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ABSTRACT

This introductory chapter on the mathematical theory of finite element methods (FEMs) discusses its
h-version for elliptic boundary value problems in the displacement formulation. Topics addressed range
from a priori to a posteriori error estimates and also include weak forms of elliptic PDEs, Galerkin
schemes, finite element spaces, and adaptive local mesh refinement. Nonconformities and variational
crimes as well as algorithmic aspects conclude the chapter.
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1. Introduction

The finite element method is one of the most widely used techniques in computational
mechanics. The mathematical origin of the method can be traced to a paper by Courant
(1943). We refer the readers to the articles by Babuška (1994) and Oden (1991) for the history
of the finite element method. In this chapter, we give a concise account of the h-version of the
finite element method for elliptic boundary value problems in the displacement formulation,
and refer the readers to The p-version of the Finite Element Method and Mixed Finite Element
Methods for the theory of the p-version of the finite element method and the theory of mixed
finite element methods.

This chapter is organized as follows. The finite element method for elliptic boundary
value problems is based on the Ritz-Galerkin approach, which is discussed in Section 2. The
construction of finite element spaces and the a priori error estimates for finite element methods
are presented in Sections 3 and 4. The a posteriori error estimates for finite element methods
and their applications to adaptive local mesh refinements are discussed in Sections 5 and 6. For
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2 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

the ease of presentation, the contents of Sections 3 and 4 are restricted to symmetric problems
on polyhedral domains using conforming finite elements. The extension of these results to more
general situations is outlined in Section 7.

For the classical material in Sections 3, 4, and 7, we are content with highlighting the
important results and pointing to the key literature. We also concentrate on basic theoretical
results and refer the readers to other chapters in this encyclopedia for complications that may
arise in applications. For the recent development of a posteriori error estimates and adaptive
local mesh refinements in Sections 5 and 6, we try to provide a more comprehensive treatment.
Owing to space limitations many significant topics and references are inevitably absent. For
in-depth discussions of many of the topics covered in this chapter (and the ones that we do
not touch upon), we refer the readers to the following survey articles and books (which are
listed in alphabetical order) and the references therein (Ainsworth and Oden, 2000; Apel, 1999;
Aziz, 1972; Babuška and Aziz, 1972; Babuška and Strouboulis, 2001; Bangerth and Rannacher,
2003; Bathe, 1996; Becker, Carey and Oden, 1981; Becker and Rannacher, 2001; Braess, 2001;
Brenner and Scott, 2002; Ciarlet, 1978, 1991; Eriksson et al, 1995; Hughes, 2000; Oden and
Reddy, 1976; Schatz, Thomée and Wendland, 1990; Strang and Fix, 1973; Szabó and Babuška,
1991; Verfürth, 1996; Wahlbin, 1991, 1995; Zienkiewicz and Taylor, 2000).

2. Ritz-Galerkin Methods for Linear Elliptic Boundary Value Problems

In this section, we set up the basic mathematical framework for the analysis of Ritz-Galerkin
methods for linear elliptic boundary value problems. We will concentrate on symmetric
problems. Nonsymmetric elliptic boundary value problems will be discussed in Section 7.1.

2.1. Weak problems

Let Ω be a bounded connected open subset of the Euclidean space Rd with a piecewise smooth
boundary. For a positive integer k, the Sobolev space Hk(Ω) is the space of square integrable
functions whose weak derivatives up to order k are also square integrable, with the norm

‖v‖Hk(Ω) =

∑
|α|≤k

∥∥∥∥∂αv∂xα

∥∥∥∥2

L2(Ω)

1/2

The seminorm
(∑

|α|=k ‖(∂αv/∂xα)‖2L2(Ω)

)1/2
will be denoted by |v|Hk(Ω). We refer the readers

to Nečas (1967), Adams (1995), Triebel (1978), Grisvard (1985), and Wloka (1987) for the
properties of the Sobolev spaces. Here we just point out that ‖ · ‖Hk(Ω) is a norm induced by

an inner product and Hk(Ω) is complete under this norm, that is, Hk(Ω) is a Hilbert space.
(We assume that the readers are familiar with normed and Hilbert spaces.)

Using the Sobolev spaces we can represent a large class of symmetric elliptic boundary value
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FINITE ELEMENT METHODS 3

problems of order 2m in the following abstract weak form:

Find u ∈ V , a closed subspace of a Sobolev space Hm(Ω), such that

a(u, v) = F (v) ∀ v ∈ V (1)

where F : V → R is a bounded linear functional on V and a(·, ·) is a symmetric bilinear form
that is bounded and V -elliptic, that is,∣∣a(v1, v2)

∣∣ ≤ C1‖v1‖Hm(Ω)‖v2‖Hm(Ω) ∀ v1, v2 ∈ V (2)

a(v, v) ≥ C2‖v‖2Hm(Ω) ∀ v ∈ V (3)

Remark 1. We use C, with or without subscript, to represent a generic positive constant
that can take different values at different occurrences.

Remark 2. Equation (1) is the Euler-Lagrange equation for the variational problem of
finding the minimum of the functional v 7→ 1

2a(v, v)−F (v) on the space V . In mechanics, this
functional often represents an energy and its minimization follows from the Dirichlet principle.
Furthermore, the corresponding Euler-Lagrange equations (also called first variation) (1) often
represent the principle of virtual work.

It follows from conditions (2) and (3) that a(·, ·) defines an inner product on V which
is equivalent to the inner product of the Sobolev space Hm(Ω). Therefore the existence and
uniqueness of the solution of (1) follow immediately from (2), (3), and the Riesz Representation
Theorem (Yosida, 1995; Reddy, 1986; Oden and Demkowicz, 1996).

The following are typical examples from computational mechanics.

Example 1. Let a(·, ·) be defined by

a(v1, v2) =

∫
Ω

∇v1 · ∇v2 dx (4)

For f ∈ L2(Ω), the weak form of the Poisson problem

−∆u = f on Ω

u = 0 on Γ (5)

∂u

∂n
= 0 on ∂Ω \ Γ

where Γ is a subset of ∂Ω with a positive (d − 1)-dimensional measure, is given by (1) with
V = {v ∈ H1(Ω): v

∣∣
Γ

= 0} and

F (v) =

∫
Ω

fvdx = (f, v)L2(Ω) (6)

For the pure Neumann problem where Γ = ∅, since the gradient vector vanishes for
constant functions, an appropriate function space for the weak problem is V = {v ∈
H1(Ω): (v, 1)L2(Ω) = 0}.
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4 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

The boundedness of F and a(·, ·) is obvious and the coercivity of a(·, ·) follows from the
Poincaré-Friedrichs inequalities (Nečas, 1967) :

‖v‖L2(Ω) ≤ C

(
|v|H1(Ω) +

∣∣∣∣∫
Γ

vds

∣∣∣∣) ∀ v ∈ H1(Ω) (7)

‖v‖L2(Ω) ≤ C

(
|v|H1(Ω) +

∣∣∣∣∫
Ω

vdx

∣∣∣∣) ∀ v ∈ H1(Ω) (8)

Example 2. Let Ω ⊂ Rd(d = 2, 3) and v ∈ [H1(Ω)]d be the displacement of an elastic body.
The strain tensor ε(v) is given by the d× d matrix with components

εij(v) =
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(9)

and the stress tensor σ(v) is the d× d matrix defined by

σ(v) = 2µ ε(v) + λ (div v) δ (10)

where δ is the d× d identity matrix and µ > 0 and λ > 0 are the Lamé constants.

Let the bilinear form a(·, ·) be defined by

a(v1,v2) =

∫
Ω

d∑
i,j=1

σij(v1) εij(v2)dx

=

∫
Ω

σ(v1) : ε(v2)dx (11)

For f ∈ [L2(Ω)]d, the weak form of the linear elasticity problem (Ciarlet, 1988)

div [σ(u)] = f on Ω

u = 0 on Γ (12)

[σ(u)]n = 0 on ∂Ω \ Γ

where Γ is a subset of ∂Ω with a positive (d − 1)-dimensional measure, is given by (1) with
V = {v ∈ [H1(Ω)]d : v

∣∣
Γ

= 0} and

F (v) =

∫
Ω

f · vdx = (f ,v)L2(Ω) (13)

For the pure traction problem where Γ = ∅, the strain tensor vanishes for all infinitesimal
rigid motions, i.e., displacement fields of the form m = a + ρx, where a ∈ Rd, ρ is a d × d
antisymmetric matrix and x = (x1, . . . , xd)

t is the position vector. In this case an appropriate
function space for the weak problem is V = {v ∈ [H1(Ω)]d :

∫
Ω
∇× vdx = 0 =

∫
Ω
vdx}.

The boundedness of F and a(·, ·) is obvious and the coercivity of a(·, ·) follows from Korn’s
inequalities (Friedrichs, 1947; Duvaut and Lions, 1976; Nitsche, 1981) (see Finite Element
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FINITE ELEMENT METHODS 5

Methods for Elasticity with Error-controlled Discretization and Model Adaptivity) :

‖v‖H1(Ω) ≤ C

(
‖ε(v)‖L2(Ω) +

∣∣∣∣∫
Γ

vds

∣∣∣∣)
∀ v ∈ [H1(Ω)]d (14)

‖v‖H1(Ω) ≤ C

(
‖ε(v)‖L2(Ω) +

∣∣∣∣∫
Ω

∇× vds

∣∣∣∣+

∣∣∣∣∫
Ω

vdx

∣∣∣∣)
∀ v ∈ [H1(Ω)]d (15)

Example 3. Let Ω be a domain in R2 and the bilinear form a(·, ·) be defined by

a(v1, v2) =

∫
Ω

[
∆v1∆v2 + (1− σ)

×
(
2
∂2v1

∂x1∂x2

∂2v2

∂x1∂x2
− ∂

2v1

∂x2
1

∂2v2

∂x2
2

− ∂
2v1

∂x2
2

∂2v2

∂x2
1

)]
dx (16)

where σ ∈ (0, 1/2) is the Poisson ratio.

For f ∈ L2(Ω), the weak form of the clamped plate bending problem (Ciarlet, 1997)

∆2u = f on Ω, u =
∂u

∂n
= 0 on ∂Ω (17)

is given by (1), where V = {v ∈ H2(Ω): v = ∂v/∂n = 0 on ∂Ω} = H2
0 (Ω) and F is defined by

(6). For the simply supported plate bending problem, the function space V is {v ∈ H2(Ω): v = 0
on ∂Ω} = H2(Ω) ∩H1

0 (Ω).

For these problems, the coercivity of a(·, ·) is a consequence of the following Poincaré-
Friedrichs inequality (Nečas, 1967) :

‖v‖H1(Ω) ≤ C|v|H2(Ω) ∀ v ∈ H2(Ω) ∩H1
0 (Ω) (18)

Remark 3. The weak formulation of boundary value problems for beams and shells can be
found in Plates and Shells: Asymptotic Expansions and Hierarchic Models and Models and
Finite Elements for Thin-walled Structures.

2.2. Ritz-Galerkin methods

In the Ritz-Galerkin approach for (1), a discrete problem is formulated as follows.

Find ũ ∈ Ṽ such that
a(ũ, ṽ) = F (ṽ) ∀ ṽ ∈ Ṽ (19)

where Ṽ , the space of trial/test functions, is a finite-dimensional subspace of V .

The orthogonality relation

a(u− ũ, ṽ) = 0 ∀ ṽ ∈ Ṽ (20)
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6 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

follows by subtracting (19) from (1), and hence

‖u− ũ‖a = inf
ṽ∈V
‖u− ṽ‖a (21)

where ‖ · ‖a = (a(·, ·))1/2. Furthermore, (2), (3), and (21) imply that

‖u− ũ‖Hm(Ω) ≤
(
C1

C2

)1/2

inf
ṽ∈Ṽ
‖u− ṽ‖Hm(Ω) (22)

that is, the error for the approximate solution ũ is quasi-optimal in the norm of the Sobolev
space underlying the weak problem.

The abstract estimate (22), called Cea’s lemma, reduces the error estimate for the Ritz-
Galerkin method to a problem in approximation theory, namely, to the determination of the
magnitude of the error of the best approximation of u by a member of Ṽ . The solution of this
problem depends on the regularity (smoothness) of u and the nature of the space Ṽ .

One can also measure u− ũ in other norms. For example, an estimate of ‖u− ũ‖L2(Ω) can
be obtained by the Aubin-Nitsche duality technique as follows. Let w ∈ V be the solution of
the weak problem

a(v, w) =

∫
Ω

(u− ũ)vdx ∀ v ∈ V (23)

Then we have, from (20), (23), and the Cauchy-Schwarz inequality,

‖u− ũ‖2L2(Ω) = a(u− ũ, w) = a(u− ũ, w − ṽ)

≤ C2‖u− ũ‖Hm(Ω)‖w − ṽ‖Hm(Ω) ∀ ṽ ∈ Ṽ

which implies that

‖u− ũ‖L2(Ω) ≤ C2

(
inf
ṽ∈Ṽ

‖w − ṽ‖Hm(Ω)

‖u− ũ‖L2(Ω)

)
‖u− ũ‖Hm(Ω) (24)

In general, since w can be approximated by members of Ṽ to high accuracy, the term inside
the bracket on the right-hand side of (24) is small, which shows that the L2 error is much
smaller than the Hm error.

The estimates (22) and (24) provide the basic a priori error estimates for the Ritz-Galerkin
method in an abstract setting.

On the other hand, the error of the Ritz-Galerkin method can also be estimated in an
a posteriori fashion. Let the computable linear functional (the residual of the approximate
solution ũ) R : V → R be defined by

R(v) = a(u− ũ, v) = F (v)− a(ũ, v) (25)

The global a posteriori error estimate

‖u− ũ‖Hm(Ω) ≤
1

C2
sup
v∈V

|R(v)|
‖v‖Hm(Ω)

(26)
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FINITE ELEMENT METHODS 7

then follows from (3) and (25).

Let D be a subdomain of Ω and Hm
0 (D) be the subspace of V whose members vanish

identically outside D. It follows from (25) and the local version of (2) that we also have a local
a posteriori error estimate:

‖u− ũ‖Hm(D) ≥
1

C1
sup

v∈Hm0 (D)

|R(v)|
‖v‖Hm(D)

(27)

The equivalence of the error norm with the dual norm of the residual will be the point of
departure in Section 5.1.2 (cf. (70)).

2.3. Elliptic regularity

As mentioned above, the magnitude of the error of a Ritz-Galerkin method for an elliptic
boundary value problem depends on the regularity of the solution. Here we give a brief
description of elliptic regularity for the examples in Section 2.1.

If the boundary ∂Ω is smooth and the homogeneous boundary conditions are also smooth
(i.e. the Dirichlet and Neumann boundary condition in (5) and the displacement and traction
boundary conditions in (12) are defined on disjoint components of ∂Ω), then the solution of
the elliptic boundary value problems in Section 2.1 obey the classical Shift Theorem (Agmon,
1965; Nečas, 1967; Gilbarg and Trudinger, 1983; Wloka, 1987). In other words, if the right-
hand side of the equation belongs to the Sobolev space H`(Ω), then the solution of a 2m-th
order elliptic boundary problem belongs to the Sobolev space H2m+`(Ω).

The Shift Theorem does not hold for domains with piecewise smooth boundary in general.
For example, let Ω be the L-shaped domain depicted in Figure 1 and

u(x) = φ(r) r2/3 sin

(
2

3

(
θ − π

2

))
(28)

where r = (x2
1 +x2

2)1/2 and θ = arctan(x2/x1) are the polar coordinates and φ is a smooth cut-
off function that equals 1 for 0 ≤ r < 1/2 and 0 for r > 3/4. It is easy to check that u ∈ H1

0 (Ω)
and −∆u ∈ C∞(Ω). Let D be any open neighborhood of the origin in Ω. Then u ∈ H2(Ω \D)

but u 6∈ H2(D). In fact u belongs to the Besov space B
5/3
2,∞(D) (Babuška and Osborn, 1991),

which implies that u ∈ H5/3−ε(D) for any ε > 0, but u 6∈ H5/3(D) (see Triebel (1978) and
Grisvard (1985) for a discussion of Besov spaces and fractional order Sobolev spaces). A similar
situation occurs when the types of boundary condition change abruptly, such as the Poisson
problem with mixed boundary conditions depicted on the circular domain in Figure 1, where
the homogeneous Dirichlet boundary condition is assumed on the upper semicircle and the
homogeneous Neumann boundary condition is assumed on the lower semicircle.

Therefore (Dauge, 1988), for the second (respectively fourth) order model problems in
Section 2.1, the solution in general only belongs to H1+α(Ω) (respectively H2+α(Ω)) for some
α ∈ (0, 1] even if the right-hand side of the equation belongs to C∞(Ω).
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8 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

u = 0

−∆u = f

u /  n = 0u = 0

−∆u = f 

(0,0)

(−1,−1) (1,−1)

(0,1)(−1,1)

(1,0)

Figure 1: Singular points of two-dimensional elliptic boundary value problems.

For two-dimensional problems, the vertices of Ω and the points where the boundary condition
changes type are the singular points (cf. Figure 1). Away from these singular points, the Shift
Theorem is valid. The behavior of the solution near the singular points is also well understood.
If the right-hand side function and its derivatives vanish to sufficiently high order at the
singular points, then the Shift Theorem holds for certain weighted Sobolev spaces (Nazarov
and Plamenevsky, 1994; Kozlov, Maz’ya and Rossman, 1997, 2001). Alternatively, one can
represent the solution near a singular point as a sum of a regular part and a singular part
(Grisvard, 1985; Dauge, 1988; Nicaise, 1993). For a 2m-th order problem, the regular part of
the solution belongs to the Sobolev space H2m+k(Ω) if the right-hand side function belongs to
Hk(Ω), and the singular part of the solution is a linear combination of special functions with
less regularity, analogous to the function in (28).

The situation in three dimensions is more complicated due to the presence of edge
singularities, vertex singularities, and edge-vertex singularities. The theory of three-
dimensional singularities remains an active area of research.

3. Finite Element Spaces

Finite element methods are Ritz-Galerkin methods where the finite-dimensional trial/test
function spaces are constructed by piecing together polynomial functions defined on (small)
parts of the domain Ω. In this section, we describe the construction and properties of finite
element spaces. We will concentrate on conforming finite elements here and leave the discussion
of nonconforming finite elements to Section 7.2.

3.1. The concept of a finite element

A d-dimensional finite element (Ciarlet, 1978; Brenner and Scott, 2002) is a triple (K,PK ,NK),
where K is a closed bounded subset of Rd with nonempty interior and a piecewise smooth
boundary, PK is a finite-dimensional vector space of functions defined on K and NK is a basis
of the dual space P ′K . The function space PK is the space of the shape functions and the
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FINITE ELEMENT METHODS 9

Figure 2: Lagrange elements.

Figure 3: Cubic Hermite element, Zienkiewicz element, fifth degree Argyris element and Bell
element.

elements of NK are the nodal variables (degrees of freedom).

The following are examples of two-dimensional finite elements.

Example 4. (Triangular Lagrange Elements) Let K be a triangle, PK be the space Pn of
polynomials in two variables of degree ≤ n, and let the set NK consist of evaluations of shape
functions at the nodes with barycentric coordinates λ1 = i/n, λ2 = j/n and λ3 = k/n, where
i, j, k are nonnegative integers and i + j + k = n. Then (K,PK ,NK) is the two-dimensional
Pn Lagrange finite element. The nodal variables for the P1, P2, and P3 Lagrange elements
are depicted in Figure 2, where • (here and in the following examples) represents pointwise
evaluation of shape functions.

Example 5. (Triangular Hermite Elements) Let K be a triangle. The cubic Hermite element
is the triple (K,P3,NK) where NK consists of evaluations of shape functions and their
gradients at the vertices and evaluation of shape functions at the center of K. The nodal
variables for the cubic Hermite element are depicted in the first figure in Figure 3, where
◦ (here and in the following examples) represents pointwise evaluation of gradients of shape
functions.

By removing the nodal variable at the center (cf. the second figure in Figure 3) and reducing
the space of shape functions to{

v ∈ P3 : 6v(c)− 2

3∑
i=1

v(pi) +

3∑
i=1

(∇v)(pi) · (pi − c) = 0

}
(⊃ P2)

where pi (i = 1, 2, 3) and c are the vertices and center of K respectively, we obtain the
Zienkiewicz element.

The fifth degree Argyris element is the triple (K,P5,NK) where NK consists of evaluations
of the shape functions and their derivatives up to order two at the vertices and evaluations
of the normal derivatives at the midpoints of the edges. The nodal variables for the Argyris
element are depicted in the third figure in Figure 3, where © and ↑ (here and in the following
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10 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Figure 4: Hsieh-Clough-Tocher element and reduced Hsieh-Clough-Tocher element.

Figure 5: Tensor product elements.

Figure 6: Qn quadrilateral elements.

examples) represent pointwise evaluation of second order derivatives and the normal derivative
of the shape functions, respectively.

By removing the nodal variables at the midpoints of the edges (cf. the fourth figure in
Figure 3) and reducing the space of shape functions to {v ∈ P5 : (∂v/∂n)

∣∣
e
∈ P3(e) for each

edge e}, we obtain the Bell element.

Example 6. (Triangular Macro Elements) Let K be a triangle that is subdivided into three
subtriangles by the center of K, PK be the space of piecewise cubic polynomials with respect to
this subdivision that belong to C1(K), and let the set NK consist of evaluations of the shape
functions and their first-order derivatives at the vertices of K and evaluations of the normal
derivatives of the shape functions at the midpoints of the edges of K. Then (K,PK ,NK) is the
Hsieh-Clough-Tocher macro element. The nodal variables for this element are depicted in the
first figure in Figure 4.

By removing the nodal variables at the midpoints of the edges (cf. the second figure in
Figure 4) and reducing the space of shape functions to {v ∈ C1(K) : v is piecewise cubic
and (∂v/∂n)

∣∣
e
∈ P1(e) for each edge e}, we obtain the reduced Hsieh-Clough-Tocher macro

element.

Example 7. (Rectangular Tensor Product Elements) Let K be the rectangle [a1, b1]× [a2, b2],
PK be the space spanned by the monomials xi1x

j
2 for 0 ≤ i, j ≤ n, and the set NK consist of

evaluations of shape functions at the nodes with coordinates
(
a1+i(b1−a1)/n, a2+j(b2−a2)/n

)
for 0 ≤ i, j ≤ n. Then (K,PK ,NK) is the two-dimensional Qn tensor product element. The
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Figure 7: Serendipity and Bogner-Fox-Schmit elements.

nodal variables of the Q1, Q2 and Q3 elements are depicted in Figure 5.

