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COLLECTIVE MARKING FOR ADAPTIVE LEAST-SQUARES

FINITE ELEMENT METHODS WITH OPTIMAL RATES

CARSTEN CARSTENSEN

Abstract. All previously known optimal adaptive least-squares finite element

methods (LSFEMs) combine two marking strategies with a separate L2 data
approximation as a consequence of the natural norms equivalent to the least-
squares functional. The algorithm and its analysis in this paper circumvent
the natural norms in a div-LSFEM model problem with lowest-order conform-
ing and mixed finite element functions and allow for a simple collective Dörfler
marking for the first time. A refined analysis provides discrete reliability and
quasi-orthogonality in the weaker norms L2 × H1 rather than H(div) × H1

and replaces data approximation terms by data oscillations. The optimal con-
vergence rates then follow for the lowest-order version from the axioms of
adaptivity for the newest-vertex bisection without restrictions on the initial
mesh-size in any space dimension.

1. Introduction

In its prominent divergence form, the least-squares finite element method (LS-
FEM) for the Poisson model problem minimises the least-squares functional

(1) LS(f ; τLS, vLS) := ‖τLS −∇vLS‖2L2(Ω) + ‖f + div τLS‖2L2(Ω)

over all (τLS , vLS) ∈ X(T ) := RT0(T ) × S1
0(T ) for a given right-hand side f ∈

L2(Ω) in a polyhedral bounded Lipschitz domain Ω ⊂ R
n partitioned into shape-

regular simplices in the triangulation T . The lowest-order Raviart–Thomas func-
tion space RT0(T ) ⊂ H(div,Ω) and the conforming first-order polynomials S1

0(T ) ⊂
H1

0 (Ω) [3–5] allow for a unique minimizer (σLS , uLS) of the least-squares functional
LS(f ; •) with quasi-optimal convergence towards the solution (σ, u) := (∇u, u) ∈
X := H(div,Ω) × H1

0 (Ω) to f + Δu = 0 in Ω. The quasi-optimal convergence
follows in the norms in X from the well-established equivalence

(2) LS(f ; τLS, vLS) ≈ ||σ − τLS ||2H(div) + |||u− vLS |||2

for all (τLS, vLS) ∈ X(T ) (and even for all test functions in X) [2]; cf. [14] for the
equivalence constants in (2) and asymptotic exactness, where H1

0 (Ω) is endowed
with the energy norm ||| • ||| := | • |H1(Ω).
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2 CARSTEN CARSTENSEN

The natural adaptive LSFEM evaluates the contribution ‖σLS −∇uLS‖2L2(T ) +

‖f+div σLS‖2L2(T ) of a simplex T ∈ T to the least-squares functional as a refinement

indicator in a (collective) Dörfler marking strategy. The corresponding analysis in
[12] guarantees convergence only for a large bulk parameter Θ, while all positive
theoretical results of optimal convergence rates require some very small Θ [1, 7,
13, 15, 17]. This conflict in the choice of Θ led to the design of alternative error
estimators in a series of papers [6,11–13], in which the norm ofX enforces a separate
marking strategy [13] for the data error ||f −Πf ||L2(Ω) of the right-hand side f and
its piecewise constant approximation Πf .

The refined analysis on the collective marking of this paper in weaker norms can
circumvent this data approximation term ||f −Πf ||L2(Ω) in this form but generates
the (much smaller) data oscillation osc(f, T ) := ||hT (f − Πf)||L2(Ω) with an extra

piecewise constant factor hT , the mesh-size hT |K := hK := |K|1/n for any simplex
K ∈ T of volume |K|. The point of departure is a novel equivalence

(3) LS(Πf ;σLS, uLS) + osc2(f, T ) ≈ ||σ − σLS ||2L2(Ω) + |||u− uLS |||2 + osc2(f, T )

for exact solve in the sense that (σLS , uLS) is the unique minimizer of (1) in X(T ).
(Notice that LS(f ;σLS, uLS)−LS(Πf ;σLS, uLS) = ||f −Πf ||2L2(Ω), while the right-

hand side of (3) involves the smaller osc2(f, T ). The point is that σ− σLS appears
on the, resp., right-hand sides in the H(div) norm in (2) and in the L2 norm in
(3).)

This paper introduces an alternative error analysis for the L2 × H1 norms in
(3) that satisfies the axioms of adaptivity [7, 13] and therefore leads to optimal
convergence rates in adaptive mesh-refinements. In the weaker norms at hand, the
quasi-orthogonality becomes less trivial and relies on a detailed analysis as in [10]
with a surprise: The collective marking adaptive LSFEM converges with optimal
rates without any further restrictions on the initial mesh T0.

The collective marking solely utilizes the residual-based explicit error estimator

η2(T ) := |T |2/n‖ div σLS‖2L2(T ) + osc2(f, T )

+ |T |1/n
∑

E∈E(T )

(
‖[σLS −∇uLS ]E‖2L2(E\∂Ω)+‖(σLS −∇uLS)× νE‖2L2(E∩∂Ω)

)(4)

for each T ∈ T with jumps [•]E across the side E of T with unit normal νE . The
sum η2(T ) of those contributions η2(T ) for all T ∈ T defines the alternative error
estimator, which is reliable and efficient in the sense that

LS(Πf ;σLS, uLS) � ||σ − σLS ||2L2(Ω) + |||u− uLS |||2

� η2(T ) � LS(Πf ;σLS, uLS) + osc2(f, T ).(5)

This paper establishes optimal convergence rates of the subsequent novel adap-
tive algorithm ACLSFEM based on the axioms of adaptivity [7, 13] with collective
(Dörfler) marking.
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ADAPTIVE LEAST-SQUARES FINITE ELEMENT METHODS 3

Algorithm ACLSFEM

Input: regular triangulation T0 and parameter 0 < Θ � 1
for � = 0, 1, 2, . . . do

Compute the minimizer (σ�, u�) of the least-squares functional (1) in X(T�)
Compute η�(T ) for any T ∈ T� from (4)
Mark (almost) minimal subset M� ⊆ T� with Θ

∑
T∈T�

η2� (T ) ≤∑
T∈M�

η2� (T )

Refine T� with newest-vertex bisection to compute T�+1 with M� ⊆ T� \T�+1

end for
Output: sequence of triangulations T� with (σ�, u�) and η�(T�)

Undisplayed numerical experiments confirm the optimal convergence rates and
also show the different performance of the alternatives adaptive schemes from [11]
with separate marking.

