma is essential in the proof of Theorem 4.1.

Lemma 4.3. Let uMINI = ulin + ub ∈ V MINI(T ) denote the solution of (2.3) which is split into ulin ∈ (P1(T ) ∩ C0(Ω))2 and ub ∈ B2 .
Then it holds∥∥∇(u − ulin)

∥∥ �
∥∥∇(u − uMINI)

∥∥ + ‖p − pMINI‖ + osc( f ,T ).
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Proof. The arguments of [18] determine the bubble part ub with a general function f ∈ L2(Ω). For bT = ϕaϕbϕc ∈ B with
the piecewise affine nodal basis functions ϕa,ϕb,ϕc of a,b, c and T = conv{a,b, c} ∈ T this yields

ub|T =
ˆ

T

bT dx bT (Π0 f − ∇pMINI)/‖∇bT ‖2 +
ˆ

T

( f − Π0 f )bT dx bT /‖∇bT ‖2.

This implies

‖∇ub‖ �
∥∥hT (Π0 f − ∇pMINI)

∥∥ + osc( f ,T ).

It holds

�ub|T =
ˆ

T

bT dx(∇pMINI − Π0 f )/‖∇bT ‖2�bT +
ˆ

T

( f − Π0 f )bT dx�bT /‖∇bT ‖2.

Since ∇pMINI − Π0 f is piecewise constant and
´

T bT dx�bT ≈ 1 the previous two displayed formulas result in

‖∇ub‖ �
∥∥hT (∇pMINI − Π0 f − �ub)

∥∥ + osc( f ,T ).

The bubble-technique of [20] leads to the efficiency∥∥hT (∇pMINI − Π0 f − �ub)
∥∥ �

∥∥∇(u − uMINI)
∥∥ + ‖p − pMINI‖ + osc( f ,T ).

This and a triangle inequality conclude the proof. �
Proof of Theorem 4.1. Theorem 3.1 implies for uMINI = ulin + ub with ulin ∈ (P1(T ) ∩ C0(Ω))2 and ub ∈ B2 that∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ �
∥∥∇(u − ulin)

∥∥ + ‖p − Π0 pMINI‖ + osc( f ,T )

�
∥∥∇(u − ulin)

∥∥ + ‖p − pMINI‖ + ‖pMINI − Π0 pMINI‖ + osc( f ,T ).

Since �NCulin = 0, a Poincaré inequality yields

‖pMINI − Π0 pMINI‖ � ‖hT ∇pMINI‖ �
∥∥hT (∇pMINI + f + �NCulin)

∥∥ + ‖hT f ‖.
The efficiency [19] of ‖hT (∇pMINI + f + �NCulin)‖ reads∥∥hT (∇pMINI + f + �NCulin)

∥∥ �
∥∥∇(u − ulin)

∥∥ + ‖p − pMINI‖ + osc( f ,T ).

This and Lemma 4.3 conclude the proof. �
4.2. Comparison of P2 P0-FEM, BR-FEM and CR-NCFEM

First, Theorem 4.4 and Theorem 4.6 of this section complete the comparisons (1.2). Afterwards, Theorem 4.7 discusses
converse directions of those comparisons.

Theorem 4.4. The solution (uBR, pBR) ∈ V BR(T )× (P0(T )∩ L2
0(Ω)) of the BR-FEM and the solution (uP2, pP2) ∈ V P2(T )× (P0(T )∩

L2
0(Ω)) of the P2 P0-FEM satisfy∥∥∇(u − uP2)

∥∥ + ‖p − pP2‖ �
∥∥∇(u − uBR)

∥∥ + ‖p − pBR‖.

Proof. This follows from the conformity and stability of the P2 P0-FEM and V BR(T ) ⊆ V P2(T ). �
Remark 4.5. The P2 P0-FEM and the BR-FEM approximate the velocity field with different polynomial order. In the case of
vanishing pressure p = 0 and smooth regularity, the P2 P0-FEM converges like a second-order method, whereas the BR-FEM
remains a first-order method. Thus, the converse estimate cannot be expected to hold in general.

Theorem 4.6. It holds∥∥∇(u − uBR)
∥∥ + ‖p − pBR‖ �

∥∥∇NC(u − uCR)
∥∥ + ‖p − pCR‖.
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Proof. Consider the operator J1 : CR1
0(T ) → P1(T ) ∩ C0(Ω) from Lemma 2.1. Since the BR-FEM is a conforming FEM, it

holds ∥∥∇(u − uBR)
∥∥ + ‖p − pBR‖ �

∥∥∇(u − J1uCR)
∥∥ + ‖p − pCR‖.

(Here, the operator J1 is applied componentwise.) The operator J1 satisfies∥∥∇(u − J1uCR)
∥∥ �

∥∥∇NC(u − uCR)
∥∥ + ∥∥∇NC(uCR − J1uCR)

∥∥ �
∥∥∇NC(u − uCR)

∥∥.