Example 8. (Quadrilateral Qn Elements) Let K be a convex quadrilateral; then there exists
a bilinear map (x1, x2) 7→ B(x1, x2) = (a1 + b1x1 + c1x2 +d1x1x2, a2 + b2x1 + c2x2 +d2x1x2) f
rom the biunit square S with vertices (±1,±1) onto K. The space of shape functions is defined
by v ∈ PK if and only if v ◦ B ∈ Qn and NK consists of pointwise evaluations of the shape
functions at the nodes of K corresponding under the map B to the nodes of the Qn tensor
product element on S. The nodal variables of the Q1, Q2 and Q3 quadrilateral elements are
depicted in Figure 6.

Example 9. (Other Rectangular Elements) Let K be the rectangle [a1, b1]× [c1, d1];

PK =

{
v ∈ Q2 : 4v(c) +

4∑
i=1

v(pi)− 2

4∑
i=1

v(mi) = 0

}
(⊃ P2)

where the pi’s are the vertices of K, the mi’s are the midpoints of the edges of K and c is
the center of K; and NK consist of evaluations of the shape functions at the vertices and
the midpoints (cf. the first figure in Figure 7). Then (K,PK ,NK) is the 8-node serendipity
element.

If we take PK to be the space of bicubic polynomials spanned by xi1x
j
2 for 0 ≤ i, j ≤ 3 and

NK to be the set consisting of evaluations at the vertices of K of the shape functions, their
first-order derivatives and their second-order mixed derivatives, then we have the Bogner-Fox-
Schmit element. The nodal variables for this element are depicted in the second figure in
Figure 7, where the tilted arrows represent pointwise evaluations of the second-order mixed
derivatives of the shape functions.

Remark 4. The triangular Pn elements and the quadrilateral Qn elements, which are
suitable for second order elliptic boundary value problems, can be generalized to any dimension
in a straightforward manner. The Argyris element, the Bell element, the macro elements, and
the Bogner-Fox-Schmit element are suitable for fourth-order problems in two space dimensions.

3.2. Triangulations and finite element spaces

We restrict Ω ⊂ Rd (d = 1, 2, 3) to be a polyhedral domain in this and the following sections.
The case of curved domains will be discussed in Section 7.4.
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c© John Wiley & Sons, Ltd. ISBN: 0-470-84699-2



12 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Figure 8: Partitions and triangulations.

A partition of Ω is a collection P of polyhedral subdomains of Ω such that

Ω =
⋃
D∈P

D and D ∩D′ = ∅ if D,D′ ∈ P, D 6= D′

where we use Ω and D to represent the closures of Ω and D.

A triangulation of Ω is a partition where the intersection of the closures of two distinct
subdomains is either empty, a common vertex, a common edge or a common face. For d = 1,
every partition is a triangulation. But the two concepts are different when d ≥ 2. A partition
that is not a triangulation is depicted in the first figure in Figure 8, where the other three figures
represent triangulations. Below we will concentrate on triangulations consisting of triangles or
convex quadrilaterals in two dimensions and tetrahedrons or convex hexahedrons in three
dimensions.

The shape regularity of a triangle (or tetrahedron) D can be measured by the parameter

γ(D) =
diamD

diameter of the largest ball in D
(29)

which will be referred to as the aspect ratio of the triangle (tetrahedron). We say that a f
amily of triangulations of triangles (or tetrahedrons) {Ti : i ∈ I} is regular (or nondegenerate)
if the aspect ratios of all the triangles (tetrahedrons) in the triangulations are bounded, that
is, there exists a positive constant C such that

γ(D) ≤ C for all D ∈ Ti and i ∈ I

The shape regularity of a convex quadrilateral (or hexahedron) D can be measured by the
parameter γ(D) defined in (29) and the parameter

σ(D) = max

{
|e1|
|e2|

: e1 and e2 are any two edges of D

}
(30)

We will refer to the number max(γ(D), σ(D)) as the aspect ratio of the convex quadrilateral
(hexahedron). We say that a family of triangulations of convex quadrilaterals (or hexahedrons)
{Ti : i ∈ I} is regular if the aspect ratios of all the quadrilaterals in the triangulations are
bounded, that is, there exists a positive constant C such that

γ(D), σ(D) ≤ C for all D ∈ Ti and i ∈ I
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FINITE ELEMENT METHODS 13

A family of triangulations is quasi-uniform if it is regular and there exists a positive constant
C such that

hi ≤ C diamD ∀D ∈ Ti, i ∈ I (31)

where hi is the maximum of the diameters of the subdomains in Ti.

Remark 5. For a triangle or a tetrahedron D, a lower bound for the angles of D can lead
to an upper bound for γ(D) (and vice versa). Therefore, the regularity of a family of simplicial
triangulations (i.e. triangulations consisting of triangles or tetrahedrons) is equivalent to the
following minimum angle condition: There exists θ∗ > 0 such that the angles of the simplexes
in all the triangulations Ti are bounded below by θ∗.

Remark 6. A family of triangulations obtained by successive uniform subdivisions of an
initial triangulation is quasi-uniform. A family of triangulations generated by a local refinement
strategy is usually regular but not quasi-uniform.

Let T be a triangulation of Ω, and a finite element (D,PD,ND) be associated with each
subdomain D ∈ T . We define the corresponding finite element space to be

FET = {v ∈ L2(Ω): vD = v
∣∣
D
∈ PD ∀D ∈ T , and

vD, vD′ share the same nodal values on D ∩D′} (32)

We say that FET is a Cr finite element space if FET ⊂ Cr(Ω). For example, the finite
element spaces constructed from the Lagrange finite elements (Example 4), the tensor product
elements (Example 7), the cubic Hermite element (Example 5), the Zienkiewicz element
(Example 5) and the serendipity element (Example 9) are C0 finite element spaces, and those
constructed from the quintic Argyris element (Example 5), the Bell element (Example 5), the
macro elements (Example 6) and the Bogner-Fox-Schmit element (Example 9) are C1 finite
element spaces.

Note that a Cr finite element space is automatically a subspace of the Sobolev spaceHr+1(Ω)
and therefore appropriate for elliptic boundary value problems of order 2(r + 1).

3.3. Element nodal interpolation operators and interpolation error estimates

Let (K,PK ,NK) be a finite element. Denote the nodal variables in NK by N1, . . . , Nn
(n = dimPK) and the dual basis of PK by φ1, . . . , φn, that is,

Ni(φj) = δij =

{
1 if i = j
0 if i 6= j

Assume that ζ 7→ Ni(ζ) is well-defined for ζ ∈ Hs(K) (where s is a sufficiently large positive
number), then we can define the element nodal interpolation operator ΠK : Hs(K)→ PK by

ΠKζ =

n∑
j=1

Nj(ζ)φj (33)
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14 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Note that (33) implies
ΠKv = v ∀ v ∈ PK (34)

For example, by the Sobolev embedding theorem (Adams, 1995; Nečas, 1967; Wloka,
1987; Gilbarg and Trudinger, 1983), the nodal interpolation operators associated with the
Lagrange finite elements (Example 4), the tensor product finite elements (Example 7), and
the serendipity element (Example 9) are well-defined on Hs(K) for s > 1 if K ⊂ R2 and
for s > 3/2 if K ⊂ R3. On the other hand the nodal interpolation operators associated with
the Zienkiewicz element (Example 5) and the macro elements (Example 6) are well-defined on
Hs(K) for s > 2, while the interpolation operators for the quintic Argyris element (Example 5),
the Bell element (Example 5) or the Bogner-Fox-Schmit (Example 9) are well-defined onHs(K)
for s > 3.

The error of the element nodal interpolation operator for a triangular (tetrahedral) or
convex quadrilateral (hexagonal) element (K,PK ,NK) can be controlled in terms of the shape
regularity of K. Let K̂ be the image of K under the scaling map

x 7→ H(x) = (diamK)−1x (35)

Then K̂ is a domain of unit diameter and we can define a finite element (K̂,PK̂ ,NK̂) as
follows: (i) v̂ ∈ PK̂ if and only if v̂ ◦ H ∈ PK , and (ii) N ∈ NK̂ if and only if the linear

functional v 7→ N(v ◦ H−1) on PK belongs to NK . It follows that the dual basis φ̂1, . . . , φ̂n of

PK̂ is related to the dual basis φ1, . . . , φn of PK through the relation φ̂i ◦ H = φi, and (33)
implies that

(ΠKζ) ◦ H−1 = ΠK̂(ζ ◦ H−1) (36)

for all sufficiently smooth functions ζ defined on K. Moreover, for the functions ζ̂ and ζ related
by ζ(x) = ζ̂(H(x)), we have

|ζ̂|2
Hs(K̂)

= (diamK)2s−d|ζ|2Hs(K) (37)

where d is the spatial dimension.

Assuming that PK̂ ⊇ Pm (equivalently PK ⊇ Pm), we have, by (34),

‖ζ̂ −ΠK̂ ζ̂‖Hm(K̂) = ‖(ζ̂ − p)−ΠK̂(ζ̂ − p)‖Hm(K̂)

≤ 2‖ΠK̂‖m,s ‖ζ̂ − p‖Hs(K̂) ∀ p ∈ Pm

where ‖ΠK̂‖m,s is the norm of the operator ΠK̂ : Hs(K̂)→ Hm(K̂), and hence

‖ζ̂ −ΠK̂ ζ̂‖Hm(K̂) ≤ 2‖ΠK̂‖m,s inf
p∈Pm

‖ζ̂ − p‖Hs(K̂) (38)

Since K is convex, the following estimate (Verfürth, 1999) holds provided m is the largest
integer strictly less than s:

inf
p∈Pm

‖ζ̂ − p‖Hs(K̂) ≤ Cs,d|ζ̂|Hs(K̂) ∀ ζ̂ ∈ Hs(K̂) (39)
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where the positive constant Cs,d depends only on s and d.

Combining (38) and (39) we find

‖ζ̂ −ΠK̂ ζ̂‖Hm(K̂) ≤ 2Cs,d‖ΠK̂‖m,s|ζ̂|Hs(K̂) ∀ ζ̂ ∈ Hs(K̂) (40)

We have therefore reduced the error estimate for the element nodal interpolation operator to
an estimate of ‖ΠK̂‖m,s. Since diam K̂ = 1, the norm ‖ΠK̂‖m,s is a constant depending only

on the shape of K̂ (equivalently of K), if we considered s and m to be fixed for a given type
of element.

For triangular elements, we can use the concept of affine-interpolation-equivalent elements
to obtain a more concrete description of the dependence of ‖ΠK̂‖m,s on the shape of K̂. A d-
dimensional nondegenerate affine map is a map of the form x 7→ Ax+b where A is a nonsingular
d× d matrix and b ∈ Rd. We say that two finite elements (K1,PK1

,NK1
) and (K2,PK2

,NK2
)

are affine-interpolation-equivalent if (i) there exists a nondegenerate affine map Φ that maps
K1 onto K2, (ii) v ∈ PK2

if and only if v ◦ Φ ∈ PK1
and (iii)

(ΠK2
ζ) ◦ Φ = ΠK1

(ζ ◦ Φ) (41)

for all sufficiently smooth functions ζ defined on K2. For example, any triangular elements in
one of the families (except the Bell element and the reduced Hsieh-Clough-Tocher element)
described in Section 3.1 are affine- interpolation-equivalent to the corresponding element on
the standard simplex S with vertices (0, 0), (1, 0) and (0, 1).

Assuming (K̂,PK̂ ,NK̂) (or equivalently (K,PK ,NK)) is affine-interpolation-equivalent to
the element (S,PS ,NS) on the standard simplex, it follows from (41) and the chain rule that

‖ΠK̂‖m,s ≤ C‖ΠS‖m,s (42)

where the positive constant depends only on the Jacobian matrix of the affine map Φ̂: S → K̂
and thus depends only on an upper bound of the parameter γ(K̂) (cf. (29)) which is identical
with γ(K).

Combining (36), (37), (40) and (42), we find

m∑
k=0

(diamK)k|ζ −ΠKζ|Hm(K̂) ≤ C(diamK)s|ζ|Hs(K)

∀ ζ ∈ Hs(K) (43)

where the positive constant C depends only on s and an upper bound of the parameter γ(K)
(the aspect ratio of K), provided that (i) the element nodal interpolation operator is well-
defined on Hs(K), (ii) the triangular element (K,PK ,NK) is affine-interpolation-equivalent
to a reference element (S,PS ,NS) on the standard simplex, (iii) P ⊇ Pm, and (iv) m is the
largest integer < s.

For convex quadrilateral elements, we can similarly obtain a concrete description of
the dependence of ‖ΠK̂‖m,s on the shape of K̂ by assuming that there is a reference
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16 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

element (S,PS ,NS) defined on the biunit square S with vertices (±1,±1) and a bilinear

homeomorphism Φ̂ from S onto K̂ with the following properties: v̂ ∈ PK̂ if and only if

v ◦ Φ ∈ PS and (ΠK̂ ζ̂) ◦ Φ̂ = ΠS(ζ̂ ◦ Φ̂) for all sufficiently smooth functions ζ̂ defined on

K̂. Note that because of (36) this is equivalent to the existence of a bilinear homeomorphism
from S onto K such that

v ∈ PK ⇐⇒ v ◦ Φ ∈ PS
and (ΠKζ) ◦ Φ = ΠS(ζ ◦ Φ) (44)

for all sufficiently smooth functions ζ defined on K. The estimate (42) holds again by the
chain rule, where the positive constant C depends only on the Jacobian matrix of Φ̂ and
thus depends only on upper bounds for the parameters γ(K̂) and σ(K̂) (cf. (30)), which are
identical with γ(K) and σ(K). We conclude that the estimate (43) also holds for convex
quadrilateral elements where the positive constant C depends on upper bounds of γ(K) and
σ(K) (equivalently an upper bound of the aspect ratio of K) provided condition (ii) is replaced
by (44). For example, the estimate (43) is valid for the quadrilateral Qn element in Example 8.

Remark 7. The general estimate (40) can be refined to yield anisotropic error estimates for
certain reference elements. For example, in two dimensions, the following estimates (Apel and
Dobrowolski, 1992; Apel, 1999) hold for the Pn Lagrange elements on the reference simplex S
and the Qn tensor product elements on the reference square S:∥∥∥∥ ∂

∂xj
(ζ −ΠSζ)

∥∥∥∥
L2(S)

≤ C

(∥∥∥∥ ∂2ζ

∂x1∂xj

∥∥∥∥
L2(S)

+

∥∥∥∥ ∂2ζ

∂x2∂xj

∥∥∥∥
L2(S)

)
(45)

for j = 1, 2 and for all ζ ∈ H2(S). We refer the readers to Interpolation in h-version Finite
Element Spaces, for more details.

Remark 8. The analysis of the quadrilateral serendipity elements is more subtle. A detailed
discussion can be found in Arnold, Boffi and Falk (2002).

Remark 9. The estimate (43) can be generalized naturally to 3-D tetrahedral Pn elements
and hexahedral Qn elements.

Remark 10. Let n be a nonnegative integer and n < s ≤ n+ 1. The estimate

inf
p∈Pn(Ω)

‖ζ − p‖Hs(Ω) ≤ CΩ,s|ζ|Hs(Ω) ∀ ζ ∈ Hs(Ω) (46)

for general Ω follows from generalized Poincaré-Friedrichs inequalities (Nečas, 1967). In the
case where Ω is convex, the constant CΩ,s depends only on s and the dimension of Ω, but not
on the shape of Ω, as indicated by the estimate (39). For nonconvex domains, the constant
CΩ,s does depend on the shape of Ω (Dupont and Scott, 1980, Verfürth, 1999).

Let F be a bounded linear functional on Hs(Ω) with norm ‖F‖ such that F (p) = 0 for all
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p ∈ Pn(Ω). It follows from (46) that

|F (ζ)| ≤ inf
p∈Pn(Ω)

|F (ζ − p)| ≤ ‖F‖ inf
p∈Pn(Ω)

‖ζ − p‖Hs(Ω)

≤ (CΩ,s‖F‖)|ζ|Hs(Ω) (47)

for all ζ ∈ Hs(Ω). The estimate (47), known as the Bramble-Hilbert lemma (Bramble and
Hilbert, 1970), is useful for deriving various error estimates.

3.4. Some discrete estimates

The finite element spaces in Section 3.2 are designed to be subspaces of Sobolev spaces so that
they can serve as the trial/test spaces for Ritz-Galerkin methods. On the other hand, since
finite element spaces are constructed by piecing together finite-dimensional function spaces,
there are discrete estimates valid on the finite element spaces but not the Sobolev spaces.

Let (K,PK ,NK) be a finite element such that PK ⊂ Hk(K) for a nonnegative integer k.
Since any seminorm on a finite-dimensional space is continuous with respect to a norm, we
have, by scaling, the following inverse estimate:

|v|Hk(K) ≤ C(diamK)`−k‖v‖H`(K) ∀ v ∈ PK , 0 ≤ ` ≤ k (48)

where the positive constant C depends on the domain K̂ (the image of K under the scaling
map H defined by (35)) and the space PK .

For finite elements whose shape functions can be pulled back to a fixed finite-dimensional
function space on a reference element, the constant C depends only on the shape regularity
of the element domain K and global versions of (48) can be easily derived. For example, for
a quasi-uniform family {Ti : i ∈ I} of simplicial or quadrilateral triangulations of a polygonal
domain Ω, we have

|v|H1(Ω) ≤ Ch−1
i ‖v‖L2(Ω) ∀ v ∈ Vi and i ∈ I (49)

where Vi ⊂ H1(Ω) is either the Pn triangular finite element space or the Qn quadrilateral
finite element space associated with Ti. Note that Vi ⊂ Hs(Ω) for any s < 3/2 and a bit more
work shows that the following inverse estimate (Ben Belgacem and Brenner, 2001) also holds:

|v|Hs(Ω) ≤ Csh1−s
i ‖v‖H1(Ω) ∀ v ∈ Vi, i ∈ I (50)

and 1 ≤ s < 3/2, where the positive constant Cs can be uniformly bounded for s in a compact
subset of [1, 3/2).

It is well-known that in two dimensions the Sobolev space H1(Ω) is not a subspace of C(Ω).
However, the Pn triangular finite element space and the Qn quadrilateral finite element space
do belong to C(Ω) and it is possible to bound the L∞ norm of the finite element function by
its H1 norm. Indeed, it follows from Fourier transform and extension theorems (Adams, 1995,
Wloka, 1987) that, for ε > 0,

‖v‖L∞(Ω) ≤ Cε−1/2‖v‖H1+ε(Ω) ∀ v ∈ H1+ε(Ω) (51)
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18 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

By taking ε = (1 + | lnhi|)−1 in (51) and applying (50), we arrive at the following discrete
Sobolev inequality:

‖v‖L∞(Ω) ≤ C(1 + | lnhi|)1/2‖v‖H1(Ω) ∀ v ∈ Vi (52)

where the positive constant C is independent of i ∈ I.

The discrete Sobolev inequality and the Poincaré-Friedrichs inequality (8) imply immediately
the following discrete Poincaré inequality:

‖v‖L∞(Ω) ≤ ‖v − v̄‖L∞(Ω) + ‖v̄‖L∞(Ω)

≤ 2‖v − v̄‖L∞(Ω)

≤ C(1 + | lnhi|)1/2‖v − v̄‖H1(Ω)

≤ C(1 + | lnhi|)1/2|v|H1(Ω) (53)

for all v ∈ Vi that vanishes at a given point in Ω and with mean v̄ =
∫

Ω
vdx/|Ω|.

Remark 11. The discrete Sobolev inequality can also be established directly using calculus
and inverse estimates (Bramble, Pasciak and Schatz, 1986; Brenner and Scott, 2002), and both
(52) and (53) are sharp (Brenner and Sung, 2000).

4. A Priori Error Estimates for Finite Element Methods

Let T be a triangulation of Ω and a finite element (D,PD,ND) be associated with each
subdomain D ∈ T so that the resulting finite element space FET (cf. (32)) is a subspace of
Cm−1(Ω) ⊂ Hm(Ω). By imposing appropriate boundary conditions, we can obtain a subspace
VT of FET such that VT ⊂ V , the subspace of Hm(Ω), where the weak problem (1) is
formulated. The corresponding finite element method for (1) is:

Find uT ∈ VT such that

a(uT , v) = F (v) ∀ v ∈ VT (54)

In this section, we consider a priori estimates for the discretization error u − uT . We will
discuss the second-order and fourth-order cases separately. We use the letter C to denote a
generic positive constant that can take different values at different appearances.

Let us also point out that the asymptotic error analysis carried out in this section is not
sufficient for parameter-dependent problems (e.g. thin structures and nearly incompressible
elasticity) that can experience locking (Babuška and Suri, 1992). We refer the readers to other
chapters in this encyclopedia that are devoted to such problems for the discussion of the
techniques that can overcome locking.
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4.1. Second-order problems

We will devote most of our discussion to the case where Ω ⊂ R2 and only comment briefly on
the 3-D case. For preciseness, we also assume the right-hand side of the elliptic boundary value
problem to be square integrable. We first consider the case where V ⊂ H1(Ω) is defined by
homogeneous Dirichlet boundary conditions (cf. Section 2.1) on Γ ⊂ ∂Ω. Such problems can be
discretized by triangular Pn elements (Example 4) or quadrilateral Qn elements (Example 8).

Let T be a triangulation of Ω by triangles (convex quadrilaterals) and each triangle
(quadrilateral) in T be equipped with the Pn (n ≥ 1) Lagrange element (Qn quadrilateral
element). The resulting finite element space FET is a subspace of C0(Ω) ⊂ H1(Ω). We assume
that Γ is the union of the edges of the triangles (quadrilaterals) in T and take VT = V ∩FET ,
the subspace defined by the homogeneous Dirichlet boundary condition on Γ.

We know from the discussion in Section 2.3 that u ∈ H1+α(D)(D) for each D ∈ T , where the
number α(D) ∈ (0, 1] and α(D) = 1 for D away from the singular points. Hence, the element
nodal interpolation operator ΠD is well-defined on u for all D ∈ T . We can therefore piece
together a global nodal interpolant Π N

T u ∈ VT by the formula(
ΠN
T u
)∣∣
D

= ΠD

(
u
∣∣
D

)
(55)

From the discussion in Section 3.3, we know that (43) is valid for both the triangular Pn
element and the quadrilateral Qn element. We deduce from (43) and (55) that

‖u−ΠN
T u‖2H1(Ω) ≤ C

∑
D∈T

(diamD)2α(D)|u|2H1+α(D)(D) (56)

where C depends only on the maximum of the aspect ratios of the element domains in T .
Combining (22) and (56) we have the a priori discretization error estimate

‖u− uT ‖H1(Ω) ≤ C

(∑
D∈T

(diamD)2α(D)|u|2H1+α(D)(D)

)1/2

(57)

where C depends only on the constants in (2) and (3) and the maximum of the aspect ratios
of the element domains in T .