The remaining parts of the paper are organized as follows. Section 2 introduces
the notation and the technical tools required throughout the error analysis in this
paper and summarizes the axioms and the precise optimality statement. The proofs
follow in Section 3. The inner mechanism of the least-squares minimization in
Subsection 3.2 allows a proof of a discrete reliability, but seemingly restricts the
analysis to the lowest-order case but works for any space dimension n ≥ 2.

Standard notation on Lebesgue and Sobolev spaces L2(Ω), Hk(Ω), H(div,Ω)
and the corresponding spaces of vector- or matrix-valued functions L2(Ω;Rn),
L2(Ω;Rn×n), etc., with the L2 scalar product ( • , • )L2(Ω) applies throughout this

paper. For a regular triangulation T of Ω, let Hk(T ) :=
∏

T∈T Hk(T ) ≡ {v ∈
L2(Ω) | ∀T ∈ T , v|T ∈ Hk(T ) := Hk(int(T ))} denote the piecewise Sobolev spaces,
and let (∇NCv)|T = ∇(v|T ) on T ∈ T denote the piecewise gradient for v ∈ H1(T ).
Let ||| • |||NC := | • |H1(Ω) = ‖∇• ‖L2(Ω) and ||| • |||NC := ||∇NC • ||L2(Ω) abbreviate the

(nonconforming) energy (semi) norm. The L2 projection onto the piecewise con-
stants P0(T ) reads Πv|T := �T v dx :=

∫
T
v dx/|T | for any v ∈ L2(Ω) and T ∈ T

and applies componentwise to vector-valued functions.
The orientation of the unit normal vector νE of a side E is fixed to define the

jump [q]E of a piecewise smooth vector field q with the normal component [q]E · νE
and the tangential components [q]E × νE (with natural interpretations for n 
= 3).

The measure | • | is context sensitive and refers to the number of elements of
some finite set or the measure |E| of a side E, etc., and not just the modulus of a
real number or the Euclidean length of a vector.

The inequality A � B abbreviates the relation A ≤ CB with a generic positive
constant C independent of the underlying triangulation, but solely dependent on
the initial triangulation T0; A ≈ B abbreviates A � B � A.

2. Preliminaries

2.1. Triangulations and finite element spaces. The newest vertex bisection
(NVB) applies throughout this paper with the set T of admissible triangulations
T of a bounded polyhedral Lipschitz domain Ω ⊂ R

n into simplices computed by
successive admissible refinements of an initial triangulation T0 with maximal mesh-
size h0 (plus some initialization of tagged simplices as in [18]). All triangulations
in this paper are admissible (i.e., successively generated by NVB from T0) and so
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4 CARSTEN CARSTENSEN

regular in the sense of Ciarlet [3–5,16] (without hanging nodes or edges, etc.), and
they are also shape-regular (i.e. locally quasi-uniform).

For a triangulation T ∈ T, let E (resp., E(T )) denote the set of all sides in the
triangulation (resp., of a simplex T ∈ T ); side is the notion for a proper subsimplex
of n vertices of T and means an edge in n = 2 and triangle in n = 3 dimension.
Let Pk(T ) denote the (generally discontinuous) piecewise polynomials of degree at
most k ∈ N0; mid(T ) (resp., mid(E)) denotes the center of mass of T ∈ T (resp.,
E ∈ E); E(Ω) denotes the set of interior sides, while E(∂Ω) is the remaining set of
sides along the boundary in T .

The lowest-order finite element spaces named after Courant, Crouzeix–Raviart,
and Raviart-Thomas read

S1
0(T ) := P1(T ) ∩H1

0 (Ω),

CR1
0(T ) := {vCR ∈ P1(T ) | vCR continous atmid(E) for all E ∈ E(Ω)

and vCR(mid(E)) = 0 for all E ∈ E(∂Ω)},
RT0(T ) := {A+ b( • −mid(T )) ∈ H(div,Ω) |A ∈ P0(T ;Rn), b ∈ P0(T )}.

It will be used throughout this paper that the piecewise integration by parts formula
(vCR, div τRT )L2(Ω) = −(τRT ,∇NCvCR)L2(Ω) holds without jump or boundary con-

tributions for all Crouzeix–Raviart and Raviart–Thomas functions vCR ∈ CR1
0(T )

and τRT ∈ RT0(T ) in the same regular triangulation T . (The proof studies the
boundary terms along a side F along which the lowest-order Raviart–Thomas func-
tions have a continuous constant normal component (no jump), while the jump of
the Crouzeix–Raviart function arises with an integral mean zero on F .)

Each simplex T has an outer unit normal νT and each side E ∈ E is attached to
a unique orientation with νE = νT+ = −νT− for an interior side E = ∂T+ ∩ ∂T−

shared by two simplices so that [wh]E := wh|T+ − wh|T− defines the jump for any
piecewise H1 function wh and ωE := int(T+ ∪ T−). Along the boundary E ⊂ ∂Ω
(with homogeneous boundary conditions), [wh]E := wh|T+ is the trace wh and
ωE := int(T+).

