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a b s t r a c t

The adaptive least-squares finite element method (LS-FEM) for the Stokes equations has
recently beenbased on alternative error estimators in BringmannandCarstensen (2016) for
the lowest-order case. Since the first-order div LS-FEM measures the flux errors in H(div),
the data resolution errormeasures the L2 normof the right-hand side f minus the piecewise
polynomial approximationΠkf without amesh-size factor. This enforces separatemarking
with an overall abstract theory (Carstensen and Rabus, 2016). This paper contributes (a)
a discussion of the scaling of the LS-FEM, (b) optimal rates of the adaptive h-version of
any order k, and (c) comparing numerical results in 2D with all details on inhomogeneous
Dirichlet data covered by the analysis.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The least-squares finite element methods (LS-FEMs) for the Stokes equations form a competitive scheme in CFDwith the
minimization of L2 residuals of the divergence of the pseudostress tensor σ in H(div)-conforming Raviart–Thomas spaces of
order k−1 and of the constitutive relation for the gradientDu of the velocity field u inH1-conforming piecewise polynomials
of degree at most kminus the deviatoric part devσ of the pseudostress,

LS(0; σ, u) :=
div σ

2
L2(Ω) +

devσ − Du
2
L2(Ω).

The lowest-order case (k = 1) is equivalent to the nonconforming Crouzeix–Raviart scheme [1, Thm. 2.1], but higher-
order nonconforming schemes are restricted (e.g. to 2D and odd degrees). An adaptive version of a scheme with automatic
recovery of the optimal rate (for corner singularities) appears mandatory for any polynomial degree. It should be remarked,
that conforming finite element methods (e.g. MINI or Taylor–Hood) are empirically observed to improve the convergence
rates through adaptive mesh-refinement but – at the best knowledge of the authors – are not known to lead to optimal
convergence rates. In other words, the optimal convergence rates for the adaptive LS-FEM of any order k of this papermakes
the overall methodology even more competitive.

More information on the history of least-squares finite element schemes may be found in [2] and on the mathematical
foundation of adaptive algorithms in [3]. Quasi-optimality of an adaptive first-order system LS-FEM has been invented for
the 2D Poisson model problem in [4] and exploited for the Stokes equations in [5] for the lowest-order case k = 1 only.
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Numerical experiments show optimal behaviour of an adaptive algorithmwith least-squares formulations driven by the
local contributions of the least-squares functional, e.g., in [6] for the Poisson model problem. However, this approach does
not fit into the known mathematical techniques to guarantee optimal convergence rates [3,7]. The affirmative result in [6]
requires the bulk parameter θ to be close to onewhile the known optimality [3,7] follows exclusively for θ sufficiently small.
An alternative a posteriori error estimator is therefore derived in [5] within the framework of the axioms of adaptivity and
separate marking [7].

Given some right-hand side f ∈ L2(Ω; R2) and piecewise differentiable Dirichlet boundary data g ∈ H1(E(∂Ω); R2) ∩

C(∂Ω; R2) with

∂Ω

g · ν ds = 0 on a bounded simply-connected Lipschitz domainΩ ⊆ R2 with polygonal boundary ∂Ω ,
the Stokes equations seek a velocity field u ∈ A := {v ∈ H1(Ω; R2) : v = g on ∂Ω} and a pressure distribution p ∈ L20(Ω)
(i.e. p ∈ L2(Ω) and


Ω
p dx = 0) with

−1u + ∇p = f and div u = 0 inΩ.
The LS-FEM considers the equivalent first-order system [8]

f + div σ = 0 and devσ − Du = 0 inΩ (1)
with the deviatoric part devσ := σ − tr(σ)/2 I2×2 and seeks a discrete minimizer of the least-squares functional

LS(f ; σ, v) :=
f + div σ

2
L2(Ω) +

devσ − Du
2
L2(Ω) (2)

for σ ∈ 6 := {τ ∈ H(div,Ω; R2×2) : tr τ ∈ L20(Ω)} and u ∈ A. The equivalence of the homogeneous functional LS(0; σ, v)

to the natural norm of the underlying function space 6 × H1
0 (Ω; R2) [8, Thm. 4.2] reads, for all (σ, u) ∈ 6 × H1

0 (Ω; R2),

LS(0; σ, u) ≈
σ

2
H(div,Ω) +

u (3)

and leads to efficiency and reliability of the a posteriori error estimator LS(f ; σLS, uLS) for some discreteminimizer (σLS, uLS).
Section 3 contributes an explicit constant for the norm equivalence and a discussion of its dependence on the domain Ω .
The analysis from [5] for optimal rates of adaptive mesh-refinement requires exact solve to apply an alternative a posteriori
error estimator with the volume contributionsT  div(devσLS − DuLS)


L2(T ) +

T  curl dev(σLS − DuLS)

L2(T )

for any triangle T of area |T | and with the edge contributionsT 1/2[devσLS − DuLS]EνE

L2(E) +

T 1/2[dev(σLS − DuLS)]EτE

L2(E)

with jumps [•]E across an interior edge E plus additional terms on the boundary.
The main result of this paper is the quasi-optimality of the novel adaptive algorithm (with the number |Tℓ| of triangles

in the triangulation Tℓ)

sup
ℓ∈N

Tℓ
 −

T0
 + 1

sLS(f ; σℓ, uℓ)+ osc2(g ′, Eℓ(∂Ω))
1/2

≈
(u, f )As

(4)

with the non-linear approximation class

As :=

(u, f ) ∈ A × L2(Ω; R2) :

(u, f )2As
:= sup

N∈N
N2sE(u, f ,N) < ∞


and the best possible error

E(u, f ,N) := min
T ∈T(N)

min
(τLS,vLS)∈6k−1(T )×A(T )


LS(f ; τLS, vLS)+ osc2(g ′, E(∂Ω))


.

The proofs require a discrete Helmholtz decomposition for any polynomial degree on a simply-connected domain in [9],
which has also been established based on exterior calculus by [10–12].

The paper is organized as follows. Section 2 presents details on the approximation of non-homogeneous Dirichlet
boundary datawith two possible interpolation operators and states the employed LS-FEM for the Stokes equations. Section 3
is devoted to the analysis of the different residuals in the least-squares functional. The statement of the alternative a
posteriori error estimator and the quasi-optimal adaptive algorithm in Section 4 is followed by the main result of this paper
Theorem 4.3 and the proofs of the axioms of adaptivity. Section 5 outlines the proof of the Axiom A3 (discrete reliability).
Numerical experiments conclude this paper in Section 6.