Hence, if {Ti : i ∈ I} is a regular family of triangulations, and the solution u of (1) belongs
to the Sobolev space H1+α(Ω) for some α ∈ (0, 1], then we can deduce from (57) that

‖u− uTi‖H1(Ω) ≤ Chαi |u|H1+α(Ω) (58)

where hi = maxD∈Ti diamD is the mesh size of Ti and C is independent of i ∈ I. Note that
the solution w of (23) with ũ replaced by uT also belongs to H1+α(Ω) and satisfies the elliptic
regularity estimate

‖w‖H1+α(Ω) ≤ C‖u− uT ‖L2(Ω)
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20 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

Therefore, we have

inf
v∈VT

‖w − v‖H1(Ω) ≤ ‖w −Π N
T w‖H1(Ω)

≤ Chαi |w|H1+α(Ω) (59)

≤ Chαi ‖u− uT ‖L2(Ω)

The abstract estimate (24) with ũ replaced by uT and (59) yield the following L2 estimate:

‖u− uTi‖L2(Ω) ≤ Ch2α
i |u|H1+α(Ω) (60)

where C is also independent of i ∈ I.

Remark 12. In the case where α = 1 (for example, when Γ = ∂Ω in Example 1 and Ω is
convex), the estimate (58) is optimal and it is appropriate to use a quasi-uniform family of
triangulations. In the case where α(D) < 1 for D next to singular points, the estimate (57)
allows the possibility of improvement by graded meshes (cf. Section 6).

Remark 13. In the derivations of (58) and (60) above for the triangular Pn elements, we
have used the minimum angle condition (cf. Remark 5.). In view of the anisotropic estimates
(45), these estimates also hold for triangular Pn elements under the maximum angle condition
(Babuška and Aziz, 1976; Jamet, 1976; Ženǐsek, 1995; Apel, 1999): there exists θ∗ < π such
that all the angles in the family of triangulations are ≤ θ∗. The estimates (58) and (60) are
also valid for Qn elements on parallelograms satisfying the maximum angle condition. They
can also be established for certain thin quadrilateral elements (Apel, 1999).

The 2-D results above also hold for 3-D tetrahedral Pn elements and 3-D hexagonal Qn
elements if the solution u of (1) belongs to H1+α(Ω) where 1/2 < α ≤ 1, since the nodal
interpolation operator are then well-defined by the Sobolev embedding theorem. This is the
case, for example, if Γ = ∂Ω in Example 1. However, new interpolation operators that require
less regularity are needed if 0 < α ≤ 3/2. Below, we construct an interpolation operator
ΠA
T : H1(Ω)→ VT using the local averaging technique of Scott and Zhang (1990).

For simplicity, we take VT to be a tetrahedral P1 finite element space. Therefore, we only
need to specify the value of ΠA

T ζ at the vertices of T for a given function ζ ∈ H1(Ω). Let p be a
vertex. We choose a face (or edge in 2-D) F of a subdomain in T such that p ∈ F . The choice
of F is of course not unique. But we always choose F ⊂ ∂Ω if p ∈ ∂Ω so that the resulting
interpolant will satisfy the appropriate Dirichlet boundary condition. Let {ψj}dj=1 ⊂ P1(F) be

biorthogonal to the nodal basis {φj}dj=1 ⊂ P1(F) with respect to the L2(F) inner product. In
other words φj equals 1 at the jth vertex of F and vanishes at the other vertices, and∫

F
ψiφjds = δij (61)

Suppose p corresponds to the jth vertex of F . We then define

(ΠA
T ζ)(p) =

∫
F
ψjζds (62)

where the integral is well-defined because of the trace theorem.
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D

Figure 9: A two-dimensional example of S(D).

It is clear in view of (61) and (62) that ΠA
T v = v for all v ∈ FET and ΠA

T ζ = 0 on Γ if
ζ = 0 on Γ. Note also that ΠA

T is not a local operator, i.e., (ΠA
T ζ)

∣∣
D

is in general determined

by ζ
∣∣
S(D)

, where S(D) is the polyhedral domain formed by the subdomains in T sharing (at

least) a vertex with D (cf. Figure 9 for a 2-D example). It follows that the interpolation error
estimate for Π̃T takes the following form:

‖ζ −ΠA
T ζ‖2L2(D) + (diamD)2|ζ −ΠA

T ζ|2H1(D)

≤ C
(
diamD)2(1+α(S(D)))|ζ|2H1+α(S(D))(S(D)) (63)

where C depends on the shape regularity of T , provided that ζ ∈ H1+α(S(D))(S(D)) for some
α(S(D)) ∈ (0, 1]. The estimates (58) and (60) for tetrahedral P1 elements can be derived for
general α ∈ (0, 1] and regular triangulations using the estimate (63).

Remark 14. The interpolation operator ΠA
T can be defined for general finite elements (Scott

and Zhang, 1990; Girault and Scott, 2002) and anisotropic estimates can be obtained for ΠA
T f

or certain triangulations (Apel, 1999). There also exist interpolation operators for less regular
functions (Clément, 1975; Bernardi and Girault, 1998).

Next, we consider the case where V is a closed subspace of H1(Ω) with finite codimension
n < ∞, as in the case of the Poisson problem with pure homogeneous Neumann boundary
condition (where n = 1) or the elasticity problem with pure homogeneous traction boundary
condition (where n = 1 when d = 1, and n = 3(d− 1) when d = 2 or 3). The key assumption
here is that there exists a bounded linear projection Q from H1(Ω) onto an n dimensional
subspace of FET such that ζ ∈ H1(Ω) belongs to V if and only if Qζ = 0. We can then define

an interpolation operator Π̃T from appropriate Sobolev spaces onto VT by

Π̃T = (I −Q)ΠT

where ΠT is either the nodal interpolation operator ΠN
T or the Scott-Zhang averaging

interpolation operator ΠA
T introduced earlier. Observe that, since the weak solution u belongs

to V ,
u− Π̃T u = u−Qu− (I −Q)ΠT u = (I −Q)(u−ΠT u)

and the interpolation error of Π̃T can be estimated in terms of the norm of Q : H1(Ω)→ H1(Ω)
and the interpolation error of ΠT . Therefore, the a priori discretization error estimates for
Dirichlet or Dirichlet/Neumann boundary value problems also hold for this second type of
(pure Neumann) boundary value problems.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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For the Poisson problem with homogeneous Neumann boundary condition, we can take

Qζ =
1

|Ω|

∫
Ω

ζdx

the mean of ζ over Ω. For the elasticity problem with pure homogeneous traction boundary
condition, the operator Q from [H1(Ω)]d onto the space of infinitesimal rigid motions is
defined by ∫

Ω

Qζdx =

∫
Ω

ζdx and∫
Ω

∇×Qζdx =

∫
Ω

∇× ζdx ∀ ζ ∈ [H1(Ω)]d

In both cases, the norm of Q is bounded by a constant CΩ.

Remark 15. In the case where f ∈ Hk(Ω) for k > 0, the solution u belongs to H2+k(Ω) away
from the geometric or boundary data singularities and, in particular, away from ∂Ω. Therefore,
it is advantageous to use higher-order elements in certain parts of Ω, or even globally (with
curved elements near ∂Ω) if singularities are not present. In the case where f ∈ L2(Ω), the
error estimate (57) indicates that the order of the discretization error for the triangular Pn
element or the quadrilateral Qn element is independent of n ≥ 1. However, the convergence
of the finite element solutions to a particular solution as h ↓ 0 can be improved by using
higher-order elements because of the existence of nonuniform error estimates (Babuška and
Kellogg, 1975).

4.2. Fourth-order problems

We restrict the discussion of fourth-order problems to the two-dimensional plate bending
problem of Example 3.

Let T be a triangulation of Ω by triangles and each triangle in T be equipped with the
Hsieh-Clough-Tocher macro element (cf. Example 6). The finite element space FET defined
by (32) is a subspace of C1(Ω) ⊂ H2(Ω). We take VT to be V ∩ FET , where V = H2

0 (Ω) for
the clamped plate and V = H1

0 (Ω) ∩H2(Ω) for the simply supported plate.

The solution u of the plate-bending problem belongs to H2+α(D)(D) for each D ∈ T ,
where α(D) ∈ (0, 2] and α(D) = 2 for D away from the corners of Ω. The elemental nodal
interpolation operator ΠD is well-defined on u for all D ∈ T . We can therefore define a global
nodal interpolation operator ΠN

T by the formula (55). Since the Hsieh-Clough-Tocher macro
element is affine-interpolation-equivalent to the reference element on the standard simplex, we
deduce from (55) and (43) that

‖u−ΠN
T u‖2H2(Ω) ≤ C

∑
D∈T

(diamD)2α(D)|u|2H2+α(D)(D) (64)

where C depends only on the maximum of the aspect ratios of the triangles in T (or equivalently
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the minimum angle of T ). From (22) and (64), we have

‖u− uT ‖H2(Ω) ≤ C

(∑
D∈T

(diamD)2α(D)|u|2H2+α(D)(D)

)1/2

(65)

where C depends only on the constants in (2) and (3) and the minimum angle of T .

Hence, if {Ti : i ∈ I} is a regular family of triangulations, and the solution u of the plate
bending problem belongs to the Sobolev space H2+α(Ω) for some α ∈ (0, 2], we can deduce
from (65) that

‖u− uTi‖H2(Ω) ≤ Chαi |u|H2+α(Ω) (66)

where hi = maxD∈Ti diamD is the mesh size of Ti and C is independent of i ∈ I. Since the
solution w of (23) also belongs to H2+α(Ω), the abstract estimate (24) combined with an error
estimate for w in the H2-norm analogous to (66) yields the following L2 estimate:

‖u− uTi‖L2(Ω) ≤ Ch2α
i |u|H2+α(Ω) (67)

where C is also independent of i ∈ I.

Remark 16. The analysis of general triangular and quadrilateral C1 macro elements can
be found in Douglas et al (1979).

The plate-bending problem can also be discretized by the Argyris element (cf. Example 5).
If α(D) > 1 for all D ∈ D, then the nodal interpolation operator ΠN

T is well-defined for
the Argyris finite element space. If α(D) ≤ 1 for some D ∈ T , then the nodal interpolation
operator ΠN

T must be replaced by an interpolation operator constructed by the technique of
local averaging. In either case, the estimates (66) and (67) remain valid for the Argyris finite
element solution.

5. A Posteriori Error Estimates and Analysis

In this section, we review explicit and implicit estimators as well as averaging and multilevel
estimators for a posteriori finite element error control.

Throughout this section, we adopt the notation of Sections 2.1 and 2.2 and recall that u
denotes the (unknown) exact solution of (1) while ũ ∈ Ṽ denotes the discrete and given solution
of (19). It is the aim of Section 5.1-5.6 to estimate the error e := u − ũ ∈ V in the energy
norm ‖ · ‖a = (a(·, ·))1/2 in terms of computable quantities while Section 5.7 concerns other
error norms or goal functionals.

Throughout this section, we assume 0 < ‖e‖a to exclude the exceptional situation u = ũ.
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24 ENCYCLOPEDIA OF COMPUTATIONAL MECHANICS

5.1. Aims and concepts in a posteriori finite element error control

The following five sections introduce the notation, the concepts of efficiency and reliability,
the definitions of residual and error, a posteriori error control and adaptive algorithms, and
comment on some relevant literature.

5.1.1. Error estimators, efficiency, reliability, asymptotic exactness. Regarded as an
approximation to the (unknown) error norm ‖e‖a, a (computable) quantity η is called
a posteriori error estimator, or estimator for brevity, if it is a function of the known domain
Ω and its boundary Γ, the quantities of the right-hand side F , cf. (6) and (13), as well as of
the (given) discrete solution ũ, or the underlying triangulation.

An estimator η is called reliable if

‖e‖a ≤ Crel η + h.o.t.rel (68)

An estimator η is called efficient if

η ≤ Ceff ‖e‖a + h.o.t.eff (69)

An estimator is called asymptotically exact if it is reliable and efficient in the sense of (68)-
(69) with Crel = C−1

eff .

Here, Crel and Ceff are multiplicative constants that do not depend on the mesh size of an
underlying finite element mesh T for the computation of ũ and h.o.t. denotes higher-order
terms. The latter are generically much smaller than η or ‖e‖a, but usually, this depends on the
(unknown) smoothness of the exact solution or the (known) smoothness of the given data. The
readers are warned that, in general, h.o.t. may not be neglected; in case of high oscillations
they may even dominate (68) or (69).

5.1.2. Error and residual. Abstract examples for estimators are (26) and (27), which involve
dual norms of the residual (25). Notice carefully that R := F − a(ũ, ·) is a bounded linear
functional in V , written R ∈ V ∗, and hence the dual norm

‖R‖V ∗ := sup
v∈V \{0}

R(v)

‖v‖a
= sup
v∈V \{0}

a(e, v)

‖v‖a
= ‖e‖a <∞ (70)

The second equality immediately follows from (25). A Cauchy inequality in (70) with respect
to the scalar product a results in ‖R‖V ∗ ≤ ‖e‖a while v = e in (70) yields finally the equality
‖R‖V ∗ = ‖e‖a.

That is, the error (estimation) in the energy norm is equivalent to the (computation of the)
dual norm of the given residual. Furthermore, it is even of comparable computational effort to
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compute an optimal v = e in (70) or to compute e. The proof of (70) yields even a stability
estimate: The relative error of R(v) as an approximation to ‖e‖a equals

(‖e‖a −R(v))

‖e‖a
=

1

2

∥∥∥∥v − e

‖e‖a

∥∥∥∥2

a

for all v ∈ V with ‖v‖a = 1 (71)

In fact, given any v ∈ V with ‖v‖a = 1, the identity (71) follows from

1− a
(

e

‖e‖a
, v

)
=

1

2
a

(
e

‖e‖a
,

e

‖e‖a

)
− a

(
e

‖e‖a
, v

)
+

1

2
a(v, v) =

1

2

∥∥∥∥v − e

‖e‖a

∥∥∥∥2

a

The error estimate (71) implies that the maximizing v in (70) (i.e. v ∈ V with maximal R(v)
subject to ‖v‖a ≤ 1) is unique and equals e/‖e‖a. As a consequence, the computation of the
maximizing v in (70) is equivalent to and indeed equally expensive as the computation of the
unknown e/‖e‖a and so (since ũ is known) of the exact solution u. Therefore, a posteriori error
analysis aims to compute lower and upper bounds of ‖R‖V ∗ rather than its exact value.

5.1.3. Error estimators and error control. For an idealized termination procedure, one is
given a tolerance Tol > 0 and interested in a stopping criterion (of successively adapted mesh
refinements)

‖e‖a ≤ Tol

Since the error ‖e‖a is unknown, it is replaced by its upper bound (68) and then leads to

Crelη + h.o.t.rel ≤ Tol (72)

For a verification of (72), in practice, one requires not only η but also Crel and h.o.t.rel. The later
quantity cannot be dropped; it is not sufficient to know that h.o.t.rel is (possibly) negligible
for sufficient small mesh-sizes.

Section 5.6 presents numerical examples and further discussions of this aspect.

5.1.4. Adaptive mesh-refining algorithms. Error estimators are used in adaptive mesh-
refining algorithms to motivate a refinement rule, which determines whether an element or
edge and so on shall be refined or coarsened. This will be discussed in Section 6 below.

At this stage two remarks are in order. First, one should be precise in the language and
distinguish between error estimators, which are usually global and fully involve constants and
higher-order terms and (local) refinement indicators used in refinement rules. Second, constants
and higher-order terms might be seen as less important and are often omitted in the usage as
refinement indicators for the step MARK in Section 6.2.
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5.1.5. Literature. Amongst the most influential pioneering publications on a posteriori error
control are Babuška and Rheinboldt (1978), Ladeveze and Leguillon (1983), Bank and Weiser
(1985), Babuška and Miller (1987), Eriksson and Johnson (1991), followed by many others.
The readers may find it rewarding to study the survey articles of Eriksson et al (1995), Becker
and Rannacher (2001) and the books of Verfürth (1996), Ainsworth and Oden (2000), Babuška
and Strouboulis (2001), Bangerth and Rannacher (2003), Repin (2008), and Verfürth (2013)
for a first insight and further references.

5.2. Explicit residual-based error estimators

The most frequently considered and possibly easiest class of error estimators consists of local
norms of explicitly given volume and jump residuals multiplied by mesh-depending weights.

To derive them for a general class of abstract problems from Section 2.1, let u ∈ V be an
exact solution of the problem (1) and let ũ ∈ Ṽ be its Galerkin approximation from (19) with
residual R(v) from (25). Moreover, as in Example 1 or 2, it is supposed throughout this chapter
that the strong form of the equilibration associated with the weak form (19) is of the form

−divp = f for some flux or stress p ∈ L2(Ω;Rm×n)

The discrete analog p̃ is piecewise smooth but, in general, discontinuous; at several places
below, it is a T piecewise constant m× n matrix as it is proportional to the gradient of some
(piecewise) P1 FE function ũ. The description of the residuals is based on the weak form of
f + divp = 0.

5.2.1. Residual representation formula. It is the aim of this section to recast the residual in
the form

R(v) =
∑
T∈T

∫
T

rT · vdx−
∑
E∈E

∫
E

rE · vds (73)

of a sum of integrals over all element domains T ∈ T plus a sum of integrals over all edges or
faces E ∈ E and to identify the explicit volume residual rT and the jump residual rE .

The boundary ∂T of each finite element domain T ∈ T is a union of edges or faces, which
form the set E(T ), written ∂T = ∪E(T ). Each edge or face E ∈ E in the set of all possible
edges or faces E = ∪{E(T ) : T ∈ T } is associated with a unit normal vector νE , which is
unique up to an orientation ±νE , which is globally f ixed. By convention, the unit normal ν
on the domain Ω or on an element T points outwards.

For the ease of exploration, suppose that the underlying boundary value problem allows the
bilinear form a(ũ, v) to equal the sum over all

∫
T
p̃jkDj vkdx with given fluxes or stresses p̃jk.

Moreover, Neumann data are excluded from the description in this section and hence only
interior edges contribute with a jump residual. An integration by parts on T with outer unit
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normal νT yields ∫
T

p̃jkDjvkdx =

∫
∂T

p̃jk vk νT,jds−
∫
T

vkDj p̃jkdx

which, with the divergence operator div and proper evaluation of p̃ν, reads

a(ũ, v) +
∑
T∈T

∫
T

v · div p̃dx =
∑
T∈T

∫
∂T

(p̃ν) · vds

Each boundary ∂T is rewritten as a sum of edges or faces. Each such edge or face E belongs
either to the boundary ∂Ω, written E ∈ E∂Ω, or is an interior edge, written E ∈ EΩ. For E ∈ E∂Ω

there exists exactly one element T with E ∈ E(T ) and one defines T+ = T , T− = E ⊂ ∂Ω,
ωE = int(T ) and νE := νT = νΩ. Any E ∈ E(Ω) is the intersection of exactly two elements,
which we name T+ and T− and which essentially determine the patch ωE := int(T+∪T−) of E.
This description of T± is unique up to the order that is fixed in the sequel by the convention
that νE = νT+

is exterior to T+. Then,

∑
T∈T

∫
∂T

(p̃ν) · vds =
∑

E∈E(Ω)

∫
E

[p̃νE ] · vds

where [p̃νE ] := (p̃|T+ − p̃|T−)νE for E = ∂T+ ∩ ∂T− ∈ E(Ω) and [p̃νE ] := 0 for E ∈ E(T )∩E∂Ω.
Altogether, one obtains the error residual error representation formula (73) with the

volume residuals rT := f + div p̃ in T ∈ T
jump residuals rE := [p̃νE ] along E ∈ E(Ω)

5.2.2. Weak approximation operators. In terms of the residual R, the orthogonality condition
(20) is rewritten as R(ṽ) = 0 for all ṽ ∈ Ṽ . Hence, given any v ∈ V with norm ‖v‖a = 1, there
holds R(v) = R(v − ṽ).

Explicit error estimators rely on the design of ṽ := ΠA
T (v) as a function of v, ΠA

T is called
approximation operator as in (61)-(63) and discussed further in Section 4. See also (Carstensen,
1999; Carstensen and Funken, 2000; Nochetto and Wahlbin, 2002). For the understanding of

this section, it suffices to know that there are several choices of ṽ ∈ Ṽ that satisfy first-order
approximation and stability properties in the sense of∑

T∈T
‖h−1

T (v − ṽ)‖2L2(T ) +
∑

E∈E(Ω)

‖h−1/2
E (v − ṽ)‖2L2(E)

+ |v − ṽ|2H1(Ω) ≤ C |v|
2
H1(Ω) (74)

Here, hT and hE denotes the diameter of an element T ∈ T and an edge E ∈ E , respectively.
The multiplicative constant C is independent of the mesh-sizes hT or hE , but depends on the
shape of the element domains through their minimal angle condition (for simplices) or aspect
ratio (for tensor product elements).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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5.2.3. Reliability. Given the explicit volume and jump residuals rT and rE in (73), one defines
the explicit residual-based estimator ηR,R,

η2
R,R :=

∑
T∈T

h2
T ‖rT ‖2L2(T ) +

∑
E∈E(Ω)

hE ‖rE‖2L2(E) (75)

which is reliable, that is
‖e‖a ≤ C ηR,R (76)

The proof of (76) follows from (73)-(75) and Cauchy-Schwarz inequalities:

R(v) = R(v − ṽ) =
∑
T∈T

∫
T

rT · (v − ṽ)dx

−
∑

E∈E(Ω)

∫
E

rE · (v − ṽ)ds

≤
∑
T∈T

(hT ‖rT ‖L2(T ))(h
−1
T ‖v − ṽ‖L2(T ))

+
∑

E∈E(Ω)

(h
1/2
E ‖rE‖L2(E))(h

−1/2
E ‖v − ṽ‖L2(E))

≤

(∑
T∈T

h2
T ‖rT ‖2L2(T )

)1/2(∑
T∈T

h−2
T ‖v − ṽ‖

2
L2(T )

)1/2

+

 ∑
E∈E(Ω)

hE ‖rE‖2L2(E)

1/2 ∑
E∈E(Ω)

h−1
E ‖v − ṽ‖

2
L2(E)

1/2

≤ C ηR,R |v|H1(Ω)

For first-order finite element methods in the situation of Example 1 or 2, the volume term
rT = f can be substituted by the higher-order term of oscillations, that is

‖e‖2a ≤ C

osc(f)2 +
∑

E∈E(Ω)

hE ‖rE‖2L2(E)

 (77)

For each node z ∈ N with nodal basis function ϕz and patch ωz := {x ∈ Ω : ϕz(x) 6= 0} of
diameter hz and the source term f ∈ L2(Ω)m with integral mean fz := |ωz|−1

∫
ωz
f(x)dx ∈ Rm,

the oscillations of f are defined by

osc(f) :=

(∑
z∈N

h2
z ‖f − fz‖2L2(ωz)

)1/2

Notice for f ∈ H1(Ω)m and the mesh size hT ∈ P0(T ) there holds

osc(f) ≤ C ‖h2
T Df‖L2(Ω)

and so osc(f) is of quadratic and hence of higher-order. We refer to Carstensen and Verfürth
(1999), Nochetto (1993), Becker and Rannacher (1996), and Rodriguez (1994b) for further
details on and proofs of (77).
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5.2.4. Efficiency. Following a technique with inverse estimates due to Verfürth (1996), this
section investigates the proof of efficiency of ηR,R in a local form, namely,

hT ‖rT ‖L2(T ) ≤ C
(
‖e‖H1(T ) + osc(f, T )

)
(78)

h
1/2
E ‖rE‖L2(E) ≤ C

(
‖e‖H1(ωE) + osc(f, ωE)

)
(79)

where f̃ denotes an elementwise polynomial (best-) approximation of f and

osc(f, T ) := hT ‖f − f̃‖L2(T ) (80)

and
osc(f, ωE) := hE ‖f − f̃‖L2(ωE) (81)

The main tools in the proof of (79) and (78) are bubble functions bE and bT based on an edge
or face E ∈ E and an element T ∈ T with nodes N (E) and N (T ), respectively. Given a nodal
basis (ϕz : z ∈ N ) of a first-order finite element method with respect to T define, for any
T ∈ T and E ∈ E(Ω), the element- and edge-bubble functions

bT :=
∏

z∈N (T )

ϕz ∈ H1
0 (T ) and bE :=

∏
z∈N (E)

ϕz ∈ H1
0 (ωE) (82)

bE and bT are nonnegative and continuous piecewise polynomials ≤ 1 with support supp bE =
ωE = T+ ∪ T− (for T± ∈ T with E = T+ ∩ T−) and supp bT = T .