2.2. Discrete inequalities. Besides the Poincaré–Friedrichs inequality ||v||L2(Ω)

≤ CF |||v||| for all v ∈ H1
0 (Ω), there is a discrete Friedrichs inequality for ||vCR||L2(Ω) ≤

CdF |||vCR|||NC for all vCR ∈ CR1
0(T ) [5, p. 301] with a constant CdF ≈ 1 estimated

in [9]. The constant CdP in the discrete Poincaré inequality,

(6) ‖vCR − vK‖L2(K) ≤ CdPhK ‖∇NCvCR‖L2(K),

for a Crouzeix–Raviart finite element function vCR on a fine triangulation of the
simplex K and its integral mean vK := �K vCRdx, is estimated in [9] as CdP =√
3/2 cot(ω0) with the minimal angle ω0 in the triangulation for n = 2 and CdP =

Csr

√
5/3 with diam(K) ≤ CsrhK = Csr|K|1/n and the shape regularity constant

Csr ≈ 1 for n = 3; the continuous version leads to a constant CP. The reader is re-
ferred to textbooks [3–5,16] for other standard estimates from Cauchy to (discrete)
trace inequalities.

2.3. Two level notation. This subsection provides the necessary notation for a
discretization of two levels for further reference throughout this paper. Given an

admissible refinement T̂ ∈ T(T ) of a triangulation T ∈ T, let (σLS , uLS) ∈ X(T )

Licensed to Humboldt Universitat zu Berlin. Prepared on Fri Sep 13 06:57:40 EDT 2019 for download from IP 141.20.213.77.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



ADAPTIVE LEAST-SQUARES FINITE ELEMENT METHODS 5

(resp., (σ̂LS , ûLS) ∈ X(T̂ )) be the minimizer of (1) based on T (resp., T̂ ). Define

(7) δ2(T , T̂ ) := LS(Π̂f −Πf ; σ̂LS − σLS , ûLS − uLS)

and δ(T , T̂ ) := δ2(T , T̂ )1/2 with the L2 projection Π (resp., Π̂) onto P0(T ) (resp.,

P0(T̂ )). The error estimator η(T ) := η2(T )1/2 of (4) is based on T and the analog

definition applies to T̂ and defines η̂(T̂ ) for each T̂ ∈ T̂ .
The subsequent summation rule frequently abbreviates particular sums

(8) η2(M) :=
∑
T∈M

η2(T ) for any subset M ⊂ T

and η(M) := η2(M)1/2 (with an analog abbreviation for η̂2(M̂) and M̂ ⊂ T̂ ).

Based on T and T̂ , one defines the set R0 := T \ T̂ of refined simplices and

its supersets R1 (resp., R2) as T \ T̂ plus one (resp., two) layers of neighbouring
simplices: Rj+1 := {T ∈ T : dist(T,Rj) = 0} for j = 0, 1. Those sets of simplices

T \ T̂ ≡ R0 ⊂ R1 ⊂ R2 ⊂ T cover certain subdomains Ω′ := int(∪(T \ T̂ )) ⊂
Ω′′ := int(∪R1).

Based on T and its refinement T̂ , the subtriangulation T̂ (K) := {T ∈ T̂ : T ⊂
K} is a shape-regular triangulation of K ∈ T into one or more simplices.

2.4. Axioms of adaptivity. The first three axioms concern an admissible refine-

ment T̂ ∈ T(T ) of a triangulation T ∈ T and the respective estimators η̂ and η

as well as the distance δ(T , T̂ ) and the set R2 from the previous subsection and

adopt the sum convention (8). With universal positive constants Λ1, . . . ,Λ5, Λ̂3

and 
2 < 1, suppose stability (A1), reduction (A2), discrete reliability (A3), and
quasi-monotonicity (QM) as follows:

|η̂(T ∩ T̂ )− η(T ∩ T̂ )| ≤ Λ1δ(T , T̂ );(A1)

η̂(T̂ \ T ) ≤ 
2η(T \ T̂ ) + Λ2δ(T , T̂ );(A2)

δ2(T , T̂ ) ≤ Λ3η
2(R2) + Λ̂3η̂

2(T̂ );(A3)

η̂(T̂ ) ≤ Λ5η(T ).(QM)

The quasiorthogonality (A4) concerns the discrete solutions (σ�, u�) and η�(T�)
from the output of ACLSFEM from the introduction and assumes

(A4)

∞∑
k=�

δ2(Tk, Tk+1) ≤ Λ4η
2
� for all � ∈ N0.

2.5. Optimal convergence. Under the assumptions (A1)–(A4) and (QM) from
the previous subsection, the techniques from [1, 7, 13, 15, 17] imply the following
statement of optimal rates: For any bulk parameter Θ < Θ0 := 1/(1 + Λ2

1Λ3), the
output of ACLSFEM satisfies for any s > 0 that
(9)
sup
�∈N0

(1+ |T�| − |T0|)sη�(T�) � sup
N∈N0

(1+N)s min{η(T ) | T ∈ T with |T | − |T0| ≤ N}.

(Here η(T ) is the error estimator with respect to all simplices in a competing
triangulation T defined by the minimizer (σLS , uLS) of (1) in X(T ) through (4)
and the sum convention (8).) The equivalence constants in (9) also depend on Θ
and s and prove that the optimal rate (on the right-hand) is equal [7] to the rate
for ACLSFEM (on the left-hand side).
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6 CARSTEN CARSTENSEN

The proof of (9) is indeed contained in [7, 13] (for Λ̂3 = 0 in [7] and for the
general case in [13] provided the data approximation μ ≡ 0 is neglected for collective
marking). The notion of optimal rates in approximation classes involves the total
error with the best approximation of the solution (σ, u) in X(T ) and the data
error osc(f, T ). Because of the equivalence (3), optimality in terms of nonlinear
approximation classes (as in [1, 7, 15, 17]) follows from (9).

3. Proofs

Adopt the notation from Subsection 2.3, so (σLS, uLS) ∈ X(T ) (resp., (σ̂LS , ûLS)

∈ X(T̂ )) is the minimizer of (1) based on T (resp., its refinement T̂ ).