This paper employs standard notation of Sobolev and Lebesgue spacesHk(Ω),H(div,Ω), and L2(Ω) and the correspond-
ing spaces of vector- or matrix-valued functionsHk(Ω; R2), L2(Ω; R2),Hk(Ω; R2×2),H(div,Ω; R2×2), and L2(Ω; R2×2). Let
⟨•, •⟩∂Ω denote the duality pairing of H1/2(∂Ω) and its dual H−1/2(Ω), which extends the L2-scalar product on ∂Ω . Let
||| • ||| := | • |H1(Ω) = ∥D • ∥L2(Ω) abbreviate the energy norm.

Throughout the paper, A . B abbreviates the relation A 6 CB with a generic constant 0 < C which solely depends on
the interior angles ^T of the underlying triangulation T and so solely on the initial triangulation T0; A ≈ B abbreviates
A . B . A.

This paper is restricted to 2D for the ease of this presentation although most of the arguments carry over to 3D as well,
cf. [13] for some additional arguments in 3D and [14] for more involved modifications of the treatment of Dirichlet data.
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2. Preliminaries

2.1. Triangulations

Let T0 denote a shape-regular initial triangulation of the simply-connected polygonal Lipschitz domain Ω into closed
triangles. Any admissible refinement of it in this paper is understood in the context of newest-vertex bisection (NVB), see
e.g. [15–17] for details on this method of mesh-refinement in 2D.

The NVB requires an initial condition on the refinement edges in T0. With reference to [18] for the suppressed details,
this is assumed throughout this paper in the definition of the set

T := {Tℓ regular triangulation ofΩ into triangles :

∃ℓ ∈ N0 ∃T0, T1, . . . , Tℓ successive one-level refinements in the sense
that Tj+1 is a one-level refinement of Tj for j = 0, 1, . . . , ℓ− 1}.

of admissible triangulations created from T0 for refinement control and existence of overlays as summarized in [3, Sect. 2.4]
with further references. For any natural number N ∈ N, set

T(N) := {T ∈ T :
T

 −
T0

 6 N}.

For any T ∈ T, N denotes the set of nodes and E the set of edges and the corresponding sets N (∂Ω) and E(∂Ω) on the
boundary ∂Ω , N (Ω) and E(Ω) in the interiorΩ . For a triangle T ∈ T , let N (T ) denote the set of its three nodes and E(T )
the set of its three edges.

2.2. Approximation of dirichlet boundary data

Given some triangulation T of the polygonal domain Ω , let H1(E(∂Ω); R2) consist of all boundary functions g ∈

L2(∂Ω; R2) with square-integrable piecewise arc-length derivative g ′
= ∂g/∂s ∈ L2(∂Ω; R2) along the boundary edges

E(∂Ω). Let Pk(E(∂Ω)) denote the space of piecewise polynomials of degree at most k ∈ N0 on the boundary. For k ∈ N and
any function g ∈ H1(E(∂Ω); R2) ∩ C(∂Ω; R2), let Ikg ∈ Sk(E(∂Ω); R2) := Pk(E(∂Ω); R2) ∩ C(∂Ω; R2) denote the nodal
interpolation with respect to k + 1 distinct nodes x0, . . . , xk ∈ E for any boundary edge E = conv{x0, xk} ∈ E(∂Ω). If not
stated otherwise, let the nodes be distributed equally in every boundary edge E ∈ E(∂Ω).

Lemma 2.1. For any E = conv{x0, xk} ∈ E(∂Ω)with arbitrary but distinct nodes x0, . . . , xk ∈ E and g ∈ H1(E; R2)∩C(E; R2),
it holds that(Ikg)′L2(E) 6 C(x0, . . . , xk)

g ′

L2(E)

with a constant C(x0, . . . , xk) that does not depend on the length of E.

Proof. Without loss of generality, let E = [0, h] = [x0, xk] ⊂ R. Hence, for any x ∈ R,

Ikg(x) =

k
j=0

g(xj)Lj(x) with Lj(x) :=


ℓ=0,...,k,ℓ≠j

x − xℓ
xj − xℓ

.

Since (Ikg)′ and g ′ donot change froman additive shift of g , wemay andwill supposewithout loss of generality that g(0) = 0.
Thus, g(xj) 6

 xj

0

g ′(y)
 dy 6

√
h
g ′


L2(E).

Moreover,(Ikg)′L2(E) 6

k
j=0

g(xj)L′

j


L2(E) 6

√
h
g ′


L2(E)

k
j=0

L′

j


L2(E).

This implies the claim via an inverse estimate for the polynomial Lj, namelyL′

j


L2(E) 6 Cinvh−1

LjL2(E) 6 Cinvh−1/2
LjL∞(E).

For uniformly distributed nodes, the Lebesgue constant
k

j=0 ∥Lj∥L∞(E) satisfies [19]

k
j=0

LjL∞(E) ≈
2k+1

ek log k
.

In general, the constant C(x0, . . . , xk) := Cinv
k

j=0

LjL∞(E) depends on k and the partition x0, . . . , xk of interpolation nodes,
but it is independent of the size h. It degenerates to ∞ as minj≠k |xj − xk|/h tends to zero or as k tends to infinity. �
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Lemma2.1 asserts a generic stability constantCstab > 0of the nodal interpolation Ik such that, for all g ∈ H1(E(∂Ω); R2)∩
C(∂Ω; R2),(Ikg)′L2(∂Ω) 6 Cstab

g ′

L2(∂Ω). (5)

Let Jkg ∈ Sk(E(∂Ω); R2) denote an alternative interpolation of g with (Jkg)(z) = g(z) for all z ∈ N (∂Ω) and, if k > 2,
E
(g − Jkg)ϕk−2 ds = 0 for all ϕk−2 ∈ Pk−2(E) and E ∈ E(∂Ω). (6)

This defines Jk uniquely and for the L2(∂Ω)-orthogonal projectionΠk−1g ′ of g ′ onto Pk−1(E(∂Ω); R2), (6) ensures that

(Jkg)′ = Πk−1g ′. (7)

With the k-independent stability constant 1 ofΠk−1, this implies boundedness of Jk,(Jkg)′L2(∂Ω) =
Πk−1g ′


L2(∂Ω) 6

g ′

L2(∂Ω).

Recall that Cstab denotes the constant in (5).

Lemma 2.2. It holds ∥((1 − Ik)g)′∥L2(E) 6 (1 + Cstab)∥((1 − Jk)g)′∥L2(E) for any E ∈ E(∂Ω).

Proof. Since IkJkg = Jkg , Lemma 2.1 implies((1 − Ik)g)′

L2(E) 6

((1 − Jk)g)′

L2(E) +

(Ik(1 − Jk)g)′

L2(E) 6 (1 + Cstab)

((1 − Jk)g)′

L2(E). �

Let hE ∈ P0(E) denote the piecewise constant function with hE |E ≡ |ωE |
1/2 for every E ∈ E(∂Ω) and its adjacent triangle

ω̄E ∈ T to define the Dirichlet data oscillation

osc(g ′, E(∂Ω)) :=
h1/2

E (1 −Πk−1)g ′

L2(∂Ω).