Utilizing the bubble functions (82), the proof of (78)-(79) essentially consists in the design
of test functions wT ∈ H1

0 (T ), T ∈ T , and wE ∈ H1
0 (ωE), E ∈ E(Ω), with the properties

|wT |H1(T ) ≤ ChT ‖rT ‖L2(T )

and

|wE |H1(ωE) ≤ Ch
1/2
E ‖rE‖L2(E) (83)

h2
T ‖rT ‖2L2(T ) ≤ C1R(wT ) + C2 osc(f, T )2 (84)

hE ‖rE‖2L2(E) ≤ C1R(wE) + C2 osc(f, ωE)2 (85)

In fact, (83)-(85), the definition of the residual R = a(e, ·), and Cauchy-Schwarz inequalities
with respect to the scalar product a prove (78)-(79).

To construct the test function wT , T ∈ T , recall div p + f = 0 and rT = f + div p̃ and set
r̃T := f̃ + div p̃ for some polynomial f̃ on T such that r̃T is a best approximation of rT in
some finite-dimensional (polynomial) space with respect to L2(T ). Since

hT ‖r̃T ‖L2(T ) ≤ hT ‖rT ‖L2(T ) ≤ hT ‖r̃T ‖L2(T )+hT ‖f − f̃‖L2(T )

it remains to bound r̃T , which belongs to a finite-dimensional space and hence satisfies an
inverse inequality

hT ‖r̃T ‖L2(T ) ≤ ChT ‖b
1/2
T r̃T ‖L2(T )
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This motivates the estimation of

‖b1/2T r̃T ‖2L2(T ) =

∫
T

bT r̃T · (r̃T − rT )dx +

∫
T

bTr̃T · rTdx

≤ ‖b1/2T r̃T ‖L2(T )‖b
1/2
T (f − f̃)‖L2(T )

+

∫
T

bT r̃T · div (p̃− p)dx

The combination of the preceding estimates results in

h2
T ‖rT ‖2L2(T ) ≤ C1

∫
T

(h2
T bT r̃T ) · div (p̃− p)dx

+C2 osc(f, T )2

An integration by parts concludes the proof of (84) for

wT := h2
T bT r̃T (86)

the proof of (83) for this wT is immediate.

Given an interior edge E = T+ ∩ T− ∈ E(Ω) with its neighboring elements T+ and T−,
simultaneously addressed as T± ∈ T , extend the edge residual rE from the edge E to its patch
ωE = int(T+ ∪ T−) such that

‖bErE‖L2(ωE) + hE |bErE |H1(ωE) ≤ C1h
1/2
E ‖rE‖L2(E)

≤ C2h
1/2
E ‖b1/2E rE‖L2(E) (87)

(with an inverse inequality at the end). The choice of the two real constants

α± =

∫
T±

hEbE r̃T± · rEdx∫
T±

wT± · r̃T±dx

in the definition
wE := α+wT+

+ α−wT− − hEbErE (88)

yields
∫
T±
wE · r̃T±dx = 0. Since

∫
T±
wT± · r̃T±dx = h2

T±
‖b1/2

T±
r̃T±‖2L2(T±), one eventually

deduces |α±| |wT± |H1(T±) ≤ Ch
1/2
E ‖rE‖L2(E) and then concludes (83). An integration by parts

shows

C−2hE ‖rE‖2L2(E) ≤ hE‖b
1/2
E rE‖2L2(E)

= −
∫
E

wE · rEds =

∫
E

wE · [(p− p̃) · νE ]ds

=

∫
ωE

(p− p̃) : DwEdx +

∫
ωE

wE · divT (p− p̃)dx

= R(wE)−
∫
ωE

wE · (f + divT p̃)dx

= R(wE)−
∫
ωE

wE · (f − f̃)dx
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(with
∫
T±
wE · r̃T±dx = 0 in the last step). A Friedrichs inequality ‖wE‖L2(ωE) ≤

ChE |wE |H1(ωE) and (83) then conclude the proof of (85).

5.3. Implicit error estimators

Implicit error estimators are based on a local norm of a solution of a localized problem of
a similar type with the residual terms on the right-hand side. This section introduces two
different versions based on a partition of unity and based on an equilibration technique.

5.3.1. Localization by partition of unity. Given a nodal basis (ϕz : z ∈ N ) of a first-order
finite element method with respect to T , there holds the partition of unity property∑

z∈N
ϕz = 1 in Ω

Given the residual R = F − a(ũ, ·) ∈ V ∗, we observe that Rz(v) := R(ϕzv) defines a bounded
linear functional Rz on a localized space called Vz and specified below.

The bilinear form a is an integral over ω on some integrand. The latter may be weighted with
ϕz to define some (localized) bilinear form az : Vz × Vz → R. Supposing that az is Vz-elliptic
one defines the norm ‖ · ‖az on Vz and considers

ηz := sup
v∈Vz\{0}

Rz(v)

‖v‖az
(89)

The dual norm is as in (70)-(71) and hence equivalent to the computation of the norm ‖ez‖az
of a local solution

ez ∈ Vz with az(ez, ·) = Rz ∈ V ∗z (90)

(The proof of ‖ez‖az = ηz follows the arguments of Section 5.1.2 and hence is omitted.)

Example 10. Adopt notation from Example 1 and let (ϕz : z ∈ N ) be the first-order finite
element nodal basis functions. Then define Rz and az by

Rz(v) :=

∫
Ω

ϕz fvdx−
∫

Ω

∇ũ · ∇(ϕzv)dx ∀v ∈ V

az(v1, v2) :=

∫
Ω

ϕz∇v1 · ∇v2dx ∀v1, v2 ∈ V

Let Vz denote the completion of V under the norm given by the scalar product az when ϕz 6≡ 0
on Γ or otherwise its quotient space with R, i.e.

Vz =


{v ∈ H1

loc(ωz) : az(v, v) <∞, ϕzv = 0 on Γ ∩ ∂ωz}
if ϕz 6≡ 0 on Γ

{v ∈H1
loc(ωz) : az(v, v) <∞,

∫
Ω
ϕzvdx = 0}

if ϕz ≡ 0 on Γ

Notice that Rz(1) = 0 for a free node z such that (90) has a unique solution and hence ηz <∞.
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In practical applications, the solution ez of (90) has to be approximated by some finite

element approximation ẽz on a discrete space Ṽz based on a finer mesh or of higher order.
(Arguing as in the stability estimate (71), leads to an error estimate for an approximation
‖ẽz‖az of ηz.)

Suppose that ηz is known exactly (or computed with high and controlled accuracy) and that
the bilinear form a is localized through the partition of unity such that (e.g. in Example 10)

a(u, v) =
∑
z∈N

az(u, v) ∀u, v ∈ V (91)

Then the implicit error estimator ηL is reliable with Crel = 1 and h.o.t.rel = 0,

‖e‖a ≤ ηL :=

(∑
z∈N

η2
z

)1/2

(92)

The proof of (92) follows from the definition of Rz, ηz, and ez and Cauchy-Schwarz inequalities:

‖e‖2a = R(e) =
∑
z∈N

Rz(e) ≤
∑
z∈N

ηz ‖e‖az

≤

(∑
z∈N

η2
z

)1/2(∑
z∈N
‖e‖2az

)1/2

= ηL ‖e‖a

Notice that ‖ẽz‖az := η̃z ≤ ηz for any approximated local solution

ẽz ∈ Ṽz with az(ẽz, ·) = Rz ∈ Ṽ ∗z (93)

and all of them are efficient estimators. The proof of efficiency is based on a weighted Poincaré
or Friedrichs inequality which reads

‖ϕzv‖a ≤ C ‖v‖az ∀v ∈ Vz (94)

In fact, in Example 1, 2, and 3, one obtains efficiency in a more local form than indicated in

ηz ≤ C ‖e‖a with h.o.t.eff = 0 (95)

(This follows immediately from (94):

Rz(v) = R(ϕzv) = a(e, ϕzv) ≤ ‖e‖a ‖ϕzv‖a
≤ C ‖e‖a ‖v‖az )

In the situation of Example 10, the estimator ηL dates back to Babuška and Miller (1987);
the use of weights was established in Carstensen and Funken (1999/00). A reliable computable
estimator η̃L is introduced in Morin, Nochetto and Siebert (2003a) based on a proper finite-

dimensional space Ṽz of some piecewise quadratic polynomials on ωz.
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5.3.2. Equilibration estimators. The nonoverlapping domain decomposition schemes employ
artificial unknowns gT ∈ L2(∂T )m for each T ∈ T at the interfaces, which allow a
representation of the form

R(v) =
∑
T∈T

RT (v) where

RT (v) :=

∫
T

f · vdx−
∫
T

p̃ : Dvdx +

∫
∂T

gT · vds (96)

Adopting the notation from Section 5.2.1, the new quantities gT satisfy

gT+ + gT− = 0 along E = ∂T+ ∩ ∂T− ∈ E(Ω)

(where T± and T denote neighboring element domains) to guarantee (96). (There are non-
displayed modifications on any Neumann boundary edge E ⊂ ∂Ω.) Moreover, the bilinear
form a is expanded in an elementwise form

a(u, v) =
∑
T∈T

aT (u, v) ∀u, v ∈ V (97)

Under the equilibration condition RT (c) = 0 for all kernel functions c (namely, the constant
functions for the Laplace model problem), the resulting local problem reads

eT ∈ VT with aT (eT , ·) = RT ∈ V ∗T (98)

and is equivalent to the computation of

ηT := sup
v∈VT \{0}

RT (v)

‖v‖aT
= ‖eT ‖aT (99)

The sum of all local contributions defines the reliable equilibration error estimator ηEQ,

‖e‖a ≤ ηEQ :=
(∑
T∈T

η2
T

)1/2

(100)

(The immediate proof of (100) is analogous to that of (92) and hence is omitted.)

Example 11. In the situation of Example 10 there holds ηT <∞ if and only if either Γ∩ ∂T
has positive surface measure (with VT = {v ∈ H1(T ) : v = 0 on Γ ∩ ∂T}) or otherwise
RT (1) = 0 (with VT = {v ∈ H1(T ) :

∫
T
vdx = 0}). Ladeveze and Leguillon (1983) suggested a

certain choice of the interface corrections to guarantee this and even higher-order equilibrations
are established. Details on the implementation are given in Ainsworth and Oden (2000); a
detailed error analysis with higher-order equilibrations and the perturbation by a finite element
simulation of the local problems with corrections can be found in Ainsworth and Oden (2000)
and Babuška and Strouboulis (2001).

The error estimator η = ηEQ is efficient in the sense of (69) with higher-order terms h.o.t.(T )
on T that depend on the given data provided

h
1/2
E ‖gT − p̃νE‖L2(E) ≤ C ‖e‖aT + h.o.t.(T )

for all E ∈ E(T ) (101)
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(Recall that E(T ) denotes the set of edges or faces of T .) This stability property depends
on the design of gT ; a positive example is given in Theorem 6.2 of Ainsworth and Oden
(2000) for Example 1. Given Inequality (101), the efficiency of ηT follows with standard
arguments, for example, an integration by parts, a trace and Poincaré or Friedrichs inequality

h−1
T ‖v‖L2(T ) + h

−1/2
T ‖v‖L2(∂T ) ≤ C ‖v‖aT for v ∈ VT :

RT (v) =

∫
T

rT · vdx +

∫
∂T

(gT − p̃ν) · vds

≤ C
(
hT ‖rT ‖L2(T ) + h

1/2
T ‖gT − p̃ν‖L2(∂T )

)
‖v‖aT

followed by (79) and (101).

Further examples and the relation to the hypercircle identity can be found in Braess (2001).
Some refinement with a postprocessing is suggested in Carstensen and Merdon (2014).

5.4. Multilevel error estimators

While the preceding estimators evaluate or estimate the residual of one finite element solution
uH , multilevel estimators concern at least two meshes TH and Th with associated discrete
spaces VH ⊂ Vh ⊂ V and two discrete solutions uH = ũ and uh. The interpretation is that ph
is computed on a finer mesh (e.g. Th is a refinement of TH) or that ph is computed with higher
polynomial order than pH = p̃.

5.4.1. Error-reduction property and multilevel error estimator. Let VH ⊂ Vh ⊂ V denote two
nested finite element spaces in V with coarse and fine finite element solution uH = ũ ∈ VH = Ṽ
and uh ∈ Vh of the discrete problem (19), respectively, and with the exact solution u. Let
pH = p̃, ph, and p denote the respective fluxes and let ‖ · ‖ be a norm associated to the energy
norm, for example, a norm with ‖p − p̃‖ = ‖u − ũ‖a and ‖p − ph‖ = ‖u − uh‖a. Then, the
multilevel error estimator

ηML := ‖ph − pH‖ = ‖uh − uH‖a (102)

is simply the norm of the difference of the two discrete solutions. The interpretation is that
the error ‖p − ph‖ of the finer discrete solution is systematically smaller than the error
‖e‖a = ‖p − pH‖ of the coarser discrete solution in the sense of an error-reduction property:
For some constant % < 1, there holds

‖p− ph‖ ≤ % ‖p− pH‖ (103)

Notice the bound % ≤ 1 for Galerkin errors in the energy norm (because of the best-
approximation property). The point is that % < 1 in (103) is bounded away from one. Then,
the error-reduction property (103) immediately implies reliability and efficiency of ηML:

(1−%)‖p−pH‖≤ ηML = ‖ph−pH‖≤ (1+%)‖p−pH‖ (104)

(The immediate proof of (104) utilizes (103) and a simple triangle inequality.)
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H h

Figure 10: Two triangulations TH and Th with equal discrete P1 finite element solutions
uH = uh for a Poisson problem with right-hand side f = 1. The refinement Th of TH is
generated by two (newest-vertex) bisections per element (initially with the interior node in TH
as newest vertex).

Four remarks on the error-reduction conclude this section: Efficiency of ηML in the sense of
(69) is robust in %→ 1, but reliability is not: The reliability constant Crel = (1− %)−1 in (68)
tends to infinity as % approaches 1.

Higher-order terms are invisible in (104): h.o.t.rel = 0 = h.o.t.eff . This is unexpected when
compared to all the other error estimators and hence indicates that (103) should fail to hold
for heavily oscillating right-hand sides.

The error-reduction property (103) is often observed in practice for fine meshes and can be
monitored during the calculation. For coarse meshes and in the preasymptotic range, (103)
may fail to hold.

The error-reduction property (103) is often called saturation assumption in the literature
and frequently has a status of an unproven hypothesis.

5.4.2. Counterexample for error-reduction. The error-reduction property (103) may fail to
hold even if f shows no oscillations: Figure 10 displays two triangulations, TH and its refinement
Th, with one and five free nodes, respectively. If the right-hand side is constant and if the
problem has homogeneous Dirichlet conditions for the Poisson problem

1 + ∆u = 0 in Ω := (0, 1)2 and u = 0 on ∂Ω

then the corresponding P1 finite element solutions coincide: uH = uh. A direct proof is based on
the nodal basis function Φ1 of the free node in VH := FETH (the first-order finite element space
with respect to the coarse mesh TH) and the nodal basis functions ϕ2, . . . , ϕ5 ∈ Vh := S1

0 (Th)
of the new free nodes in Th. Then,

Φ2 := Φ1 − (ϕ2 + · · ·+ ϕ5) ∈ Vh := FETh

satisfies (since
∫
E

Φ2ds = 0 for all edges E in TH and
∫

Ω
Φ2dx = 0)

R(Φ2) = 0
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Thus uH is the finite element solution in Wh := span{Φ1,Φ2} ⊂ Vh. Since, by symmetry, the
finite element solution uh in Vh belongs to Wh, there holds uH = uh.

The characterization of the saturation property in Carstensen, Gallistl and Gedicke (2016)
illustrates that only a few very particular triangulations lead to counterexamples of this type.

5.4.3. Affirmative example for error-reduction. Adopt notation from Section 5.2.4 with a
coarse discrete space VH = Ṽ and consider the fine space Vh := VH ⊕Wh for

Wh := span{r̃T bT : T ∈ T } ⊕ span{rE bE : E ∈ E(Ω)} ⊂ V (105)

Then there holds the error-reduction property up to higher-order terms

osc(f) :=

(∑
T∈T

h2
T ‖f − f̃‖2L2(T )

)1/2

namely
‖p− ph‖2 ≤ % ‖p− pH‖2 + osc(f)2 (106)

The constant % in (106) is uniformly smaller than one, independent of the mesh size, and
depends on the shape of the elements and the type of ansatz functions through constants in
(83)-(85).

The proof of (106) is based on the test functions wT and wE in (86) and (88) of Section 5.2.4
and

wh :=
∑
T∈T

wT +
∑

E∈E(Ω)

wE ∈Wh ⊂ V

Utilizing (83)-(85) one can prove

‖wh‖2a ≤ C

∑
T∈T

h2
T ‖r̃T ‖2L2(T ) +

∑
E∈E(Ω)

hE ‖rE‖2L2(E)


≤ C

∑
T∈T

R(wT ) +
∑

E∈E(Ω)

R(wE) + osc(f)2


= C (R(wh) + osc(f)2)

Since wh belongs to Vh and uh is the finite element solution with respect to Vh there holds

R(wh) = a(uh − uH , wh) ≤ ‖uh − uH‖a ‖wh‖a

The combination of the preceding inequalities yields the key inequality

η2
R,R =

∑
T∈T

h2
T ‖r̃T ‖2L2(T ) +

∑
E∈E(Ω)

hE ‖rE‖2L2(E)

≤ C(‖uh − uH‖2a + osc(f)2)
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This, the Galerkin orthogonality ‖u− uH‖2a = ‖u− uh‖2a + ‖uh − uH‖2a, and the reliability of
ηR show

‖u− uH‖2a ≤ CC2
rel

(
‖u− uH‖2a − ‖u− uh‖2a + osc(f)2

)
and so imply (106) with % = 1− C−1C−2

rel < 1.

Example 12. In the Poisson problem with P1 finite elements and discrete space VH , let Wh

consist of the quadratic and cubic bubble functions (82). Then (106) holds; cf. also Example 14
below.

Example 13. Other affirmative examples for the Poisson problem consist of the P1 and P2

finite element spaces VH and Vh over one regular triangulation T or of the P1 finite element
spaces with respect to a regular triangulation TH and its red-refinement Th. The observation
that the element-bubble functions are in fact redundant is due to Dörfler and Nochetto (2002).

5.4.4. Hierarchical error estimator. Given a smooth right-hand side f and based on the
example of the previous section, the multilevel estimator (102) is reliable and efficient up to
higher-order terms. The costly calculation of uh, however, exclusively allows for an accurate
error control of uH (and no reasonable error control for uh). Instead of (102), cheaper versions
are favored where uh is replaced by some quantity computed by a localized problem. One
reliable and efficient version is the hierarchical error estimator

ηH :=

(∑
T∈T

η2
T +

∑
E∈E

η2
E

)1/2

(107)

where, for each T ∈ T and E ∈ E and their test functions (86) and (88),

ηT :=
R(wT )

‖wT ‖a
and ηE :=

R(wE)

‖wE‖a
(108)

(The proof of reliability and efficiency follows from (83)-(85) by the arguments from
Section 5.2.4.)

Example 14. In the Poisson problem with P1 finite elements and discrete space VH , let Wh

consist of the quadratic and cubic bubble functions (82). Then,

ηH :=

∑
T∈T

R(bT )2

‖bT ‖2a
+

∑
E∈E(Ω)

R(bE)2

‖bE‖2a

1/2

(109)

is a reliable and efficient hierarchical error estimator. With the error-reduction property of P1

and P2 finite elements due to Dörfler and Nochetto (2002),

ηH :=

 ∑
E∈E(Ω)

R(bE)2

‖bE‖2a

1/2

(110)

is reliable and efficient as well. The same is true if, for each edge E ∈ E, bE defines a hat
function of the midpoint of E with respect to a red-refinement Th of TH (that is, each edge is
halved and each triangle is divided into four congruent subtriangles; cf. Figure 15, left).
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5.5. Averaging error estimators

Averaging techniques, also called (gradient) recovery estimators, focus on one mesh and one
known low-order flux approximation p̃ and the difference to a piecewise polynomial q̃ in a finite-

dimensional subspace Q̃ ⊂ L2(Ω;Rm×n) of higher polynomial degrees and more restrictive
continuity conditions than those generally satisfied by p̃. Averaging techniques are universal
in the sense that there is no need for any residual or partial differential equation in order to
apply them.