3.1. New equivalence. This subsection establishes (3) of the introduction, where

osc(Π̂f, T \ T̂ ) abbreviates the square root of
∑

T∈T \̂T osc2(Π̂f, T ) with the piece-

wise mean Π̂f ∈ P0(T̂ ) of f ∈ L2(Ω) with respect to the finer triangulation T̂ .

Lemma 1. It holds that

||σ̂LS − σLS ||L2(Ω) + |||ûLS − uLS ||| � δ(T , T̂ ) + osc(Π̂f, T \ T̂ ).

Proof. Recall (1), (7), expand binomial formulas, and integrate by parts to verify

||σ̂LS − σLS ||2L2(Ω) + |||ûLS − uLS |||2 − δ2(T , T̂ ) + ||Π̂f −Πf + div(σ̂LS − σLS)||2L2(Ω)

= 2(σ̂LS − σLS ,∇(ûLS − uLS))L2(Ω) = −2(div(σ̂LS − σLS), ûLS − uLS)L2(Ω)

= 2(Π̂f−Πf, ûLS − uLS)L2(Ω)−2(Π̂f−Πf+div(σ̂LS − σLS), ûLS − uLS)L2(Ω).

A piecewise Poincaré inequality (6) in the second-to-last term eventually results in

(10) (Π̂f −Πf, ûLS − uLS)L2(Ω) ≤ CdP osc(Π̂f, T \ T̂ )|||ûLS − uLS |||.

The proof of (10) focuses on one simplex K ∈ T \ T̂ and the integral mean fK
of Π̂f on K. The Crouzeix–Raviart function vcr := (ûLS − uLS)|K ∈ CR

1(T̂ (K))
with integral mean vK arises in

(Π̂f −Πf, ûLS − uLS)L2(K) = (Π̂f − fK , vcr − vK)L2(K)

≤ Π̂f − fK‖L2(K)‖vcr − vK‖L2(K).

The term ‖vcr−vK‖L2(K) is bounded in (6) and leads to the extra mesh-size factor
required in the oscillations of (10).

This, Friedrichs’s, and Cauchy’s inequality prove that the first displayed terms
are

≤ 2
(
CdP osc(Π̂f, T \ T̂ ) + CF ||Π̂f − Πf + div(σ̂LS − σLS)||L2(Ω)

)
|||ûLS − uLS |||.

This and some rearrangements conclude the proof. �

Theorem 2. The exact (resp., discrete) solution (σ, u) (resp. (σLS , uLS)) and the
right-hand side f ∈ L2(Ω) satisfy (3).

Proof. The assertion “�” follows from Lemma 1 for the fixed T and some sequence

of successive uniform refinements to generate a sequence of finer triangulations T̂
with maximal mesh-size maxh

̂T → 0. Indeed, the convergence of the least-squares

finite element scheme in H(div) × H1(Ω) as maxh
̂T → 0 leads to δ2(T , T̂ ) →

LS(Πf ;σLS, uLS). This and Lemma 1 conclude the proof.
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ADAPTIVE LEAST-SQUARES FINITE ELEMENT METHODS 7

The proof of the converse estimate “�” starts with a triangle inequality ||σLS −
∇uLS ||L2(Ω) ≤ ||σ−σLS ||L2(Ω)+|||u−uLS |||. The remaining estimate of Πf+div σLS ∈
P0(T ) in L2 utilizes the inf-sup stability of the divergence operator [3, 4, 16]

1 � inf
v0∈P0(T )\{0}

sup
τRT∈RT0(T )\{0}

(v0, div τRT )L2(Ω)/(||v0||L2(Ω)‖τRT ‖H(div))

with a continuous right inverse of div : RT0(T ) → P0(T ) to select τRT ∈ RT0(T )
with

Πf + div σLS = div τRT and ||τRT ||L2(Ω) � ||Πf + div σLS ||L2(Ω).

The discrete Euler–Lagrange equations associated to (1) at the discrete minimizer
(σLS , uLS) follow from differentiation and read

(11) (σLS −∇uLS , τRT −∇vC)L2(Ω) + (Πf + div σLS , div τRT )L2(Ω) = 0

for all (τRT , vC) ∈ RT0(T ) × S1
0(T ). The aforementioned choice of τRT and its

stability prove in (11) that

||Πf + div σLS ||2L2(Ω) = −(σLS −∇uLS , τRT )L2(Ω)

� ||σLS −∇uLS ||L2(Ω)||Πf + div σLS ||L2(Ω).

This and the aforementioned triangle inequality conclude the proof. �
3.2. An internal variable. The internal variable uCR of Lemma 3 describes an
algebraic link between the two residuals in the least squares functional. Its analog

ûCR on the fine level of T̂ enables a miraculous local control of some key terms in
Lemma 4 below. The definition of the piecewise constant s(T ) ∈ P0(T ) involves
the affine function • − mid(T ), that equals x − mid(T ) at x ∈ T ∈ T , and the
integral mean Π|•−mid(T )|2 on T ∈ T of its squared norm |•−mid(T )|2 ∈ P2(T ),

(12) h2
T ≈ s(T ) := n−2Π| • −mid(T )|2 ∈ P0(T ).

Lemma 3. The piecewise constant L2 best approximation ΠσLS of the Raviart–
Thomas solution σLS is equal to the piecewise gradient ∇NCuCR = ΠσLS of a
Crouzeix–Raviart function uCR ∈ CR1

0(T ) with

(13) (1 + s(T )) div σLS = Π(uCR − uLS − f) a.e. in Ω.

Proof. The L2 scalar product (σLS, τRT )L2(Ω) of the Raviart–Thomas functions

in (11) concerns the piecewise constant contribution ΠτRT and the L2 orthogonal
remainder (1 − Π)τRT = n−1 div τRT (• − mid(T )); the weight s(T ) enters in the
L2 scalar product

(14) ((1−Π)σLS, (1−Π)τRT )L2(Ω) = (s(T ) div σLS , div τRT )L2(Ω).