This concludes the proof. �
Theorem 4.7. It holds∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ �
∥∥∇(u − uP2)

∥∥ + ‖p − pP2‖ + osc( f ,T ) + ‖∇uP2 − Π0∇uP2‖ (4.1)

as well as∥∥∇NC(u − uCR)
∥∥ + ‖p − pCR‖ �

∥∥∇(u − uBR)
∥∥ + ‖p − pBR‖ + osc( f ,T ) + ‖∇uBR − Π0∇uBR‖. (4.2)

Proof. Theorem 3.1 immediately leads to∥∥∇(u − uCR)
∥∥ + ‖p − pCR‖ �

∥∥∇NC(u − INCuP2)
∥∥ + ‖p − pP2‖ + osc( f ,T ).

A triangle inequality and ∇NC INCuP2 = Π0∇uP2 yield∥∥∇NC(u − INCuP2)
∥∥ �

∥∥∇(u − uP2)
∥∥ + ‖∇uP2 − Π0∇uP2‖.

This completes the proof of (4.1).
The same arguments prove the second statement. �

4.3. Non-comparability of continuous and discontinuous pressure

This section compares FEMs with pressure approximations in P1(T ) ∩ C(Ω) ∩ L2
0(Ω) with FEMs with pressure approxi-

mations in P0(T ) ∩ L2
0(Ω). The subsequent theorems state that FEMs with discontinuous pressure approximations are not

comparable with FEMs with continuous pressure approximation.

Theorem 4.8. Let (uh, ph) denote the discrete solution of the Stokes equations for any finite element method which approximates the
pressure p with continuous piecewise affine functions ph ∈ P1(T )∩C(Ω)∩ L2

0(Ω). Let (uH , pH ) denote the solution of the CR-NCFEM,
the P2 P0-FEM or the BR-FEM. Then, in general,

‖p − ph‖ 
� ∥∥∇NC(u − uH )
∥∥ + ‖p − pH‖.

Proof. On the rhombus Ω := conv{(1,0), (0,1), (−1,0), (0,−1)} define the right-hand side fε ∈ L2(Ω;R2) by fε(x, y) =
ε−1(1,0) for −ε � x � ε and fε(x, y) = 0 otherwise. Then (u, pε) ∈ H1

0(Ω;R2) × L2
0(Ω) with u ≡ 0 and

pε(x, y) :=
{−1 for −1 � x � −ε,

x/ε for −ε � x � ε,

1 for ε � x � 1

satisfiesˆ

Ω

∇u : ∇v dx −
ˆ

Ω

pε div v dx =
ˆ

Ω

fε · v dx,

ˆ

Ω

q div u dx = 0.

Let T := {T1, T2} be the triangulation with T1 := conv{(0,1), (0,−1), (1,0)} and T2 := conv{(0,−1), (0,1), (−1,0)}. The
solutions of the CR-NCFEM for the right-hand side fε ∈ L2(Ω;R2) then read (uCR, pCR) ∈ V CR(T ) × P0(T ) with uCR ≡ 0 and
pCR(x, y) = −1 + ε/2 + 2ε2/3 for −1 � x � 0 and pCR(x, y) = 1 − ε/2 − 2ε2/3 for 0 � x � 1. This shows ‖u − uCR‖ = 0 and
‖pε − pCR‖ → 0 for ε → 0. On the other hand, symmetry arguments imply ph|{0}×(−1,1) = 0 and, hence, ‖pε − ph‖ � 1. This
proves the assertion in the case that (uH , pH ) is the solution of the CR-NCFEM. Since the P2 P0-FEM and the BR-FEM are
conforming, the best-approximation property implies for the solution (uH , pH ) of the P2 P0-FEM or the BR-FEM that∥∥∇(u − uH )

∥∥ + ‖p − pH‖ � ‖p − pCR‖.
This concludes the proof. �
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Theorem 4.9. Let (uh, ph) denote the discrete solution of the Stokes equations for any (conforming) FEM which approximates the
pressure p with piecewise affine functions and let (uH , pH ) be the solution of the CR-NCFEM, P2 P0-FEM or BR-FEM. Then it holds

‖p − pH‖ 
� ∥∥∇(u − uh)
∥∥ + ‖p − ph‖ + osc( f ,T ). (4.3)

Proof. On the rhombus Ω := conv{(1,0), (0,1), (−1,0), (0,−1)} with the triangulation T := {T1, T2} with T1 := conv{(0,1),

(0,−1), (1,0)} and T2 := conv{(0,−1), (0,1), (−1,0)} and the right-hand side f ≡ (1,0), the exact solution equals u ≡ 0
and p(x, y) = x. This is approximated exactly by any (conforming) FEM with pressure approximation in P1(T ) ∩ C(Ω) ∩
L2

0(Ω). Hence, the right-hand side in (4.3) vanishes. The fact that the exact pressure is not piecewise constant p /∈ P0(T ),
implies for the left-hand side ‖p − pH‖ 
= 0. �
Remark 4.10. Theorem 3.9 of [16] states that if (u, p) ∈ H3(Ω)2 × H2(Ω) the pressure of the MINI-FEM even converges with
the rate of −3/4. This can be seen in Section 5.1 and underlines the above result.