5.5.1. Definition of averaging error estimators. The procedure consists of taking a piecewise
smooth p̃ and approximating it by some globally continuous piecewise polynomials (denoted

by Q̃) of higher degree Ap̃. A simple example, frequently named after Zienkiewicz and Zhu
and sometimes even called the ZZ estimator, reads as follows: For each node z ∈ N and its
patch ωz let

(Ap̃)(z) =

∫
ωz

p̃dx∫
ωz

1dx

∈ Rm×n (111)

be the integral mean of p̃ over ωz. Then, define Ap̃ by interpolation with (conforming, i.e.
globally continuous) hat functions ϕz, for z ∈ N ,

Ap̃ =
∑
z∈N

(Ap̃)(z)ϕz ∈ Q̃

Let Q̃ = span{ϕz : z ∈ N } denote the (conforming) first-order finite element space and let
‖ · ‖ be the norm for the fluxes. Then the averaging estimator is defined by

ηA := ‖p̃−Ap̃‖ (112)

Notice that there is a minimal version

ηM := min
q̃∈Q̃
‖p̃− q̃‖ ≤ ηA (113)

The efficiency of ηM follows from a triangle inequality, namely

ηM ≤ ‖p− p̃‖+ ‖p− q̃‖ for all q̃ ∈ Q̃ (114)

and the fact that ‖p− p̃‖ = O(h) while (in all the examples of this chapter)

min
q̃∈Q̃
‖p− q̃‖ = h.o.t.(p) =: h.o.t.eff

This is of higher order for smooth p and efficiency follows for η = ηM and Ceff = 1.

It turns out that ηA and ηM are very close and accurate estimators in many numerical
examples; cf. Section 5.6.4 below. This and the fact that the calculation of ηA is an easy
postprocessing made ηA extremely popular.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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For proper treatment of Neumann boundary conditions, we refer to Carstensen and Bartels
(2002) and for applications in solid and fluid mechanics to Alberty and Carstensen (2003) and
Carstensen and Funken (2001a,b) and for higher-order FEM to Bartels and Carstensen (2002).

Multigrid smoothing steps may be successfully employed as averaging procedures as
proposed in Bank and Xu (2003).

5.5.2. All averaging error estimators are reliable. The first proof of reliability dates back to
Rodriguez (1994a,b) and we refer to Carstensen (2004) for an overview. A simplified reliability
proof for ηM and hence for all averaging techniques (Carstensen, Bartels and Klose, 2001) is
outlined in the sequel.

First let Π be the L2 projection onto the first-order finite element space Ṽ and let q̃ be
arbitrary in Q̃, that is, each of the m × n components of q̃ is a first-order finite element
function in FET . The Galerkin orthogonality shows for the error e := u − ũ and p̃ := ∇ũ in
the situation of Example 1 that

‖e‖2a =

∫
Ω

(∇u− q̃) · ∇(e−Πe)dx

+

∫
Ω

(q̃ − p̃) · ∇(e−Πe)dx

A Cauchy-Schwarz inequality in the latter term is combined with the H1-stability of Π, namely,

‖∇(e−Πe)‖L2(Ω) ≤ Cstab‖∇e‖L2(Ω)

(For sufficient conditions for this we refer to Crouzeix and Thomée (1987), Bramble, Pasciak
and Steinbach (2002), Carstensen (2002, 2003b), and Carstensen and Verfürth (1999).) The
H1-stability in the second term and an integration by parts in the first term on the right-hand
side show

‖e‖2a ≤
∫

Ω

f · (e−Πe)dx +

∫
Ω

(e−Πe) · div q̃dx

+Cstab‖∇e‖L2(Ω)‖p̃− q̃‖L2(Ω)

Since e−Πe is L2-orthogonal onto fh := Πf ∈ Ṽ ,∫
Ω

f · (e−Πe)dx

=

∫
Ω

(f − fh) · (e−Πe)dx

≤ ‖h−1
T (e−Πe)‖L2(Ω)‖hT (f −Πf)‖L2(Ω)

Notice that, despite possible boundary layers, ‖hT (f − Πf)‖L2(Ω) = h.o.t. is of higher order.
The first-order approximation property of the L2 projection,

‖h−1
T (e−Πe)‖L2(Ω) ≤ Capx‖∇e‖L2(Ω)
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follows from the H1-stability (cf. e.g. Carstensen and Verfürth (1999) for a proof). Similar
arguments for the remaining term div q̃ and the T -piecewise divergence operator divT with
div q̃ = divT q̃ = div T (q̃− p̃) (recall that ũ is of first-order and hence ∆ũ = 0 on each element)
lead to ∫

Ω

(e−Πe) · div q̃dx

≤ Capx‖∇e‖L2(Ω)‖hT divT (q̃ − p̃)‖L2(Ω)

An inverse inequality hT ‖divT (q̃ − p̃)‖L2(T ) ≤ Cinv‖q̃ − p̃‖L2(T ) (cf. Section 3.4) shows∫
Ω

(e−Πe) · div q̃dx≤CapxCinv‖∇e‖L2(Ω)‖q̃−p̃‖L2(Ω)

The combination of all established estimates plus a division by ‖e‖a = ‖∇e‖L2(Ω) yield the
announced reliability result

‖e‖a ≤ (Cstab + CapxCinv)‖p̃− q̃‖L2(Ω) + h.o.t.

In the second step, one designs a more local approximation operator J to substitute Π as
in Carstensen and Bartels (2002); the essential properties are the H1-stability, the first-order
approximation property, and a local form of the orthogonality condition; we omit the details.

5.5.3. Averaging error estimators and edge contributions. There is a local equivalence of the
estimators ηA from a local averaging process (111) and the edge estimator

ηE :=

 ∑
E∈E(Ω)

hE‖[p̃νE ]‖2L2(E)

1/2

The observation that, with some mesh-size-independent constant C,

C−1 ηE ≤ ηA ≤ C ηE (115)

dates back to Rodriguez (1994a) and can be found in Verfürth (1996). The proof of (115) for

piecewise linears in Ṽ is based on the equivalence of the two seminorms

%1(q̃) := min
r∈Rm×n

‖q̃ − r‖L2(ωz)

and

%2(q̃) :=

 ∑
E∈E(z)

hE‖[q̃νE ]‖2L2(E)

1/2

for piecewise constant vector-valued functions q̃ in Pz, the set of possible fluxes q̃ restricted
on the patch ωz of a node z, and with the set of edges E(z) := {E ∈ E : z ∈ E}. The main
observation is that %1 and %2 vanish exactly for constants functions Rm×n and hence they are
norms on the quotient space Pz/Rm×n. By the equivalence of norms on any finite-dimensional
space Pz/Rm×n, there holds

C−1 %1(q̃) ≤ %2(q̃) ≤ C %1(q̃) ∀q̃ ∈ Pz
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c© John Wiley & Sons, Ltd. ISBN: 0-470-84699-2



FINITE ELEMENT METHODS 41

This is a local version of (115), which eventually implies (115) by localization and composition;
we omit the details.

For triangles and tetrahedra and piecewise linear finite element functions, it is proved in
Carstensen (2004) that

ηM ≤ ηA ≤ Cd ηM (116)

with universal constants C2 =
√

10 and C3 =
√

15 for 2-D and 3-D, respectively. This
equivalence holds for a larger class of elements and (first-order) averaging operators and then
proves efficiency for ηA whereas efficiency of ηM follows from a triangle inequality in (114).

5.6. Comparison of error bounds in benchmark example

This section is devoted to a numerical comparison of energy errors and its a posteriori error
estimators for an elliptic model problem.

5.6.1. Benchmark example. The numerical comparisons are computed for the Poisson
problem

1 + ∆u = 0 in Ω and u = 0 on ∂Ω (117)

on the L-shaped domain Ω = (−1,+1)2\([0, 1]× [−1, 0]) and its boundary ∂Ω. The first mesh
T1 consists of 17 free nodes and 48 elements and is obtained by, first, a decomposition of Ω in
12 congruent squares of size 1/2 and, second, a decomposition of each of the boxes along its
two diagonals into 4 congruent triangles. The subsequent meshes are successively red-refined
(i.e. each triangle is partitioned into 4 congruent subtriangles of Figure 15, left). This defines
the (conforming) P1 finite element spaces V1 ⊂ V2 ⊂ V3 ⊂ · · · ⊂ V := H1

0 (Ω). The error

e := u − uj of the finite element solution uj = ũ in Vj = Ṽ of dimension N = dim(Vj) is
measured in the energy norm (the Sobolev seminorm in H1(Ω))

|e|1,2 := |e|H1(Ω) :=

(∫
Ω

|De|2dx

)1/2

= a(u− ũ, u+ ũ)1/2

=
(
|u|2H1(Ω) − |ũ|

2
H1(Ω)

)1/2

(by the Galerkin orthogonality) computed with the approximation |u|2H1(Ω) ≈
0.21407315683398.

Figure 11 displays the computed values of |e|1,2 for a sequence of uniformly refined meshes
T1, T2, . . . , T6 as a function of the number of degrees of freedom N = 17, 81, 353, 1473, 6017,
24321, 97793. It is this curve that will be estimated by computable upper and lower bounds
explained in the subsequent sections where we use the fact that each element is a right isosceles
triangle.

Notice that the two axes in Figure 11 scale logarithmically such that any algebraic curve of
growth α is mapped into a straight line of slope −α. The experimental convergence rate is 2/3
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Figure 11: Experimental results for the benchmark problem (117) with meshes T1, . . . , T6. The
relative error |e|1,2/|u|1,2 and various estimators η/|u|1,2 are plotted as functions of the number
of degrees of freedom N . Both axes are in a logarithmic scaling such that an algebraic curve
N−α is visible as a straight line with slope −α. A triangle with slope −0.33 is displayed for
comparison.

in agreement with the (generic) singularity of the domain and resulting theoretical predictions.
More details can be found in Carstensen, Bartels and Klose (2001).

5.6.2. Explicit error estimators. For the benchmark problem of Section 5.6.1, the error
estimator (75) can be written in the form

ηR,R :=

(∑
T∈T

h2
T ‖1‖2L2(T )

)1/2

+

( ∑
E∈EΩ

hE

∫
E

[
∂ũ

∂νE

]2

ds

)1/2

(118)

and is reliable with Crel = 1 and h.o.t.rel = 0 (Carstensen and Funken, 2001a). Figure 11
displays ηR,R as a function of the number of unknowns N and illustrates |e|1,2 ≤ ηR,R.

Guaranteed lower error bounds, i.e. with the efficiency constant Ceff , are less established
and the higher-order terms h.o.t.eff usually involve ‖f − fT ‖L2(T ) for the elementwise integral
mean fT of the right-hand side. Here, f ≡ 1 and so h.o.t.eff = 0. Following a derivation in
Carstensen, Bartels and Klose (2001), Figure 11 also displays an efficient variant ηR,E as a
lower error bound: ηR,E ≤ |e|1,2.

The guaranteed lower and upper bounds with explicit error estimators leave a very large
region for the true error. Our interpretation is that various geometries (the shape of the
patches) lead to different constants and Crel = 1 reflects the worst possible situation for every
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patch in the current mesh.

A more efficient reliable explicit error estimator ηR,C from Carstensen and Funken (2001a)
displayed in Figure 11 requires the computation of local (patchwise) analytical eigenvalues and
hence is very expensive. However, the explicit estimators ηR,C and ηR,E still overestimate and
underestimate the true error by a huge factor (up to 10 and even more) in the simple situation
of the benchmark. One conclusion is that the involved constants estimate a worst-case scenario
with respect to every right-hand side or every exact solution.

This experimental evidence supports the design of more elaborate estimators: The stopping
criterion (72) with the reliable explicit estimators may appear very cheap and easy. But the
decision (72) may have too costly consequences.

5.6.3. Implicit estimators. For comparison, the two implicit estimators ηL and ηEQ are
displayed in Figure 11 as functions of N . It is stressed that both estimators are efficient
and reliable (Carstensen and Funken, 1999/00)

|e|1,2 ≤ ηL ≤ 2.37 |e|1,2

The practical performance of ηL and ηEQ in Figure 11 is comparable and in fact is much
sharper than that of ηR,E and ηR,R.

5.6.4. Averaging estimator. The averaging estimators ηA and ηM are as well displayed in
Figure 11 as a function of N . Here, ηM is efficient up to higher-order terms (since the exact
solution u ∈ H5/3−ε(Ω) is singular, this is not really guaranteed) while its reliability is open,
i.e. the corresponding constants have not been computed. Nevertheless, the behavior of ηA and
ηM is exclusively seen here from an experimental point of view. The striking numerical result
is an amazing high accuracy of ηM ≈ ηA as an empirical guess of |e|1,2. If we took Crel into
account, this effect would be destroyed: The high accuracy is an empirical observation in this
example (and possibly many others) but does not yield an accurate guaranteed error bound.

5.6.5. Adapted meshes. The benchmark in Figure 11 is based on a sequence of uniform
meshes and hence results in an experimental convergence rate 2/3 according to the corner
singularity of this example. Adaptive mesh-refining algorithms, described below in more detail,
are empirically studied also in Carstensen, Bartels and Klose (2001). The observations can be
summarized as follows: The quality of the estimators and their relative accuracy is similar to
what is displayed in Figure 11 even though the convergence rates are optimally improved to
one.

5.7. Goal-oriented error estimators

This section provides a brief introduction to goal-oriented error control.
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5.7.1. Goal functionals. Given the Sobolev space V = H1
0 (Ω) with a finite-dimensional

subspace Ṽ ⊂ V , a bounded and V -elliptic bilinear form a : V × V → R, a bounded linear
form F : V → R, there exists an exact solution u ∈ V and a discrete solution ũ ∈ Ṽ of

a(u, v) = F (v) ∀v ∈ V and a(ũ, ṽ) = F (ṽ) ∀ṽ ∈ Ṽ (119)

The previous sections concern estimations of the error e := u−ũ in the energy norm, equivalent
to the Sobolev norm in V . Other norms are certainly of some interest as well as the error with
respect to a certain goal functional. The latter is some given bounded and linear functional
J : V → R with respect to which one aims to monitor the error, that is, one wants to find
computable lower and upper bounds for the (unknown) quantity

|J(u)− J(ũ)| = |J(e)|

Typical examples of goal functionals are described by L2 functions, for example,

J(v) =

∫
Ω

% vdx ∀v ∈ V

for a given % ∈ L2(Ω) or as contour integrals.

In many cases, the main interest is on a point value and then J(v) is given by a mollification
% of a singular measure in order to guarantee the boundedness of J : V → R.

5.7.2. Duality technique. To bound or approximate J(e) one considers the dual problem

a(v, z) = J(v) ∀v ∈ V (120)

with exact solution z ∈ V (guaranteed by the Lax-Milgram lemma) and the discrete solution

z̃ ∈ Ṽ of

a(ṽ, z̃) = J(ṽ) ∀ṽ ∈ Ṽ

Set f := z − z̃. On the basis of the Galerkin orthogonality a(e, z̃) = 0 one infers

J(e) = a(e, z) = a(e, z − z̃) = a(e, f) (121)

As a result of (121) and the boundedness of a one obtains the a posteriori estimate

|J(e)| ≤ ‖a‖ ‖e‖V ‖f‖V ≤ ‖a‖ ηuηz

Indeed, utilizing the primal and dual residual Ru and Rz in V ∗, defined by

Ru := F − a(ũ, ·) and Rz := J − a(·, z̃)

computable upper error bounds for ‖e‖V ≤ ηu and ‖f‖V ≤ ηz can be found by the arguments
of the energy error estimators of the previous sections. This yields a computable upper error
bound ‖a‖ ηuηz for |J(e)| which is global, that is, the interaction of e and f is not reflected.
One might therefore speculate that the upper bound is often too coarse and inappropriate for
goal-oriented adaptive mesh refinement.
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5.7.3. Upper and lower bounds of J(e). Throughout the rest of this section, let the bilinear
form a be symmetric and positive definite; hence a scalar product with induced norm ‖ · ‖a.
Then, the parallelogram rule shows

2 J(e) = 2 a(e, f) = ‖e+ f‖2a − ‖e‖2a − ‖f‖2a

This right-hand side can be written in terms of residuals, in the spirit of (70), namely,
‖e‖a = ‖Resu‖V ∗ , ‖f‖a = ‖Resz‖V ∗ , and

‖e+ f‖a = ‖Resu+z‖V ∗ for Resu+z :=F + J − a(ũ+ z̃, ·)
= Resu + Resz ∈ V ∗

Therefore, the estimation of J(e) is reduced to the computation of lower and upper error
bounds for the three residuals Resu, Resz, and Resu+z with respect to the energy norm. This
illustrates that the energy error estimation techniques of the previous sections may be employed
for goal-oriented error control.

For more details and examples of a refined estimation see Ainsworth and Oden (2000) and
Babuška and Strouboulis (2001).

5.7.4. Computing an approximation to J(e). An immediate consequence of (121) is

J(e) = R(z)

and hence J(e) is easily computed once the dual solution z of (120) is known or at least
approximated to sufficient accuracy. An upper error bound for |J(e)| = |R(z)| is obtained
following the methodology of Becker and Rannacher (1996, 2001) and Bangerth and Rannacher
(2003).

To outline this methodology, consider the residual representation formula (73) following the
notation of Section 5.2.1. Suppose that z ∈ H2(Ω) (e.g. for a H2 regular dual problem) and

let Iz denote the nodal interpolant in the lowest-order finite element space Ṽ . With some
interpolation constant CI > 0, there holds, for any element T ∈ T ,

h−2
T ‖z − Iz‖L2(T ) + h

−3/2
T ‖z − Iz‖L2(∂T ) ≤ CI |z|H2(T )

The combination of this with (73) shows

J(e) = Res(z − Iz)

=
∑
T∈T

∫
T

rT · (z − Iz)dx−
∑
E∈E

∫
E

rE · (z− Iz)ds

≤
∑
T∈T

(
‖rT ‖L2(T ) ‖z − Iz‖L2(T )

+‖rE‖L2(∂T ) ‖z − Iz‖L2(∂T )

)
≤

∑
T∈T

CI

(
h2
T ‖rT ‖L2(T ) + h

3/2
T ‖rE‖L2(∂T )

)
|z|H2(T )
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The influence of the goal functional in this upper bound is through the unknown H2

seminorm |z|H2(T ), which is to be replaced by some discrete analog based on a computed
approximation zh. The justification of some substitute |D2

hzh|L2(T ) (postprocessed with some
averaging technique) for |z|H2(T ) is through striking numerical evidence; we refer to Becker and
Rannacher (2001) and Bangerth and Rannacher (2003) for details and numerical experiments.

6. Local Mesh Refinement

This section is devoted to the mesh-design task in the finite element method based on a priori
and a posteriori information. Examples of the former type are graded meshes or geometric
meshes with an a priori choice of refinement toward corner singularities briefly mentioned in
Section 6.1. Examples of the latter type are adaptive algorithms for automatic mesh refinement
(or mesh coarsening) strategies with a successive call of the steps

SOLVE⇒ESTIMATE⇒MARK⇒REFINE

Given the current triangulation, one has to compute the finite element solution in step
SOLVE; cf. Section 7.8 for a MATLAB realization of that. The accuracy of this finite element
approximation is checked in the step ESTIMATE. On the basis of the refinement indicators
of Section 6.2 the step MARK identifies the elements, edges or patches in the current mesh in
need of refinement (or coarsening). The new data structure is generated in step REFINE where
a partition is given and a closure algorithm computes a triangulation described in Section 6.3.
The convergence and optimality of the adaptive algorithm is discussed in Section 6.5.

6.1. A priori mesh design

The singularities of the exact solution of the Laplace equation on domains with corners
(cf. Figure 1) are reasonably well understood and motivate the (possibly anisotropic) mesh
refinement toward vertices or edges. This section aims a short introduction for two-dimensional
P1 finite elements–Interpolation in h-version Finite Element Spaces, will report on three-
dimensional examples.

Given a polygonal domain with a coarse triangulation into triangles (which specify the
geometry), macro elements can be used to fill the domain with graded meshes. Figure 12(a)
displays a macro element described in the sequel while Figure 12(b) illustrates the resulting
fine mesh for an L-shaped domain.

The description is restricted to the geometry on the reference element Tref with vertices
(0, 0), (1, 0), and (0, 1) of Figure 12(a). The general situation is then obtained by an affine
transformation illustrated in Figure 12(b). The macro element Tref is generated as follows:
Given a grading parameter β > 0 for a grading function g(t) = tβ , and given a natural number
N , set ξj := g(j/N) and draw line segments aligned to the antidiagonal through (0, ξj) and
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Figure 12: (a) Reference domain Tref with graded mesh for β = 3/2 and N = 4. (b) Graded
mesh on L-shaped domain with refinement toward origin and uniform refinement far away from
the origin. Notice that the outer boundaries of the macro elements show a uniform distribution
and so match each other in one global regular triangulation.

(ξj , 0) for j = 0, 1, . . . , N . Each of these segments is divided into j uniform edges and so define
the set of nodes (0, 0) and ξj/j (j − k, k) for k = 0, . . . , j and j = 1, . . . , N . The elements are
then given by the vertices ξj/j (j−k, k) and ξj/j (j−k−1, k+1) aligned with the antidiagonal
and the vertex ξj−1/(j − 1) (j − k − 1, k) on the finer and ξj+1/(j + 1) (j − k, k + 1) on the
coarser neighboring segment, respectively. The finest element is conv{(0, 0), (0, ξ1), (ξ1, 0)} of
diameter

√
(2) g(1/N) ≈ N−β .

Figure 12(b) displays a triangulation of the L-shaped domain with a refinement toward the
origin designed by a union of transformed macro elements with β = 3/2 and N = 7. The other
vertices of the L-shaped domain yield higher singularities, which are not important for the
first-order Courant finite element.
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(a) (b)

Figure 13: (a) Reference domain Tref with geometric mesh for parameter β = 1/2 and N = 4.
This mesh can also be generated by an adaptive red-green-blue refinement of Section 6.3.
(b) Illustration of the closure algorithm. The refinement triangulation with 50 element domains
is obtained from the mesh (a) with 18 element domains by marking one edge (namely the second
along the antidiagonal) in the mesh (a).

The geometric mesh depicted in Figure 13 yields a finer refinement toward some corners
of the polygonal domain. Given a parameter β > 0 in this type of triangulation, the nodes
ξ0 := 0 and ξj := βN−j for j = 1, . . . , N define antidiagonals through (ξj , 0) and (0, ξj), which
are in turn bisected. For such a triangulation, the polynomial degrees pT on each triangle T
are distributed as follows: pT = 1 for the two triangles T with vertex (0, 0) and pT = j + 2
for the four elements in the convex quadrilateral with the vertices (ξj , 0), (0, ξj), (ξj+1, 0),
and (0, ξj+1) for j = 0, . . . , N − 1. Figure ?? compares experimental convergence rates of the
error in H−1-seminorm |e|H1 for various graded meshes for the P1 finite element method, the
p-and hp-finite element method, and for the adaptive algorithm of Section 6.4. The P1 finite
element method on graded meshes with β = 3/2, β = 2 and h-adaptivity recover optimality
in the convergence rate as opposite to the uniform refinement (β = 1), leading only to a
sub-optimal convergence due to the corner singularity. The hp-finite element method performs
better convergence rate compared to the p-finite element method.