Consequently, (11) implies

(Πf + (1 + s(T )) div σLS , div τRT )L2(Ω) = (∇uLS −ΠσLS , τRT )L2(Ω)

for any τRT ∈ RT0(T ). Equation (11) also shows that ∇uLS −ΠσLS is L2 orthogo-
nal to the divergence-free functions in RT0(T ) as well as to ∇S1

0(T ). Consequently,
ΠσLS −∇uLS is equal to the piecewise gradient of some Crouzeix–Raviart function
vCR, and then uCR := vCR+uLS . This is standard in n = 2 space dimensions from a
discrete Helmholtz decomposition [11] and follows in general, also for multiply con-
nected domains, as follows: Define vCR as the Riesz representation of the functional
(ΠσLS −∇uLS ,∇NC•)L2(Ω) in the Hilbert space CR1

0(T ) with the scalar product
(∇NC•,∇NC•)L2(Ω). Then 
RT := ΠσLS −∇NCuCR ∈ P0(T ;Rn) is perpendicular
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8 CARSTEN CARSTENSEN

to the piecewise gradient ∇NCψE in L2 for the side-oriented basis function ψE in
CR1

0(T ) of an interior side E ∈ E(Ω). A piecewise integration by parts in this
orthogonality with

∫
F
[ψE ]Fds = 0 for all sides F leads to

∫
E
[
RT ]E · νE ds = 0.

Since [
RT ]E · νE is constant along E, it has to vanish. In other words, the normal
components of 
RT are continuous in Ω, and so 
RT ∈ RT0(T ) is a divergence-free
test function. The orthogonality of ΠσLS − ∇uLS and 
RT ∈ RT0(T ) on the one
hand and (∇NCvCR, 
RT )L2(Ω) = 0 for the divergence-free 
RT ∈ RT0(T ) on the
other imply (
RT , 
RT )L2(Ω) = 0. Thus 
RT = 0 implies the claimed representation.

It follows that the previous right-hand side (∇uLS −ΠσLS , τRT )L2(Ω) is equal to
−(∇NCvCR, τRT )L2(Ω). An integration by parts shows this is (ΠvCR, div τRT )L2(Ω)

and so proves

(Πf + (1 + s(T )) div σLS −ΠvCR, div τRT )L2(Ω) = 0 for all τRT ∈ RT0(T ).

Since the divergence operator maps RT0(T ) onto P0(T ), this concludes the proof.
�

This subsection concludes with an application of Lemma 3 to the last term in

δ2(T , T̂ ) = ‖σ̂LS − σLS −∇(ûLS − uLS)‖2L2(Ω) + ‖Πdiv(σ̂LS − σLS)‖2L2(Ω)

+ ‖(Π̂−Π)(f + div σ̂LS)‖2L2(Ω).(15)

The first two terms on the right-hand side in (15) will be rewritten in Lemma 5 of
the subsequent subsection, while the last term is controlled with (13) even locally.

This serves as a novel and elementary estimate of some key oscillation (Π̂ − Π)f
(with f shifted to f +div σ̂LS) without the mesh-size factor hT by some first-order
residual contribution ‖σ̂LS −∇ûLS‖ with an additional mesh-size factor hT .

Lemma 4. For any T ∈ T ,

(16) ‖(Π̂−Π)(f + div σ̂LS)‖L2(T ) � hT ‖σ̂LS −∇ûLS‖L2(T ).

Proof. The substitution of T by T̂ in Lemma 3 and v̂CR := ûCR − ûLS prove that

Π̂f + div σ̂LS = Π̂v̂CR − s(T̂ ) div σ̂LS .

The two arguments for the estimate of

‖(Π̂−Π)(f + div σ̂LS)‖2L2(T ) = ((Π̂−Π)(f + div σ̂LS), v̂CR − s(T̂ ) div σ̂LS)L2(T )

are very different. The discrete Poincaré inequality allows for

((Π̂−Π)(f + div σ̂LS), v̂CR)L2(T )

≤ CdPhT ‖∇NCv̂CR‖L2(T )‖(Π̂−Π)(f + div σ̂LS)‖L2(T ).

This, a Cauchy inequality, the definition of (12) in the second term, namely

‖s(T̂ ) div σ̂LS‖L2(T ) ≤ CsrhT /(n+ 1)‖
√
s(T̂ ) div σ̂LS‖L2(T ),

and a division by ‖(Π̂−Π)(f + div σ̂LS)‖L2(T ) show that

‖(Π̂−Π)(f + div σ̂LS)‖L2(T ) � hT

(
‖∇NCv̂CR‖L2(T ) + ‖

√
s(T̂ ) div σ̂LS‖L2(T )

)
.

The L2 orthogonal split σ̂LS −∇ûLS = Π̂σ̂LS −∇ûLS + (1− Π̂)σ̂LS into piecewise

averages and Π̂σ̂LS −∇ûLS = ∇NCv̂CR from Lemma 3 prove that

σ̂LS −∇ûLS = ∇NCv̂CR + (1− Π̂)σ̂LS a.e. in T.
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ADAPTIVE LEAST-SQUARES FINITE ELEMENT METHODS 9

This and the computation in (14) (with respect to the fine level of T̂ and with σLS

and τRT replaced by σ̂LS) imply for each T̂ ∈ T̂ (T ) (i.e., T̂ ∈ T̂ with T̂ ⊂ T ) that

‖∇NCv̂CR‖2L2(̂T )
+ ‖

√
s(T̂ ) div σ̂LS‖2L2(̂T )

= ‖σ̂LS −∇ûLS‖2L2(̂T )
.

The substitution of this in the second-to-last displayed estimate concludes the proof.
�

3.3. Three auxiliary stresses. The a posteriori error analysis of mixed and LS-

FEM frequently utilizes three mixed finite element solutions τ̂LS , τ
∗
LS ∈ RT0(T̂ ),

and τLS ∈ RT0(T ) defined as mixed finite element solutions to the Poisson model
problem with respective right-hand sides

div τ̂LS = div(σ̂LS − σLS) and div τ∗LS = Πdiv(σ̂LS − σLS) = div τLS .