The proof of the following lemma employs the ideas from [5, Lem. 2.1]. In addition, it utilizes the stability from Lemma 2.2
to control the discrete approximation of the Dirichlet boundary data. Therefore, the generic constant Cext > 0 in (8)
includes Cstab from Lemma 2.3 and, thus, depends on the polygonal degree k. Let CSZ > 0 denote the stability constant from
[20, Thm. 3.1] of the Scott–Zhang quasi-interpolation which also depends on k.

Lemma 2.3. Given any boundary data g ∈ H1(E(∂Ω); R2) ∩ C(∂Ω; R2), there exists some extensionw ∈ H1(Ω; R2) with

w

∂Ω

= (1 − Ik)g and
w 6 Cext osc(g ′, E(∂Ω)). (8)

If in addition g ≡ g ∈ Sk(E(∂Ω); R2) for any admissible refinement T of T , there exists some discrete extensionw ∈ Sk(T ; R2)
with (8) and the modified constant Cext := CextCSZ.

Proof. An analogous proof to the one of [5, Lem. 2.1] yields existence of a generic constant C > 0 andw ∈ H1(Ω; R2)with

w

∂Ω

= (1 − Ik)g and
w 6 C

h1/2
E ((1 − Ik)g)′


L2(∂Ω).

The constant C > 0 consists of the universal equivalent constant of different H1/2-norms times the generic constant from
[21, Thm. 1] solely depending on the ratio r := max{|Ej|/|Ek| : Ej, Ek ∈ E(∂Ω) and Ej ∩ Ek ≠ ∅}.

With Cext := C(1 + Cstab), Lemma 2.2 and the commutativity (7) of Jk complete the proof ofw 6 Cext osc(g ′, E(∂Ω)).

The existence of a discrete extension employs the Scott–Zhang quasi-interpolation with stability constant CSZ and follows
verbatim as in the proof of [5, Lem. 2.1] with the modified constantCext := CextCSZ. �

Lemma 2.4. The constant Cosc :=
√
2C2

stab/(
√
2 − 1) > 0 and any admissible refinement T of T satisfy

osc2((Ikg)′, E(∂Ω)) 6 Cosc

osc2(g ′, E(∂Ω))− osc2(g ′,E(∂Ω)).
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Proof. Since the left-hand side equals

osc2((Ikg)′, E(∂Ω)) =


E∈E(∂Ω)\E(∂Ω)

ωE
1/2(1 −Πk−1)(Ikg)′2

L2(E), (9)

it remains to consider E ∈ E(∂Ω) \ E(∂Ω)with (even with equality in the first step)(1 −Πk−1)(Ikg)′L2(E) =
(1 −Πk−1)((Ikg)′ − (Jkg)′)


L2(E) 6

(Ikg)′ − (Jkg)′

L2(E).

Lemma 2.1 (with g − Jkg replacing g) and (7) imply the upper bound(Ik(g − Jkg))′

L2(E) 6 Cstab

(1 −Πk−1)g ′

L2(E).

This leads toωE
1/2(1 −Πk−1)(Ikg)′2

L2(E) 6 C2
stab

ωE
1/2 

F∈E(E)
(1 −Πk−1)g ′

2
L2(F). (10)

Since E ∈ E(∂Ω)\E(∂Ω), any F ∈ E(E)has a subordinated subtriangleωF ∈ T ofωE ∈ T that is refined and so |ωF | 6 |ωE |/2.
This and ∥(1 − Πk−1)g ′

∥L2(F) 6 ∥(1 −Πk−1)g ′
∥L2(F) result in

(1 − 1/
√
2)

ωE
1/2(1 −Πk−1)g ′

2
L2(F) 6

ωE
1/2 −

ωF
1/2(1 −Πk−1)g ′

2
L2(F)

6
ωE

1/2(1 −Πk−1)g ′
2
L2(F) −

ωF
1/2(1 − Πk−1)g ′


L2(F)

=
ωE

1/2(1 −Πk−1)g ′
2
L2(F) − osc2(g ′, F).

The substitution of this in (10) showsωE
1/2(1 −Πk−1)(Ikg)′2

L2(E) 6 Cosc

osc2(g ′, E)− osc2(g ′,E(E)).

This and (9) conclude the proof. �

Remark 2.5. The commutativity (7) impliesh1/2
E (1 −Πk−1)(Jkg)′2

L2(∂Ω) =
h1/2

E (Πk−1 −Πk−1)g ′
2
L2(∂Ω)

6
h1/2

E (1 −Πk−1)g ′
2
L2(∂Ω) −

h1/2E (1 − Πk−1)g ′
2
L2(∂Ω)

(with Cosc = 1). Hence, the interpolation Jkg is an alternative choice for the approximation of the Dirichlet boundary data in
Section 2.5.

Remark 2.6. The corresponding situation in 3D is more involved and does not allow the analysis of this section because
(7) fails. This led in [14] to different algorithms to circumvent this difficulty with a separate Dörfler marking to control the
boundary approximation terms.

2.3. Auxiliary problem

Given f ∈ L2(Ω; R2) and g ∈ H1/2(E(∂Ω); R2) ∩ C(∂Ω; R2), let z ∈ H1(Ω; R2) denote the unique solution to

−1z = f inΩ and z

∂Ω

= g on ∂Ω.

Since f ∈ L2(Ω; R2) and g ∈ H1/2(E(∂Ω); R2) ∩ C(∂Ω; R2), the reduced elliptic regularity [22–24] implies τ := Dz ∈

Hs(Ω; R2×2) for some s > 0 andτ

H(div,Ω) .

f L2(Ω) +
gH1/2(∂Ω)

.

Let τRT := IFτ ∈ RTk(T ; R2×2) denote the Fortin interpolation of τ [25, eq. (2.5.26)]. Then it holds − div τRT = −Πk div τ =

Πkf andτRT

H(div,Ω) .

f L2(Ω) +
gH1/2(∂Ω)

.
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2.4. Divergence-free Raviart–Thomas functions

The 2D rotation operators read, for v ∈ H1(Ω; R2),

Curlv :=


−∂v1/∂x2 ∂v1/∂x1
−∂v2/∂x2 ∂v2/∂x1


and curl v := tr Curlv.

Let CP(Ω) > 0 denote the Poincaré constant such that any β ∈ H1(Ω) ∩ L20(Ω) satisfiesβ
L2(Ω) 6 CP(Ω)

∇ β

L2(Ω).

Proposition 2.7. Given ρRT ∈ RTk(T ; R2×2) with div ρRT = 0, there exists βC ∈ Sk(T ; R2) such that CurlβC = ρRT andβC

L2(Ω) 6 CP(Ω)

ρRT


H(div,Ω).