Tensor product meshes are more appropriate for smaller values of β; the one-dimensional
model analysis of Babuška and Guo (1986) suggests β = (2)1/2 − 1 ≈ 0.171573.

6.2. Adaptive mesh-refining algorithms

The automatic mesh refinement for regular triangulations called MARK and RE-
FINE/COARSEN frequently consists of three stages:

(i) the marking of elements or edges for refinement;
(ii) the closure algorithm to ensure that the resulting triangulation is (or remains) regular;

(iii) the refinement itself, i.e. the change of the underlying data structures.
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Figure 14: Experimental convergence rates for various graded meshes for the P1 finite element
method, the p- and hp-finite element method, and for the adaptive algorithm of Section 6.5
for the Poisson problem on the L-shaped domain.

This section will focus on the marking strategies (i) and the subsequent one on (ii)-(iii).

In a model situation with a sum over all elements T ∈ T (or over all edges, faces, or nodes),
the a posteriori error estimators of the previous section give rise to a lower or upper error

bound η =
√∑

T∈T η
2
T . The marking strategy is an algorithm selects a subset M of T called

the marked elements; these are marked with the intention of being refined during the later
refinement algorithm.

A typical algorithm computes a threshold L, a positive real number, and then utilizes the
refinement rule or marking criterion

mark T ∈ T if L ≤ ηT

Therein, ηT is referred to as the refinement indicator whereas L is the threshold; that is,

M := {T ∈ T : L ≤ ηT }

Typical examples for the computation of a threshold L are the maximum criterion

L := Θ max{ηT : T ∈ T }

or the bulk criterion, where L is the largest value such that

(1−Θ)2
∑
T∈T

η2
T ≤

∑
T∈M

η2
T

The parameter Θ is chosen with 0 ≤ Θ ≤ 1; Θ = 0 corresponds to an almost uniform refinement
and Θ = 1 to a raw refinement of just a few elements (no refinements in the bulk criterion).

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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Figure 15: Red-, green-, blue-(left)- and blue-(right) refinement with reference edge on bottom
of a triangle (from left to right) into four, two, and three subtriangles. The bold lines opposite
the newest vertex indicate the next reference edge for further refinements.

A different strategy is possible if the error estimator gives rise to a quantitative bound of a
new meshsize. For instance, the explicit error estimator can be rewritten as ηR =: ‖hT R‖L2(Ω)

with a given function R ∈ L2(Ω) and the local mesh size hT (when edge contributions are
recast as volume contributions). Then, given a tolerance Tol and using the heuristic that R
would not change (at least not dramatically increase) during a refinement, the new local mesh
size hnew can be calculated from the condition

‖hnew R‖L2(Ω) = Tol

upon the equi-distribution hypothesis hnew ∝ Tol/R. Another approach that leads to a
requested mesh-size distribution is based on sharp a priori error bounds, such as ‖hT D2u‖L2(Ω)

where D2u denotes the matrix of all second derivatives of the exact solution u. Since D2u is
unknown, it has to be approximated by postprocessing a finite element solution with some
averaging technique.

The aforementioned refinement rules for the step MARK (intended for conforming FEM)
ignore further decisions such as the particular type of anisotropic refinement or the increase
of polynomial degrees versus the mesh refinements for hp-FEM.

6.3. Mesh refining of regular triangulations

Given a marked set of objects such as nodes, edges, faces, or elements, the refinement of the
element (triangles or tetrahedra) plus further refinements (closure algorithm) for the design of
regular triangulations are considered in this section.

6.3.1. Refinement of a triangle. Triangular elements in two dimensions are refined into two,
three, or four subtriangles as indicated in Figure 15. All these divisions are based on hidden
information on some reference edge. Rivara (1984) assumed the longest edge in the triangle
as base of the refinement strategies while the one below is based on the explicit marking of
a reference edge. In Figure 15, the bottom edge of the original triangle acts as the reference
edge and, in any refinement, is halved. The four divisions displayed correspond to the bisection
of one (called green-refinement), of two (the two versions of blue-refinement), or of all three
edges (for red-refinement) as long as the bottom edge is refined. In Figure 15, the reference
edges in the generated subtriangles are drawn with a bold line.
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6.3.2. Closure algorithms. The bisection of some set of marked elements does not always lead
to a regular triangulation–the new vertices may be hanging nodes for the neighboring elements.
Further refinements are necessary to make those nodes regular. The default procedure within
the class of bisection algorithms is to work on a set of marked elements M(k).

Closure Algorithm for Bisection. Input a regular triangulation T (0) := T and an initial
subset M(0) :=M⊂ T (0) of marked elements, set Z = ∅ and k := 0.
While M(k) 6= ∅ repeat (i)-(iv):

(i) choose some element K in M(k) with reference edge E and initiate its midpoint zK as
new vertex, set Z := Z ∪ {zK};

(ii) bisect E and divide K into K+ and K− and set T (k+1) := {K+,K−} ∪ (T (k) \ {K});
(iii) find all elements T1, . . . , TmK ∈ T (k+1) with han- ging node z ∈ Z (if any) and set

M(k+1) := {T1, . . . , TmK} ∪ (M(k) \ {K});
(iv) update k := k + 1 and go to (i).

Output a refined triangulation T (k).

According to step (iii) of the closure algorithm, any termination leads to a regular
triangulation T (k). The remaining essential detail is to guarantee that there will always occur a
termination viaM(k) = ∅ for some k. In the newest-vertex bisection, for instance, the reference
edges are inherited in such a way that any element K ∈ T , the initial regular triangulation, is
refined only by subdivisions which, at most, halve each edge of K. Since the closure algorithm
only halves some edge in T and prohibits any further refinements, any intermediate (irregular)

T (k) remains coarser than or equal to some regular uniform refinement T̂ of T . This is the
main argument to prove that the closure algorithm cannot refine forever and stops after a
finite number of steps.

Figure 13(b) shows an example where, given the initial mesh of Figure 13(a), only one edge,
namely the second on the diagonal, is marked for refinement and the remaining refinement is
induced by the closure algorithm. Nevertheless, the number of new elements can be bounded
in terms of the initial triangulation and the number of marked elements (Binev, Dahmen and
DeVore, 2004).

The closure algorithm for the red-green-blue refinement in 2-D is simpler when the focus
is on marking of edges. One main ingredient is that each triangle K is assigned a reference
edge E(K). If we are given a set of marked elements, let M denote the set of corresponding
assigned reference edges.

Closure Algorithm for Red-Green-Blue Refinement. Input a regular triangulation
T with a set of edges E and an initial subset M ⊂ E of marked edges, set k := 0 and
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M(0) := N (0) :=M.
While N (k) 6= ∅ repeat (i)-(iv):

(i) choose some edge E in N (k) and let T± ∈ T denote the (at most) two triangles that
share the edge E ⊂ ∂T±;

(ii) set M(k+1) :=M(k) ∪ {E+, E−} with the reference edge E± := E(T±) of T±;
(iii) ifM(k+1) =M(k) set N (k+1) := N (k) \{E} else set N (k+1) := (N (k)∪{E+, E−})\{E};
(iv) update k := k + 1 and go to (i).

Bisect the marked edges {E ∈M(k) : E ⊂ ∂T} of each element T ∈ T and refine T by one of

the red-green-blue refinement rules to generate elementwise a partition T̂ as output.

The closure algorithm for red-green-blue refinement terminates as N (k) is decreasing and
M(k) is increasing and outputs a set M̂ :=M(k) of marked edges with the following closure
property: Any element T ∈ T with an edge inM satisfies E(T ) ∈M, i.e. if T is marked, then
at least its reference edge will be halved. This property allows the application of one properly
chosen refinement of Figure 15 and leads to a regular triangulation.

The reference edge E(K) in the closure algorithm is assigned to each element K of the
initial triangulation and then is inherited according to the rules of Figure 15. For newest-
vertex bisection, each triangle with vertices of global numbers j, k, and ` has the reference
edge opposite to the vertex number max{j, k, `}.

On the basis of refinement rules that inherit a reference edge to the generated elements, one
can prove that a finite number of affine-equivalent elements domains occur.

6.4. Newest vertex bisection (NVB)

The newest vertex bisection for simplicial finite element domains in Rn for any space dimension
n = 1, 2, 3, . . . dates back to Maubach (1995) and Traxler (1997); this subsection follows the
description of Stevenson (2008) to which we refer for proofs.

A tagged simplex (z0, . . . , zn; γ) is an (n+ 2)-tuple of vertices z0, . . . , zn ∈ Rn and of a type
γ ∈ {0, . . . , n−1}. The simplex dom(z0, . . . , zn; γ):= conv{z0, . . . , zn} is a compact subset of Rn
supposed to have a positive n-dimensional volume; in other words, the vertices z0, . . . , zn ∈ Rn
do not belong to an (n − 1)-dimensional hyperplane. The nodes N (T ) and sides E(T ) of a
tagged simplex (z0, . . . , zn; γ) are

N (T ) := {z0, . . . , zn} and E(T ) := {conv{z0, . . . , zj−1, zj+1, . . . , zn} : j = 0, . . . , n}.
It sometimes appears convenient to identify the tagged simplex (z0, . . . , zn; γ) with its domain
T := dom(z0, . . . , zn; γ):= conv{z0, . . . , zn}; but this suppresses further information on the n
different types of simplices with the same domain and with a different order of the vertices,
which conduct the mesh-refinement.

Encyclopedia of Computational Mechanics. Edited by Erwin Stein, René de Borst and Thomas J.R. Hughes.
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The bisection of a tagged simplex (z0, . . . , zn; γ) bisects the refinement edge conv{z0, zn}
and so generates the two tagged simplices(

z0,
z0 + zn

2
, z1, . . . , zγ , zγ+1, . . . , zn−1; γ′

)
,(

zn,
z0 + zn

2
, z1, . . . , zγ , zn−1, . . . , zγ+1; γ′

)
.

(122)

of the type γ′ := (γ+1) (mod n) one higher than γ with the convention of n-periodicity. (The
list zn−1, . . . , zγ+1 represents zn−1, zn−2, zn−3, . . . , zγ+2, zγ+1 and this list is empty, whence
neglected, for n − 1 < γ + 1.) The two new tagged simplices (122) are called the children of
the tagged simplex (z0, . . . , zn; γ). A tagged simplex generated from T by a finite number of
applications of (122) is called a descendant of (the tagged simplex) T . In particular, any child
of some child is called grandchild (of a tagged simplex). Notice that, given a tagged simplex
T = (z0, . . . , zn; γ), the tagged simplex

TR := (zn, z1, . . . , zγ , zn−1, . . . , zγ+1, z0; γ)

has the same children as T . Notice that the type γ does not play any role for n ≤ 2.

A regular triangulation T of a polyhedral bounded Lipschitz domain Ω ⊂ Rn into tagged
simplices is a finite set of tagged simplices with the following properties (a)–(c). The simplices
cover the domain Ω in the sense that (a) their union is equal to the closure Ω of the domain⋃

T∈T
dom(T ) = Ω

the simplices are non-overlapping in the sense that (b) the interiors of two distinct tagged
simplices T and T ′ are disjoint

int(dom(T )) ∩ int(dom(T ′)) = ∅

(c) two non-disjoint tagged simplices T = (y0, . . . , yn; γ) and T ′ := (z0, . . . , zn; γ′) share some
hyper-surface in that there exists 0 ≤ j1 < · · · < jN ≤ n and 0 ≤ k1 < · · · < kN ≤ n for some
N ∈ {1, . . . , n} such that

dom(T ) ∩ dom(T ′) = conv{yj1 , . . . , yjN } = conv{zk1
, . . . , zkN } (123)

The initial condition of the input triangulation of Stevenson, 2008 involves the concept of
a reflected neighbor. Two distinct tagged simplices T and T ′ in T are neighbors if they share
a side in that F(T ) ∩ F(T ′) 6= ∅. The regularity of T shows that T and T ′ share exactly
the n vertices N (T ) ∩ N (T ′). If, in addition to that, the positions of the common vertices
in the respective lists of vertices in T and T ′ or in TR and T ′ coincide in all but exactly
one position, then T and T ′ are called reflected neighbors. In other words, N = n holds
in (123) and, moreover, there is exactly one index j ∈ {0, . . . , n} with yj 6= zj such that
(y0, . . . , yj−1, yj , yj+1, . . . , yn; γ) ∈ {T, TR} and T ′ := (y0, . . . , yj−1, zj , yj+1, . . . , yn; γ′).

The following condition on the initial triangulation T0 is assumed throughout the newest-
vertex bisection (NVB). The regular triangulation T0 satisfies the matching condition or initial
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condition if the following conditions (a)–(c) hold. (a) T0 is a regular triangulation of Ω into
tagged simplices. (b) All simplices in T0 are of the same type γ. (c) Any two neighbouring
tagged simplices T = (y0, . . . , yn; γ) and T ′ = (z0, . . . , zn; γ) in T0 satisfy (c1)–(c2).
(c1) If conv{y0, yn} ⊆ T ∩T ′ or conv{z0, zn} ⊆ T ∩T ′, then T and T ′ are reflected neighbours.
(c2) If conv{y0, yn} 6⊆ T ∩ T ′ 6= ∅ and conv{z0, zn} 6⊆ T ∩ T ′, then any child S of T and any
child S′ of T ′ (each understood as in (122)) are either reflected neighbors or no neighbors.

This initial condition guarantees that uniform refinements of a triangulation are regular; in
particular there exist refinements of T0 which are regular, cf. Stevenson, 2008, Theorem 4.3
for further details. In other words, the set T of all such admissible refinements is non-trivial.
Given the initial triangulation T0 which satisfies the aforementioned initial condition then T
is an admissible triangulation, written T ∈ T, if T is a regular triangulation and if there is
a finite sequence of successive bisections of the type (122) that applies to T0 and generates
T in the following sense. There exists a nonnegative integer L and sets T0, . . . , TL of tagged
simplices (T1, . . . , TL−1 may not be regular triangulations) such that TL = T and for each

` = 0, . . . , L − 1 it holds T`+1 = {T (`)
1 , T

(`)
2 } ∪ T` \ {T (`)} for exactly one T (`) ∈ T` bisected

into its children T
(`)
1 and T

(`)
2 by (122).

This implied concept of successive bisections equips T with a partial ordering ≤ and defines a
lattice (T,≤). Hence there exists the smallest common refinement ∨ and the greatest common
coarsening ∧ of a finite number of admissible triangulation. The smallest common refinement
T ⊗T ′ := T

∨
T ′ of two admissible triangulations T , T ′ ∈ T, also called their overlay , satisfies

card(T ⊗ T ′) + card(T0) ≤ card(T ) + card(T ′)

The mesh-refinement in adaptive finite element algorithms is usually driven by some marking
followed by refinement. Given an admissible triangulation T ∈ T and a subset M ⊂ T , let
T̂ =: refine(T ,M) be the smallest admissible refinement of T with M∩ T̂ = ∅. There exists
effective algorithms to compute refine(T ,M) for a singleton M = {T} for T ∈ T and by
successive calls of those routines also for the computation of

refine(T ,M) =
∨

M∈M
refine(T , {M})

The reader is referred to p.235 in Stevenson (2008) for algorithms and proofs. Two further
properties of T will be employed in the optimality analysis outlined in Subsection 6.5 below.

The fundamental overhead control due to Binev, Dahmen and DeVore (2004) for n = 2
and Stevenson (2008) for n ≥ 3 reads, in the notation of an adaptive algorithm below with
T`+1 := refine(T`,M`) for any M` ⊂ T` and ` = 0, 1, 2 . . . , as

card(Tk)− card(T0) ≤ CBDV
k−1∑
j=0

card(Mj)

for all k = 0, 1, 2 . . . with some constant CBDV , which solely depends on T0. The example
of Figure 13 illustrates that this result cannot be proven by mathematical induction over the
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levels; it requires a deeper insight in the refinement of simplices and their size as well as their
distances. It is a nontrivial observation of Gallistl, Schedensack and Stevenson (2014) that the
number of children in each of the above calls refine(T`,M`) is indeed controlled by card(T`)
times some universal constant.

6.5. Convergence of adaptive algorithms

The overwhelming practical success of adaptive mesh-refining algorithms has been justified
in one-dimensional examples by Babuska and his collaborators in the eighties while the
first convergence proof dates back to Dörfler (1996). The first optimal convergence rates are
obtained in Binev, Dahmen and DeVore (2004) with an embedded coarsening step, before it
became clear that the standard adaptive algorithm leads to asymptotically optimal convergence
rates in Stevenson (2007). For more discussions on the history and a larger overview about
the literature, the reader is referred to Carstensen, Feischl, Page and Praetorius (2014). The
remaining parts of this subsection focus on an outline of abstract conditions called axioms
of adaptivity that are sufficient for optimal asymptotic convergence rates of the adaptive
algorithm (CAFM).

The adaptive algorithm based on collective marking is abstractly described in terms of
an estimator η which is defined for any admissible triangulation T ∈ T in the notation of
the previous subsection for newest vertex bisection as follows. Given any T ∈ T, there is a
map η(T , •) : T → [0,∞) (written η(T , •) ∈ [0,∞)T ) which fulfills certain properties, called
axioms below. In other words, η(T ,K) is a computable nonnegative real number with square
η2(T ,K) ≡ η(T ,K)2 for any K ∈ T ∈ T.

Throughout this subsection, an estimator is such a family η := (η(T , •) : T ∈ T) ∈∏
T ∈T[0,∞)T . The adaptive algorithm (CAFEM) driven the an estimator η and the collective

Dörfler marking reads as follows.

CAFEM. Input initial coarse triangulation T0 and bulk parameter 0 < θ < 1

For ` = 0, 1, 2, . . . do

Compute η(T`,K) for all K ∈ T` and their norm η` :=
√∑

K∈T` η
2(T`,K)

Select a subset M` ⊂ T` of (almost) minimal cardinality with

θη2
` ≤

∑
K∈M`

η2(T`,K) =: η2(T`,M`) (124)

Call T`+1 := refine(T`,M`) from NVB od

Output sequence of triangulations (T`) and estimated values (η`)

The convergence rates in CAFEM concern the decay of the estimated values η` towards zero
and the growth of the number N` := card(T`)−card(T0) of extra element domains on the level
` towards infinity as `→∞. The asymptotic convergence rate is at least s > 0 provided that

sup
`∈N0

(N` + 1)s η` <∞
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the supremum of all s with this property is the asymptotic convergence rate. The comparison
of the asymptotic convergence rate of CAFEM is with respect to an optimal choice of a
triangulation with respect to the values of the estimators. Given any N ∈ N0, this amounts in
the minimization of the quantity

η(T ) := η(T , T ) :=

√∑
K∈T

η2(T ,K)

for all admissible triangulations T ∈ T(N), where

T(N) := {T ∈ T : card(T )− card(T0) ≤ N}

The optimal convergence rate of an estimator η ∈
∏
T ∈T[0,∞)T is the supremum of all s > 0

such that
sup
N∈N

(N + 1)s min
T ∈T(N)

η(T ) <∞

Based on an observation due to Gallistl, Schedensack and Stevenson (2014), it is obvious that
the asymptotic convergence rate of the CAFEM is always smaller than or equal to the optimal
convergence rate of an estimator. Optimality of the adaptive algorithm means that equality
holds.

Given (1) the set of admissible triangulations T with the partial ordering ≤ for refinement
from the previous subsection, given (2) an estimator η ∈

∏
T ∈T[0,∞)T , and given (3) a function

δ : {(T , T̂ ) ∈ T2 : T ≤ T̂ } → [0,∞) suppose the following four conditions with universal

positive constants Λ1, . . . ,Λ4,Λ
′
3 <∞ and ρ2 < 1. In (A1)–(A3), T̂ is an arbitrary refinement

of T and the subset R ⊂ T of T includes the refined triangles T \ T̂ ⊂ R but not too many

further triangles such that card(R) ≤ Λ′3 card(T \ T̂ ). The CAFEM algorithm outputs the
triangulations T` and estimated values η` := η(T`) for any ` = 0, 1, 2, . . . which arise in (A4).

|η(T̂ , T ∩ T̂ )− η(T , T ∩ T̂ )| ≤ Λ1δ(T , T̂ ) (A1)

η(T̂ , T̂ \ T ) ≤ ρ2η(T , T \ T̂ ) + Λ2δ(T , T̂ ) (A2)

δ2(T , T̂ ) ≤ Λ3η
2(T ,R) (A3)

∞∑
k=`

δ2(Tk, Tk+1) ≤ Λ4η
2
` for all ` ∈ N0 (A4)

The axioms (A1)-(A4) are sufficient for convergence η` → 0 as ` → ∞ and allow an optimal
asymptotic convergence rate for bulk parameters θ < θ0 := (1 + Λ2

1Λ3)−1. For any s > 0 and
θ < θ0, the equivalence

sup
`∈N0

(N` + 1)s η` ≈ sup
N∈N

(N + 1)s min
T ∈T(N)

η(T )

is contained in Carstensen, Feischl, Page and Praetorius (2014) and Carstensen and Rabus
(2016) to which we refer to an overview of the literature as well as for many examples.
Unlike the former contributions in the literature, the critical bound θ0 does not depend on
any notion of efficiency. In fact, the efficiency is solely required in a global version to lead to
optimal convergence rates of the error as well. Easy examples cover lowest-order conforming,
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nonconforming or mixed adaptive finite element methods with R ⊂ T \T̂ in (A3) and the error

δ(T , T̂ ) := ||p̂− p||L2(Ω) of the flux approximation p (resp. p̂) computed for the triangulation

T (resp. its refinement T̂ ). For nonconforming or mixed schemes, the quasi-orthogonality (A4)
requires a little modification called (A4ε).

A generalization with separate marking appears necessary for least-squares or mixed finite
element methods when the data approximation term does not allow any weight by the mesh-
size. Details on the algorithm SAFEM and the generalization of the axioms for optimal
asymptotic convergence rates appear in Carstensen and Rabus (2016).

7. Other Aspects

In this section, we discuss briefly several topics in finite element methodology. Some of the
discussions involve the Sobolev space W k

p (Ω) (1 ≤ p ≤ ∞), which is the space of functions in
Lp(Ω) whose weak derivatives up to order k also belong to Lp(Ω), with the norm

‖v‖Wk
p (Ω) =

( ∑
|α|≤k

∥∥∥∥∂αv∂xα

∥∥∥∥
Lp(Ω)

)1/p

for 1 ≤ p <∞ and

‖v‖Wk
∞(Ω) = max

|α|≤k

∥∥∥∥(∂αv∂xα

)∥∥∥∥
L∞(Ω)

For 1≤p<∞, the seminorm
(∑
|α|=k‖(∂αv/∂xα)‖Lp(Ω)

)1/p
will be denoted by |v|Wk

p (Ω), and

the seminorm max|α|=k ‖(∂αv/∂xα)‖L∞(Ω) will be denoted by |v|Wk
∞(Ω).