This allows for a divergence-free 
̂RT := σ̂LS − σLS − τ̂LS + τ∗LS − τLS ∈ RT0(T̂ ).
The role of the three auxiliary stress functions is visible in the subsequent identity.

Lemma 5. Any vC ∈ S1
0(T ) satisfies

‖σ̂LS − σLS −∇(ûLS − uLS)‖2L2(Ω) + ‖Π div(σ̂LS − σLS)‖2L2(Ω)

= (σLS −∇uLS ,∇(ûLS − uLS − vC)− 
̂RT )L2(Ω)

+ (σ̂LS − σLS −∇(ûLS − uLS), τ̂LS − τ∗LS)L2(Ω).

Proof. Appropriate test functions lead in (11) (and in its nondisplayed analog with

respect to T̂ ) to the lemma with elementary algebra; more details can be found (in
different notation) in [11, Lemma 5.2]. �

The auxiliary stresses are controlled as follows.

Lemma 6. It holds that

‖τ̂LS − τ∗LS‖L2(Ω) � osc(div σ̂LS , T \ T̂ ),

‖
̂RT ‖L2(Ω) � δ(T , T̂ ) + osc(Π̂f, T \ T̂ ) + ‖Πdiv(σ̂LS − σLS)‖L2(Ω).

Proof. The first inequality is from [11, Lemma 5.3] in 2D and we give a more general

proof for completeness. Let ŵCR ∈ cr
1
0(T̂ ) solve

(∇NCŵCR,∇NCψ̂CR)L2(Ω) = (g, ψ̂CR)L2(Ω) for all ψ̂CR ∈ cr
1
0(T̂ )

for g := − div(τ̂LS−τ∗LS) ∈ P0(T̂ ), which is L2 orthogonal to P0(T ). An integration
by parts and the mixed finite element equations in the definition of τ̂LS and τ∗LS

show that the piecewise constant vector field

Π̂(τ̂LS − τ∗LS)−∇NCŵCR ⊥ ∇NCcr
1
0(T̂ ) + {τ̂RT ∈ RT0(T̂ ) : div τ̂RT = 0}

(with ⊥ denoting L2 orthogonality). Since this vector field belongs to RT0(T̂ )
(from an integration by parts) and is divergence-free, the orthogonality shows that

it has to vanish, i.e., Π̂(τ̂LS − τ∗LS) = ∇NCŵCR. This and a standard argument
for the aforementioned nonconforming solution to the Poisson equation with the
right-hand side g ⊥ P0(T ) show (with a piecewise discrete Poincaré inequality in
the final step) that

‖∇NCŵCR‖2L2(Ω) = (g, ŵCR)L2(Ω)

= (g, ŵCR −ΠŵCR)L2(Ω) � osc(g, T )‖∇NCŵCR‖L2(Ω).
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10 CARSTEN CARSTENSEN

This concludes the proof of the first asserted inequality. The proof of the second
starts with a triangle inequality followed by the L2 orthogonality of τ̂LS (resp., τ∗LS)
and the divergence-free function σ̂LS − σLS − τ̂LS (resp., τ∗LS − τLS):

1/2 ‖
̂RT ‖2L2(Ω) ≤ ‖σ̂LS − σLS − τ̂LS‖2L2(Ω) + ‖τ∗LS − τLS‖2L2(Ω)

= ‖σ̂LS − σLS‖2L2(Ω) − ‖τ̂LS‖2L2(Ω) + ‖τLS‖2L2(Ω) − ‖τ∗LS‖2L2(Ω).

The stability of the auxiliary mixed finite element solutions results in

‖
̂RT ‖L2(Ω) � ‖σ̂LS − σLS‖L2(Ω) + ‖Πdiv(σ̂LS − σLS)‖L2(Ω).

This and Lemma 1 conclude the proof. �

3.4. A posteriori error analysis. This subsection collects some core arguments
for the proof of the discrete reliability. Recall (4) from the introduction and the

definitions of R0, R1, R2 and Ω′ := int(∪(T \ T̂ )), etc. from Subsection 2.3.

Proposition 7. There exists a universal constant Λ > 0 that depends exclusively
on T0 such that

‖σ̂LS − σLS −∇(ûLS − uLS)‖2L2(Ω) + ‖Πdiv(σ̂LS − σLS)‖2L2(Ω)

≤ 1

2
δ2(T , T̂ ) + Λ

(
η2(R2) + osc2(div σ̂LS , T \ T̂ )

)
.

Proof. A Cauchy inequality in the last term of the identity in Lemma 5 allows us
to absorb one factor, and, with Lemma 6 in the final step, this leads to

‖σ̂LS − σLS −∇(ûLS − uLS)‖2L2(Ω) + ‖Πdiv(σ̂LS − σLS)‖2L2(Ω)

� (σLS −∇uLS ,∇(ûLS − uLS − vC)− 
̂RT )L2(Ω) + ‖τ̂LS − τ∗LS‖2L2(Ω)

� (σLS −∇uLS ,∇(ûLS − uLS − vC)− 
̂RT )L2(Ω) + osc2(div σ̂LS , T \ T̂ ).