Proof. Since Ω is simply-connected, a known discrete Helmholtz decomposition [10,9,11] guarantees the existence of
βC ∈ Sk(Ω; R2) with CurlβC = ρRT. Without loss of generality, it holds that


Ω
βC dx = 0 and the Poincaré inequality

proves

C−1
P

βC

L2(Ω) 6

βC
 =

CurlβC

L2(Ω) =

ρ

H(div,Ω). �

2.5. Least-squares FEM

The space of discrete admissible pseudostress functions on a regular triangulation T reads

6k−1(T ) := {τRT ∈ RTk−1(T ; R2) : tr τ ∈ L20(Ω)}

and the set of discrete admissible velocity functions reads

Ak(T ) := {v ∈ Sk(T ; R2) : v = Ikg on ∂Ω}.

A conforming discretization seeks (σLS, uLS) ∈ 6k−1(T )× Ak(T ) such that, for all (τLS, vLS) ∈ 6k−1(T )× Sk0(T ; R2),
Ω

div σLS · div τLS dx +


Ω

(devσLS − DuLS) : (devτLS − DvLS) dx = −


Ω

f · div τLS dx. (11)

This yields the unique discrete minimizer of the least-squares functional LS(f ; σLS, uLS) defined in (2). Given T and an
admissible refinement T , let (σLS,uLS) ∈ 6k−1(T )× Ak(T ) denote the subordinated discrete solution.

Proposition 2.8. The constant Cqo := CextCoscCSZ and any ε > 0 satisfy

(1 − ε)LS(f ;σLS,uLS)+ LS(0;σLS − σLS,uLS − uLS)

6 LS(f ; σLS, uLS)+ Cqo/ε

osc2(g ′, E(∂Ω))− osc2(g ′,E(∂Ω)). (12)

Proof. The proof employs the arguments from [5, Thm. 4.8] and is merely outlined here for brevity. Throughout this proof,
the upper indexrefers to T . Lemma 2.3 guarantees the existence of some w ∈ Sk(T ; R2)with w|∂Ω = (Ik − Ik)g andw2 6 CextCSZ osc2((Ikg)′, E(∂Ω)). (13)

Elementary algebra proves

LS(0;σLS − σLS,uLS − uLS) = LS(f ; σLS, uLS)− LS(f ;σLS,uLS)− 2

Ω

(devσLS − DuLS) : Dw dx.

This, the Cauchy–Schwarz inequality, the Young inequality for any parameter ε > 0, (13), and Lemma 2.4 conclude the
proof. �

3. Scaling

This section is devoted to an analysis of the norm equivalence constants of the homogeneous least-squares functional
in (3), which in general are dependent on the size of the domain Ω . This scaling dependence is sometimes subject to a
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general criticism on least-squaresmethods. However, themain result Theorem 3.1 presents aweighting of the least-squares
functional and the norms of the function spaces that guarantee scaling independent equivalence constants.

Let CL > 0 denote the generic constant from the Ladyshenskaya lemma in [26, Thm. 3.1] and CF > 0 the Friedrichs
constant [27, Thm. 1.5] which depend on the domainΩ and lead to the well-established estimatesvL2(Ω) 6 CF

DvL2(Ω) for all v ∈ H1
0 (Ω; R2)

and, sinceΩ is simply-connected, for all q ∈ L20(Ω; R2), there exists τ ∈ H1
0 (Ω; R2×2) such that q = div τ andDτ


L2(Ω) 6 CL

qL2(Ω).

Given two parameters κ, µ > 0, define a weighted least-squares functional, for (τ, v) ∈ H(div,Ω; R2×2)× H1
0 (Ω; R2), by

LS(κ, µ; τ, v) :=
dev(τ − Dv)

2
L2(Ω) + κC2

F

div τ
2
L2(Ω) + µC2

L

div v2
L2(Ω) (14)

and set

C−(κ, µ) :=
3 + min{κ, µ}

4
−

1
4


(1 − min{κ, µ})2 + 8 > 0, (15)

C+(κ, µ) :=
3 + min{κ, µ}

4
+

1
4


(1 − min{κ, µ})2 + 8 > 0. (16)

Theorem 3.1. Any (τ, v) ∈ 6 × H1
0 (Ω; R2) satisfies

C−(κ, µ)
devτ2

L2(Ω) + C2
F

div τ
2
L2(Ω) +

devDv2
L2(Ω) + C2

L

div v2
L2(Ω)


6 LS(κ, µ; τ, v)

6 C+(κ, µ)
devτ2

L2(Ω) + C2
F

div τ
2
L2(Ω) +

devDv2
L2(Ω) + C2

L

div v2
L2(Ω)


.

Several remarks are in order before the proof of the Theorem 3.1 concludes this section.
First, the weights CL and CF scale differently with the size ofΩ . In general, the results of least-squares calculation depend

on diam(Ω) owing to the different scaling of functions and their derivatives in L2(Ω). It is known that CL does not scale with
diam(Ω), while the first Dirichlet eigenvalue λ1 of the Laplacian leads to C2

F = 1/λ1 and CF is proportional to diam(Ω).
Moreover, it is well-known and follows with a one-dimensional Friedrichs inequality

f L2(a,b) 6 (b − a)/π
f ′


L2(a,b) and

Fubini’s theorem for the width width(Ω) ofΩ , that

CF 6 width(Ω)/π.

The choice of the weights in (14)–(16) reflects this behaviour. This is why we introduced the values κ and µ as scaling
invariant variables, which lead to equivalence constants C±(κ, µ) independent of the domainΩ .

This is indeed different for the natural choice of the weights. In fact, κ = 1/C2
F and µ = 1/(4C2

L ) lead to (2) and, hence,
C(κ, µ) = C(1/C2

F , 1/(4C
2
L )) in Theorem 3.1 scales with the size ofΩ .

The proof of Theorem 3.1 employs the following special case of the well-known tr-dev-div lemma.

Lemma 3.2. Any φ ∈ H1(Ω; R2) with curlφ ∈ L20(Ω) satisfiescurlφ
L2(Ω) 6 2CL

devCurlφ
L2(Ω).

Proof. Since curlφ ∈ L20(Ω), the Ladyshenskaya lemma [26, Thm. 3.1] yields existence of some ψ ∈ H1
0 (Ω; R2) with

divψ = curlφ and |||ψ ||| 6 CL∥ curlφ∥L2(Ω). Hence,

1
2

curlφ2
L2(Ω) =

1
2


Ω

Dψ : (curlφ I2×2) dx

=


Ω

Dψ : (Curlφ − devCurlφ) dx

6
ψdevCurlφ

L2(Ω).

This concludes the proof. �

A technical lemma is required in the proof of Theorem 3.1.
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Lemma 3.3. Given κ > 0 and X := {y ∈ [0,∞)3 : |y|2 := y21 + y22 + y23 > 0}, it holds

min
x∈X

x21 + x22 + κ x23 − 2x2 min{x1, x3}
|x|2

=
3 + κ

4
−

1
4


(1 − κ)2 + 8 > 0;

max
x∈X

x21 + x22 + κ x23 + 2x2 min{x1, x3}
|x|2

=
3 + κ

4
+

1
4


(1 − κ)2 + 8 > 0.