4.4. Further finite elements

This section discusses how the Taylor–Hood-FEM, stabilised P1 P0-FEM, discontinuous Galerkin FEM and a pseudostress
FEM can be included in the comparisons (1.2).

Taylor–Hood. The most common second-order FEM is the Taylor–Hood FEM [6] with P2 velocity approximation and con-
tinuous P1 pressure approximation. The conformity of this method and Lemma 4.3 immediately shows∥∥∇(u − uTH)

∥∥ + ‖p − pTH‖ �
∥∥∇(u − uMINI)

∥∥ + ‖p − pMINI‖
for the solution (uTH, pTH) from the Taylor–Hood FEM. The comparison to the P2 P0-FEM, BR-FEM, and CR-NCFEM is not
clear because of the different ansatz spaces for the pressure.

Stabilised P1 P0-FEM. A direct consequence of Theorem 3.1 is a comparison result for CR-NCFEM with the stabilised
P1 P0-FEM [15]. Let (uh, ph) ∈ P1(T ;R2) × (P0(T ) ∩ L2

0(Ω)) denote the discrete solution of the stabilised P1 P0-FEM, then
the CR-NCFEM is superior in the sense that∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ �
∥∥∇(u − uh)

∥∥ + ‖p − ph‖ + osc( f ,T ).

Discontinuous Galerkin FEM. For the weakly over penalised discontinuous Galerkin FEM (WOPSIP) in [3,2], a similar best-
approximation result to Theorem 3.1 is proven in [2]. Since the norm ‖ • ‖h defined therein equals the norm ‖∇NC • ‖ for
the CR-NCFEM, the two best-approximation results immediately yield equivalence of CR-NCFEM and WOPSIP discontinuous
Galerkin FEM.

Pseudostress FEM. The pseudostress-velocity approximation of the stationary Stokes equations [11] seeks σPS ∈ PS(T ) :=
{(τ1, τ2) ∈ (RT0(T ) × RT0(T )) | τ j ∈ H(div,Ω) for j = 1,2 and

´
Ω

tr(τ1, τ2)dx = 0} and uPS ∈ P0(T ;R2) with
ˆ

Ω

τPS : devσPS dx +
ˆ

Ω

uPS divτPS dx = 0 for all τPS ∈ PS(T ),

ˆ

Ω

vPS divσPS dx =
ˆ

Ω

f · vPS dx for all vPS ∈ P0
(
T ;R2).

Theorem 4.11. The pseudostress approximation satisfies

‖∇u − devσPS‖ + ‖p + trσPS/2‖ �
∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ + osc( f ,T )

� ‖∇u − devσPS‖ + ‖p + trσPS/2‖ + ‖hT f ‖. (4.4)

Proof. Let (̃uCR, p̃CR) ∈ V CR(T ) × P0(T ) ∩ L2
0(Ω) denote the solution to the CR-NCFEM for the right-hand side Π0 f . Let

(•−mid(T )) abbreviate the function (x−mid(T )) for x ∈ T ∈ T with midpoint mid(T ). The solution σPS of the pseudostress
approximation of the Stokes equations [10] reads

σPS = ∇NCũCR − Π0 f

2
⊗ (• − mid(T )

) − p̃CR I2×2. (4.5)

The deviatoric part of a matrix A ∈R2×2 reads dev(A) := A − tr(A)/2I2×2. Since divNC ũCR ≡ 0, it holds
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devσPS = ∇NCũCR − dev

(
Π0 f

2
⊗ (• − mid(T )

))
.

This implies

‖∇u − devσPS‖ �
∥∥∇NC(u − ũCR)

∥∥ + ∥∥dev
(
Π0 f ⊗ (• − mid(T )

))∥∥/2.

For the pressure approximation, the representation formula (4.5) leads to

‖p + trσPS/2‖ � ‖p − p̃CR‖ + ∥∥tr
(
Π0 f ⊗ (• − mid(T )

))∥∥/4.

The orthogonal split in the trace and the deviatoric part and the obvious estimate | • −mid(T )| � hT in Ω lead to∥∥dev
(
Π0 f ⊗ (• − mid(T )

))∥∥ + ∥∥tr
(
Π0 f ⊗ (• − mid(T )

))∥∥ � ‖hT f ‖.
The efficiency of ‖hT f ‖ [14] leads to

‖hT f ‖ �
∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖ + osc( f ,T ).