The two contributions in the second-to-last term require different arguments, which
can be collected from the literature and are merely outlined here. First, the appro-
priate choice of vC ∈ S1

0(T ) as a Scott–Zhang quasi-interpolation of ûLS − uLS in

the second-to-last term leads to ûLS−uLS = vC on all simplices in T ∩T̂ outside Ω′.
The approximation and stability properties of ûLS −uLS −vC allow standard argu-
ments after a piecewise integration by parts (as in [11] and as for many a posteriori
error estimation with conforming finite element functions) to deduce that

(σLS −∇uLS ,∇(ûLS − uLS − vC))L2(Ω) � |||ûLS − uLS |||

×

⎛
⎝‖hT div σLS‖2L2(Ω′) +

∑
E∈E(Ω′)

hE‖[σLS −∇uLS ]E · νE‖2L2(E)

⎞
⎠

1/2

with a reduced domain Ω′ and the set E(Ω′) of sides interior in Ω′.
Second, the divergence-free Raviart–Thomas function 
̂RT is piecewise constant

with respect to the fine triangulation, and so the other contribution reads

(∇uLS − Π̂σLS , 
̂RT )L2(Ω)

= (ΠσLS − Π̂σLS , 
̂RT )L2(Ω) + (∇uLS −ΠσLS, 
̂RT )L2(Ω)

≤ ‖σLS −ΠσLS‖L2(Ω′)‖
̂RT ‖L2(Ω) − (∇NCvCR, 
̂RT )L2(Ω)

with vCR := uCR − uLS and uCR from Lemma 3. The ansatz of the lowest-order
Raviart–Thomas functions shows (σLS−ΠσLS)(x) = (n−1 div σLS)(x−mid(T )) for
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ADAPTIVE LEAST-SQUARES FINITE ELEMENT METHODS 11

x ∈ T ∈ T and so implies ‖σLS−ΠσLS‖L2(Ω′) � ‖hT div σLS‖L2(Ω′). The remaining
contribution (∇NCvCR, 
̂RT )L2(Ω) is standard in the context of an a posteriori non-
conforming finite element error analysis. The point is that any Crouzeix–Raviart
function v̂CR on the fine triangulation leads to (∇NCv̂CR, 
̂RT )L2(Ω) = 0. The choice
of v̂CR from [8, Theorem 3.2] leads to

‖∇NC(v̂CR − vCR)‖2L2(Ω) �
∑

E∈E(Ω′′)

hE‖[∇NCvCR]E × νE‖2L2(E)

with the domain Ω′′ := int(∪R1) and the set E(Ω′′) of interior sides in Ω′′ and its
superset E(Ω′′) := E(Ω′′) ∪ (E(∂Ω) ∩ E(Ω′′)) with extra sides on ∂Ω ∩ ∂Ω′′. This
proves

(∇uLS − σLS , 
̂RT )L2(Ω) � ‖
̂RT ‖L2(Ω)

×

⎛
⎜⎝‖hT div σLS‖2L2(Ω′) +

∑
E∈E(Ω′′)

hE‖[∇NCvCR]E × νE‖2L2(E)

⎞
⎟⎠

1/2

.

Since Lemma 6 controls ‖
̂RT ‖L2(Ω) and Lemma 1 controls |||ûLS − uLS |||, the left-

hand side of the assertion is � osc2(div σ̂LS , T \ T̂ ) plus(
δ(T , T̂ ) + osc(Π̂f, T \ T̂ ) + ‖Πdiv(σ̂LS − σLS)‖L2(Ω)

)
× estimators.

Since the square of ‖Πdiv(σ̂LS − σLS)‖L2(Ω) appears in the controlled left-hand

side, it can be absorbed; notice that osc(Π̂f, T \ T̂ ) ≤ osc(f, T \ T̂ ). Hence the
remaining proof focusses on the estimators, i.e., on

estimators2 := ‖hT div σLS‖2L2(Ω′) +
∑

E∈E(Ω′)

hE‖[σLS −∇uLS ]E · νE‖2L2(E)

+
∑

E∈E(Ω′′)

hE‖[ΠσLS −∇uLS ]E × νE‖2L2(E).

Since (σLS − ΠσLS)(x) = (n−1 div σLS)(x − mid(T )) for x ∈ T ∈ T , triangle and
trace inequalities show that

‖[ΠσLS −∇uLS ]E × νE‖L2(E) − ‖[σLS −∇uLS ]E × νE‖L2(E)

≤ ‖[σLS −ΠσLS]E × νE‖L2(E) � h
1/2
E ‖ div σLS‖L2(ωE)

for the side patch ωE of the at most two simplices T with the side E ∈ E(T ). The
last contribution leads to ‖hT div σLS‖2L2(ωE) for all E ∈ E(Ω′′) and eventually to

an enlargement of the set from R1 toR2. In conclusion, it follows that estimators �
η(R2) in terms of the error estimator in (4). �

3.5. Reliability. The first corollary from the previous analysis is reliability.

Theorem 8. The exact (σ, u) and the discrete solution (σLS , uLS) and the error
estimator (4) satisfy (5).

Proof. Given the fixed T ∈ T, consider the sequence of its successive uniform

refinements and let T̂ be one member of this sequence with maximal mesh-size
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12 CARSTEN CARSTENSEN

maxh
̂T . Passing to the limit with maxh

̂T → 0, the convergence of the least-

squares finite element scheme in H(div) × H1(Ω) allows for the substitution of
(σ̂LS , ûLS) by (σ, u) in Proposition 7. Consequently,

‖σLS −∇uLS‖2L2(Ω) + ‖Πf + div σLS‖2L2(Ω)

≤ 1

2
LS(Πf ;σLS, uLS) + Λ

(
η2(T ) + osc2(f, T )

)
.

Since the left-hand side is LS(Πf ;σLS, uLS) and since osc2(f, T ) ≤ η2(T ),

LS(Πf ;σLS, uLS) ≤ 4Λη2(T ).

This and Theorem 2 conclude the proof of the reliability. The efficiency holds
even in a local form for (a) |T |1/n‖ div σLS‖L2(T ) ≈ ‖σLS − ΠσLS‖L2(T ) ≤ ‖σLS −
∇uLS‖L2(T ) and for (b) the jump terms can be controlled by triangle and trace
inequalities. �

3.6. Discrete reliability. The previous subsections allow the proof of (A3).

Theorem 9. The discrete solution (σLS, uLS) (resp., (σ̂LS , ûLS)) on the triangula-

tion T ∈ T (resp., its admissible refinement T̂ ) and the error estimator (4) satisfy

(A3) with a universal constant Λ3 and Λ̂3 := h2 Λ3 for h := maxT∈T hT .