Proof. Step 1. For x ∈ X , set

f (x) := (x21 + x22 + κ x23 − 2x2 min{x1, x3})
x2. (17)

This step establishes the claimed formula for

M := inf
0<t<∞,06x2

f (t, x2, t).

Since f (t, 0, t) = (1 + κ)/2 for all 0 < t < ∞, it remains to consider f (t, x2, t) for x2 > 0. A rescaling allows a reduction
to x2 = 1. Since

f (t, 1, t) =
κt2 + (t − 1)2

2t2 + 1

has a negative derivative ∂ f (t, 1, t)/∂t for 0 < t < t∗ and a positive derivative for t∗ < t with the unique zero

t∗ =
1 − κ

4
+

1
4


(1 − κ)2 + 8,

it follows

M = f (t∗, 1, t∗) =
3 + κ

4
−

1
4


(1 − κ)2 + 8 > 0.

Step 2. Sincem := minx∈X f (x) 6 M is obvious, the remaining parts of the proof are devoted to the converse inequality.
Step 3. If 0 < κ 6 1 and x ∈ X , then min{x21, x

2
3} + κ max{x21, x

2
3} 6 x21 + κx23 implies

f (min{x1, x3}, x2,max{x1, x3}) 6 f (x).

(If κ > 1, the aforementioned inequality holds when min and max are interchanged.)
Step 4. If 0 < κ < 1 and x ∈ X , then f (x) > M . To see this, consider x ∈ X and utilize Step 3 to reduce to 0 6 x1 6 x3 and

0 6 x2. Since min{x1, x3} = x1, elementary algebra shows

f (x) = κ + (1 − κ)(x21 + x22 − 2x1x2/(1 − κ))
x2. (18)

The infimum of f will be smaller than κ only in case that x21 + x22 − 2x1x2/(1 − κ) < 0 and then (with x1, x2 fixed), (18)
shows that f (x) is monotonically increasing with x3. The infimum is therefore achieved for minimal x1 = x3. Thus f (x) > M .

Step 5. If κ > 1, the Step 3 shows, for all x ∈ X , that

f (max{x1, x3}, x2,min{x1, x3}) 6 f (x).

This leads to the case 0 6 x3 6 x1, 0 6 x2, and

f (x) = 1 + ((κ − 1)x23 − 2x2x3)
x2.

With fixed x2, x3 and (κ − 1)x23 − 2x2x3 6 0, f (x) is monotonically increasing in x1. This shows f (x) > f (x1, x2, x1) > M .
Step 6. Analogous arguments yield the upper bound with the only positive root

t∗ =
κ − 1

4
+

1
4


(κ − 1)2 + 8

of the derivative ∂ f (t, 1, t)/∂t of

f (t, 1, t) =
κt2 + (t + 1)2

2t2 + 1

and

sup
0<t<∞

f (t, 1, t) = f (t∗, 1, t∗) =
κ + 3

4
+

1
4


(κ − 1)2 + 8. �
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Proof of Theorem 3.1. Step 1. For Z := {α ∈ H1
0 (Ω; R2) : divα = 0}, the Helmholtz decomposition for a simply-connected

domainΩ reads

L2(Ω; devR2×2) = DZ ⊕ (DZ)⊥ (19)

and is L2(Ω) orthogonal with the orthogonal complement

(DZ)⊥ = dev(CurlH1(Ω; R2)/R3)

:=


devCurlφ : φ ∈ H1(Ω; R2)with


Ω

φ dx = 0 and

Ω

curlφ dx = 0

.

The authors expect that the above representation of (DZ)⊥ is well-known and deduce this from a discrete variant
[28, Thm. 3.2] for the mesh-size in the underlying triangulation tends to zero. This implies existence of α, a ∈ Z and
β, b ∈ (DZ)⊥ with

devτ = Dα + β and devDv = Da + b.

Let φ ∈ H1(Ω; R2) such that β = devCurlφ = Curlφ − curlφ/2 I2×2.
Step 2. The orthogonality from the Helmholtz decomposition (19), an integration by parts, the Cauchy–Schwarz

inequality, and Lemma 3.2 yield
Ω

b : β dx =


Ω

β : devDv dx =


Ω

Curlφ : devDv dx

= −
1
2


Ω

Curlφ : (div vI2×2) dx 6
1
2

curlφ
L2(Ω)

div vL2(Ω)

6 CL
β


L2(Ω)

div vL2(Ω).

This and the Cauchy–Schwarz inequality prove
Ω

b : β dx
 6

β

L2(Ω)min

bL2(Ω), CL
div vL2(Ω)


.

Step 3. The orthogonality from the Helmholtz decomposition (19), an integration by parts, the Cauchy–Schwarz and
Friedrichs inequality yield

Ω

Da : Dα dx =


Ω

Da : τ dx = −


Ω

a · div τ dx 6
aL2(Ω)

div τ

L2(Ω) 6 CF

adiv τ

L2(Ω).

This and the Cauchy–Schwarz inequality prove
Ω

Da : Dα dx
 6

amin
α, CF

div τ

L2(Ω)


.

Step 4. Abbreviate

x :=
α, a, CF

τ

L2(Ω),

bL2(Ω),
β


L2(Ω), CL

div τ

L2(Ω)


∈ R6.

In this notation and with f = fκ from (17) and fµ from (17) with κ replaced by µ, the combination of Step 2 and 3 lead to

fκ(x1, x2, x3)+ fµ(x4, x5, x6) = x21 + x22 + κx23 − 2x2 min{x1, x3} + x24 + x25 + µx26 − 2x5 min{x4, x6}

6 x21 + x22 + κx23 + x24 + x25 + µx26 − 2

Ω

Da : Dα dx − 2

Ω

b : β dx

= LS(κ, µ; τ, v).

Lemma 3.3 results in C−(κ, µ)(x21 + · · · + x26) 6 fκ(x1, x2, x3)+ fµ(x4, x5, x6).
Step 5. An analogous computation and the upper bound from Lemma 3.3 proves

LS(κ, µ; τ, v) 6 x21 + x22 + κx23 + 2x2 min{x1, x3} + x24 + x25 + µx26 + 2x5 min{x4, x6}

6 C+(κ, µ)(x21 + · · · + x26). �
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4. Quasi-optimal adaptive algorithm

4.1. Alternative a posteriori error estimator

For the solution (σLS, uLS) to the discrete equation (11) and for any subset M ⊆ T of triangles in the triangulation
T of the 2D polygonal Lipschitz domain Ω , define an a posteriori error estimator η2(T ,M) :=


T∈M η2(T , T ) and

η2(T ) := η2(T , T )with

η2(T , T ) :=
T div(devσLS − DuLS)

2
L2(T ) +

T curl dev(σLS − DuLS)
2
L2(T )

+
T 1/2 

E∈E(T )∩E(Ω)

[devσLS − DuLS]E νE
2
L2(E)

+
T 1/2 

E∈E(T )

[dev(σLS − DuLS)]E τE
2
L2(E) (20)

with jumps along the edge E ∈ E with neighbours T+ and where available T− defined, for any discrete tensor τNC ∈

Pk(T ; R2×2), by

[τNC]E :=


(τNC)


T+

− (τNC)

T−

on E ∈ E(Ω)with E = ∂T+ ∩ ∂T−,

(τNC)

T+

on E ∈ E(∂Ω) ∩ E(T+).