The discrete inf-sup condition for CR-NCFEM guarantees the existence of vCR ∈ CR1
0(T ) with ‖∇NC vCR‖ = 1 and

‖pCR − p̃CR‖ �
ˆ

Ω

(pCR − p̃CR)divNC vCR dx

=
ˆ

Ω

∇NC(uCR − ũCR) : ∇NC vCR dx +
ˆ

Ω

( f − Π0 f )vCR dx.

This yields

‖pCR − p̃CR‖ �
∥∥∇NC(uCR − ũCR)

∥∥ + osc( f ,T ).

Since divNC uCR = divNC ũCR = 0, the problem (2.2) implies ‖∇NC(uCR − ũCR)‖ � osc( f ,T ). The combination of the previous
inequalities gives the first inequality in (4.4). The same arguments yield the second inequality in (4.4). �
5. Numerical illustration

This section illustrates the behaviour of the CR-NCFEM, the MINI-FEM, the P2 P0-FEM and the BR-FEM in two examples
(Sections 5.1–5.2). Section 5.3 draws some conclusions from the numerical experiments.

5.1. Colliding flow

On the square domain Ω = (−1,1) × (−1,1) with right-hand side f ≡ 0, the exact velocity to the corresponding bound-
ary conditions is given by u(x, y) = (20xy4 − 4x5,20x4 y − 4y5) with pressure p(x, y) = 120x2 y2 − 20x4 − 20y4 − 32/6. The
convergence history plot of Fig. 3 shows the errors√∥∥∇NC(u − uh)

∥∥2 + ‖p − ph‖2

for the discrete solutions (uh, ph) of the CR-NCFEM, the MINI-FEM, the P2 P0-FEM and the BR-FEM plotted against the
number of degrees of freedom. The four FEMs yield the same rate of convergence of −1/2 with respect to the number of
degrees of freedom and the errors are all of the same size.

Fig. 3 shows that the MINI-FEM converges with an improved convergence rate in a pre-asymptotic range. This is due
to the pressure approximation which converges with a rate of −3/4. This numerically highlights the result of Theorem 3.9
from [16] which was stated in Remark 4.10. Fig. 4 clearly shows the difference of convergence rates for the pressure and
velocity approximations. The pressure approximation converges with a rate of −3/4 whereas the velocity converges with a
rate of −1/2 which also explains the overall convergence rate of −1/2 in the asymptotic regime.

5.2. L-shaped domain

On the L-shaped domain Ω = (−1,1) × (−1,1) \ ([0,1] × [−1,0]) with right-hand side f ≡ 0, the exact solution, with
the characteristic singularity at the origin, for the corresponding boundary conditions, reads

u(r,ϑ) =
(

rα((1 + α) sin(ϑ)w(ϑ) + cos(ϑ)wϑ (ϑ))

rα(−(1 + α) cos(ϑ)w(ϑ) + sin(ϑ)wϑ (ϑ))

)
,

p(r,ϑ) = −rα−1((1 + α)2 wϑ (ϑ)wϑϑϑ(ϑ)
)
/(1 − α)
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Fig. 3. Convergence history for the colliding flow of Section 5.1.

Fig. 4. Convergence history for the pressure and velocity approximation of MINI-FEM for the colliding flow of Section 5.1.

Fig. 5. Convergence history for the L-shaped domain of Section 5.2.

in polar coordinates with α = 0.54448373 and

w(ϑ) = (
sin

(
(1 + α)ϑ

)
cos(αω)

)
/(1 + α) − cos

(
(1 + α)ϑ

)
− (

sin
(
(1 − α)ϑ

)
cos(αω)

)
/(1 − α) + cos

(
(1 − α)ϑ

)
.

Fig. 5 shows the equivalence of all four FEMs also for this example with a reduced convergence rate of −1/4 with respect
to the number of degrees of freedom.
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5.3. Conclusions

The considered methods allow for comparison in one direction∥∥∇(u − uP2)
∥∥ + ‖p − pP2‖ �

∥∥∇(u − uBR)
∥∥ + ‖p − pBR‖

�
∥∥∇NC(u − uCR)

∥∥ + ‖p − pCR‖
�

∥∥∇(u − uMINI)
∥∥ + ‖p − pMINI‖ + ‖hT f ‖.

In typical situations, for example, if p 
≡ 0, numerical experiments show, that all the methods (and also stabilised P1 P0,
discontinuous Galerkin, and pseudostress FEMs) exhibit equivalent accuracy on a per-degree-of-freedom basis.

It is clear that this observation disregards other measures for the quality and performance of FEMs such as application-
driven error functionals or even the effort of implementation. Other performance measures may lead to different assess-
ments of the methods in practise.
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