Proof. The combination of Lemma 4 and Proposition 7 in the split (15) shows

δ2(T , T̂ ) � η2(R2) + osc2(div σ̂LS , T \ T̂ ) + ‖hT (σ̂LS −∇ûLS)‖2L2(Ω).

Since osc(Π̂f, T \ T̂ ) ≤ η(R2), the triangle inequality shows

osc(div σ̂LS , T \ T̂ ) ≤ osc(Π̂f + div σ̂LS , T \ T̂ ) + η(R2).

Notice the extra factor hT in the oscillation term so that the previous estimate
reads

δ2(T , T̂ ) � η2(R2) + h2LS(Π̂f ; σ̂LS , ûLS).

Theorem 8 applies to the fine triangulation as well, and so h2η̂2(T̂ ) controls the
last term to conclude the proof. �

3.7. Quasiorthogonality. The main novel argument in the proof is an inequality
on the least-squares functional. Straightforward algebra with the least-squares
functionals and (11) lead to the (well-) known identity [11, Eq (4.5)]

(17) LS(0; σ̂LS − σLS , ûLS − uLS) + LS(Π̂f ; σ̂LS , ûLS) = LS(Π̂f ;σLS , uLS).

The point is that the data approximation Π̂f is the same on both sides of the
equality and so leads to the 0 in the leading term of (17). This paper suggests a
modification.

Theorem 10. It holds that

δ2(T , T̂ ) + LS(Π̂f ; σ̂LS , ûLS)− LS(Πf ;σLS, uLS)

� LS1/2(Π̂f ; σ̂LS , ûLS) osc(Π̂f, T \ T̂ ).

Proof. An elementary modification of (17) shows that

LS(Π̂f −Πf ; σ̂LS − σLS , ûLS − uLS) + LS(Π̂f ; σ̂LS , ûLS)

= LS(Πf ;σLS, uLS) + 2(Π̂f −Πf, Π̂f + div σ̂LS)L2(Ω).(18)
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The identity (13) applies to the finer level as well and allows the substitution of

Π̂f + div σ̂LS = Π̂v̂CR − s(T̂ ) div σ̂LS in the last term of (18):

(Π̂f −Πf, Π̂f + div σ̂LS)L2(Ω) = (Π̂f −Πf, v̂CR − s(T̂ ) div σ̂LS)L2(Ω).

The first contribution in the last term allows a discrete Poincaré inequality as in
(10) and leads to

(Π̂f −Πf, v̂CR −Πv̂CR)L2(Ω) ≤ CdP osc(Π̂f, T \ T̂ )|||v̂CR|||NC .

The second contribution relies on

√
s(T̂ ) ≤

√
s(T ) ≤ CsrhT a.e. and reads

−(Π̂f −Πf, s(T̂ ) div σ̂LS)L2(Ω) ≤ Csr osc(Π̂f, T \ T̂ ) ‖
√
s(T̂ ) div σ̂LS‖L2(Ω′).

The sum of the two contributions utilizes ∇NCv̂CR = Π̂σ̂LS −∇ûLS and

‖
√
s(T̂ ) div σ̂LS‖2L2(Ω′) + |||v̂CR|||2NC = ||σ̂LS −∇ûLS ||2L2(Ω).

Consequently,

(Π̂f −Πf, Π̂f + div σ̂LS)L2(Ω) � osc(Π̂f, T \ T̂ )||σ̂LS −∇ûLS ||L2(Ω).

The substitution of this in (18) concludes the proof. �

3.8. Quasi-monotonicity. For small Λ̂3 (e.g., for a sufficiently fine initial trian-
gulation) (QM) holds [13]. In the general situation, Theorem 10 implies that

LS(Π̂f ; σ̂LS , ûLS) � LS(Πf ;σLS, uLS) + osc2(Π̂f, T \ T̂ ).

This and the equivalence (5) with respect to the coarse triangulation T and to the

fine triangulation T̂ imply (QM). �

3.9. Finish of the proof. The axioms (A3) and (QM) are proven explicitly in this
paper. The axioms (A1) and (A2) follow with standard arguments like triangle,
(discrete) trace, and Cauchy inequalities as in [13, 15]. The axiom (A4) requires a
generalisation (A4ε): Theorem 10 leads to a universal constant C1 > 0 such that,
for any ε > 0,

δ2(Tk, Tk+1) + (1− ε)LS(Πk+1f ;σk+1, uk+1)

≤ LS(Πkf ;σk, uk) + C1/ε osc
2(Πk+1f, Tk).

Given any �,m ∈ N0, the sum over all k = �, �+ 1, . . . , �+m leads to

�+m∑
k=�

δ2(Tk, Tk+1) ≤ LS(Π�f ;σ�, u�) + ε
�+m∑
k=�

LS(Πk+1f ;σk+1, uk+1)

+ C1/ε

�+m∑
k=�

osc2(Πk+1f, Tk).

Up to the mesh-size weight factors, the oscillations osc(Πk+1f, Tk) contain pairwise
orthogonal terms (Πk+1 − Πk)f which add up to (Π�+m+1 − Π�)f . This leads to
a proof that the sum over all (squared) oscillations in the last displayed inequality
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14 CARSTEN CARSTENSEN

is ≤ osc2(Π�+m+1f, T�). The reliability of (5) bounds LS(Πkf ;σk, uk) ≤ C2η
2
k(Tk).

The combination of the aforementioned arguments proves

�+m∑
k=�

δ2(Tk, Tk+1) ≤ (C1/ε+ C2)η
2
� + εC2

�+m+1∑
k=�+1

η2k(Tk).

This and the application of (QM) to η2�+m+1 ≤ Λ5η
2
� provides the generalisation

(A4ε) in [7, 13], where it is shown that the other axioms plus (A4ε) for some suffi-
ciently small ε > 0 imply (A4). �
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