Theorem 4.1 (Efficiency). For any admissible triangulation T ∈ Twith discrete solutions (σLS, uLS) ∈ 6k−1(T )× Ak(T ) to (11),
it holds η2(T ) . LS(f ; σLS, uLS).

Proof. The proof of [5, Thm. 3.5] relies on the discrete test function technology due to Verfürth [29] and applies literally to
the situation at hand. �

Define the data approximation error µ2(T ) :=


T∈T µ
2(T )with oscillations

µ2(T ) :=
(1 −Πk)f

2
L2(T ) +

T 1/2 
E∈E(T )∩E(∂Ω)

(1 −Πk−1)g ′
2
L2(E) (21)

for all T ∈ T .

4.2. Adaptive algorithm (ALS-FEM)

Input: Initial regular triangulation T0 with refinement edges of the polygonal domain Ω into triangles and parameters
0 < θ 6 1, 0 < ρ < 1, 0 < κ < ∞.

for any level ℓ = 0, 1, 2, . . . do
Solve LS-FEM with respect to regular triangulation Tℓ with solution (σℓ, uℓ).
Compute ηℓ(T ) := η(Tℓ, T ) from (20) and µ(T ) from (21) for all T ∈ Tℓ and set η2ℓ := η2(Tℓ) and µ2

ℓ := µ2(Tℓ).
if µ2

ℓ 6 κη2ℓ (CASE A) then
Select a subset Mℓ ⊆ Tℓ of (almost) minimal cardinality |Mℓ| with

θη2ℓ 6 η2ℓ(Mℓ) :=


T∈Mℓ

η2ℓ(T ).

Compute smallest regular refinement Tℓ+1 of Tℓ with Mℓ ⊆ Tℓ \ Tℓ+1 by NVB.
else (κη2ℓ < µ2

ℓ CASE B)
Compute an admissible refinement Tℓ+1 of Tℓ with (almost) minimal cardinality |Tℓ+1| and µ(Tℓ+1) 6 ρµℓ. fi od

Output: Sequence of discrete solutions (σℓ, uℓ)ℓ∈N0 and triangulations (Tℓ)ℓ∈N0 .

Remark 4.2 (Case B). Any (quasi-)optimal data approximation algorithm may be employed in the algorithm ALS-FEM and
in the analysis. The Approx algorithm [16,30,7] consists of the thresholding second algorithm (TSA) of [31, Sect. 5] followed
by a completion step and is one possible realization of the refinement in Case B.

4.3. Optimal convergence rates

The main result of this paper involves, for any given 0 < s < ∞, the notion of approximation classes As which consists
of all pairs (u, f ) ∈ A × L2(Ω; R2) such that(u, f )2As

:= sup
N∈N
(N + 1)2sE(u, f , g,N) < ∞
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with the best possible error

E(u, f , g,N) := min
T ∈T(N)

min
(τLS,vLS)∈6k−1(T )×A(T )


LS(f ; τLS, vLS)+ osc2(g ′, E(∂Ω))


.

Theorem 4.3. There exists a maximal bulk parameter 0 < θ0 < 1 and a maximal separation parameter 0 < κ0 < ∞ (which
depend exclusively on T0) such that for all 0 < θ < θ0, for all 0 < κ < κ0, for all 0 < ρ < 1, and for all 0 < s < ∞, the output
(σℓ, uℓ)ℓ∈N of ALS-FEM with (u, f ) ∈ As satisfies

sup
ℓ∈N

Tℓ
 −

T0
 + 1

sLS(f ; σℓ, uℓ)+ osc2(g ′, Eℓ(∂Ω))
1/2

≈
(u, f )As

.

The equivalence constants depend only on the initial mesh T0, the polynomial degree k, and the parameters s, ρ, θ, and κ .

4.4. Axioms of adaptivity

This section summarizes the convergence analysis of [7] based on the axioms (A1)–(A4), (B1)–(B2), and (QM) for the proof
of Theorem 4.3. It will be shown in the remaining part of this subsection and Section 5 that those conditions are satisfied for
the problem at hand. The axioms (A1)–(A3) and (B2) concern an admissible refinement T ∈ T of an arbitrary triangulation
T ∈ T and the associated discrete solutions (σLS,uLS) and (σLS, uLS) to (11) in the definition of the distance

δ2(T ,T ) :=
div(σLS − σLS)

2
L2(Ω) +

dev(σLS − σLS)− D(uLS − uLS)
2
L2(Ω). (22)

Recall the estimator η2(T ) from (20), µ2(T ) from (21), and their sum convention from the beginning of this section.

Theorem 4.4 (Stability and Reduction). Any admissible refinement T of T ∈ T satisfies

|η(T , T ∩ T )− η(T , T ∩ T )| 6 Λ1δ(T , T ), (A1)

η(T ,T \ T ) 6 2−1/4η(T , T \ T )+Λ2δ(T , T ). (A2)

Proof. The proofs of (A1)–(A2) are straight-forward from [3,5,4] even for k > 2. �

The proof of the discrete reliability

δ2(T , T ) 6 Λ3(η
2(T , T \ T )+ µ2(T ))+ Λ3η

2(T ) (A3)

is postponed to Section 5.
The quasi-orthogonality concerns the outcome (Tℓ)ℓ∈N0 of the algorithm ALS-FEM and reads

∞
k=ℓ

δ2(Tk+1, Tk) 6 Λ4(η
2(Tℓ)+ µ2(Tℓ)). (A4)

This follows directly from (A1)–(A2), the following theorem, and [7, Thm. 3.1].

Theorem 4.5 (Quasi-Orthogonality with ε > 0). For any sequence of successive admissible refinements T0, T1, . . . ∈ T and all
positive ε,Λ4(ε) := Crel + Cqo/ε < ∞ satisfies

ℓ+m
k=ℓ


δ2(Tk+1, Tk)− εLS(f ; σk, uk)


6 Λ4(ε)


η2(Tℓ)+

f − fℓ
2
L2(Ω)


.