7.1. Nonsymmetric/indefinite problems

The results in Section 4 can be extended to the case where the bilinear form a(·, ·) in the
weak problem (1) is nonsymmetric and/or indefinite due to lower order terms in the partial
differential equation. We assume that a(·, ·) is bounded (cf. (2)) on the closed subspace V of
the Sobolev space Hm(Ω) and replace (3) by the condition that

a(v, v) + L‖v‖2L2(Ω) ≥ C3‖v‖2Hm(Ω) ∀ v ∈ V (125)

where L is a positive constant.

Example 15. Let a(·, ·) be defined by

a(v1, v2) =

∫
Ω

∇v1 · ∇v2dx +

d∑
j=1

∫
Ω

bj(x)
∂v1

∂xj
v2dx

+

∫
Ω

c(x)v1 v2dx (126)
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for all v1, v2 ∈ H1(Ω), where bj(x) (1 ≤ j ≤ d), c(x) ∈ L∞(Ω). If we take V = {v ∈ H1(Ω) :
v
∣∣
Γ

= 0} and F is defined by (6), then (1) is the weak form of the nonsymmetric boundary
value problem

−∆u+

d∑
j=1

bj
∂u

∂xj
+ cu = f, u = 0 on Γ,

∂u

∂n
= 0 on ∂Ω \ Γ (127)

and the coercivity condition (125) follows from the well-known G̊arding’s inequality (Agmon,
1965).

Unlike the symmetric positive definite case, we need to assume that the weak problem (1)
has a unique solution, and that the adjoint problem is also uniquely solvable, that is, given
any G ∈ V ∗ there is a unique w ∈ V such that

a(v, w) = G(v) ∀ v ∈ V (128)

Furthermore, we assume that the solution w of (128) enjoys some elliptic regularity when
G(v) = (g, v)L2(Ω) for g ∈ L2(Ω), i.e., w ∈ Hm+α(Ω) for some α > 0 and

‖w‖Hm+α(Ω) ≤ C‖g‖L2(Ω) (129)

Let T be a triangulation of Ω with mesh size hT = maxT∈T diamT and VT ⊂ V be a finite
element space associated with T such that the following approximation property is satisfied:

inf
v∈VT

‖w − v‖Hm(Ω) ≤ εT ‖w‖Hm+α(Ω) ∀w ∈ Hm+α(Ω) (130)

where
εT ↓ 0 as hT ↓ 0 (131)

The discrete problem is then given by (54).

Following Schatz (1974) the well-posedness of the discrete problem and the error estimate
for the finite element approximate solution can be addressed simultaneously. Assume for the
moment that uT ∈ VT is a solution of (54). Then we have

a(u− uT , v) = 0 ∀ v ∈ VT (132)

We use (132) and a duality argument to estimate ‖u− uT ‖L2(Ω) in terms of ‖u− uT ‖Hm(Ω).
Let w ∈ V satisfy

a(v, w) = (u− uT , v)L2(Ω) ∀ v ∈ VT (133)

We obtain, from (2), (132), and (133), the following analog of (24):

‖u− uT ‖2L2(Ω) = a(u− uT , w)

≤ C
(

inf
v∈VT

‖w − v‖Hm(Ω)

)
‖u− uT ‖Hm(Ω) (134)
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and hence, by (129) and (130),

‖u− uT ‖L2(Ω) ≤ εT ‖u− uT ‖Hm(Ω) (135)

It follows from (125) and (135) that

‖u− uT ‖2Hm(Ω) ≤ a(u− uT , u− uT ) + Cε2T ‖u− uT ‖2Hm(Ω)

which together with (131) implies, for hT sufficiently small,

‖u− uT ‖2Hm(Ω) ≤ a(u− uT , u− uT ) (136)

For the special case where F = 0 and u = 0, any solution uT of the homogeneous discrete
problem

a(uT , v) = 0 ∀ v ∈ VT
must satisfy, by (136),

‖uT ‖2Hm(Ω) ≤ 0

We conclude that any solution of the homogeneous discrete problem must be trivial and hence
the discrete problem (19) is uniquely solvable provided hT is sufficiently small. Under this
condition, we also obtain immediately from (2), (132), and (136), the following analog of (22):

‖u− uT ‖Hm(Ω) ≤ C inf
v∈VT

‖u− v‖Hm(Ω) (137)

Concrete error estimates now follow from (137), (134), and the results in Section 3.3.

7.2. Nonconforming finite elements

When the finite element space FET defined by (32) does not belong to the Sobolev space
Hm(Ω) where the weak problem (1) is posed, it is referred to as a nonconforming finite element
space. Nonconforming finite element spaces are more flexible and are useful for problems with
constrains where conforming finite element spaces are more difficult to construct.

Example 16. (Triangular Nonconforming Elements) Let K be a triangle. If the set NK
consists of evaluations of the shape functions at the midpoints of the edges of K (Figure 16a),
then (K,P1,NK) is the nonconforming P1 element of Crouzeix and Raviart (Crouzeix and
Raviart, 1973). It is the simplest triangular element that can be used to solve the incompressible
Stokes equation. We refer the readers to Brenner (2015) for many applications of this
interesting element.

If the set NK consists of evaluations of the shape functions at the vertices of K and the
evaluations of the normal derivatives of the shape functions at the midpoints of the edges
of K (Figure 16b), then (K,P2,NK) is the Morley element (Morley, 1968; Shi, 1990). It is
the simplest triangular element that can be used to solve the plate bending problem. Higher
dimensional analogs of Morley can be found in Ruas (1988) and Wang and Xu (2006).
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(a) (b)

Figure 16: Triangular nonconforming finite elements.

(b)(a)

Figure 17: Rectangular nonconforming finite elements.

Example 17. (Rectangular Nonconforming Elements) Let K be a rectangle. If PK is the space
spanned by the functions 1, x1, x2 and x2

1−x2
2 and the set NK consists of the mean values of the

shape functions on the edges of K, then (K,PK ,NK) is the rotated Q1 element of Rannacher
and Turek (Rannacher and Turek, 1992) (Figure 17(a), where the thick lines represent mean
values over the edges). It is the simplest rectangular element that can be used to solve the
incompressible Stokes equation.

If PK is the space spanned by the functions 1, x1, x2, x
2
1, x1x2, x

2
2, x

2
1x2 and x1x

2
2 and the

set NK consists of evaluations of the shape functions at the vertices of K and evaluations of
the normal derivatives at the midpoints of the edges (Figure 17b), then (K,PK ,NK) is the
incomplete Q2 element (Shi, 1986). It is the simplest rectangular element that can be used to
solve the plate bending problem.

Remark 17. Poincaré-Friedrichs and Korn’s inequalities are responsible for coercivity in
Examples 1-3. They have been extended to piecewise H1 functions (Brenner, 2003; Brenner
and Sung, 2015), piecewise H2 functions (Brenner, Wang and Zhao, 2004), and piecewise
H1 vector fields (Brenner, 2004; Mardal and Winther, 2006; Brenner and Sung, 2015). These
results can be applied in particular to nonconforming finite element spaces.

Consider the weak problem (1) for a symmetric positive definite boundary value problem,
where F is defined by (6) for a function f ∈ L2(Ω). Let VT be a nonconforming finite
element space associated with the triangulation T . We assume that there is a (mesh-dependent)
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c© John Wiley & Sons, Ltd. ISBN: 0-470-84699-2



FINITE ELEMENT METHODS 61

symmetric bilinear form aT (·, ·) defined on V + VT such that (i) aT (v, v) = a(v, v) for v ∈ V ,
(ii) aT (·, ·) is positive definite on VT . The discrete problem for the nonconforming finite element
method reads: Find uT ∈ VT such that

aT (uT , v) =

∫
Ω

fvdx ∀ v ∈ VT (138)

Example 18. The Poisson problem in Example 1 can be solved by the nonconforming P1

finite element method in which the finite element space is VT = {v ∈ L2(Ω) : v
∣∣
T
∈ P1(T ) for

every triangle T ∈ T , v is continuous at the midpoints of the edges of T and v vanishes at the
midpoints of the edges of T along Γ} and the bilinear form aT is defined by

aT (v1, v2) =
∑
T∈T

∫
T

∇v1 · ∇v2dx (139)

Below we will discuss the a priori error analysis of nonconforming finite element methods
and refer the readers to Dari, Duran, Padra and Vampa (1996), Carstensen and Hoppe (2006),
Becker, Mao and Shi (2010) and Hu, Shi and Xu (2012) for the a posteriori analysis.

7.2.1. Convergence analysis of nonconforming finite element methods: standard approach.
The nonconforming Ritz-Galerkin method (138) can be analyzed as follows. Let ũT ∈ VT
be defined by

aT (ũT , v) = aT (u, v) ∀ v ∈ VT
Then we have

‖u− ũT ‖aT = inf
v∈VT

‖u− v‖aT

where ‖w‖aT = (aT (w,w))1/2 is the nonconforming energy norm defined on V + VT , and we
arrive at the following generalization (Berger, Scott and Strang, 1972) of (21):

‖u− uT ‖aT ≤ ‖u− ũT ‖aT + ‖ũT − uT ‖aT

= inf
v∈VT

‖u− v‖aT + sup
v∈VT \{0}

aT (ũT − uT , v)

‖v‖aT

= inf
v∈VT

‖u− v‖aT + sup
v∈VT \{0}

aT (u− uT , v)

‖v‖aT
(140)

Remark 18. The second term on the right-hand side of (140), which vanishes in the
case of conforming Ritz-Galerkin methods, measures the consistency errors of nonconforming
methods.

As an example, we analyze the nonconforming P1 finite element method for the Poisson
problem in Example 18. For simplicity we assume Γ = ∂Ω. For each T ∈ T , we define an
interpolation operator ΠT : H1(T )→ P1(T ) by

(ΠT ζ)(mE) =
1

hE

∫
E

ζds
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where mE is the midpoint for the edge E of T and hE is the diameter of E. The interpolation
operator ΠT satisfies the estimate (43) for m = 1, and they can be pieced together to form an
interpolation operator Π : H1(Ω) → VT . Since the solution u of (5) belongs to H1+α(T )(T ),
where 1

2 < α(T ) ≤ 1 (Grisvard, 1985; Dauge, 1988), the first term on the right-hand side of
(140) satisfies the estimate

inf
v∈VT

‖u− v‖aT ≤ ‖u−Πu‖aT

≤ C

(∑
T∈T

(diamT )2α(T )|u|2H1+α(T )(T )

)1/2

(141)

where the constant C depends only on the minimum angle in T .

To analyze the second term on the right-hand side of (140), we write, using (5), (138), and
(139),

aT (u− uT , v) = −
∑

E∈E(T )

∫
E

∂u

∂nE
[v]Eds (142)

where E(T ) is the set of edges in T that are not on Γ, nE is a unit vector normal to E, and
[v]E = v+ − v− is the jump of v across E (nE is pointing from the minus side to the plus side
and v = 0 outside Ω). Note that (142) is well-defined because u belongs to H1+α(Ω) for some
α ∈ ( 1

2 , 1] .

Since [v]E vanishes at the midpoint of E ∈ E(T ), we have∫
E

∂u

∂nE
[v]Eds =

∫
E

∂(u− p)
∂nE

[v]Eds ∀ p ∈ P1 (143)

Let TE = {T ∈ T : E ⊂ ∂T}. It follows from (143), the trace theorem and the Bramble-Hilbert
lemma (cf. Remark 10.) that∣∣∣∣∫

e

∂u

∂nE
[v]Eds

∣∣∣∣ ≤ C inf
p∈P1

[ ∑
T∈TE

(
|u− p|2H1(T )

+(diamT )2α(T )|u|2H1+α(T )(T )

)]1/2( ∑
T∈TE

|v|2H1(T )

)1/2

≤ C

( ∑
T∈TE

(diamT )2α(T )|u|2H1+α(T )(T )

)1/2( ∑
T∈TE

|v|2H1(T )

)1/2

(144)

We conclude from (142) and (144) that

sup
v∈VT

aT (u− uT , v)

‖v‖aT
≤ C

(∑
T∈T

(diamT )2α(T )|u|2H1+α(T )(T )

)1/2

(145)

where the constant C depends only on the minimum angle in T .
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Combining (140), (141), and (145) we have the following analog of (57)∑
T∈T
|u− uT |2H1(T ) ≤ C

∑
T∈T

(diamT )2α(T )|u|2H1+α(T )(T ) (146)

Remark 19. Estimates of ‖u − uT ‖L2(Ω) can also be obtained for nonconforming finite
element methods (Crouzeix and Raviart, 1973). There is also a close connection between
certain nonconforming methods and mixed methods (Arnold and Brezzi, 1982).

7.2.2. Convergence analysis of nonconforming finite element methods: nonstandard approach.
The analysis of the P1 nonconforming finite element method in Section 7.2.1 relies on the
expression (142), which is not well-defined for u ∈ H1(Ω). Therefore we had to use the elliptic
regularity u ∈ H1+α(Ω) for some α ∈ ( 1

2 , 1] in order to proceed. This is different from the
convergence analysis of the conforming P1 finite element method where the derivation of the
error estimate (21) does not use any information on the regularity of u other than the fact
that it belongs to H1(Ω).

The following estimate was established in Gudi (2010) without using any regularity of u
beyond H1(Ω):

‖u− uT ‖aT ≤ C
(

inf
v∈VT

‖u− v‖aT +
∑
T∈T

Osc(f, T )
)

(147)

where

Osc(f, T ) =
( ∑
T∈T

osc(f, T )2
) 1

2

and osc(f, T ) is defined in (80). The estimate (147) shows that Cea’s lemma is valid for
nonconforming finite element methods up to data oscillations. It puts the convergence analysis
of nonconforming finite element methods on the same footing as that for conforming finite
element methods.

The proof of (147) uses local efficiency estimates in a posteriori error analysis and an
enriching ET : VT −→ H1

0 (Ω) with the following property:∑
T∈T

h−2
T ‖v − ET v‖

2
L2(T ) + |ET v|2H1(Ω) ≤ C‖v‖

2
aT (148)

for all v ∈ VT . The operator ET can be constructed by using the P2 Lagrange finite element
space associated with T and averaging (Brenner, 1994).

We begin with the following analog of (140) :

‖u− uT ‖aT ≤ ‖u− v‖aT + sup
w∈VT \{0}

aT (v − uT , w)

‖w‖aT
(149)

for any v ∈ VT , and rewrite the numerator on the right-hand side of (149) as

aT (v − uT , w) = aT (v, w − ET w) + aT (v − u,ET w)

+

∫
Ω

f(ET w − w)dx (150)
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Using integration by parts and the continuity of w at the midpoints of the edges, the first
term on the right-hand side of (150) can be written as

aT (v, w − ET w) =
∑

E∈E(T )

∫
E

[∂v/∂n]E{w − ET w}Eds (151)

where [∂v/∂n]E is the jump of the normal derivative of v across the edge E and {w−ET w}E
is the average of w − ET w across E. Note that the integration by parts that led to (151) is
legitimate because v, w and ET w are piecewise polynomial functions.

It follows from (151) that

aT (v, w − ET w) ≤
( ∑
E∈E(T )

hE‖[∂v/∂n]E‖2L2(E)

) 1
2

×
( ∑
E∈E(T )

h−1
E ‖{w − ET w}E‖

2
L2(E)

) 1
2

≤
( ∑
E∈E(T )

hE‖[∂v/∂n]E |2L2(E)

) 1
2

(152)

×
( ∑
T∈T

h−2
T ‖w − ET w‖

2
L2(T )

) 1
2

The second and third terms on the right-hand side of (150) are bounded by

aT (v − u,ET w) ≤ ‖v − u‖aT |ET w|H1(Ω) (153)∫
Ω

f(ET w − w)dx ≤
( ∑
T∈T

h2
T ‖f‖2L2(T )

) 1
2

×
( ∑
T∈T

h−2
T ‖w − ET w‖

2
L2(T )

) 1
2

(154)

Finally we observe that the estimates( ∑
T∈T

h2
T ‖f‖2L2(T )

) 1
2 ≤ C

(
‖u− v‖aT + Osc(f, T )

)
(155)

( ∑
E∈E(T )

hE‖[∂v/∂n]E‖2L2(E)

) 1
2 ≤ C

(
‖u− v‖aT + Osc(f, T )

)
(156)

can be established by the same bubble function techniques that led to (78) and (79).

The estimate (147) follows from (148)-(156).

Remark 20. Since the derivation of (147) uses both techniques from a priori analysis and a
posteriori analysis, convergence analysis based on (147) is also known as the medius analysis.
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Remark 21. It follows from (147) and the density of C∞c (Ω) in H1
0 (Ω) that the

nonconforming P1 finite element method converges to u in ‖·‖aT as the mesh size of T decreases
to 0. Therefore the medius analysis establishes the convergence of the P1 nonconforming finite
element method without using any elliptic regularity theory. The elliptic regularity of u is only
needed if we want to obtain a convergence rate. Indeed O(hα) convergence follows immediately
from (147) and u ∈ H1+α(Ω).

7.3. Effects of numerical integration

The explicit form of the finite element equation (54) involves the evaluations of integrals
which, in general, cannot be computed exactly. Thus, the effects of numerical integration must
be taken into account in the error analysis. We will illustrate the ideas in terms of finite element
methods for simplicial triangulations. The readers are referred to Davis and Rabinowitz (1984)
for a comprehensive treatment of numerical integration.

Consider the second order elliptic boundary value problem (5) in Example 1 on a bounded
polyhedral domain Ω ⊂ Rd (d = 2 or 3). Let T be a simplicial triangulation of Ω such that
Γ is a union of the edges (faces) of T and VT ⊂ V be the corresponding Pn Lagrange finite
element space.

In Section 4, the finite element approximate solution uT ∈ VT is defined by (54). But in
practice, the integral F (v) =

∫
Ω
fvdx is evaluated by a quadrature scheme and the approximate

solution uT ∈ VT is actually defined by

a(uT , v) = FT (v) ∀ v ∈ VT (157)

where FT (v) is the result of applying the quadrature scheme to the integral F (v).

More precisely, let D ∈ T be arbitrary and ΦD : S → D be an affine homeomorphism from
the standard (closed) simplex S onto D. It follows from a change of variables that∫

D

fvdx =

∫
S

(det JΦD )(f ◦ ΦD)(v ◦ ΦD)dx̂

where without loss of generality det JΦD (the determinant of the Jacobian matrix of Φ) is
assumed to be a positive number. The integral on S is evaluated by a quadrature scheme IS
and the right-hand side of (157) is then given by

Fh(v) =
∑
D∈T

IS
(
(det JΦD )(f ◦ ΦD)(v ◦ ΦD)

)
(158)

The error u− uT can be estimated by the following analog of (140):

‖u− uT ‖a ≤ inf
v∈VT

‖u− v‖a + sup
v∈VT \{0}

a(u− uT , v)

‖v‖a
(159)

The first term on the right-hand side of (159) can be estimated by ‖u−ΠT u‖a as in Section 4.1.
The second term on the right-hand side of (159) measures the effect of numerical quadrature.
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Below we give conditions on the quadrature scheme w 7→ IS(w) and the function f so that the
magnitude of the quadrature error is identical with that of the optimal interpolation error for
the finite element space.

We assume that the quadrature scheme w 7→ IS(w) has the following properties:

|IS(w)| ≤ CS max
x̂∈S
|w(x̂)| ∀w ∈ C0(S), (160)

IS(w) =

∫
S

wdx̂ ∀w ∈ P2n−2 (161)

We also assume that f ∈ Wn
q (Ω) such that q ≥ 2 and n > d/q, which implies, in particular,

by the Sobolev embedding theorem that f ∈ C0(Ω) so that (158) makes sense.

Under these conditions it can be shown (Ciarlet, 1978) by using the Bramble-Hilbert lemma
on S that ∣∣∣∣∫

D

fvdx− IS

(
(det JΦD

)(f ◦ ΦD)(v ◦ ΦD)
)∣∣∣∣

≤ C(diamD)n|D|(1/2)−(1/q)‖f‖Wn
q (D)|v|H1(D) ∀ v ∈ VT (162)

where the positive constant C depends only on the shape regularity of D. It then follows from
(1), (158), (162) and Hölder’s inequality that

|a(u− uT , v)| =

∣∣∣∣∫
Ω

fvdx− Fh(v)

∣∣∣∣
≤ ChnT ‖f‖Wn

q (Ω)‖v‖H1(Ω) ∀ v ∈ VT (163)

We conclude from (159) and (163) that

‖u− uT ‖a ≤ ‖u−ΠT u‖a + ChnT ‖f‖Wn
q (Ω) (164)

We see by comparing (43) and (164) that the overall accuracy of the finite element method is
not affected by the numerical integration.

We now consider a general symmetric positive definite elliptic boundary problem whose
variational form is defined by

a(w, v) =

d∑
i,j=1

∫
Ω

aij(x)
∂w

∂xi

∂v

∂xj
dx +

∫
Ω

b(x)wvdx (165)

where aij , b ∈W 2
∞(Ω), b ≥ 0 on Ω and there exists a positive constant c such that

d∑
i,j=1

aij(x)ξiξj ≥ c|ξ|2 ∀x ∈ Ω and ξ ∈ Rd (166)

In this case, the bilinear form (165) must also be evaluated by numerical integration and
the approximation solution uT ∈ VT to (1) is defined by

aT (uT , v) = FT (v) ∀ v ∈ VT (167)
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where aT (w, v) is the result of applying the quadrature scheme IS to the pull-back of

d∑
i,j=1

∫
D

aij(x)
∂w

∂xi

∂v

∂xj
dx +

∫
D

b(x)wvdx

on the standard simplex S under the affine homeomorphism ΦD, over all D ∈ T .