Proof. For all k = ℓ, . . . , ℓ+ m and positive ε, Proposition 2.8 proves

δ2(Tk+1, Tk)− εLS(f ; σk+1, uk+1) 6 LS(f ; σk, uk)− LS(f ; σk+1, uk+1)

+ Cqo/ε

osc2(g ′, Ek(∂Ω))− osc2(g ′, Ek+1(∂Ω))


.

The proof concludes with the telescoping sum of the aforementioned estimates over all k = ℓ, . . . , ℓ+m and the reliability
from Corollary 5.2. �

The subsequent assumptions (B1)–(B2) transfer directly from [7] to the situation at hand in three components for the
TSA plus completion (called Approx in) [30].

(B1) Rate s data approximation. ∀Tol > 0, TTol := Approx(Tol, µ(K) : K ∈ T0) ∈ T satisfies |TTol| − |T0| 6 Λ5Tol−1/(2s) and
µ2(TTol) 6 Tol.

(B2) Quasi-monotonicity of µ. µ(T ) 6 Λ6µ(T ).

Since Λ3 in (A3) may be large, the following result is required.
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Theorem 4.6 (Quasi-Monotonicity of η + µ). Any admissible refinement T ∈ T of T ∈ T satisfies

η(T )+ µ(T ) 6 Λ7(η(T )+ µ(T )). (QM)

Proof. The efficiency from Theorem 4.1 plus Proposition 2.8 and the reliability from Corollary 5.2 prove (QM). �

5. Discrete reliability

Throughout this section, letT ∈ T denote an admissible refinement of T ∈ Twith respective discrete solutions (σLS,uLS)
and (σLS, uLS) to (11). Recall the definition of the distance δ(T , T ) from (22).

Theorem 5.1 (Discrete Reliability). It holds

δ2(T , T ) . η2(T , T \ T )+ µ2(T )+ LS(f ;σLS,uLS). (23)

Proof. The proof follows the lines of [5, Sect. 4.2] for k = 1 and utilizes the auxiliary problem of Section 2.3 adapted
for all k > 1. Moreover, the generic constants of the stability and approximation estimates of the Scott–Zhang quasi-
interpolation [20] as well as the constant Cext from Lemma 2.3 depend on the polynomial degree k > 1. The rest of the
proof follows analogously and its key arguments are presented below.

The proof involves three discrete mixed FEM solutionsτRT,τ∗

RT, and τRT to the Poisson model problem from Section 2.3
with respect to homogeneous boundary conditions g ≡ 0, the respective right-hand sides

− div(σLS − σLS), −Πk−1 div(σLS − σLS), and −Πk−1 div(σLS − σLS),

and the triangulations T , T , and T ; in particular,

divτRT = div(σLS − σLS) and divτ∗

RT = Πk−1 div(σLS − σLS) = div τPS.

The stability of mixed FEM readsτRT −τ∗

RT


L2(Ω) .

(1 −Πk−1) div(σLS − σLS)

L2(Ω) and

τPS

L2(Ω) .

Πk−1 div(σLS − σLS)

L2(Ω). (24)

The proof of [5, Lem. 4.5] with Lemma 2.3 and Proposition 2.7 plus elementary algebra shows in this paper that there exist
some w,β ∈ Sk(T ; R2)with

w|∂Ω = (Ik − Ik)g,
w 6 Cext osc((Ikg)′, E(∂Ω)), and (25)div(σLS − σLS)

2
L2(Ω) +

dev(σLS − σLS)− D(uLS − uLS)
2
L2(Ω)

=
(1 −Π) div(σLS − σLS)

2
L2(Ω) +


Ω

(dev(σLS − σLS)− D(uLS − uLS)) : (dev(τPS −τ∗

PS)− Dw) dx
+


Ω

(devσLS − DuLS) :

D(uLS − uLS − w)− devCurlβ

dx.

An analogous proof to [5, Eqn. (23)] using the Cauchy–Schwarz and triangle inequality plus the stability of mixed FEM from
(24) and (25) shows

Ω

(dev(σLS − σLS)− D(uLS − uLS)) :

dev(τPS −τ∗

PS)− Dz dx
.

dev(σLS − σLS)− D(uLS − uLS)

L2(Ω)

(1 −Π) div(σLS − σLS)

L2(Ω) + osc((Ikg)′, E(∂Ω))


.

An analogous proof to [5, Lem. 4.6] with the discrete equation (11), a piecewise integration by parts, the Cauchy–Schwarz
and trace inequality, the stability and approximation property of the Scott–Zhang quasi-interpolation operator [20], and a
finite overlap of patches around triangles yields

Ω

(devσLS − DuLS) : D(uLS − uLS −z) dx .
uLS − uLS −z 

T∈T \T

T  div(devσLS − DuLS)
2
L2(T )

+


E∈E(T )∩E(Ω)

T 1/2[devσLS − DuLS]E νE
2
L2(E)

1/2

.
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An analogous proof to [5, Lem. 4.7] with the discrete equation (11), a piecewise integration by parts, the Cauchy–Schwarz
and trace inequality, the stability and approximation property of the Scott–Zhang quasi-interpolation operator [20], a finite
overlap of patches around triangles plus the stability of mixed FEM from (24) and Proposition 2.7 yields

Ω

(devσLS − DuLS) : devCurlβ dx .
σLS − σLS


H(div,Ω)

 
T∈T \T

T  curl devσLS
2
L2(T )

+


E∈E(T )

T 1/2[dev(σLS − DuLS)]E τE
2
L2(E)

1/2

.

The combination of those estimates plus standard rearrangements conclude the proof as in the proof of [5, Thm. 4.3]. �

The discrete reliability and the plain convergence of the LS-FEM implies reliability of the error estimator η(T ) in the
following sense.

Corollary 5.2 (Reliability). Any admissible triangulation T ∈ T with discrete solution (σLS, uLS) ∈ 6k−1(T ) × Ak(T )
to (11) satisfies

LS(f ; σLS, uLS) 6 Crel

η2(T )+ µ2(T )


. (26)

Proof. The proof of [5, Corollary 4.4] relies on the discrete reliability (23)withT replaced by successive uniform refinements
of T and applies literally to the situation at hand. The convergence of the LS-FEM in the limit as the maximal mesh-sizes
tend to zero proves (26). �

Proof of (A3). The combination of (23) and (26) with respect to T proves (A3) from Section 4.4. �

6. Numerical experiments

This section presents some numerical experiments with an implementation of the ALS-FEM algorithm from Section 4.2
for the lowest-order case k = 1.