The error u− uT can be estimated under (160), (161) and the additional condition that

g ≥ 0 on S̄ =⇒ IS(g) ≥ 0 (168)

Indeed (161), (166), (168) and the sign of b imply that

aT (v, v) ≥ c|v|2H1(Ω) ∀ v ∈ VT (169)

and we have the following analog of (159)

|u− uT |H1(Ω) ≤ inf
v∈VT

|u− v|H1(Ω)

+
1

c

{
sup

v∈VT \{0}

aT (u, v)− a(u, v)

|v|H1(Ω)
+ sup
v∈VT \{0}

a(u, v)− aT (uT , v)

|v|H1(Ω)

}
(170)

The first term on the right-hand side of (170) is dominated by |u − ΠT u|H1(Ω). Since
a(u, v)−aT (uT , v) =

∫
Ω
fvdx−FT (v), the third term is controlled by the estimate (163). The

second term, which measures the effect of numerical quadrature on the bilinear form a(·, ·), is
controlled by the estimate∣∣aT (u, v)− a(u, v)

∣∣ ≤ C
∑
D∈T

(diamD)α(D)

×|u|H1+α(D)(D)|v|H1(D) (171)

provided the solution u belongs to H1+α(D)(D) for each D ∈ T and 1/2 < α(D) ≤ 1. The
estimate (171) follows from (160), (161) and the Bramble-Hilbert lemma, and the positive
constant C in (171) depends only on the W 2

∞ norms of aij and b and the shape regularity of
T . Again we see by comparing (56), (164), and (171) that the overall accuracy of the finite
element method is not affected by the numerical integration.

Remark 22. For problems that exhibit the phenomenon of locking, the choice of a lower
order quadrature scheme in the evaluation of the stiffness matrix may help alleviate the effect
of locking (Malkus and Hughes, 1978).

7.4. Curved domains

So far, we have restricted the discussion to polygonal (polyhedral) domains. In this section,
we consider the second-order elliptic boundary value problem (5) on a domain Ω ⊂ R2 with a
curved boundary. For simplicity, we assume that Γ = ∂Ω.
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(a) (b)

Figure 18: Triangulations for curved domains.

First, we consider the P1 Lagrange finite element method for a domain Ω with a C2 boundary.
We approximate Ω by a polygonal domain Ωh on which a simplicial triangulation Th of mesh
size h is imposed. We assume that the vertices of Th belong to the closure of Ω. A typical
triangle in Th near ∂Ω is depicted in Figure 18(a).

Let Vh ⊂ H1
0 (Ωh) be the P1 finite element space associated with Th. The approximate

solution uh ∈ Vh for (5) is then defined by

ah(uh, v) = Fh(v) ∀ v ∈ Vh (172)

where

ah(w, v) =

∫
Ωh

∇w · ∇vdx ∀w, v ∈ H1(Ωh) (173)

and Fh(v) represented the result of applying a numerical quadrature scheme to the integral∫
Ωh
f̃vdx (cf. (158) with f and T replaced by f̃ and Th). Here f̃ is an extension of f to R2.

We assume that the numerical scheme uses only the values of f̃ at the nodes of Th and hence
the discrete problem (172) is independent of the extension f̃ .

We assume that f ∈W 1
q (Ω) for 2 < q <∞ and hence u ∈W 3

q (Ω) by elliptic regularity. Let
ũ ∈W 3

q (R2) be an extension of u such that

‖ũ‖W 3
q (R2) ≤ CΩ‖u‖W 3

q (Ω) ≤ CΩ‖f‖W 1
q (Ω) (174)

We can then take f̃ = −∆ũ ∈W 1
q (R2) to be the extension appearing in the definition of Fh.

The error ũ− uh over Ωh can be estimated by the following analog of (140):

‖ũ− uh‖ah ≤ inf
v∈Vh

‖ũ− v‖ah + sup
v∈Vh\{0}

ah(ũ− uh, v)

‖v‖ah
(175)

The first term on the right-hand side is dominated by ‖ũ − Πhũ‖ah where Πh is the nodal
interpolation operator. The second term is controlled by∣∣ah(ũ− uh, v)

∣∣ =

∣∣∣∣∫
Ωh

f̃vdx− Fh(v)

∣∣∣∣
≤ Ch‖f̃‖W 1

q (Ωh)‖v‖H1(Ωh) (176)
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which is a special case of (163), provided that the conditions (160) and (161) (with n = 1) on
the numerical quadrature scheme are satisfied.

Combining (43) and (174)-(176) we see that

|ũ− uh|H1(Ωh) = ‖ũ− uh‖ah ≤ Ch‖f‖W 1
q (Ω) (177)

that is, the P1 finite element method for the curved domain retains the optimal O(h) accuracy.

The approximation of Ωh to Ω can be improved if we replace straight-edge triangles by
triangles with a curved edge (Figure 18(b)). This can be achieved by the isoparametric finite
element methods. We will illustrate the idea using the P2 Lagrange element.

Let Ωh, an approximation of Ω, be the union of straight-edge triangles (in the interior of
Ωh) and triangles with one curved edge (at the boundary of Ωh), which form a triangulation
Th of Ωh. The finite element associated with the interior triangles is the standard P2 Lagrange
element. For a triangle D at the boundary, we assume that there is a homeomorphism ΦD
from the standard simplex S onto D such that ΦD(x̂) = (ΦD,1(x̂),ΦD,2(x̂)) where ΦD,1(x̂)
and ΦD,2(x̂) are quadratic polynomials in x̂ = (x̂1, x̂2). The space of shape functions PD is
then defined by

PD = {v ∈ C∞(D) : v ◦ ΦD ∈ P2(S)} (178)

that is, the functions in PD are quadratic polynomials in the curvilinear coordinates on D
induced by Φ−1

D . The set ND of nodal variables consist of pointwise evaluations of the shape
functions at the nodes corresponding to the nodes of the P2 element on S (cf. Figures 2 and 18)
under the map ΦD. We assume that all such nodes belong to Ω and the nodes on the curved
edge of D belong to ∂Ω (cf. Figure 18).

In other words, the finite element (D,PD,ND) is pulled back to the P2 Lagrange finite
element on S̄ under ΦD. It is called an isoparametric element because the components of the
parameterization map ΦD are shape functions of the P2 element on S̄. The corresponding finite
element space defined by (32) (with T replaced by Th) is a subspace of H1(Ωh) that contains
all the continuous piecewise linear polynomials with respect to Th. By setting the nodal values
on ∂Ωh to be zero, we have a finite element space Vh ⊂ H1

0 (Ωh). The discrete problem for
uh ∈ Vh is then defined by

ãh(uh, v) = Fh(v) (179)

where the numerical quadrature scheme in the definition of Fh involves only the nodes of the
finite element space so that the discrete problem is independent of the choice of the extension
of f and the variational form ãh(·, ·) is obtained from ah(·, ·) by the numerical quadrature
scheme.

We assume that f ∈ W 2
q (Ω) for 1 < q < ∞ and hence u ∈ W 4

q (Ω) by elliptic regularity
(assuming that Ω has a C3 boundary). Let ũ ∈W 4

q (R2) be an extension of u such that

‖ũ‖W 4
q (R2) ≤ CΩ‖u‖W 4

q (Ω) ≤ CΩ‖f‖W 2
q (Ω) (180)

Under the condition (168), we have

ãh(v, v) ≥ c|v|2H1(Ωh) ∀ v ∈ Vh (181)
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and the error of ũ− uh over Ωh can be estimated by the following analog of (170)

|ũ− uh|H1(Ωh) ≤ inf
v∈Vh

|ũ− v|H1(Ωh)

+
1

c

{
sup

v∈Vh\{0}

ãh(ũ, v)− ah(ũ, v)

|v|H1(Ωh)
+ sup
v∈Vh\{0}

ah(ũ, v)− ãh(uh, v)

|v|H1(Ωh)

}
(182)

The analysis of the terms on the right-hand side of (182) involves the shape regularity of a
curved triangle, which can be defined as follows. Let AD be the affine map that agrees with
ΦD at the vertices of the standard simplex S, and D̃ be the image of S under AD. (D̃ is the
triangle in Figure 18(a), while D is the curved triangle in (b).) The shape regularity of the

curved triangle D is measured by the aspect ratio γ(D̃) (cf. (29)) of the straight-edged triangle

D̃ and the parameter κ(D) defined by

κ(D) = max
{
h−1|ΦD ◦ A−1

D |W 1
∞(D), h

−2|ΦD ◦ A−1
D |W 2

∞(D)

}
(183)

and we can take the aspect ratio γ(D) to be the maximum of γ(D̃) and κ(D). Note that in

the case where D = D̃ the parameter κ(D) = 0 and γ(D) = γ(D̃).

The first term on the right-hand side of (182) is dominated by ‖ũ − Πhũ‖ah , where Πh is
the nodal interpolation operator. Note that, by using the Bramble-Hilbert lemma on S and
scaling, we have the following generalization of (43):

|ũ−ΠDũ|H1(D) ≤ C(diamD)2‖ũ‖H3(D) (184)

where ΠD is the element nodal interpolation operator and the constant C depends only on an
upper bound of γ(D), and hence

‖ũ−Πhũh‖H1(Ωh) ≤ Ch2‖ũ‖H3(Ωh) (185)

In order to analyze the third term on the right-hand side of (182), we take f̃ = −∆ũ and
impose the conditions (160) and (161) (with n = 2) on the numerical quadrature scheme. We
then have the following special case of (163):∣∣ah(ũ, v)− ãh(uh, v)

∣∣ =

∣∣∣∣∫
Ωh

f̃vdx− Fh(v)

∣∣∣∣
≤ Ch2‖f̃‖W 2

q (Ωh)|v|H1(Ωh) (186)

Similarly, the second term on the right-hand side of (182), which measures the effect of
numerical integration on the variational form ah(·, ·), is controlled by the estimate∣∣ãh(ũ, v)− ah(ũ, v)

∣∣ ≤ Ch2|ũ|H3(Ωh)|v|H1(Ωh) ∀ v ∈ Vh (187)

Combining (182) and (185)-(187) we have

‖ũ− uh‖ ≤ Ch2‖f‖W 2
q (Ω) (188)
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where C depends only on an upper bound of {γ(D) : D ∈ Th} and the constants in (180).
Therefore, the P2 isoparametric finite element method retains the optimal O(h2) accuracy.
On the other hand, if only straight-edged triangles are used in the construction of Ωh, then
the accuracy of the P2 Lagrange finite element method is only of order O(h3/2) (Strang and
Berger, 1971).

The discussion above can be generalized to higher-order isoparametric finite element
methods, higher dimensions, and elliptic problems with variable coefficients (Ciarlet, 1978).

Remark 23. Estimates such as (175) and (177) are useful only when a sequence of domains
Ωhi with corresponding triangulations Thi can be constructed so that hi ↓ 0 and the aspect
ratios of all the triangles (straight or curved) in the triangulations remain bounded. We refer
the readers to Scott (1973) for 2-D constructions and to Lenoir (1986) for the 3-D case.

Remark 24. Other finite element methods for curved domains can be found in Zlámal (1973,
1974), Scott (1975), and Bernardi (1989).

Remark 25. Let Ωi be a sequence of convex polygons approaching the unit disc. The
displacement of the simply supported plate on Ωi with unit loading does not converge to
the displacement of the simply supported plate on the unit disc (also with unit loading) as
i → ∞. This is known as Babuška’s plate paradox (Babuška and Pitkäranta, 1990). It shows
that numerical solutions obtained by approximating a curved domain with polygonal domains,
in general, do not converge to the solution of a fourth-order problem defined on the curved
domain. We refer the readers to Mansfield (1978) for the construction of finite element spaces
that are subspaces of H2(Ω).

7.5. Pointwise estimates

Besides the estimates in L2-based Sobolev spaces discussed in Section 4, there also exist a priori
error estimates for finite element methods in Lp-based Sobolev spaces with p 6= 2. In particular,
error estimates in the L∞-based Sobolev spaces can provide pointwise error estimates. Below
we describe some results for second-order elliptic boundary value problems with homogeneous
Dirichlet boundary conditions.

In the one-dimensional case (Wheeler, 1973) where Ω is an interval, the finite element
solution uT for a given triangulation T with mesh size hT satisfies

‖u− uT ‖L∞(Ω) ≤ ChnT |u|Wn
∞(Ω) (189)

provided the solution u of (5) belongs to Wn
∞(Ω) and the finite element space contains all

the piecewise polynomial functions of degree ≤ n− 1. The estimate (189) also holds in higher
dimensions (Douglas, Dupont and Wheeler, 1974) in the case where Ω is a product of intervals
and uT is the solution in the Qn−1 finite element space of Example 7.

For a two-dimensional convex polygonal domain (Natterer, 1975; Scott, 1976; Nitsche, 1977),
the estimate (189) holds in the case where n ≥ 3 and uT is the Pn−1 triangular finite element
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solution for a general triangulation T . In the case where uT is the P1 finite element solution,
(189) is replaced by

‖u− uT ‖L∞(Ω) ≤ Ch2
T | lnhT | |u|W 2

∞(Ω) (190)

L∞ estimates for general triangulations on polygonal domains with reentrant corners and
higher-dimensional domains can be found in Schatz and Wahlbin (1978, 1979, 1982) and
Schatz (1998). The estimate (190) was also established in Gastaldi and Nochetto (1987) for
the Crouzeix-Raviart nonconforming P1 element of Example 16.

It is also known (Rannacher and Scott, 1982; Brenner and Scott, 2002) that

|u− uT |W 1
∞(Ω) ≤ C inf

v∈VT
C|u− v|W 1

∞(Ω) (191)

where Ω is a convex polygonal domain in R2 and uT is the Pn (n ≥ 1) triangular finite
element solution obtained from a general triangulation T of Ω. Optimal order estimates for
|u−uT |W 1

∞(Ω) can be derived immediately from (191). Extension of (191) to higher dimensions
can be found in Schatz and Wahlbin (1995).

7.6. Interior estimates and pollution effects

Let Ω be the L-shaped polygon in Figure 1. The solution u of the Poisson problem (5) on
Ω with homogeneous Dirichlet boundary condition is singular near the reentrant corner and
u 6∈ H2(Ω). Consequently, the error estimate |u− uT |H1(Ω) ≤ ChT ‖f‖L2(Ω) does not hold for
the P1 triangular finite element solution uT associated with a quasi-uniform triangulation T
of mesh size hT .

However, u does belong to H2(Ωδ) where Ωδ is the subset of the points of Ω whose distances
to the reentrant corner are strictly greater than the positive number δ. Therefore, it is
possible that

|u− uT |H1(Ωδ) ≤ ChT ‖f‖L2(Ω) (192)

That the estimate (192) indeed holds is a consequence of the following interior estimate
(Nitsche and Schatz, 1974):

|u−uT |H1(Ωδ) ≤ C
(

inf
v∈VT

|u− v|H1(Ωδ/2) + ‖u− uT ‖L2(Ωδ/2)

)
(193)

where VT ⊂ H1
0 (Ω) is the P1 triangular finite element space. Interior estimates in various

Sobolev norms can be established for subdomains of general Ω in Rd and general finite elements.
We refer the readers to Wahlbin (1991) for a survey of such results and to Schatz (2000) for
some recent developments.

On the other hand, since uT is obtained by solving a global system that involves the nodal
values near the reentrant corner of the L-shaped domain, the effect of the singularity at the
reentrant corner can propagate into other parts of Ω. This is known as the pollution effect and
is reflected, for example, by the following estimate (Wahlbin, 1984):

‖u− uT ‖L2(Ω) ≥ Ch2β
T (194)
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where β = π/(3π/2) = 2/3. Similar estimates can also be established for other Sobolev norms.

7.7. Superconvergence

Let uT be the finite element solution of a second-order elliptic boundary value problem.
Suppose that the space of shape functions on each element contains all the polynomials of
degree ≤ n but not all the polynomials of degree n+ 1. Then the L∞ norm of the error u−uT
is at most of order hn+1, even if the solution u is smooth. However, the absolute value of u−uT
at certain points can be of order hn+1+σ for some σ > 0. This is known as the phenomenon of
superconvergence and such points are the superconvergence points for uT . Similarly, a point
where the absolute value of a derivative of u−uT is of order hn+σ is a superconvergence point
for the derivative of uT .

The division points of a partition T for a two point boundary value problem with smooth
coefficients provides the simplest example of superconvergence points. Let uT be the finite
element solution from the Pn Lagrange finite element space. Since the Green’s function Gp
associated with a division point p is continuous in the interval Ω and smooth on the two
subintervals divided by p, we have (Douglas and Dupont, 1974)

|(u− uT )(p)| = |a(u− uT , Gp)|
= |a(u− uT , Gp −ΠN

T Gp)|
≤ C‖u− uT ‖H1(Ω)‖Gp −ΠN

T Gp)‖H1(Ω) ≤ Ch2n

provided that u is sufficiently smooth. Therefore, p is a superconvergence point for uT if n ≥ 2.

For general superconvergence results in various dimensions, we refer the readers to Kř́ıžek
and Neittaanmäki (1987), Chen and Huang (1995), Wahlbin (1995), Lin and Yan (1996),
Schatz, Sloan and Wahlbin (1996), Kř́ıžek, Neittaanmäki and Stenberg (1998), Chen (1999),
and Babuška and Strouboulis (2001).

7.8. Finite element program in 8 lines of MATLAB

It is the purpose of this section to introduce a short (two-dimensional) P1 finite element
program.

The data for a given triangulation T = {T1, . . . , Tm} into triangles with a set of nodes
N = {z1, . . . , zn} are described in user-specified matrices called c4n and n4e. Figure 19
displays a triangulation with m triangles and n nodes as well as a fixed enumeration and
the corresponding data. The coordinates of the nodes zk = (xk, yk) (d real components
in general) are stored in the kth row of the two-dimensional matrix c4n . Each element
Tj = conv{zk, z`, zm} is represented by the labels of its vertices (k, `,m) stored in the jth row
of the two-dimensional matrix n4e. The chosen permutation of (k, `,m) describes the element
in a counterclockwise orientation. Homogeneous Dirichlet conditions are prescribed on the
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2 16 1
16 2 17
3 17 2
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3 19 18
6 4 5
4 6 19
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20 18 9
18 8 9
8 18 19
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7 19 6
15 21 14
21 15 20
20 10 21
10 20 9
14 12 13
12 14 21
21 11 12
11 21 10

n4e

Figure 19: Picture of a triangulation T = conv{(−1/2,−1), (−1,−1/2), (−1,−1)},
conv{(−1,−1/2), (−1/2,−1), (−1/2,−1/2)}, . . . , conv{(1/2, 1), (1, 1/2), (1, 1)} with m = 24
triangles and n = 21 nodes (a). The picture indicates an enumeration of nodes (numbers
in circles) and elements (numbers in boxes) given in the matrices c4n (b) and n4e

(c). The Dirichlet boundary conditions on the exterior nodes are included in the vector
dirichlet = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) of the labels in a counterclockwise
enumeration. The data c4n , n4e, and dirichlet are the input of the finite element program
to compute a displacement vector x as its output.

boundary specified by an input vector dirichlet of all fixed nodes at the outer boundary; cf.
Figure 19.

Given the aforementioned data in the model Dirichlet problem with right-hand side f = 1,
the P1 finite element space Ṽ := span{ϕj : zj ∈ K} is formed by the nodal basis functions ϕj
of each free node zk; the set K of free nodes, the interior nodes, is represented in the N vector
freenodes, the vector of labels in 1 : n without dirichlet.

The resulting discrete equation is the N × N linear system of equations Ax = b with the
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positive definite symmetric stiffness matrix A and right-hand side b. Their components are
defined (as a subset of)

Ajk :=

∫
Ω

∇ϕj · ∇ϕkdx

and

bj :=

∫
Ω

fϕjdx for j, k = 1, . . . , n

The computation of the entries Ajk and bj is performed elementwise for the additivity of the
integral and since T is a partition of the domain Ω. Given the triangle Tj number j, the
MATLAB command c4n(n4e(j,:),:) returns the 3 × 2 matrix (P1, P2, P3)T of its vertices.
Then, the local stiffness matrix reads

STIMA(Tj)αβ :=

∫
Tj

∇ϕk · ∇ϕ`dx for α, β = 1, 2, 3

for those numbers k and ` of two vertices zk = Pα and z` = Pβ of Tj . The correspondence of
global and local indices, i.e. the numbers of vertices in (zk, z`, zm) = (P1, P2, P3), of Tj can be
formalized by

I(Tj) = {(α, k) ∈ {1, 2, 3} × {1, . . . , n} : Pα = zk ∈ N}
The local stiffness matrix is in fact

STIMA(Tj) = det
P

2
(QQT ) with P :=

[
1 1 1
P1 P2 P3

]

and Q := P−1

 0 0
1 0
0 1


This formula allows a compact programming in MATLAB as shown (for any dimension d)

function stima=stima(vertices)

P=[ones(1,size(vertices,2)+1);vertices’];

Q=P\[zeros(1,size(vertices,2));. . .
eye(size(vertices,2))];

stima=det(P)∗Q∗Q’/prod(1:size(vertices,2));

Utilizing the index sets I, the assembling of all local stiffness matrices reads

STIMA =
∑
Tj∈T

∑
(α,k)∈I(Tj)

∑
(β,`)∈I(Tj)

STIMA(Tj)αβ ek ⊗ e`

(ek is the kth canonical unit vector with the `th component equal to the Kronecker delta δk`
and ⊗ is the dyadic product.) The implementation of each summation is realized by adding
STIMA(Tj) to the 3× 3 submatrix of the rows and columns corresponding to k, `, m; see the
MATLAB program below.

function [x,A]=FEM(c4n,n4e,Dirichlet)

N=size(c4n,1);d=size(c4n,2);A=sparse(N,N);b=zeros(N,1);x=b;
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Figure 20: Discrete solution of −∆u = 1 with homogeneous Dirichlet boundary data based on
the triangulation of Figure 19.

for j=1:size(n4e,1)

area=abs(det([ones(1,d+1);c4n(n4e(j,:),:)’])/factorial(d));

grads=[ones(1,d+1);c4n(n4e(j,:),:)’]\[zeros(1,d);eye(d)];
A(n4e(j,:),n4e(j,:))=A(n4e(j,:),n4e(j,:))+area*(grads*grads’);

b(n4e(j,:))=b(n4e(j,:))+ones(d+1,1)*area/(d+1);end

dof=setdiff(1:N,Dirichlet(:));x(dof)=A(dof,dof)(
¯
dof); end

Given the output vector x, a plot of the discrete solution

ũ =

n∑
j=1

xj ϕn

is generated by the command trisurf(n4e,c4n(:,1),c4n(:,2),x) and displayed in
Figure 20.

For alternative programs with numerical examples and full documentation, the interested
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readers are referred to Alberty, Carstensen and Funken (1999) and Alberty et al (2002). The
closest more commercial finite element package might be FEMLAB. The internet provides
over 200 000 entries under the search for ‘Finite Element Method Program’. Amongst public
domain software are the programs DEAL II and FREEFEM and details of implementation
of 2D adaptive mesh-refining close to the implementation can be found in Funken, Praetorius
and Wissgott (2011).
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Babuška I and Miller A. A feedback finite element method with a posteriori error estimation.
I. The finite element method and some properties of the a posteriori estimator. Comput.
Methods Appl. Mech. Eng. 1987; 61:1-40.
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