6.1. Natural adaptive refinement

The following adaptive algorithm with the natural error indicator is used for comparison.
Input: Initial regular triangulation T0 with refinement edges of the polygonal domainΩ into triangles and bulk parameter

0 < θ 6 1.

for any level ℓ = 0, 1, 2, . . . do
Solve LS-FEM with respect to regular triangulation Tℓ with solution (σℓ, uℓ).
Compute LS(f ; σLS, uLS; T ) := ∥f + div σLS∥

2
L2(T )

+ ∥devσLS − DuLS∥
2
L2(T )

for all T ∈ Tℓ.
Mark a subset Mℓ ⊆ Tℓ of (almost) minimal cardinality |Mℓ| with

θ LS(f ; σLS, uLS) 6 LS(f ; σLS, uLS; Mℓ) :=


T∈Mℓ

LS(f ; σLS, uLS; T ).

Compute smallest regular refinement Tℓ+1 of Tℓ with Mℓ ⊆ Tℓ \ Tℓ+1 by NVB.

Output: Sequence of discrete solutions (σℓ, uℓ)ℓ∈N0 and triangulations (Tℓ)ℓ∈N0 .

6.2. Preliminary remarks

The main output of the experiments displayed are the convergence history plots for errors and error estimators as
functions of numbers of degrees of freedom (ndof). The grey scale value and the shape of the marker determine the specific
terms which are listed in the associated legend. The style of the line and the brightened grey scale value of the marker show
whether a uniform refinement (dotted line), the natural adaptive refinement (dashed line) with error indicator LS(f ; σℓ, uℓ),
or the alternative adaptive refinement (solid line) with error indicator η2(Tℓ) is used for comparison. The letters ‘A’ and ‘B’
indicate the case in the adaptive algorithm from Section 4.2 for the computation on the current level.

The degrees of the Gaussian quadrature are chosen in such a way that the integration is exact if possible (for polynomial
data) or 10 otherwise. If not stated otherwise, the chosen parameters read θ = 0.5, ρ = 0.3, and κ = 0.1.
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Fig. 1. Velocity plot for the colliding flow example from Section 6.3 for adaptively refined mesh with 1048 triangles (ndof = 4 195).

Fig. 2. Convergence history plot for the colliding flow example from Section 6.3 for uniform (dotted lines) and adaptive (solid lines) mesh-refinement.

6.3. Colliding flow example

The first benchmark problem employs f ≡ 0 on the square domainΩ := (−1, 1)2. Let the exact solution

u(x) := (20x1x42 − 4x51, 20x
4
1x2 − 4x52)

⊤ and p(x) := 120x21x
2
2 − 20x41 − 20x42 − 16/3

prescribe the inhomogeneous Dirichlet boundary data g := u|∂Ω . Fig. 1 presents the discrete solution uℓ for ℓ = 6 with
ndof = 4 195.

On convex domains, the regularity theory of elliptic operators [32, Ch. 5] yields the optimal convergence rate 0.5
independently from the chosen refinement strategy. The convergence history plot in Fig. 2 confirms this theoretical result
for the uniform and adaptive case. The equilibrium residual ∥f + div σℓ∥L2(Ω) in the least-squares functional is of higher
order and attains between 1% and 10% of the constitutive residual ∥devσℓ − Duℓ∥L2(Ω).

6.4. Example on L-shaped domain

The second benchmark solves the ALS-FEM with the right-hand side f ≡ 0 on the L-shaped domain Ω := (−1, 1)2 \

((0, 1) × (−1, 0)). With α = 856399/1572864 and ω = 3π/2, an exact solution from [33] reads in polar coordinates
(r, ϑ) ∈ [0,∞)× [0, 3π/2] as

u(r, ϑ) := rα

(1 + α) sin(ϑ)w(ϑ)+ cos(ϑ)w′(ϑ)

−(1 + α) cos(ϑ)w(ϑ)+ sin(ϑ)w′(ϑ)


,

p(r, ϑ) := −rα−1(1 + α)2w′(ϑ)+ w′′′(ϑ)

(1 − α),

w(ϑ) := 1/(α + 1) sin((α + 1)ϑ) cos(αω)− cos((α + 1)ϑ)+ 1/(α − 1) sin((α − 1)ϑ) cos(αω)
+ cos((α − 1)ϑ).
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Fig. 3. Convergence history plot for the L-shaped domain example from Section 6.4 for uniform (dotted lines), natural adaptive (dashed lines), and
alternative adaptive (solid lines) mesh-refinement.

Fig. 4. Triangulation plot for the L-shaped domain example from Section 6.4 of adaptively refined mesh with 572 triangles (ndof = 4275).

Let the exact solution prescribe the inhomogeneous Dirichlet data g := u|∂Ω . Note that g vanishes at the two edges of the
reentrant corner for ϑ = 0 and ϑ = 3π/2 and, thus, is smooth on the whole boundary ∂Ω . Therefore, the boundary data
oscillations are of higher order also for this example.

The convergence history plot in Fig. 3 confirms the superiority of the adaptive mesh-refinement for the natural error
indicator in the spirit of [6] as well as the alternative error indicator from Section 4.1 with the separate marking algorithm
from Section 4.2. Both converge with the optimal rate of 0.5 starting at about 1000 degrees of freedom, while uniform
refinement shows an empirical convergence rate 0.25.

The plot of the adaptively generated mesh in Fig. 4 shows the expected increased refinement at the re-entrant corner.
This avoids unnecessary computational costs by reducing the number of degrees of freedom in the less refined parts of the
domain.

6.5. Backward facing step example

The third benchmark concerns a flow in a pipeΩ := ((−2, 8)× (−1, 1)) \ ((−2, 0)× (−1, 0))with a bottleneck and a
polynomial in- and outflow, for x ∈ ∂Ω ,

g(x) :=

1/10 (−x2(x2 − 1), 0)⊤ for x1 = −2,
1/80 (−(x2 − 1)(x2 + 1), 0)⊤ for x1 = 8,
0 otherwise.

An exact solution to this problem with f ≡ 0 is unknown but the errors are equivalent to the estimator.
Fig. 5 presents the convergence history plot for k = 1 and supports the qualitative equivalence of the natural and the

alternative mesh-refinement.
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Fig. 5. Convergence history plot for the backward facing step example from Section 6.5 for uniform (dotted lines), natural adaptive (dashed lines), and
alternative adaptive (solid lines) mesh-refinement.

6.6. Conclusions

In all examples with a known exact solution, the displayed error estimator by LS1/2 appears to be equivalent to the
error—even in Section 6.4 we expect that the convergence rates will be equal for finer and finer triangulations.

In all examples, the adaptive algorithm leads to optimal convergence rates 1/2 for the lowest-order discretization with
k = 1 even for a relatively large bulk parameter θ = 0.5. This is not theoretically founded but a numerical observation
deduced from all the convergence history plots.

The separate marking strategy differs the two cases A and B displayed in the convergence history plots. It appears that
this dominates the pre-asymptotic rates only which is expected as for all examples with smooth Dirichlet data. In case g
is globally continuous and edgewise in H2, the oscillations are of higher order and hence may appear negligible for quasi-
uniform and fine triangulations. Thus, the separate marking algorithm runs the case B solely in the first few loops.
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